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1 Introduction

These are the notes for the three lectures I have given in the CIM/CIME Euro-Summer
School on evolving interfaces held in the Portugal island of Maderia, in July 2000. In these
lectures, I surveyed several results on the Ginzburg-Landau functional

Îǫ(u) :=

∫

U

Eǫ(u) dx, Eǫ(u) :=
ǫ

2
|∇u|2 +

1

4ǫ
[1 − |u|2]2,

where U is an open, bounded subset of IRn with smooth boundary, and ǫ > 0 is a small
parameter.

This functional is a simpler version of the Ginzburg-Landau functional for superconduc-
tivity. The model for superconductivity has two fields; the complex valued order parameter
u and the vector valued magnetic potential A. The functional Îǫ is obtained by setting A
to zero and by appropriate scaling. In superconductivity, the length of the order parameter
|u| is proportional to the density of superconducting electrons. Hence the zeroes of u, called
vortices, are the places where superconductivity is lost. The parameter ǫ corresponds to
the inverse of the Ginzburg-Landau parameter κ and a number of type II superconducting
materials have large κ justifying the asymptotic regime considered in the notes. The lecture
notes of Rubinstein [23] provides a good introduction.

The starting point of these lectures is the seminal work of Bethuel, Brezis and Helein
[6] which gives a detailed asymptotic description of the minimizers uǫ of Îǫ as ǫ tends to
zero when U ⊂ IR2. To briefly describe this result, let uǫ be the minimizer of Îǫ among all
functions u satisfying a given boundary data u = g. Since as ǫ tends to zero the second term
in Eǫ forces the solution to have length one, it is natural to assume that g takes values in
the unit circle S1. In the complex notation, g admits the representation g = eiφ for some
possibly multi-valued function φ. Then, the boundary condition is

u(x) = g(x) = eiφ(x), x ∈ ∂U.(1.1)

The degree of g around the origin (or the winding number) is an important parameter. Using
the local representation g = eiφ and the fact that U ⊂ IR2, the degree can be computed by
the following formula

deg(g; ∂U) =
1

2π

∫

∂U

∇φ · ~t dH1(x),(1.2)

where ~t is the unit tangent and
∫

∂U
· · · dH1 is the line integral around ∂U .

If the boundary data g has zero degree, then φ is single valued. It is then relatively
straightforward to show that uǫ converges strongly to the smooth function u = eiϕ where
ϕ is unique harmonic function in U satisfying the boundary condition ϕ = φ. Hence, the
interesting the case is

d := deg(g; ∂U) 6= 0.
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Then, by topological considerations, any function satisfying the boundary and in particular
the minimizer uǫ must have d zeroes. This fact makes the problem interesting as each zero
carries an energy of at least π ln(1/ǫ). To see this consider the problem with U = BR :=
{|x| < R}, and g(x) = eiNθ where θ(x) is the angle between x and the x-axis and N is an
integer. Consider a test function

vǫ(x) = f(|x|/ǫ) eiNθ,

with some smooth, positive function f satisfying f(0) = 0, f(r) = 1 for all r ≥ 1. By
calculus,

Îǫ(vǫ) = N2π ln(1/ǫ) +O(1).

The N2 term indicates that it is better to have N distinct zeroes of degree one, instead
of less zeroes with higher degree. Hence the minimizer uǫ is expected to have d distinct
zeroes aǫ := (aǫ

1, . . . , a
ǫ
d), again called vortices, each having degree one. The minimum

energy Îǫ(uǫ) behaves like dπ ln(1/ǫ) and the asymptotic behavior of uǫ is determined by
the location of the zeroes aǫ. Bethuel, Brezis and Helein, obtained the location of the zeroes
by calculating the next term in the minimum energy, which they call the renormalized
energy. The renormalized energy W (aǫ) is a function of the location of the zeroes, and it
has a representation in terms of the solution of the Laplace equation with point sources at
aǫ, or equivalently the canoniacl hramonic as defined in [6]. Then, the minimum energy has
the form

Îǫ(uǫ) = d π ln(1/ǫ) +W (aǫ) + o(1).(1.3)

In view of this expansion of the minimum energy, it is clear that aǫ converges to a minimum
of the renormalized energy W . Once the location of the zeroes is determined it is possible
to calculate the limit of uǫ. We refer to [6] for more information.

The chief difference between the problem considered here and the model for superconduc-
tivity is the boundary condition. In superconductivity, Neumann condition is given and the
vortices are formed by an exogenous forcing term which is the applied magnetic field. While
in the above problem vortices created by the Dirichlet data. For this reason, local results
which do not refer to a particular boundary condition are more useful for our understanding
of the model for superconductivity (we refer to the recent paper of Sandier and Serfaty
[27], and the references therein for infromation on mathematical results on the model for
superconductivity.) The Gamma limit is such a result. For the scalar valued functions, the
Gamma limit of the Ginzburg-Landau functional, with a different rescaling, is proved by
Modica and Mortola [21, 21], and by Modica [20]. A brief definition of the Gamma limit is
given in §4.

In view of the above calculations, we consider the Gamma limit of the rescaled Ginzburg-
Landau functional

Iǫ(u) :=
Îǫ(u)

ln(1/ǫ)
=

1

ln(1/ǫ)

∫

U

Eǫ(u) dx.

In §4 below we will show that the Gamma limit of Iǫ is equal to
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I(u) : =

{

|Ju|(U), if u ∈ B2V (U ;S1),
+∞, otherwise,

where Ju is the Jacobian of u and weakly it is given by (see §2.1)

Ju : =
1

2
∇× j(u), j(u) : = u×Du = det(u;Du),

S1 is the unit circle, and B2V is the set of all functions whose weak Jacobian is a Radon
measure. The weak definition of the Jacobian in higher dimensions is discussed in §5, and
BnV with a general n is defined properly in §4.1. This class of functions and its properties
are studied in the two papers of the author with Jerrard [14, 15]. The set BnV , called
functions of bounded n variations is related to the classical BV space and to the Cartesian
currents of Giaquinta, Modica and Soucek [10, 11].

It is shown in [14] and also in §4.1 below that for u ∈ B2V (U ;S1), the Jacobian has a
special structure:

Ju = π
∑

i

ki δai ,

for some points {ai} ⊂ U and integers ki. Here δai is the Dirac measure located at ai.
This is interpreted as encoding the location and the topological singularities (or zeroes) of
u. Moreover, for u ∈ B2V (U ;S1),

|Ju|(U) =
∑

i

|ki|.

Hence, the Gamma limit I(u) counts the zeroes of u with multiplicity.

This Gamma limit is proved in several steps. The first step is a “local” energy lower
bound of the form

∫

U

Eǫ(u) dx ≥ π ln(1/ǫ) deg(u; ∂U) − C,

for some constant C. There are problems with this estimate as it is stated. The difficulty
comes from the possible zeroes of u near or on ∂U . We will prove two such results, Theorem
2.1, and Theorem 2.6. They are local in nature, especially the second one. The proof
technique is an elegant covering argument of Jerrard [12]. To explain this method clearly,
we first prove it under slightly restrictive set of assumptions first to prove Theorem 2.1. We
then modify this technique to obtain the sharper lower bound Theorem 2.6.

A corollary of this lower bound is a compactness result for the Jacobian. This estimate
bounds the Jacobian by the Ginzburg-Landau energy, and yields a compactness result for
the Jacobian. Indeed for any sequence uǫ satisfying
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sup
ǫ

Iǫ(uǫ) < ∞,

the Jacobians Juǫ are compact in dual (C0,α)∗ norm for every α > 0. Hence, on a sub-
sequence Juǫ converge to a distribution J not in a norm slightly weaker than the weak∗

topology of Radon measures. Although this convergence is not in the space of measures,
we will show that the resulting distribution J is indeed a measure of a special form. For
B2V (U ; IR2) with U ⊂ IRm with m = 2, this is proved in §3.2, and for m ≥ 3 it is stated in
§5.

Then the Gamma limit is proved in §4 as a result of the lower bound and the compactness
of the Jacobian.

The compactness of the Jacobian is also a useful tool in the analysis of the dynamic
problems. To motivate the study of the evolution problems in this context, let us con-
sider an experiment in superconductivity. In this experiment the vortices are formed by
an external magnetic field. Then the magnetic field is turned off and the material turns
back to superconducting state. To understand these transition from the vortex state to the
superconducting state, both the parabolic

ut − ∆u =
u

ǫ2
[1 − |u|2], t > 0, x ∈ IRn,(1.4)

and the Schrodinger

i ut − ∆u =
u

ǫ2
[1 − |u|2], t > 0, x ∈ IRn,(1.5)

equations are proposed. The question then is to obtain evolution of the vortices that are
forced into the system via the initial data. Mathematically this is achieved by studying
the small ǫ asymptotics of the above equations for an initial data uǫ

0 which contains several
vortices with degree ±1. Asymptotic expansion techniques used by Neu, Rubinstein and E
to derive these equations; see the lecture notes of Rubinstein [23]. Since (1.4) is the gradient
flow for Îǫ, in view of the expansion (1.3), as ǫ tends to zero, the vortices should satisfy
the gradient flow for the potential W . Indeed, let a(t) = (a1(t), . . . , aN (t)) be the limit of
vortices aǫ(t ln(1/ǫ)). Then,

d

dt
a(t) = −∇W (a(t)),(1.6)

in the case of (1.4). Note that we need to speed up the dynamics by a factor of ln(1/ǫ).
For the Schroedinger equation, in the original time scale, we get the Hamiltonian dynamics.
These results are rigorously proved in several papers. For the parabolic flow, in [18] Lin
proved that the speed of vortices is 1/ ln(1/ǫ) when the vortices all have same sign. The
mixed vortex case, which is the relevant one in the experiment outline above, was proved in
[16] by Jerrard and the author. First rigorous derivation of the vortex equation is also given
in [16]. For U = IR2, an explicit form of (1.6) is avaliable:
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d

dt
ak(t) = 2

N
∑

j=1

djdk
(ak(t) − aj(t))

|ak(t) − aj(t)|2
,

where dk is the degree of uǫ around ak for small ǫ, and by hypothesis dk is equal to ±1. Note
that the solutions of the above equation behaves like charged particles with a logarithmic
potential; vortices with same degree expel each other while ones with opposite degree attract
with a force proportional to the inverse of the distance between the vortices.

In IRn, the set of zeroes of uǫ is a codimension two set, as ǫ tends to zero we obtain
geometric equations for these sets; called vortex lines in IR3. As expected from results on
scalar version of (1.4), the limiting vortex line moves by mean curvature flow. We refer to
[23, 24] and the references therein for the formal derivation of these equations. First rigorous
results for the vector Ginzburg-Landau equation are [17] and [4].

In §6 we prove the convergence when there exists a smooth solution {Γt}t∈[0,T ] of the
codimension two mean curvature flow. The main idea set forward in [17] is to consider the
limiting measures

µt : = weak∗ limit of µǫ
t,

where

µǫ
t(V ) : =

1

| ln 1/ǫ|

∫

V

Eǫ(uǫ(t, x)) dx.

In Theorem 6.1, under appropriate assumptions on the initial data, we will show that

support µt = Γt,

µt ≥ π Hn−2 Γt,

where Hn−2 Γt is the Hausdorff measure restricted to Γt, i.e., it is the surface area measure
on the surface Γt. Moreover, the limit Jt of the Jacobians Juǫ(t, ·) satisfy

|Jt| = π H1 Γt.(1.7)

To prove the inclusion support (µt) ⊂ Γt, we use the energy identities and a Pohazaev
type inequality as in [17]. The idea is to estimate the time derivative of

α(t) : =

∫

IRn

η(t, x) µt(dx),

when the test function η is the square distance function of Γt. Since {Γt}t∈[0,T ] solves the
mean curvature flow, the square distance function η satisfies

∇ηt = ∇∆η, on Γt.
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We use this and the other properties of the square distance function to prove that α(t) = 0
for t ∈ [0, T ]. This proves the inclusion support (µt) ⊂ Γt.

The opposite inclusion is proved by studying the Jacobian. In view of the energy estimate

∫

IRn

Eǫ(uǫ(T, x)) dx+

∫ T

0

∫

IRn

|uǫ
t(t, x)|2 dx dt =

∫

IRn

Eǫ(uǫ(0, x)) dx,

our compactness result implies that Jǫ
t := Juǫ(uǫ(t, ·)) is compact. Let Jt be a limit of Jǫ

t .
Then, by the previous inclusion we know that the support of Jt is in Γt. Moreover, by the
weak formulation of the Jacobian (see §2.1), the Jacobian is divergence free. Since Γt is
smooth manifold with no boundary, this implies that the density of the Jacobian on Γt is
constant. We then show that this constant is equal to π for all t ∈ [0, T ], proving (1.7).
Also, in view of the compactness result, Theorem 5.2, the energy measure dominates the
Jacobian measure. Hence, the support of µt is equal to Γt.

Acknowledgments. I would like to thank the organizers Professors Colli and Rodrigues, of
the CIM/CIME, Euro-Summer School for giving me the oppurtunity to put together several
results obtained in different papers into these lecture notes, and also for a very productive
Summer School.
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2 Energy Lower Bounds

In this section we prove an energy lower bound in terms of the topological degree. This
bound is local in nature and is a key step in the proof of the Gamma limit as well as the
dynamical properties of the vortices. Local energy lower bounds were proved by covering
arguments by Jerrard [12] and Sandier [25]. Here, we follow the technique developed by
Jerrard to prove these estimates. In the next subsection, we give a brief and a formal
discussion of this technique. Then we will give the precise statement and the proof of the
lower bound.

Let U is a bounded open subset of IR2, and u ∈ H1(U ; IR2) is a function that we have
assumed (without loss of generality) to be smooth. The goal is to find an energy estimate
of the form

∫

U

Eǫ(u) dx ≥ π ln(1/ǫ) deg(u; ∂U) − C,

for some constant C, independent of ǫ and u. We want this to hold for all u ∈ H1(U ; IR2)
and ǫ ∈ (0, 1]. However, there are problems with this estimate as it is stated. The function
u may have a zero on the boundary of U . Then, the degree of u around ∂U is not even be
defined. Also, when u has a zero very close to the boundary, most of the energy could be
outside the domain U . These possibilities indicate that we have make either an assumption
about the boundary behavior of u, or to modify the statement of the lower bound. The latter
is better suited for the later use of these estimate as it makes the lower bound a “local” one.
However the statement of this local lower bound is rather technical. To explain the main
idea we first outline the proof under assumptions on the boundary behavior. Remarkably,
the proof technique of this “easier” lower bound carried over the more technical one with
very little change.

We start with a brief discussion of the degree.

2.1 Degree and Jacobian

In our arguments, we will use the degree and the Jacobian repeatedly. For that reason we
recall their definition.

Let V ⊂ U ⊂ IR2 and |u| 6= 0 on ∂V . Then, u admits a local representation u = |u|eiφ on
∂V , and the degree of u around ∂V is given by

deg(u; ∂V ) =
1

2π

∫

∂V

∇φ · ~t dH1(x),

where as in the Introduction, ~t is the unit tangent and
∫

∂V · · · dH1 is the line integral around
∂V . For future reference, we note that

deg(u; ∂V ) = deg(u/|u|; ∂V ).
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The Jacobian Ju of u satisfies

Ju =
1

2
∇× j(u),

where

j(u) = u×Du = det(u;Du).

Hence by the Stokes’ theorem

∫

V

Ju dx =

∫

∂V

j(u) · ~t dH1.(2.1)

Generalizations to the case when U ⊂ IRn will be discussed later.

For u = |u|eiϕ, we directly calculate that j(u) = |u|2∇ϕ. Hence

∇ϕ = j(v) = j(u)/|u|2, v = u/|u|,
and by the Stokes’ theorem

deg(u; ∂V ) =
1

2π

∫

∂V

j(u) · ~t
|u|2 dH1 =

1

2π

∫

∂V

j(v) · ~t dH1,(2.2)

for all u which do not vanish on ∂V .

2.2 Covering argument

In this subsection we outline a covering technique developed by Jerrard to prove energy lower
bounds [12]. Similar techniques were also used by Sandier [25]. To simplify the presentation,
we assume that

|u(x)| > 1

2
, whenever x ∈ Ur0

, Ur0
:= { x ∈ U | dist(x, ∂U) ≥ r0}(2.3)

for some constant r0 > 0. We also assume that

deg(u; ∂U) 6= 0.

Theorem 2.1 (Jerrard [12]) There exists a constant C, such that for all ǫ ∈ (0, 1], and
for all u ∈ H1 satisfying above assumptions,

∫

U

Eǫ(u) dx ≥ π ln(r0/ǫ) − C.

9



A more general result which do not assume (2.3) will be proved later in this section.

We introduce some notation and definitions, taken from [12].

We let S denote the set on which |u| is small, that is,

{x ∈ U : |u(x)| ≤ 1/2}.(2.4)

We define the essential part SE of S to be

SE := ∪{components Si of S : deg(u; ∂Si) 6= 0.}.(2.5)

For any subset V ⊂ U such that ∂V ∩ SE 6= ∅, we define the generalized degree

dg(u; ∂V ) :=
∑

{deg(u; ∂Si) | components Si of SE such that Si ⊂ V } .(2.6)

Notice that if u is nonzero on the boundary of V , the generalized degree agrees with the
degree of u around ∂V . Hence the generalization of the degree is only relevant when u has
zeroes on ∂V . But in this case, we could remove these zeroes by slightly modifying u and
with small change in the energy. Hence, in view of the Ginzburg-Landau energy these zeroes
are removable and this justifies the definition of SE and the generalized degree.

In view of 2.3,

Ur0
∩ SE 6= ∅,

and by the definition of the generalized degree and the assumption that the degree of u
around ∂U is nonzero,

dg(u; ∂Ur) = deg(u; ∂Ur) = deg(u; ∂U) 6= 0, ∀ r ∈ (0, r0].

Our strategy for proving Theorem 2.1 will be to find a collection of balls with a good
lower bound for the Ginzburg-Landau energy on each ball. We then show that the sum of
the radii of the balls is bounded below by r0/2, hence obtaining a lower bound for the total
Ginzburg-Landau energy in terms of this quantity. This will be done in several steps.

1. First cover of SE .

We find the collection of balls by starting from an initial collection of small balls that
cover Sǫ

E , then letting these balls grow by expanding them and combining them. The first
step is thus to establish the existence of the initial collection of small balls. This is the
content of

Proposition 2.2 There is a collection of closed, pairwise disjoint balls {B∗
i }k

i=1 with radii
r∗i such that

SE ⊂ ∪k
i=1B

∗
i ,(2.7)
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r∗i ≥ ǫ ∀i.(2.8)

∫

B∗

i
∩U

Eǫ(u)dx ≥ c0
ǫ
r∗i .(2.9)

Proof. This is proved in [12]. Let {Si}{i=1,...,N} be the disjoint components of SE . Choose
xi ∈ Si for each i, and set

ρi := inf{r > 0 : ∂Br(xi) ∩ Si 6= ∅}, ri := max{ǫ ; ρi}.

Set Bi := Bri(xi) so that in view of the definition of ri

Si ⊂ Bi ∩ U.

Note that |u| = 1/2 on ∂Si, and

Eǫ(u) ≥ 1

2
|Du|2 ≥ |Ju|.

By (2.1) and (2.2),

∫

Bi∩U

Eǫ(u) dx ≥
∣

∣

∣

∣

∫

Si

Ju dx

∣

∣

∣

∣

≥
∣

∣

∣

∣

∫

∂Si

j(u) · ~tdH1

∣

∣

∣

∣

≥ 1

2π
|deg(u; ∂Si)|

≥ 1

2π
.

Moreover,

∂Br(xi) ∩ Si 6= ∅, ∀ r ∈ (0, ρi].

This means that for every r ∈ (0, ρi], there is a point x∗ ∈ ∂Br(xi) such that |u(x∗)| < 1/2.
Due to the potential term (1 − |u|2)2/4ǫ2 term in the energy Eǫ, near x∗, is large and in
Lemma 2.7 below we will show that

∫

∂Br(xi)∩U

Eǫ(u) dH1 ≥ C
1

ǫ
, ∀ r ∈ [ǫ, ρi],
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for some constant C. Assume that ri ≥ ǫ, and integrate this estimate over [ǫ, ri]. The result
is

∫

Bi∩U

Eǫ(u) dx ≥ C
(ri − ǫ)+

ǫ
.

Combining the two estimates,

∫

Bi∩U

Eǫ(u) dx ≥ C max{ (ri − ǫ)+

ǫ
; 1 } ≥ C

2

ri
ǫ
.

The balls constructed above may not be disjoint. If two or more of these balls intersect,
they can be combined into larger balls, relabeling as necessary. One can use the Besicovitch
Covering Theorem to control the overlap and show that the larger balls still satisfy (2.9).
The details of this argument appear in [12]. 2

2. Annulus estimate.

In the previous step, we did not attempt to make the covering as large as possible. In
particular, they could be off the size ǫ and when we add them we will not get the desired
energy estimate.

In this step, we obtain an estimate which will be used when we extend the balls in our
covering.

Suppose that x∗ ∈ U , and ǫ ≤ r0 < r1 satisfy

[Br1
(x∗) \Br0

(x∗)] ∩ SE = ∅,
and

dg(u; ∂Br1
(x∗)) 6= 0.

Then, for all r ∈ [r0, r1],

dg(u; ∂Br(x
∗)) = dg(u; ∂Br1

(x∗)) 6= 0.

Set

λǫ(r) = min
m∈[0,1]

[

m2π

r
+

(1 −m)2

c0ǫ

]

, Λǫ(r) :=

∫ r

0

λǫ(s) ∧ c1
ǫ
ds(2.10)

for certain constants c0, c1 whose choice is discussed below.

Lemma 2.3 There are constants c0 and c1 so that
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∫

Br1
(x0)\Br0

(x0)

Eǫ(u)dx ≥ [Λǫ(r1) − Λǫ(r0)].(2.11)

Proof. This is Proposition 3.2, [12]. The key estimate is

∫

∂Br(x∗)∩U

Eǫ(u) dH1 ≥ λǫ(r), ∀r ∈ [r0, r1].(2.12)

We then obtain (2.11) by integrating (2.12) over r ∈ [r0, r1].

Set
m := min

∂Br(x∗)
{ |u(x)| }.

Then, as in Lemma 2.7 below, we can prove that

∫

∂Br(x∗)∩U

Eǫ(u) dH1 ≥ (1 −m)2

c0ǫ
.

For u = |u|eiϕ,

Eǫ(u) =
1

2
|u|2|∇ϕ|2 +

1

2
|∇|u||2 .

Since

|j(u)| = |u|2|∇ϕ|,

Eǫ(u) =
1

2

|j(u)|2
|u|2 +

1

2
|∇|u||2 ≥ 1

2
|u|2 |j(u/|u|)|2 ≥ m2

2
|j(u/|u|)|2.

Suppose that m > 0. Then, for r ∈ [r0, r1], deg(u; ∂[B∗
r ∩ U ]) = dg(u; ∂[B∗

r ∩ U ]) 6= 0, and

∫

∂[Br(x∗)∩U ]

Eǫ(u) dH1 ≥ m2

2

∫

∂[Br(x∗)∩U ]

|j(u/|u|)|2 dH1

≥ m2

4πr

∣

∣

∣

∣

∣

∫

∂[Br(x∗)∩U ]

j(u/|u|) dH1

∣

∣

∣

∣

∣

2

=
π m2

r
|deg(u; ∂[Br(x

∗) ∩ U ]|2

≥ π m2

r
.

Combining the two preceeding estimates we obtain (2.12). 2
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3. Properties of λǫ.

The following elementary estimates are proved in Propositions 3.1 and 3.2 in [12]:

Λǫ(r1 + r2) ≤ Λǫ(r1) + Λǫ(r2) ,(2.13)

s 7→ 1

s
Λǫ(s) is non increasing ,

1

s
Λǫ(s) ≤ c1

ǫ
∀s(2.14)

and Λǫ(r) ≥ π ln(r/ǫ) − c2 for some constant c2. Also, clearly, λǫ(r) ≤ π/r, and therefore,
by redefining c2 if necessary,

|Λǫ(r) − π ln(r/ǫ) | ≤ c2 ∀ r ≥ ǫ .(2.15)

4. Amalgamation.

Our next result is Lemma 3.1 in [12]. It is used below when we allow the small balls to
grow and merge, to form large balls. For the sake of completeness, here we state it and give
its short proof.

Lemma 2.4 Given any finite collection of closed balls in IRk, say {Ci}N
i=1, we can find a

collection {C̃i}Ñ
i=1 of pairwise disjoint balls such that

N
⋃

i=1

Ci ⊂
Ñ
⋃

i=1

C̃i,

∑

Cj⊂C̃i

diamCj = diamC̃i,

Ñ ≤ N, with strict inequality unless {Ci}N
i=1 is pairwise disjoint.

Proof. Replace pairs of intersecting balls Ci, Cj by larger single balls C̃ such that Ci∪Cj ⊂
C̃ and diam C̃ = diam Ci+diam Cj , continuing until a pairwise disjoint collection is reached.
This collection has the stated properties. 2

5. Cover of SE.

We next show that, starting from the initial collection of balls, we can let them grow in
such a way that each ball continues to satisfy a good lower bound.

As above let {B∗
i } denote the balls found in Proposition 2.2, with radii r∗i and generalized

degree d∗i := dg(u; ∂[B∗
i ∩ U ]). Define
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σ∗ := min{ r∗i | d∗i 6= 0 } .

The idea is to extend the balls with the smallest radius with nonzero degree until they
hit each other or the boundary of U . When they hit each other we use the amalgamation
lemma and continue the process until one of the balls with nonzero degree hits the boundary
of U . However, here we follow the presentation of Sandier and Serfaty [27]. Although this
is slightly more technical than the outline procedure, it extends very easily to more general
situations.

Proposition 2.5 For every σ ≥ σ∗, there exists a collection of disjoint, closed balls B(σ) =

{Bσ
k }

k(σ)
k=1 satisfying rσ

k ≥ ǫ,

SE ⊂ ∪k B
σ
k ,(2.16)

∫

U∩Bσ
k

Eǫ(u) dx ≥ rσ
k

σ
Λǫ(σ) ,(2.17)

rσ
k ≥ σ whenever Bσ

k ∩ ∂U = ∅ , and dσ
k 6= 0,(2.18)

where rσ
k is the radius and dσ

k = dg(u; ∂[Bσ
k ∩ U ]) is the generalized degree.

Proof.

Let C be the set of all σ ≥ σ∗ for which such a collection exists.

1. We first claim that σ∗ ∈ C. Indeed {B∗
k} be the collection of balls constructed in

Proposition 2.2. Set B(σ∗) := {B∗
k}. The definition 2.10 of Λǫ easily implies that Λǫ(σ)/σ ≤

c1/ǫ forall σ, so Proposition 2.2 implies that this collection satisfies (2.16) and (2.17). Also,
(2.18) is satisfied due to the definition of σ∗.

2. In step we will show that C is closed. Let {σn}n be a sequence in C and suppose that
σn converges to σ0 as n tends to infinity. Since the balls are disjoint, and their radii are at
least ǫ, the total number of balls k(σn) is uniformly bounded in n. Therefore by passing to
a subsequence we may assume that k(σn) is equal to a constant k0 independent of n. By
passing to a further subsequence, we may assume that the radii rσn

k and the centers aσn

k

converge to r0k and a0
k, respectively, for each k ≤ k0. Let Bk,0 be the closed ball centered at

a0
k with radius r0k. It is clear that this collection of balls satisfies (2.16), (2.17), and (2.18).

If the balls are disjoint , we set B(σ0) := {Bk,0}k0

k=1. If they are not disjoint, we apply the
amalgamation process outlined in Lemma 2.4. Let {Bσ0

j } be the resulting balls and rσ0

j be
their radius. Then, by Lemma 2.4

rσ0

j =
∑

Bk,0⊂B
σ0

j

rk,0.(2.19)

Since {Bk,0} satisfies (2.17), this implies that
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∫

U∩B
σ0

j

Eǫ(u) dx ≥
∑

Bk,0⊂B
σ0

j

∫

U∩Bk,0

Eǫ(u) dx

≥
∑

Bk,0⊂B
σ0

j

rk,0

σ0
Λǫ (σ0)

=
rσ0

j

σ0
Λǫ (σ0) .

Hence, B(σ0) := {Bσ0

j } satisfies (2.17). Moreover,

∣

∣dσ0

j

∣

∣ =

∣

∣

∣

∣

∣

∣

∣

∑

Bk,0⊂B
σ0

j

dk,0

∣

∣

∣

∣

∣

∣

∣

≤
∑

Bk,0⊂B
σ0

j

|dk,0|.

Hence if Bσ0

j ∩ ∂U = ∅ and dσ0

j 6= 0, then Bk,0 ∩ ∂U = ∅ for all Bk,0 ⊂ Bσ0

j and at least one
dk∗,0 6= 0. Since Bk∗,0 satisfies (2.18),

rσ0

j ≥ rk∗,0 ≥ σ0.

This implies that the balls in the collection B(σ0) satisfy (2.18).

3. Suppose that σ1 ∈ C. We will show that there is δ > 0 such that [σ1, σ1 + δ] ⊂ C.
Indeed, let

K1 := { k | Bσ1

k ∩ ∂U = ∅ and dσ1

k 6= 0 },

and set

s1 := min
k∈K1

{ rσ1

k }.

By (2.18), σ1 ≤ s1. If this inequality is strict, we set B(σ) = B(σ1) for all σ ∈ [σ1, s1]. It is
clear that this collection of balls satisfies (2.16), and (2.18). Also (2.17) follows from (2.14).
So let us assume that s1 = σ1, and let

K2 := { k ∈ K1 | s1 = rσ1

k }.

For σ ≥ σ1, set

rσ
k :=







rσ1

k , if k 6∈ K2 ,

σ
σ1

rσ1

k , if k ∈ K2 .
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Let Bσ
k be the closed ball with radius rσ

k with the same center as Bσ1

k and let B(σ) be the
collection of these balls. Since {Bσ1

k }k are disjoint closed sets, there is δ1 > 0 such that for
all σ ∈ [σ1, σ1 + δ1] B

σ
k ’s are disjoint and

K1(σ) := { k | Bσ
k ∩ ∂U = ∅ and dσ

k 6= 0 } = K1 .

Then, for k ∈ K2,
rσ
k

σ
=
rσ1

k

σ1
= 1.

and for k 6∈ K2,

rσ
k

σ
=
σ1

σ

rσ1

k

σ1
.

Since for k 6∈ K2, r
σ1

k > σ1, there is 0 < δ ≤ δ1 such that (2.18) is satisfied by the collection
B(σ). Since rσ

k ≥ rσ1

k , (2.16) is also satisfied.

To verify (2.17), we observe that for k 6∈ K2, B
σ
k = Bσ1

k and (2.17) is satisfied in light of
(2.14). If, however, k ∈ K2, then

dσ
k = dσ1

k , rσ
k = σ ,(2.20)

and

[Bσ
k \Bσ1

k ] ∩ SE = ∅ .

Then by (2.11),

∫

Bσ
k

Eǫ(u) dx =

∫

B
σ1

k

Eǫ(u) dx+

∫

Bσ
k
\B

σ1

k

Eǫ(u) dx

≥ rσ1

k

σ1
Λǫ(σ1) + [Λǫ (rσ

k ) − Λǫ (rσ1

k )]

= Λǫ (rσ1

k ) + [Λǫ (rσ
k ) − Λǫ (rσ1

k )]

= Λǫ (rσ
k )

=
rσ
k

σ
Λǫ (σ) .

Here we repeatedly used the identities (2.20) and the fact that Bσ1

k satisfies (2.17). Hence
B(σ) also satisfies (2.17) for all σ ∈ [σ1, σ1 + δ].

4. We have shown that C is closed set including σ∗ and for every σ ∈ C, there exists
δ > 0 such that [σ, σ + δ] ⊂ C. Hence, C = [σ∗,∞). 2

6. Proof of Theorem 2.1

Let σ∗ be as in the previous Lemma and let r0 be as in (2.3).
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1. First suppose that r0 < 2σ∗. The opposite inequality will be treated later in the
proof.

Consider the balls {B∗
k} constructed in Proposition 2.2. Set

K∗ := { k | and d∗k 6= 0 }.

Recall that d∗k = dg(u; ∂[B∗
k ∩ U ]). Since

0 6= deg(u; ∂U) =
∑

k

dg(u;B∗
k)

K∗ is nonempty. Then, by (2.9) and the definition of σ∗,

∫

U

Eǫ(u) dx ≥
∑

k

∫

U∩B∗

k

Eǫ(u) dx ≥
∑

k

c1
ǫ
r∗k

≥ c1σ
∗

ǫ

∑

k∈K∗

1 ≥ c1
r0
2ǫ

|K∗| ≥ c1
r0
2ǫ

≥ Λǫ
(r0

2

)

.

In view of (2.15), this gives the desired lower bound.

2. We now assume that r0 ≥ 2σ∗. Set σ̄ := r0/2 and consider the collection of balls B(σ̄)
provided by Proposition 2.5. Let

K̄ := { k | dσ̄
k 6= 0 }.

Since deg(u; ∂U) 6= 0, K̄ is nonempty. We claim that

rσ̄
k ≥ σ̄ =

r0
2
, ∀ k ∈ K̄.

Indeed if Bσ̄
k ∩ ∂U = ∅ for some k ∈ K̄, then this follows from (2.18). Suppose that

Bσ̄
k ∩ ∂U 6= ∅ for some k ∈ K̄. Since dσ̄

k 6= 0, Bσ̄
k contains a zero of u, and by (2.3),

Bσ̄
k ∩ [U \ Ur0

] 6= ∅.

Since by assumption Bσ̄
k ∩ ∂U 6= ∅, this implies that the diameter of Bσ̄

k is at least r0,
proving the claim.

3. By the previous step

∑

k∈K̄

rσ̄
k ≥ σ̄ =

r0
2
.
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Hence by (2.17),

∫

U

Eǫ(u) dx ≥
∑

k∈K̄

∫

U∩Bσ̄
k

Eǫ(u) dx

≥
∑

k∈K̄

rσ̄
k

Λǫ(σ̄)

σ̄

≥ Λǫ(σ̄) .

2

2.3 Main lower bound

In this section, we prove a generalization of the lower bound. This sharper lower bound is
taken from [13] and its proof is very similar to that of Theorem 2.1. Here we repeat the
arguments of the previous section with minor modifications for the sake of completeness.

Let U be a bounded open subset of IR2, and u ∈ H1(U ; IR2) be a function that we have
assumed (without loss of generality) to be smooth. In addition, φ is a nonnegative Lipschitz
test function that vanishes on ∂U .

Throughout this section we will use the notation

T = ‖φ‖∞ = max
U

φ(x).(2.21)

Given φ ∈ C0,1
c (U) we use the notation

Reg(φ) :=
{

t ∈ [0, T ] : ∂Ω(t) = φ−1(t), ∂Ω(t) is rectifiable,H1(∂Ω(t)) < ∞
}

.(2.22)

The coarea formula implies that Reg(φ) is a set of full measure. For every t ∈ Reg(φ), ∂Ω(t)
is a union of finite Jordan curves Γi(t), i.e.,

∂Ω(t) = ∪i Γi(t) , ∀ t ∈ Reg(φ).

In particular this holds for almost every t. For t ∈ Reg(φ) we define

Γ(t) = ∪
{

components Γi(t) of ∂Ω(t) | min
x∈Γi(t)

|u(x)| > 1/2

}

.(2.23)

We also define γ(t) = ∂Ω(t) \ Γ(t),

γ(t) = ∪
{

components Γi(t) of ∂Ω(t) | min
x∈Γi(t)

|u(x)| ≤ 1/2

}

.(2.24)
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When we want to indicate explicitly the dependence of Γ(t) on φ and u, we will write
Γφ,u(t).

We will also use the notation

tǫ := ǫ‖∇φ‖∞(2.25)

For any positive integer d, let

Dǫ
d := {t ∈ Reg(φ) : t ≥ tǫ,Γ(t) is nonempty, and |deg(u; Γ(t))| ≥ d} .(2.26)

The main result of this section is the following theorem. We follow very closely arguments
introduced in [12].

Theorem 2.6 (Jerrard & Soner [13]) If u : U → IR2 is a smooth function and φ is a
nonnegative Lipschitz function such that φ = 0 on ∂U , then for any positive integer d,

∫

spt(φ)

Eǫ(u) ≥ dΛǫ

( |Dǫ
d|

2d‖∇φ‖∞

)

.

For any t2 > t1 the ratio (t2 − t1)/‖∇φ‖∞ is a lower bound for the distance between
∂Ω(t2) and ∂Ω(t1). This explains the role of ‖∇φ‖∞ in the estimate.

Similar results were proven in [12] under more or less the assumption thatDǫ
d is an interval;

and in [7] in the case d = 1. Related results have also appeared in Sandier [26].

Note that the case covered in the statement of the theorem, {x : φ(x) > 0} ⊂ U , can be
reduced to the case {x : φ(x) > 0} = U , if we replace U by Ũ := {x ∈ U : φ(x) > 0}. So
we will henceforth assume for notational simplicity that this holds, so that spt(φ) = Ū .

For the proof of Theorem 2.6 we define

Sǫ
E := ∪{components Si of SE : Si ⊂ Ω(tǫ)}.(2.27)

If x ∈ Ω(tǫ) and y ∈ ∂U , then

|x− y| ‖∇φ‖∞ ≥ |φ(x) − φ(y)| = |φ(x)| ≥ tǫ = ǫ‖∇φ‖∞.

In particular,

dist(x, ∂U) ≥ ǫ for all x ∈ Sǫ
E .(2.28)

Note also that if V ⊂ Ω(tǫ) and ∂V ∩ SE = ∅, then

dg(u; ∂V ) :=
∑

{deg(u; ∂Si) | components Si of Sǫ
E such that Si ⊂⊂ V } .
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In other words, for such sets V we can ignore SE \ Sǫ
E when computing dg(u; ∂V ). In the

proof of Theorem 1 below we will always be concerned with subsets V ⊂ Ω(tǫ), so this will
always be the case.

Our strategy for proving Theorem 2.6 is very similar to the method we used to prove
Theorem 2.1. We will first find a collection of balls such we have a good lower bound for
the Ginzburg-Landau energy on each ball. We then show that the sum of the radii of the
balls is bounded below by |Dǫ

d|/(2‖∇φ‖∞), hence obtaining a lower bound for the total
Ginzburg-Landau energy in terms of this quantity. We start with a technical step.

1. If γ(t) 6= ∅.

In this step, we prove an estimate in the case when one of the level sets intersects with
the zero set. In this case, |u| falls below 1/2 on γ(t) and we expect the Ginzburg-Landau
energy to be large on γ(t). The following technical lemma proves this under the assumption
that γ(t) is not too small.

Lemma 2.7 Suppose that

H1(γ(t)) ≥ ǫ .

Then

∫

∂Ω(t)

Eǫ(u) dH1 ≥ 1

25ǫ
.(2.29)

Proof.

This is very similar to Lemma 2.3 in [12]. Fix a connected component Γi(t) of γ(t) and
set ρ := |u| and

γi :=

∫

Γi(t)

1

2
|∇ρ|2 dH1 .

By the definition (2.24) of γ(t) there is a point xmin ∈ Γi(t) such that ρ(xmin) ≤ 1/2.
Parametrize Γi(t) by arclength so that

Γi(t) = { x(s) | s ∈ [0, Gi]} , Gi := H1(Γi(t))

with xmin = x(0) = x(Gi). Then since |ẋ(s)| = 1,

ρ(x(s)) = ρ(x(0)) +

∫ s

0

∇ρ(x(r)) · ẋ(r) dr

≤ 1

2
+ s1/2

(
∫ s

0

|∇ρ(x(r))|2dr
)1/2

≤ 1

2
+
√
γi s ≤ 3

4
,
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provided that s ≤ σi := [Gi ∧ 1/(16γi)]. Then, for s ∈ [0, σi], (1 − ρ2(x(s)))2/4 ≥ 1/25.
Therefore,

∫

Γi(t)

Eǫ(u) dH1 ≥ γi +

∫

Γi(t)

1

4ǫ2
(1 − ρ2)2 dH1

≥ γi +
σi

25 ǫ2
.

By calculus,

γi +
σi

25 ǫ2
= γi +

Gi ∧ (1/4γi)

25 ǫ2
≥ 1

25ǫ

[

Gi

ǫ
∧ 5

]

.

Thus
∫

Γi(t)

Eǫ(u) dH1 ≥ 1

25ǫ

[

Gi

ǫ
∧ 5

]

.

Since
H1(γ(t)) =

∑

{i|Γi(t) is a component of γ(t)}

H1(Γi(t)) =
∑

i

Gi ≥ ǫ ,

we can sum over components Γi(t) of γ(t) to conclude that

∫

∂Ω(t)

Eǫ(u) dH1 ≥ 1

25ǫ
.

2

2. First Cover.

This is very similar to Step 1 of the previous subsection.

We find the collection of balls by starting from an initial collection of small balls that
cover Sǫ

E , then letting these balls grow by expanding them and combining them. The first
step is thus to establish the existence of the initial collection of small balls. This is the
content of

Proposition 2.8 There is a collection of closed, pairwise disjoint balls {B∗
i }k

i=1 with radii
r∗i such that

Sǫ
E ⊂ ∪k

i=1B
∗
i ,(2.30)

r∗i ≥ ǫ ∀i.(2.31)

∫

B∗

i
∩U

Eǫ(u)dx ≥ c0
ǫ
r∗i ≥ Λǫ(r∗i )(2.32)
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This is essentially proved in the previous subsection; Proposition 2.2 and in Proposition
3.3 in [12].

Proposition 2.8 differs from Proposition 2.2 in that in the latter, SE appears in place of
Sǫ

E in the counterpart of (2.30).

3. Cover of Sǫ
E.

This step is similar to Step 5 of the previous section.

Starting from the initial collection of balls, we can let them grow in such a way that each
ball continues to satisfy a good lower bound.

As above let {B∗
i } denote the balls found in Proposition 2.8, with radii r∗i and generalized

degree d∗i := dg(u; ∂[B∗
i ∩ U ]). Define

σ∗ := min{ r∗i
|d∗i |

| d∗i 6= 0 } .

Proposition 2.9 For every σ ≥ σ∗, there exists a collection of disjoint, closed balls B(σ) =

{Bσ
k }

k(σ)
k=1 satisfying rσ

k ≥ ǫ,

Sǫ
E ⊂ ∪k B

σ
k ,(2.33)

∫

U∩Bσ
k

Eǫ(u) dx ≥ rσ
k

σ
Λǫ(σ) ,(2.34)

rσ
k ≥ σ|dσ

k | whenever Bσ
k ∩ ∂U = ∅ ,(2.35)

where rσ
k is the radius and dσ

k is the generalized degree.

The proof of this proposition is very is very similar to that of Proposition 2.5. The only
difference is we consider the ratio rσ

k/|dσ
k | to decide which balls to expand.

Proof.

Let C be the set of all σ ≥ σ∗ for which such a collection exists.

1. We first claim that σ∗ ∈ C. Indeed {B∗
k} be the collection of balls constructed in

Proposition 2.8. Set B(σ∗) := {B∗
k}. The definition 2.10 of Λǫ easily implies that Λǫ(σ)/σ ≤

c1/ǫ forall σ, so Proposition 2.8 implies that this collection satisfies (2.33) and (2.34). Also,
(2.35) is satisfied due to the definition of σ∗.

2. In step we will show that C is closed. Let {σn}n be a sequence in C and suppose that
σn converges to σ0 as n tends to infinity. Since the balls are disjoint, and their radii are at
least ǫ, the total number of balls k(σn) is uniformly bounded in n. Therefore by passing to
a subsequence we may assume that k(σn) is equal to a constant k0 independent of n. By
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passing to a further subsequence, we may assume that the radii rσn

k and the centers aσn

k

converge to r0k and a0
k, respectively, for each k ≤ k0. Let Bk,0 be the closed ball centered at

a0
k with radius r0k. It is clear that this collection of balls satisfies (2.33), (2.34), and (2.35).

If the balls are disjoint , we set B(σ0) := {Bk,0}k0

k=1. If they are not disjoint, we apply the
amalgamation process outlined in Lemma 2.4. Let {Bσ0

j } be the resulting balls and rσ0

j be
their radius. Then, by Lemma 2.4

rσ0

j =
∑

Bk,0⊂Bj

rk,0 ≥
∑

Bk,0⊂Bj

σ0|dk,0|.(2.36)

Since {Bk,0} satisfies (2.34), this implies that

∫

U∩Bj

Eǫ(u) dx ≥
∑

Bk,0⊂Bj

∫

U∩Bk,0

Eǫ(u) dx

≥
∑

Bk,0⊂Bj

rk,0

σ0
Λǫ (σ0)

≥
rσ0

j

σ0
Λǫ (σ0) .

Hence, B(σ0) := {Bσ0

j } satisfies (2.34). Moreover,

∣

∣dσ0

j

∣

∣ =

∣

∣

∣

∣

∣

∣

∑

Bk,0⊂Bj

dk,0

∣

∣

∣

∣

∣

∣

≤
∑

Bk,0⊂Bj

|dk,0|,

and this together with (2.36) implies that the balls in the collection B(σ0) satisfy (2.35).

3. Suppose that σ1 ∈ C. We will show that there is δ > 0 such that [σ1, σ1 + δ] ⊂ C.
Indeed, let K1 be the set of indices k such that Bσ1

k ∩ ∂U = ∅ and set

s1 := min
k∈K1

rσ1

k

|dσ1

k | .

By (2.35), σ1 ≤ s1. If this inequality is strict, we set B(σ) = B(σ1) for all σ ∈ [σ1, s1]. It is
clear that this collection of balls satisfies (2.33), and (2.35). Also (2.34) follows from (2.14).
So let us assume that s1 = σ1, and let K2 ⊂ K1 be the indices k which minimize the ratio
rσ1

k /dσ1

k . For σ ≥ σ1, set

rσ
k :=







rσ1

k , if k 6∈ K2 ,

σ
σ1

rσ1

k , if k ∈ K2 .

Let Bσ
k be the closed ball with radius rσ

k with the same center as Bσ1

k and let B(σ) be the
collection of these balls. Since {Bσ1

k }k are disjoint closed sets, there is δ1 > 0 such that for
all σ ∈ [σ1, σ1 + δ1] B

σ
k ’s are disjoint and
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K1(σ) := { k | Bσ
k ∩ ∂U = ∅ } = K1 .

Then, for k ∈ K2,

rσ
k

σ
=
rσ1

k

σ1
= |dσ1

k | = |dσ
k | ,

and for k 6∈ K2,

rσ
k

σ
=
σ1

σ

rσ1

k

σ1
.

Since for k 6∈ K2, r
σ1

k /σ1 > |dσ1

k |, there is 0 < δ ≤ δ1 such that (2.35) is satisfied by the
collection B(σ). Since rσ

k ≥ rσ1

k , (2.33) is also satisfied.

To verify (2.34), we observe that for k 6∈ K2, B
σ
k = Bσ1

k and (2.34) is satisfied in light of
(2.14). If, however, k ∈ K2, then

dσ
k = dσ1

k , rσ
k = σ|dσ

k | ,(2.37)

and

[Bσ
k \Bσ1

k ] ∩ SE = ∅ .

Then by Lemma 2.3

∫

Bσ
k

Eǫ(u) dx =

∫

B
σ1

k

Eǫ(u) dx+

∫

Bσ
k
\B

σ1

k

Eǫ(u) dx

≥ rσ1

k

σ1
Λǫ(σ1) + |dσ1

k |
[

Λǫ

(

rσ
k

|dσ
k |

)

− Λǫ

(

rσ1

k

|dσ1

k |

)]

= |dσ1

k | Λǫ

(

rσ1

k

|dσ1

k |

)

+ |dσ1

k |
[

Λǫ

(

rσ
k

|dσ
k |

)

− Λǫ

(

rσ1

k

|dσ1

k |

)]

= |dσ1

k | Λǫ

(

rσ
k

|dσ
k |

)

=
rσ
k

σ
Λǫ (σ) .

Here we repeatedly used the identities (2.37) and the fact that Bσ1

k satisfies (2.34). Hence
B(σ) also satisfies (2.34) for all σ ∈ [σ1, σ1 + δ].

4. We have shown that C is closed set including σ∗ and for every σ ∈ C, there exists
δ > 0 such that [σ, σ + δ] ⊂ C. Hence, C = [σ∗,∞). 2

25



We are now ready for the

Proof of Theorem 2.6

Set R := |Dǫ
d|/(2‖∇φ‖∞) and σ̄ := R/d. Let σ∗ be as in the previous Lemma. We suppose

that Dǫ
d is nonempty as there is nothing to prove otherwise .

1. First suppose that σ̄ < σ∗. The opposite inequality will be treated later in the proof.

Consider the balls {B∗
k} constructed in Proposition 2.8. By (2.32) and the definition of

σ∗,

∫

U

Eǫ(u) dx ≥
∑

k

∫

U∩B∗

k

Eǫ(u) dx

≥
∑

k

c1
ǫ
r∗k ≥ c1σ

∗

ǫ

∑

k

|d∗k| ≥ c1
R

dǫ

∑

k

|d∗k| .

Let t0 ∈ Dǫ
d. Then the definition (2.26) of Dǫ

d implies that d ≤ |deg(u; Γ(t0))| and by
definition, (2.23), |u| > 1/2 on Γ(t0). Hence d ≤ |dg(u; Γ(t0))|. Moreover, by (2.6) and
(2.30),

d ≤ |dg(u; Γ(t0))| ≤
∑

{k : B∗

k
∩Ω(t0) 6=∅}

|d∗k| ≤
∑

k

|d∗k| .

Hence by (2.14),

∫

U

Eǫ(u) dx ≥ c1
R

dǫ
d ≥ dΛǫ

(

R

d

)

which is what we needed to prove.

2. We now assume that σ̄ ≥ σ∗. Consider the collection of balls B(σ̄) provided by
Proposition 2.9. Assume towards a contradiction that

∑

k

rσ̄
k < R .(2.38)

Set

C := { t ∈ (0, ‖φ‖∞) | Γ(t) ∩ [∪kB
σ̄
k ] 6= ∅ } .

The definitions imply that C ⊂ ∪k φ(Bσ̄
k ), and as a consequence

|C| ≤ 2‖∇φ‖∞
∑

k

rσ̄
k < 2‖∇φ‖∞R = |Dǫ

d| .
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Hence Dǫ
d \ C 6= ∅.

3. Let t0 ∈ Dǫ
d \ C. The definition of Dǫ

d implies that |dg(u; Γ(t0))| = |deg(u; Γ(t0)| ≥ d.
On the other hand, the definition of C implies that Γ(t0) ∩ (∪kB

σ̄
k ) = ∅, so (2.33) and the

additivity of the degree yield

d ≤ |dg(u; Γ(t0))| ≤
∑

{k : Bσ̄
k
⊂Ω(t0) }

|dσ̄
k |

≤
∑

{k : Bσ̄
k
∩∂U=∅ }

|dσ̄
k |

≤
∑

{k : Bσ̄
k
∩∂U=∅ }

rσ̄
k

σ̄
,

by (2.35). On the other hand by (2.38),

d =
R

σ̄
>

∑

k

rσ̄
k

σ̄
.

Therefore we conclude that (2.38) is false.

4. By the previous step
∑

k rσ̄
k ≥ R = dσ̄. Hence by (2.34),

∫

U

Eǫ(u) dx ≥
∑

k

∫

U∩Bσ̄
k

Eǫ(u) dx

≥
∑

k

rσ̄
k

Λǫ(σ̄)

σ̄

≥ d Λǫ(σ̄) .

2

3 Jacobian and the GL Energy

In this section, we show that the Jacobian is bounded by the GL energy. This estimate is
the crucial step in a Gamma convergence result.

Results of this section are taken from [13].

3.1 Jacobian estimate

The chief result of this section is the following estimate of the Jacobian in terms of the
Ginzburg Landau energy. This estimate will be the main ingredient in the compactness
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result. We give a more precise version of the estimate at the end of the section.

We use the notation introduced in the previous section and set

µǫ(V ) : = µǫ
u(V ) =

1

ln(1/ǫ)

∫

V

Eǫ(u) dx.

Theorem 3.1 (Jerrard & Soner [13]) Suppose φ ∈ C0,1
c (U) and u ∈ H1(U ; IR2). For

any λ ∈ (1, 2], and ǫ ∈ (0, 1],

∣

∣

∣

∣

∫

U

φ Ju dx

∣

∣

∣

∣

≤ πdλ‖φ‖∞ + ‖φ‖C0,1hǫ(φ, u, λ)(3.1)

where

dλ =

⌊

λ

π
µǫ

u(spt(φ))

⌋

,(3.2)

⌊x⌋ denotes the greatest integer less than or equal to x, and

hǫ(φ, u, λ) ≤ Cǫα(λ)(1 + µǫ
u(spt(φ)))(1 + Leb2(spt(φ)))(3.3)

where α(λ) = λ−1
12λ and C is a constant independent of u, φ, ǫ, λ and U .

Note that hǫ depends on φ only through the support of φ, and on u only through its
(linear) dependence on µǫ

u(spt(φ)).

It suffices to consider nonnegative test functions, since we can decompose an arbitrary
function φ into its positive and negative parts. So we will assume that φ ≥ 0.

By an approximation argument, we may also assume that u is smooth.

The main idea behind the above estimate is the following identity, which relies on the
co-area formula, integration by parts, and the identity Ju = ∇× j(u)/2:

∫

U

φ Ju dx =
1

2

∫ T

0

∫

∂Ω(t)

j(u) · ~t dH1 dt ,(3.4)

where as before

Ω(t) = { x ∈ U | φ(x) > t } ,

~t = unit tangent to ∂Ω(t) =
∇× φ

|∇ × φ| .

The proof shows that
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∫

∂Ω(t)

j(u) · ~t dH1 ≈ 2π deg(u; ∂Ω(t))

for most values of t. The other main point is then to prove that the set of t such that
deg(u; ∂Ω(t)) > dλ has Leb1 measure that can be controlled by µǫ(spt(φ)). This last point
is similar in spirit to results established in [7, 12, 25] for example. We use the lower bounds
obtained in the previous section to achieve this.

We start the proof of Theorem 3.1 with two simple estimates.

Lemma 3.2 For any set A,

∫

A

∣

∣

∣

∣

∣

∫

∂Ω(t)

j(u) · ~t dH1

∣

∣

∣

∣

∣

dt ≤ |A|
2

∫

spt(φ)

Eǫ(u) dx .(3.5)

For any nonnegative function f ,

∫ T

0

∫

∂Ω(t)

f(x) dH1 dt ≤ ‖∇φ‖∞
∫

spt(φ)

f(x) dx .(3.6)

Proof.

For any t ∈ Reg(φ), Stokes’ Theorem yields

∫

∂Ω(t)

j(u) · ~t dH1 =
1

2

∫

Ω(t)

Ju dx .

Since |Ju| ≤ 1
2 |∇u|2 ≤ Eǫ(u), (3.5) follows from the above identity.

For (3.6), we calculate by using the coarea formula,

∫ T

0

∫

∂Ω(t)

f dH1 dt =

∫

spt(φ)

f |∇φ| dx

≤ ‖∇φ‖∞
∫

spt(φ)

f dx.

2

We are now in a position to prove Theorem 3.1. In the proof we repeatedly absorb
logarithmic factors by using the fact that if β < α then

ǫα ln(1/ǫ) ≤ Cǫβ

for some C = C(α, β) independent of ǫ ∈ (0, 1].
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Proof of Theorem 3.1.

1. Recall that we are writing T = ‖φ‖∞. Fix λ ∈ (1, 2] and define dλ := ⌊λ
πµ

ǫ(spt(φ))⌋.
We define sets A,B ⊂ [0, T ] by

B := {t ∈ Reg(φ) : |deg(u; Γ(t))| ≥ dλ + 1 or H1(γ(t)) ≥ ǫ},(3.7)

A = Reg(φ) \B.(3.8)

Because almost every t belongs to A ∪B = Reg(φ), (3.4) implies that

∫

U

φ Ju dx =
1

2

∫

A

∫

Γ(t)

j(u) · ~t dH1 dt(3.9)

+
1

2

∫

A

∫

γ(t)

j(u) · ~t dH1 dt+
1

2

∫

B

∫

∂Ω(t)

j(u) · ~t dH1 dt

= IA,Γ + IA,γ + IB .(3.10)

2. Estimate of IA,Γ

Suppose t ∈ A. On Γ(t), |u| ≥ 1/2 by the definition (2.23), and we set v := u/|u|, so that
j(v) = j(u)/|u|2, and

∫

Γ(t)

j(v) · ~t dH1 = 2π deg(u; Γ(t)).

Then

∫

Γ(t)

j(u) · ~t dH1 = 2π deg(u; Γ(t)) +

∫

Γ(t)

j(u)
|u|2 − 1

|u|2 · ~t dH1 .

Since |j(u) ≤ |u| |∇u|, and since |u| ≥ 1/2 on Γ(t), Cauchy’s inequality and (3.6) imply that

∫

A

∣

∣

∣

∣

∣

∫

Γ(t)

j(u) · ~t dH1 − 2πdeg(u; Γ(t))

∣

∣

∣

∣

∣

dt ≤
∫

A

∫

Γ(t)

|∇u|
∣

∣

∣

∣

|u|2 − 1

|u|

∣

∣

∣

∣

dH1

≤ 4ǫ

∫

A

∫

Γ(t)

Eǫ(u) dH1

≤ 4ǫ ln(1/ǫ) ‖∇φ‖∞ µǫ(spt(φ)) .(3.11)

Clearly A ⊂ [0, T ] has measure less than T = ‖φ‖∞. Also, by definition of A, if t ∈ A and
Γ(t) is nonempty, then |deg(u; Γ(t))| ≤ dλ. It follows that

|IA,Γ| ≤ π‖φ‖∞dλ + Cǫ1/2‖∇φ‖∞ µǫ(spt(φ)).(3.12)
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3. Estimate of IA,γ

Using Cauchy’s inequality and the elementary fact that x ≤ 1
b (1 − x)2 + (1 + b

4 ) for all
x ∈ IR and b > 0, we have

|j(u)| ≤ |u||∇u| ≤ a

2

(

|∇u|2 +
1

a2
|u|2

)

≤ a

2

(

|∇u|2 +
(1 − |u|2)2

a2b

)

+
1

2a
(1 +

b

4
)

for every a, b > 0. We select a = ǫα for α ∈ (0, 1) and b = ǫ2−2α to find

|j(u)| ≤ CǫαEǫ(u) + Cǫ−α(3.13)

The definition (3.8) of A implies that |A| ≤ T = ‖φ‖∞ and that H1(γ(t)) < ǫ for every
t ∈ A, so we can take α = 1/2 and use (3.6) to find

|IA,γ | ≤ C

∫

A

∫

γ(t)

√
ǫEǫ(u)dH1(x)dt + C

∫

A

∫

γ(t)

C√
ǫ
dH1(dx)dt

≤ C ln(1/ǫ)
√
ǫ µǫ(spt(φ))‖∇φ‖∞ + C

√
ǫ‖φ‖∞.

4. Estimate of IB

To estimate IB we prove that B has small measure. Toward this end we define

B1 := {t ∈ Reg(φ) : H1(γ(t)) ≥ ǫ},

B2 := {t ∈ Reg(φ) : Γ(t) is nonempty, and |deg(u; Γ(t))| ≥ dλ + 1}.(3.14)

The estimate of B2 is deferred to the end of this subsection, where we prove

Proposition 3.3 For every λ ∈ (1, 2], ǫ ∈ (0, 1], smooth u : U → IR2, and nonnegative test
function φ ∈ C0,1

c (U),

|B2| ≤ Cǫ1−
1

λ ‖∇φ‖∞(dλ + 1) ≤ Cǫ1−
1

λ ‖∇φ‖∞(1 + µǫ(spt(φ)).(3.15)

For the time being we assume this fact and use it to complete the proof of the theorem.

The measure of B1 is easily estimated: using (3.6) and Lemma 2.7,

1

25ǫ
|B1| ≤

∫

t∈B1

∫

∂Ω(t)

Eǫ(u)dH1dt

≤ ‖∇φ‖∞ ln(
1

ǫ
)µǫ(spt(φ)).(3.16)
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Clearly |B| ≤ |B1| + |B2|, so by combining (3.16) and (3.15) we obtain

|B| ≤ Cǫ
λ−1

2λ ‖∇φ‖∞(1 + µǫ(spt(φ))).(3.17)

Finally, we use (3.5) to estimate

|IB | ≤ Cǫ
λ−1

3λ ‖∇φ‖∞(1 + µǫ(spt(φ)))µǫ(spt(φ)).(3.18)

5. The previous three steps imply that

∣

∣

∣

∣

∫

φJu dx

∣

∣

∣

∣

≤ dλ‖φ‖∞ + ‖φ‖C1hǫ
0(φ, u, λ)

for

hǫ
0(φ, u, λ) ≤ Cǫ4α(λ)

(

1 + µǫ(spt(φ)) + (µǫ(spt(φ)))2
)

, α(λ) =
λ− 1

12λ
.

To complete the proof of the Theorem, note that by (3.6) and (3.13) (with α = 2α(λ))

∣

∣

∣

∣

∫

φJu dx

∣

∣

∣

∣

≤
∫ T

0

∫

∂Ω(t)

|j(u)|dH1dt

≤ C‖∇φ‖∞
∫

spt(φ)

ǫ2α(λ)Eǫ(u) + ǫ−2α(λ) dx

≤ C‖φ‖C1hǫ
1(φ, u, λ),

for hǫ
1 = ǫα(λ)µǫ(spt(φ)) + ǫ−2α(λ)Leb2(spt(φ)). We define hǫ(φ, u, λ) := min{hǫ

0, h
ǫ
1}, so

that (3.1) clearly holds. It thus suffices to verify that (3.3) holds, that is,

hǫ(φ, u, λ) = min{hǫ
0, h

ǫ
1} ≤ Cǫα(λ)(1 + µǫ(spt(φ))(1 + Leb2(spt(φ)))

for some appropriately large constant C. This follows immediately from the definition of hǫ
0

if µǫ(spt(φ)) ≤ ǫ−3α(λ), and if not, it follows directly from the definition of hǫ
1. 2

Note that the result we have proved is in fact somewhat sharper than Theorem 3.1 as
stated, in that it not only provides an upper bound for

∫

φJu, but in fact gives an approxi-
mate value for the integral. The following corollary states a small technical modification of
this sharper estimate.

Corollary 3.4 Let U be a bounded, open subset of IR2, and suppose that φ ∈ C0,1
c (U) and

u ∈ H1(U ; IR2). Define Reg(φ), Γ(t) and γ(t) as in (2.22), (2.23) and (2.24) respectively.

Then for any λ ∈ (1, 2] and ǫ ∈ (0, 1], there exists a set A = A(φ, u, λ, ǫ) ⊂ (0, ‖φ‖∞) such
that
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|A| ≥ ‖φ‖∞ − Cǫα(λ)‖∇φ‖∞(1 + µǫ(spt(φ)));(3.19)

Γ(t) is nonempty, and |deg(u; Γ(t))| ≤ dλ ∀t ∈ A; and(3.20)

∣

∣

∣

∣

∫

φJu − π

∫

t∈A

deg(u; Γ(t)) dt

∣

∣

∣

∣

≤ ‖φ‖C1hǫ(φ, u, λ),(3.21)

where hǫ is defined in (3.3) and dλ is defined in (3.2).

Proof. We cannot take A to be the set defined in (3.8), as we have now imposed the
additional condition that Γ(t) 6= ∅ for t ∈ A. So we let Ã be the set formerly known as A,
defined in (3.8), and we define

A = {t ∈ Ã : Γ(t) is nonempty.}

Then (3.20) follows from the definition of Ã, and (3.21) follows from (3.11). We claim
moreover that Ã \ A has measure at most ǫ‖∇φ‖∞. In view of (3.17) and (3.8), this will
suffice to establish (3.19), and thus to complete the proof of the Corollary.

To prove our claim, note first that for every t ∈ Ã, H1(γ(t)) < ǫ. If t ∈ Ã \A, then Γ(t) is
empty, and so H1(φ−1(t)) = H1(γ(t)) < ǫ for all t ∈ Ã \ A. On the other hand, let x0 ∈ U
be a point such that φ(x0) = ‖φ‖∞. If |y − x0| ≤ ǫ then φ(y) ≥ ‖φ‖∞ − ǫ ‖∇φ‖∞. It
follows that Bǫ(x0) ⊂ Ω(t) for all t < ‖φ‖∞ − ǫ ‖∇φ‖∞. Thus the isoperimetric inequality
implies that H1(φ−1)(t) ≥ 2πǫ.

We conclude that if t ∈ Ã \A, then t ≥ ‖φ‖∞ − ǫ‖∇φ‖∞, which proves the claim. 2

We now use Theorem 2.6 and the facts about Λǫ to give the proof of Proposition 3.3.

Recall that for Proposition 3.3 we want to estimate the measure of a set B2 ⊂ Reg(φ),
and from the definition (3.14) of B2 we see that

Dǫ
d∗

λ
= B2 ∩ {t : t ≥ tǫ}, for d∗λ := ⌊λ

π
µǫ(spt(φ))⌋ + 1 ≥ λ

π
µǫ(spt(φ)).(3.22)

Proof of Proposition 3.3

We need to show that

|B2| ≤ Cǫ1−
1

λ ‖∇φ‖∞d∗λ, d∗λ := dλ + 1.

Let R :=
|Dǫ

d∗

λ
|

2‖∇φ‖∞

. From (3.22) and the definition (2.25) of tǫ it suffices to show that

R

d∗λ
≤ Cǫ1−

1

λ .
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We may assume that R
d∗

λ
≥ ǫ, as otherwise the conclusion is obvious. Then (2.15), Theorem

2.6, and the choice (3.22) of d∗λ imply that

ln

(

R

d∗λ

)

=
1

π

[

π ln

(

R

ǫd∗λ

)

− π ln

(

1

ǫ

)]

≤ 1

π
Λǫ

(

R

d∗λ

)

+ C − ln

(

1

ǫ

)

≤ 1

πd∗λ
ln

(

1

ǫ

)

µǫ(spt(φ)) + C − ln

(

1

ǫ

)

≤
(

1

λ
− 1

)

ln

(

1

ǫ

)

+ C.

. 2

3.2 Compactness in two dimensions

In this section we consider a sequence of functions uǫ ∈ H1(U ; IR2), where U is a bounded
open subset of IR2 and the renormalized Ginzburg-Landau energy is uniformly bounded:

KU := sup
ǫ∈(0,1]

µǫ(U) <∞ , µǫ := µǫ
uǫ .(3.23)

We will show that under this assumption, the Jacobian is compact in the dual norm (C0,β)∗

for every β ∈ (0, 1]. We refer to §5 and to [13] for a compactness in higher dimensions.

We introduce the Jacobian (signed) measure

Juǫ(E) :=

∫

E

det (∇uǫ) dx , E ⊂ U.

Since det (∇uǫ) = 1
2∇× j(uǫ) for j(uǫ) := uǫ ×∇uǫ,

∫

IR2

φ dJuǫ =
1

2

∫

IR2

∇× φ(x) · j(uǫ)(x) dx , ∀φ ∈ C1
c (U),

where for a scalar function φ, we write ∇× φ := (φx2
,−φx1

).

Theorem 3.5 Let {uǫ} ⊂ H1(U ; IR2) satisfy (3.23). Then there exists a subsequence ǫn
converging to zero and a signed Radon measure J such that Juǫn converges to J in the dual
norm

(

C0,β
c

)∗
for every β ∈ (0, 1]. Moreover, there are {ai}N

i=1 ⊂ U and integers ki such
that

J = π

N
∑

i=1

ki δai , and |J |(U) = π
∑

i

|ki| ≤ KU .
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Finally, if µǫ converges weakly to a limit µ, then J ≪ µ, and dJ
dµ(x) ≤ 1 for µ almost every

x.

We will first prove

Proposition 3.6 Assume (3.23). Then, Juǫ can be written in the form

Juǫ = Jǫ
0 + Jǫ

1

where Jǫ
0 and Jǫ

1 are signed measures such that

‖Jǫ
0‖(C0)∗ ≤ C, and ‖Jǫ

1‖(C0,1
c )∗ ≤ Cǫα(3.24)

for some α > 0 and a constant C depending only on the constant KU in (3.23).

Proof.

1. In light of the assumption µǫ(U) ≤ K, Theorem 3.1 (with λ = 2 and α = 1/24, for
example) implies that

∫

φJuǫ ≤ C‖φ‖∞ + Cǫα‖∇φ‖∞ for all φ ∈ C0,1
c (U).(3.25)

We write δ = ǫα, and we define Uδ = {x ∈ U : dist(x, ∂U) > δ}. Let

χδ =

{

1 if x ∈ U2δ

0 if not.

We define Jǫ
0 := χδ(η

δ ∗ Juǫ), where ηδ is a standard mollifier with support in Bδ(0). We
then define Jǫ

1 := Juǫ − Jǫ
0 .

Suppose that φ is a C1 test function vanishing on ∂U , and note that

∫

φ Jǫ
0dx =

∫

ηδ ∗ (χδφ)Juǫdx.

We write φδ := ηδ ∗ (χδφ). It is clear that φδ is compactly supported in U , and one easily
checks that

‖φδ‖∞ ≤ ‖χδφ‖∞ ≤ ‖φ‖∞, ‖∇φδ‖∞ ≤ C

δ
‖χδφ‖∞ ≤ C

δ
‖φ‖∞.

Then (3.25) implies that
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∫

φ Jǫ
0dx ≤ C‖φ‖∞.

2. We now estimate Jǫ
1 . Given φ ∈ C1

0 (U), write

φ1 := min{φ, 2δ‖∇φ‖∞}, φ2 := φ− φ1.

It is clear that φ ≤ 2δ‖∇φ‖∞ in U \ U2δ, so φ2 is supported in U2δ.

From the definitions,

∫

φ1J
ǫ
1 dx =

∫

(φ1 − ηδ ∗ (χδφ1))Ju
ǫ dx.

It is clear that

‖φ1‖∞ ≤ 2δ‖∇φ‖∞, ‖∇φ1‖∞ ≤ ‖∇φ‖∞.

Similarly, ηδ ∗ (χδφ1) satisfies

‖ηδ ∗ (χδφ1)‖∞ ≤ 2δ‖∇φ‖∞, ‖∇ηδ ∗ (χδφ1)‖∞ ≤ C

δ
‖φ1‖∞ ≤ C‖∇φ‖∞.

So (3.25) implies that

∫

φ1J
ǫ
1 dx ≤ Cδ‖∇φ‖∞ = Cǫα‖∇φ‖∞.

Finally, since φ2 is supported in U2δ,

∫

φ2J
ǫ
1 dx =

∫

(φ2 − ηδ ∗ (χδφ2))Ju
ǫ dx =

∫

(φ2 − ηδ ∗ φ2)Ju
ǫ dx.

It is easy to check that

‖φ2 − ηδ ∗ φ2‖∞ ≤ Cδ‖∇φ‖∞, ‖∇(φ2 − ηδ ∗ φ2)‖∞ ≤ C‖∇φ‖∞.

So we again use (3.25) to conclude

∫

φ2J
ǫ
1 dx ≤ Cδ‖∇φ‖∞ = Cǫα‖∇φ‖∞.

2

Once we have the above decomposition, the compactness of the sequence Juǫ follows from
soft arguments.
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Lemma 3.7 If ν is a Radon measure on U , then

‖ν‖(C0,α
c )∗ ≤ C‖ν‖α

(C0,1
c )∗

‖ν‖1−α
(C0

c )∗ .(3.26)

Proof. Since U is bounded and we are considering compactly supported functions, the
Hölder seminorm is in fact a norm and is topologically equivalent to the usual C0,α norm.
So for this lemma we set

‖φ‖C0,α
c (U) := [u]C0,α = sup

x 6=y

|φ(x) − φ(y)|
|x− y|α , α ∈ (0, 1].

Fix φ ∈ C0,α
c , and let φ̃ǫ = ηǫ ∗ φ, where ηǫ is a smoothing kernel and ǫ will be chosen later.

Then one easily checks that

‖φ̃ǫ‖C0,1 ≤ Cǫα−1‖φ‖C0,α := Mǫ, ‖φ− φ̃ǫ‖C0 ≤ Cǫα‖φ‖C0,α(3.27)

In particular, |φ̃ǫ| ≤ Cǫα‖φ‖C0,α on ∂U .

We next modify φ̃ǫ so that it vanishes on ∂U while continuing to satisfy the above esti-
mates. Let

u(x) = sup
y∈∂U

(

φ̃ǫ(y) −Mǫ|x− y|
)+

, v(x) = sup
y∈∂U

(

φ̃ǫ(y) +Mǫ|x− y|
)−

.

Then one easily checks that φ̃ǫ = u− v on ∂U . Moreover, if we define φǫ := φ̃ǫ − u+ v, then
φǫ satisfies the estimates in (3.27) and also vanishes on ∂U .

So

∫

φdν =

∫

φǫ dµ+

∫

(φ− φǫ) dν

≤ ‖φǫ‖C0,1‖ν‖(C0,1
c )∗ + ‖φ− φǫ‖C0‖ν‖(C0)∗

≤ C‖φ‖C0,α

(

ǫα−1‖ν‖(C0,1
c )∗ + ǫα‖ν‖(C0)∗

)

.

Taking ǫ = ‖ν‖(C0,1
c )∗/‖ν‖(C0)∗ gives the conclusion of the lemma. 2

Lemma 3.8 If α > 0, then (C0)∗ ⊂⊂ (C0,α)∗.

Proof. The Arzela-Ascoli Theorem implies that any sequence that is bounded on C0,α is
precompact in C0. The lemma follows by duality.

More concretely: given a sequence of measures bounded in (C0)∗, we can extract a subse-
quence, say µn that converges to a limit µ in the weak-* topology. We must show that this
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sequence converges in norm in (C0,α)∗. If not, then we can find a sequence of functions ψn

with ‖ψn‖C0,α ≤ 1 such that

∫

ψnd(µn − µ) ≥ c0 > 0(3.28)

for all n. However, the Arzela-Ascoli theorem implies that, upon passing to a subsequence,
ψn converges to some limit ψ uniformly, whence (3.28) is impossible. 2

We now prove

Theorem 3.9 Assume (3.23). Then Juǫ is strongly precompact in (C0,β)∗ for all β > 0.

Proof. By Proposition 3.6 we can write Juǫ = Jǫ
0 + Jǫ

1 , where the two measures on the
right-hand side satisfy (3.24).

Fix any β ∈ (0, 1]. Lemma 3.8 implies that {Jǫ
0} is precompact in (C0,β)∗ ⊂ (C0,β

c )∗.

Also, it is clear from the definitions that

‖Jǫ
1‖(C0)∗ ≤ ‖Juǫ‖L1 + ‖Jǫ

0‖(C0)∗ ≤ C‖∇uǫ‖2
L2 + C ≤ K ln(

1

ǫ
).

So together with (3.24) and the interpolation inequality (3.26) this implies that ‖Jǫ
1‖(C0,β

c )∗ →
0 as ǫ→ 0. 2

Remark 3.10 The above result is sharp in the sense that Juǫ need not be precompact, or
even weakly precompact, in (C0)∗. To see this, consider the sequence of functions

uǫ(x, y) = (1, 0) + ǫ2(ln(
1

ǫ
))1/2(cos(

x

ǫ2
), sin(

y

ǫ2
))

on the open unit disk D in the plane. One easily verifies that µǫ(D) ≤ C, and that
‖Juǫ‖(C0)∗ = ‖Juǫ‖L1 ≥ c−1 ln(1

ǫ ). In particular, since ‖Juǫ‖(C0)∗ is unbounded, the Uni-
form Boundedness Principle implies that the sequence cannot converge weakly in (C0)∗.

Remark 3.11 Suppose νǫ is any sequence of measures on a bounded open set U ⊂ IRm,
and that

|νǫ|(U) ≤ K ln(
1

ǫ
),

∫

φdνǫ ≤ C‖φ‖∞ + Cǫα‖∇φ‖∞

for some α > 0. The arguments given above then show, with essentially no change, that
{νǫ} is precompact in (C0,β)∗ for all β ∈ (0, 1].
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We are now in a position to give the

Proof of Theorem 3.5. Suppose {uǫ}ǫ∈(0,1] ⊂ H1(U ; IR2) is a sequence satisfying (3.23).
By an approximation argument, we may assume that in fact each uǫ is smooth. In view of
Theorem 3.9, we can find a measure J and a subsequence ǫn such that Juǫn → J in (C0,β

c )∗

for every β ∈ (0, 1].

1. Since µǫn is a sequence of uniformly bounded, nonnegative Radon measures, we may
assume upon passing to a further subsequence (still labeled ǫn) that there is a Radon measure
µ such that

µn := µǫn
∗
⇀ µ ,

in the weak∗ topology of Radon measures in U . For x ∈ U , set

Θ(x) := lim
r↓0

µ (Br(x) ∩ U) .

We first claim that J is supported only on the points with Θ(x) ≥ π.

Indeed, suppose that Θ(x0) < π at some x0 ∈ U . Then there exists some r0 > 0 and a
number α < π such that

µn(Br0
(x0)) ≤ α < π

for all sufficiently large n. Then Theorem 3.1 with λ = a+π
2a > 1 immediately implies that

∫

φ dJ(x) = lim
n→∞

∫

φ Juǫndx = 0

for all smooth φ with support in Br0
(x0), since dλ = 0 for such φ. Thus x0 6∈ spt(J).

Since µ is bounded on U , there are finitely many points {ai}i ⊂ U such that

Θ(ai) ≥ π .

Therefore there are constants ci such that the limit measure J satisfies

J = π
∑

i

ci δai .

We need to prove that ci’s are integers and that π|ci| ≤ Θ(ai) for all i; this will immediately
imply all the remaining conclusions of Theorem 3.5.

2. Choose r1 ≤ 1 so that Br1
(a1) does not intersect {ai}i>1 ∪ ∂U . We may also assume,

taking r1 smaller if necessary, that there exists some λ > 1 and an integer N0 such that
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dλ := ⌊λ
π
µn(Br1

(a1))⌋ ≤
1

π
Θ(a1) ∀n ≥ N0.(3.29)

We first apply Theorem 3.4 to the function φ(x) := (r1 − |x − a1|)+, which is supported
in Br1

(a1). Let An = A(φ, uǫn , λ, ǫn) be the set whose existence is asserted in Theorem 3.4.
Note that if t ∈ An, then Γφ,uǫn (t) is nonempty, which is to say that there is a component
of φ−1(t) on which min |u| ≥ 1/2. However, φ−1(t) = ∂Br1−t(a1) is connected, so in fact
Γφ,uǫn (t) = ∂Br1−t(a1) for all t ∈ An. So for every t ∈ An and n ≥ N0, Theorem 3.4 and
the choice of λ imply that

min
x∈∂Br1−t(a1)

|uǫn | ≥ 1

2
, |deg(uǫn ; ∂Br1−t(a1))| ≤ dλ ≤ 1

π
Θ(a1).

It follows that for all such n there is an integer d(n) such that the set

Sd(n)
n := {r ∈ [0, r1] : min

∂Br(ai)
|uǫn | > 1

2
, deg(uǫn ; ∂Br) = d(n)}

has measure at least k0 := r1

3dλ
. Note also that S

d(n)
n is open, since uǫn is by assumption

continuous (indeed, smooth). We can therefore find an open set Σn ⊂ S
d(n)
n such that

|Σn| = k0.

3. We now define new test functions ψn as follows. First let

fn(r) = |[r, r1] ∩ Σn|

We then define ψn(x) = fn(|x− a1|). One can then check that t is a regular value of ψn if
and only if

(ψn)−1(t) = ∂Br(a1) for some r ∈ Σn.

In particular, deg(u; (ψn)−1(t)) = d(n) for a.e. 0 < t < ‖ψn‖∞ = k0.

One can then easily check, using Theorem 3.4, that

∫

ψnJuǫndx = πd(n)k0 +O(ǫα).

On the other hand, since the functions ψn are uniformly bounded in C0,1
c and since Juǫn →

J = π
∑

ciδai in C0,1
c (U)∗

0 = lim
n

∣

∣

∣

∣

∫

ψnJuǫndx− πc1ψ
n(a1)

∣

∣

∣

∣

= lim
n

∣

∣

∣

∣

∫

ψnJuǫndx− πc1k0

∣

∣

∣

∣

.

Comparing the last two equations, we find that d(n) = c1 for all sufficiently large n. In
particular, c1 is an integer and |c1| ≤ dλ ≤ 1

π Θ(a1), which is what we needed to show. 2
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4 Gamma Limit

Suppose that a sequence of functionals Jn on a Banach space X is given. We assume that
they are bounded from below and by adding a constant, if necessary, we may assume that
these functionals are nonnegative, i.e.,

Jn : X 7→ [0,∞].

The Gamma limit, J , of these functional in the topology of X is roughly given by

J(x) := lim inf{ Jn(xn) |(n, xn) → (∞, x) }.

More precisely, the Gamma limit is a nonnegative functional

J : X 7→ [0,∞],

satisfying the following two conditions:

• Let {xn} ⊂ X be a convergent sequence with limit x ∈ X , i.e.,

lim
n→∞

‖xn − x‖X = 0.

Then,

lim inf
n→∞

Jn(xn) ≥ J(x).

• For any x ∈ X , there exists a sequence {x∗n} satisfying

lim
n→∞

‖x∗n − x‖X = 0,

and

lim
n→∞

Jn(x∗n) = J(x).

Generally an accompanying compactness result is useful. Such a compactness result states
that if for a sequence {xn} ⊂ X

sup
n

Jn(xn) <∞,(4.1)

then the set {xn} is compact in X .

An immediate corollary to a Gamma limit and to the compactness result is this: Let y∗n be
a minimizer of Jn, and they satisfy (4.1). Then, by compactness on a subsequence, denoted
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by n again, yn converges to a point y∗ ∈ X . By the first condition on the Gamma limit we
know that

J(y∗) ≤ lim inf
n

Jn(yn).

Let x be any point in X and let {x∗n} be the sequence in the second condition on the Gamma
limit. Since yn’s minimize Jn,

J(x) = lim
n

Jn(xn)

≥ lim sup
n

Jn(yn)

≥ J(y∗).

Hence any limit y∗ of the minimizing sequence yn is a minimizer of the Gamma limit J . In
practice, this method is used to a construct minimizer of a given functional J . Given J ,
we construct a “regular” functionals Jn such that the Gamma limit of this sequence is J .
Then, we obtain minimizers of Jn by standard methods and then apply the above method
to construct a minimizer of J . The sequence Jn is often called a relaxation of J .

We refer to the book of Dal Maso [8] for more information.

In this section we calculate the Gamma limit of

Iǫ(u) :=
1

ln(1/ǫ)

∫

Eǫ(u) dx.

First we introduce a function space which is needed in order to state the Gamma limit.

4.1 Functions of BnV .

Motivated by the analysis of Iǫ and the central role of BV in the scalar case, Jerrard and
the author introduced and studied a class of functions called BnV in [14]; a short summary
is provided in [15]. It turns out that the Gamma limit of the functional Iǫ is finite only for
functions u ∈ B2V . For that reason, we give a brief discussion of BnV . We refer to [14, 15]
for more information.

Briefly, function u ∈W 1,n−1(U ; IRn), for U ⊂ IRm,m ≥ n, is said to belong to BnV if the
weak determinants of all n by n submatrices of the gradient matrix ∇u are signed Radon
measures. Here we only we give the precise definition of B2V and refer to [14] for higher
dimensional case.

For U ⊂ IRm → IR2 with m ≥ 2 we view the Jacobian as a measure taking values in the
exterior algebra Λ2IRm. For every n (and in particular for n = 2) we endow ΛnIRm with the
natural inner product structure, which we denote (·, ·), and for a multivector v ∈ ΛnIRm we
write |v| = (v, v)1/2. If u ∈W 1,1(U ; IR2) we define
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j(u) =

m
∑

i=1

u× uxi dx
i ,(4.2)

and if j(u) ∈ L1
loc, we define

Ju =
1

2
d j(u) in the sense of distributions(4.3)

where d is the exterior derivative. Thus if u ∈ H1
loc, then

Ju =
∑

i<j

J iju dxi ∧ dxj =
1

2

∑

i,j

J iju dxi ∧ dxj ,

where

J iju = −Jjiu = uxi × uxj = det(uxi , uxj).

For sufficiently differentiable u : IRm → IRn one can define in a similar way Ju as a measure
taking values in ΛnIRm. We omit the most general definition as we will not need it here.

Here we give the precise definition of B2V . Let U ⊂ IRm with m ≥ 2.

Definition. We say that u belongs to B2V (U ; IR2) if both of the conditions are satisfied

• j(u) ∈ L1
loc(U ; IR2),

• Ju is a Radon measure with values in Λ2IRm.

A priori Ju is only a distribution; we say that u ∈ B2V if it happens to be a measure.
Also there are several conditions that ensure that j(u) ∈ L1. For instance if u ∈ W 1,1 ∩L∞

j(u) ∈ L1.

The class BnV is very closely related to the Cartesian Currents of Giaquinta, Modica and
Soucek [10, 11]. This connection is discussed in detail in [14].

In [14] it is shown that if u ∈ B2V (IRm;S1), then the Jacobian measures Ju is supported
on an m− 2 dimensional rectifiable set. In particular, if u ∈ B2V (U ;S1) and U ⊂ IR2, then
there are {ai} ⊂ U and integers ki such that

Ju = π
∑

i

ki δai .

This is interpreted as encoding the location and degree of the topological singularities of
u.

Here we outline only the proof in the case of u ∈ B2V (U ;S1) with U ⊂ IR2, and refer to
[14] for the higher dimensional result.
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Lemma 4.1 Let U ⊂ IR2 and u ∈ B2V (U ; IR2). Then,

Ju = π
∑

j

kj δaj ,(4.4)

for finite collections of points {aj} ⊂ U and integers kj.

Outline of Proof:

In this case, Ju is a scalar valued, signed Radon measure. Hence for every x ∈ U , the
following limit exists:

d(x) := lim
r↓0

dr(x), dr(x) := Ju(Br(x)).

We claim that for every x ∈ U , and for almost every r > 0, dr(x)/π is an integer. Indeed,
since Ju = ∇× j(u), for any smooth function φ ∈ C∞

c (U ; IR1), by integration by parts

∫

U

φJu(dx) =

∫

U

∇φ · j(u) dx.

Formally if we take φ to be the characteristic function of the set Br(x), we obtain

Ju(Br(x)) =

∫

Br(x))

Ju(dx)

=
1

2

∫

∂Br(x)

j(u) · ~t dH1.

By approximation, we may show that the above identity holds if u is sufficiently smooth.
For u ∈ B2V , in [14], the above identity is proved for almost every r > 0.

Moreover, since u ∈W 1,1(U ;S1), for almost every r > 0, u ∈ W 1,1(Br(x);S
1). Hence, for

these values of r, u is absolutely continuous with values in S1. Then, by the degree formulae
discussed earlier,

1

2

∫

∂Br(x)

j(u) · ~t dH1 = π deg(u; ∂Br(x)).

Therefore dr(x)/π is an integer for almost every r. Since the limit of dr(x) exists, we
conclude that for every x ∈ there exists r(x) > 0 such that

dr(x) = d(x), ∀ r ∈ (0, r(x)],

and
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d(x)/π ∈ Z, ∀ x ∈ U.

Since |Ju|(U) is finite, by a simple covering argument these yield the desired result. 2

4.2 Gamma limit of I
ǫ

Let U be an open bounded subset of IR2 with a smooth boundary.

In this section we study the Γ limit of the functionals

Iǫ(u) :=
1

ln(1/ǫ)

∫

U

1

2
|∇u|2 +

1

4ǫ2
(1 − |u|2)2 dx ,

as ǫ tends to zero and show that the limiting functional is

I(u) :=







|Ju|(U) = π
∑

i |ki| , if u ∈ B2V (U ;S1) ,

+∞ , if u 6∈ B2V (U ;S1) .

Theorem 4.2 The Γ limit of Iǫ in the topology of W 1,1(U ; IR2) is equal to I, i.e., for every
sequence uǫ converging to u in W 1,1(U ; IR2),

lim inf
ǫ→0

Iǫ(u
ǫ) ≥ I(u) ,(4.5)

and for every u ∈ B2V (U ;S1), there exist functions uǫ converging to u in W 1,1(U ; IR2)
satisfying

lim inf
ǫ→0

Iǫn(uǫ) = I(u) .(4.6)

A similar result also holds in higher dimensions [13].

The above result is proved independently in [1], and in [13]

Remark 4.3 In view of our compactness result and our introductory discussion of Gamma
Limit, the Banach space W 1,1 is not appropriate. Since we do not have a compactness result
in W 1,1, and the only compactness result is for the Jacobian, it is more natural to consider
the Gamma Limit in the space of equivalent classes of functions with a topology equivalent
to the convergence of the Jacobian. However, here and in [13], we chose to work with W 1,1

as it is a standard Banach space.

Proof. We start with the proof of (4.5). Suppose that uǫ converges to u in W 1,1(U ; IR2).
We assume that
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lim inf
ǫ

Iǫ(u
ǫ) <∞ ,

as there would be nothing to prove otherwise.

1. By the Compactness Theorem 3.5, there exists a subsequence ǫn converging to zero
such that the Jacobian measure Juǫn converges to a Radon measure J in (C0,β

c )∗ for all
β > 0. We claim that J = Ju. In particular this will show that u ∈ B2V (U ;S1).

To simplify the notation, set un := uǫn .

2. We directly estimate that

∣

∣

∣

∣

j(un) − j(un)

|un|2 ∧ 1

∣

∣

∣

∣

≤ |un||∇un|
∣

∣

∣

∣

|un|2 ∧ 1 − 1

|un|2 ∧ 1

∣

∣

∣

∣

= |∇un|
|1 − |un|2|

|un|
χ|un|≥1

≤ ǫn

[

1

2
|∇un|2 +

1

2ǫ2n
(1 − |un|2)2

]

.

Hence,

lim
n→∞

∫

U

∣

∣

∣

∣

j(un) − j(un)

|un|2 ∧ 1

∣

∣

∣

∣

dx = 0 .

3. Set vn := un/(|un|2 ∧ 1) so that

1

|un|2 ∧ 1
j(un) − j(u) = vn ×∇un − u×∇u

= vn × (∇un −∇u) + (vn − u) ×∇u .

Hence

∣

∣

∣

∣

1

|un|2 ∧ 1
j(un) − j(u)

∣

∣

∣

∣

≤ |vn||∇un −∇u| + |vn − u||∇u|

≤ |∇un −∇u| + |vn − u||∇u| .

Since un converges to u in W 1,1(U ; IR2), there exists a subsequence, denoted by n again,
so that un converges to u almost everywhere. Hence |vn − u||∇u| converges to zero almost
everywhere and also it is less than 2|∇u|. So we may use the dominated convergence theorem
to conclude that

lim
n→∞

∫

U

∣

∣

∣

∣

1

|un|2 ∧ 1
j(un) − j(u)

∣

∣

∣

∣

dx = 0 .
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4. Steps 2 and 3 imply that on a subsequence j(un) converges to j(u) in L1. Hence, Juǫn

converges to Ju in the sense of distributions. This implies that J = Ju. Since by Theorem
3.5, J is a Radon measure, so is Ju and therefore u ∈ B2V (U ; IR2). It is also clear that
|u| = 1 almost everywhere. Hence, u ∈ B2V (U ;S1).

5. The Jacobian estimate (3.1) implies that

∣

∣

∣

∣

∫

U

φ Ju(dx)

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

∫

U

φ Jun(dx)

∣

∣

∣

∣

≤ λ‖φ‖∞ lim inf
n→∞

Iǫn(un) ,

for every λ > 1. Hence,

lim inf
n→∞

Iǫn(un) ≥ sup {
∣

∣

∣

∣

∫

U

φ Ju(dx)

∣

∣

∣

∣

: ‖φ‖∞ ≤ 1 }

= |Ju|(U)

= I(u) .

This proves (4.5).

6. We continue by proving the Γ-limit upper bound (4.6). Fix u ∈ B2V (U ;S1). As
remarked above, it is shown in [14] that Ju must have the form

Ju = π
∑

j

kj δaj ,

It suffices to show that, given any sufficiently small δ > 0, there exists a sequence of functions
{vǫ} ⊂ H1(U ; IR2) such that

Iǫ(v
ǫ) → π

∑

|kj |, lim sup
ǫ

‖vǫ − u‖W 1,1(U) ≤ Cδ.

To do this, fix some small δ > 0. Let r0 > 0 be a number such that the balls {B2r(aj)} are
pairwise disjoint and do not intersect ∂U , whenever r ≤ r0, and select some r > 0 such that

∑

j

∫

B2r(aj)

|∇u| dx ≤ δ, r ≤ min{r0, δ}.(4.7)

For any s > 0, let Us denote U \ ∪jBs(aj). Demengel [9] proves that if V is an open
subset of IR2, then smooth functions taking values in S1 are dense in the subspace {w ∈
W 1,1(V ;S1) : Jw = 0}. Since Ju = 0 on Ur, this implies that there exists a function
v ∈ C∞(Ur, S

1) such that

‖u− v‖W 1,1(Ur) ≤ δ.(4.8)
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Demengel’s proof in fact shows that we may also assume that

‖j(u) − j(v)‖L1(Ur) ≤ δ.(4.9)

7. Clearly (4.7) and (4.8) imply that

∑

j

∫ 2r

r

∫

∂Bs(aj)

|∇v(x)| dH1(x)ds =
∑

j

∫

B2r\Br(aj)

|∇v| dx ≤ 2δ.

So for each j we can find some number rj ∈ [r, 2r] such that

∫

∂Brj
(aj)

|∇v(x)| dH1(x) ≤ 2δ

r
(4.10)

We also claim that

deg(v; ∂Brj (aj)) = kj(4.11)

if δ is sufficiently small. Indeed, since v is smooth and S1-valued it is clear that s 7→
deg(v; ∂Bs(aj)) is constant for s ∈ [r, 2r0], so we only need to verify that this constant must
equal kj . To do this, note that if φ is any function of the form φ(x) = φ̄(|x − aj |) that is
constant on Br(aj) and has its support in B2r0

(aj), then

1

2

∫

∇× φ · j(v) dx =
1

2

∫ ∞

0

deg(v;φ−1(s)) ds = πφ(aj)deg(v; ∂Brj (aj))

and

1

2

∫

∇× φ · j(u) dx =

∫

φ dJu = πφ(aj)kj .

If δ is small enough, (4.11) follows from these two identities and (4.9), since ∇×φ is supported
in Ur.

8. We claim that for each j there exists smooth functions vǫ
j , defined in Brj (aj) such that

vǫ
j(x) = v(x) for x ∈ ∂Brj (aj),

∫

Brj
(aj)

|∇vǫ
j |dx ≤ Cδ, and lim

ǫ→0

1

| ln ǫ|

∫

Brj
(aj)

Eǫ(vǫ
j)dx = π|kj |.(4.12)

To see this, fix some j. We may assume without loss of generality that aj = 0, and due
to (4.11) we can write

v(x) = exp[i(kjθ + αj + ψ(x))] for x ∈ ∂Brj
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where αj is a constant, ψ is a smooth, single-valued function on ∂Brj , and θ as usual
satisfies x

|x| = (cos θ, sin θ). We are identifying IR2 ∼= CI in the usual way. We extend ψ to be

homogeneous of degree zero on IR2 \ {0}, and we define

vǫ
j(x) = exp[i(kjθ + αj +

2|x| − rj
rj

ψ(x))] if
1

2
rj ≤ |x| ≤ rj .

For |x| ≤ 1
2rj we define vǫ

j(x) to be a minimizer of

∫

Brj/2

Eǫ(w) dx

subject to the boundary conditions w = exp[i(kjθ + αj)] on ∂Brj/2.

Since vǫ
j restricted to the annulus Brj \ Brj/2 is just a fixed smooth function of unit

modulus, independent of ǫ, it is clear that

lim
ǫ

1

| ln ǫ|

∫

Brj
\Brj/2

Eǫ(vǫ
j) dx = lim

ǫ

1

| ln ǫ|

∫

Brj
\Brj/2

1

2
|∇vǫ

j |2 dx = 0.

Also, using (4.10) one can check that

∫

Brj
\Brj/2(aj)

|∇vǫ
j |dx ≤ Cδ.

Finally, the book of Bethuel, Brezis, and Hélein gives a detailed description of the asymp-
totics of Ginzburg-Landau energy-minimizers, and their results imply that

lim
ǫ

1

| ln ǫ|

∫

Brj/2

Eǫ(vǫ
j) dx = π|kj |, lim sup

ǫ

∫

Brj/2

|∇vǫ
j | dx ≤ Crj ≤ Cδ.

Putting these facts together we find that the sequence {vǫ
j} has the properties specified in

(4.12).

9. Finally we define

vǫ(x) =

{

v(x) if x ∈ U \
(

∪jBrj (aj)
)

vǫ
j(x) if x ∈ Brj (aj)

Since v is a fixed smooth function and |v| ≡ 1, 1
| ln ǫ|E

ǫ(v) = 1
| ln ǫ| |∇v|2 tends to zero

uniformly as ǫ→ 0. Thus it is clear from (4.12) that

lim
ǫ→0

1

| ln ǫ|

∫

U

Eǫ(vǫ)dx =
∑

j

lim
ǫ→0

1

| ln ǫ|

∫

Brj
(aj)

Eǫ(vǫ
j)dx = π

∑

j

|kj |.
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Also,

‖u− vǫ‖W 1,1(U) ≤ ‖u− v‖W 1,1(Ur) +
∑

j

(

‖u‖W 1,1(Brj
(aj)) + ‖vǫ

j‖W 1,1(Brj
(aj))

)

≤ Cδ

by (4.7), (4.8), and (4.12). So the sequence {vǫ} has all the required properties. 2

5 Compactness in Higher Dimensions

Now suppose U is a bounded, open subset of IRm with m ≥ 3.

In this section we will show that if {uǫ}ǫ∈(0,1] ⊂ H1(U ; IR2) is a sequence of functions
such that the normalized Ginzburg-Landau energy measure µǫ(U) is uniformly bounded,
then the Jacobians Juǫ are precompact in (C0,β)∗ for all β > 0, and any limit is rectifiable.
In addition, we prove that

|J̄ |(U) ≤ lim inf µǫ(U).

This is not a full Γ-convergence result, but it shows that the mass of the Jacobian is a
reasonable candidate for the Γ-limit. We also believe that the compactness result and the
upper bound for the Jacobian (ie, lower bound for the energy) are interesting and will be
useful in other contexts.

We start by defining some of the terms used above. We remark that good general references
for this material include Giaquinta et. al [10] and Simon [28].

Let Λ2IRm, j(u) and Ju be as in subsection 4.1.

A set M ⊂ IRm is said to be a k-dimensional rectifiable set if there are Lipschitz functions
fj : IRk → IRm and measurable subsets Aj of IRk such that

M = M0 ∪
(

∪∞
j=1fj(Aj)

)

, Hk(M0) = 0.

Thus, in a precise measure theoretic sense, a k-dimensional rectifiable set is not much worse
than a k-dimensional Lipschitz submanifold. Rectifiable sets can also be characterized by
the fact that they have k-dimensional approximate tangent spaces Hk almost everywhere;
see [28] or [10].

Suppose that M is an oriented, rectifiable (m − n)-dimensional subset of IRm, and for
Hm−n almost every x ∈ M , let ν(x) ∈ ΛnIRm be the unit n-vector representing the ap-
propriately oriented normal space to M . (It is more convenient for our purposes to work
with normal spaces rather than tangent spaces.) Suppose also that θ : M → IN is a Hm−n-
integrable function. One can define a measure J taking values in ΛnIRm by

∫

φ(x)J(dx) =

∫

M

φ(x) · ν(x)θ(x)Hm−n(dx) ∀φ ∈ C0(IRm; ΛnIRm).(5.1)
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We say that a measure J taking values in ΛnIRm is (m−n)-dimensional integer multiplicity
rectifiable (or more briefly, integer multiplicity rectifiable) if it has the form (5.1) for some
rectifiable set M and an integer-valued function θ as above.

The class of functions for which Ju is a measure is denoted BnV (U, IRn) and was defined
and studied in [14]. In particular we prove there that if u ∈ BnV (IRm, Sn−1) then Ju/ωn

is integer multiplicity rectifiable, where ωn is the volume of the unit ball in IRn. This is
deduced as a consequence of a more general rectifiability criterion which we recall here.

Let J be a measure on a subset U ⊂ IRm taking values in ΛnIRm, where n ≤ m. We
can write J in the form J = ν|J |, where |J | is a nonnegative Radon measure, and ν is a
|J |-measurable function taking values in ΛnIRm such that |ν(x)| = 1 at |J |-a.e. x ∈ U .

Suppose that e1, ..., em is an orthonormal basis for IRm. Given any point x ∈ IRm, we
write yi = x · ei if i = 1, ...,m − n; and zi = x · em−n+i if i ∈ 1, . . . , n. We write IRm−n

y to

denote the span of {ei}m−n
i=1 . Similarly, IRn

z = span{ei}m
i=m−n+1. Thus we identify points

x ∈ IRm with corresponding (y, z) ∈ IRm−n
y × IRn

z . Let dz := dz1 ∧ . . . ∧ dzn, and let Jz

denote the scalar signed measure defined by Jz := (dz, ν)|J |.

We say that Jz is locally represented by slices Jy(dz) if, given any open set O ⊂ U of the
form O = Oy × Oz, with Oy ⊂ IRm−n

y and Oz ⊂ IRn
z , there exist signed Radon measures

Jy(dz) on Oz for a.e. y ∈ Oy, such that

∫

φJz =

∫

Oy

∫

Oz

φ(y, z)Jy(dz) dy(5.2)

for all continuous φ with compact support in O.

We say that a statement holds for a.e. Jy(dz) if, for every open set O as above, it is valid
for a.e. y ∈ Oy .

In [14] we prove the following

Theorem 5.1 Suppose that J is a Radon measure on U ⊂ IRm taking values in ΛnIRm,
and also that dJ = 0 in the sense of distributions. Suppose also that for every choice on
an orthonormal basis {ei}m

i=1 (determining a decomposition of IRm into IRm−n
y × IRn

z ) Jz is
represented locally by slices, and that for a.e. y ∈ Oy these slices have the form

Jy(dz) =
K

∑

i=1

diδai(dz)

for an integers K and di, and points ai ∈ Oz.

Then J is rectifiable.

A much more general version of this result was later established by Ambrosio and Kirch-
heim [2]. A similar theorem in somewhat different and very general setting was proved
independently (and slightly earlier) by White [34].

We will need Theorem 5.1 to prove
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Theorem 5.2 (Jerrard & Soner [13]) Let U ⊂ IRm, and suppose that {uǫ}ǫ∈(0,1] is a
collection of functions in W 1,2(U ; IR2) such that µǫ(U) ≤ KU < ∞ for all ǫ. Then there
exists a subsequence ǫn → 0 such that

(i): Juǫn converges to a limit J̄ in the (C0,α)∗ norm for every α > 0;

(ii): For any choice of basis {ei} for IRm (determining a decomposition of IRm into
IRm−2

y × IR2
z), J̄

z is represented locally by slices J̄y(dz), and for a.e. y these slices have the

form J̄y(dz) = π
∑K

i=1 diδai , with di ∈ ZZ for all i.

(iii): dJ̄ = 0 in the sense of distributions, and J̄/π is integer multiplicity rectifiable;

(iv): Finally, if µ̄ is any weak limit of a subsequence of µǫn, then |J̄ | ≪ µ̄, and d|J̄|
dµ̄ ≤ 1.

In particular, |J̄ |(U) ≤ KU .

Remark 5.3 For any J̄ as above, (iii) and the definition of rectifiability imply that a lower
density bound:

lim inf
r→0

|J̄ |(Br(x))

Hm−2(Br(x))
≥ π

for |J̄ | almost every x. Also, if µ̄ is as in (iv), then clearly the m− 2-dimensional density of
µ is greater than m− 2-dimensional density of J̄ . In particular,

lim inf
r→0

µ̄(Br(x))

Hm−2(Br(x))
≥ π

for |J̄ | almost every x.

The basic idea of the proof is to decompose a component of Juǫ, for example Jm−1,muǫ,
into two-dimensional slices, say Jǫ

y(dz), and to use the two-dimensional estimates on each
slice. Arguing in this fashion, it is quite easy to obtain uniform estimates for Jm,m−1uǫ in
certain weak spaces, and these imply (i) by results of the previous section.

To prove (ii), it is convenient to view the sliced measures Jǫ
y(dz) as constituting a function

mapping IRm−2
y into C1

c (IR2
z)

∗; the latter is a space that contains measures on IR2
z and is

endowed with a rather weak topology. Claim (i) can be seen as assertion that the function
y 7→ Jǫ

y(dz) is precompact in some weak sense. What one would like to do is to show that in
fact y 7→ Jǫ

y(dz) is precompact in some stronger sense, for example in L1(IRm−2
y ; (C1

c (IR2
z)

∗),

so that one can extract a subsequence that converges to some limiting function y 7→ J̄y(dz)
in L1. In particular, after passing to a further subsequence we could then assume that
Jǫn

y (dz) → J̄y(dz) for almost every y. In addition, by our two-dimensional results, for
almost every y, one can find a subsequence ǫnm → 0 (in general depending on y) such that
J

ǫnm
y (dz) converges to some limit that has the form sought in (ii). By combining these

results one can hope to show that in fact 1
π J̄y(dz) is a sum of point masses with integer

multiplicities.

The key point is then to establish some sort of strong compactness of the sequence of
functions y 7→ Jǫ

y(dz) as ǫ→ 0. We do this using the observation from [14, 15] that the total
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variation of y 7→ Jǫ
y(dz) in the (C0,1

c )∗ norm can be estimated by controlling “orthogonal”
components of Juǫ, which is already done in the proof of (i). Using this one can argue that
the functions y 7→ Jǫ

y(dz) have uniformly bounded variation in (C0,1
c )∗, modulo terms that

vanish in still weaker norms, and this gives the necessary strong convergence. (The terms
involving weaker norms force us to work with test functions that are C2 instead of C1 in
much of the proof.)

The remaining points follow quite directly from (ii) and the rectifiability criterion of
Theorem 5.1, and from the two-dimensional results.

6 Dynamic Problems: Evolution of Vortex Filaments

The stationary results, in particular the energy lower bounds and the compactness of the
Jacobian are very useful tools in the asymptotic study of the evolution problems related to
Iǫ. In these note we only consider the parabolic equation which is the gradient flow of Iǫ:

uǫ
t − ∆uǫ =

uǫ

ǫ2
(1 − |uǫ|2), t > 0, x ∈ IRn,(6.1)

where the unknown function

uǫ : IRn 7→ IR2,

satisfies an initial condition

uǫ(0, x) = uǫ
0(x), x ∈ IRn,(6.2)

where uǫ
0 is a given function.

Here we do not consider the corresponding nonlinear Schrodinger and the nonlinear heat
equations. Instead we refer to the notes of Rubinstein [23] for an introduction and the
description of formal results and to the paper of Colliander and Jerrard [7] for a rigorous
study of the nonlinear, planar Schrodinger equation.

Also here we only consider the case n ≥ 3. Results for n = 2 are outlined in the Intro-
duction.

The asymptotic analysis of these equations initiated by the seminal paper of Rubinstein,
Sternberg and Keller [24]. Much has been done for the scalar equation since then. We refer
to the survey article of the author [29] and the references therein for the scalar equation,
which is also called as the Cahn-Allen equation in the literature.

The vector valued Ginzburg-Landau equation with uǫ : IRn 7→ IRm is studied first by
Struwe [33]. He considered this equation as a relaxation of the heat flow for harmonic
maps. Under the assumption that original (not rescaled) energy is uniformly bounded in ǫ,
he obtained deep partial regularity results. A monotonicity result is one of the interesting
results of [33]. Our results differ from [33] in that we only consider the case uǫ ∈ IR2 but we
allow for singularities to form and study the time evolution of the singular structures.
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Here we outline the results of [17] and [4]. This technique is also outlined in the lecture
notes of the author [31] for the scalar equations. As discussed in the Introduction, in the
following proof, we will use the compactness of the Jacobian to provide a shorter proof.

6.1 Energy identities

Set

eǫ := eǫ(t, x) = Eǫ(uǫ(t, x)).

Recall that the energy density Eǫ is given as

Eǫ(u) :=
1

2
|∇u|2 +

(1 − |u|2)2
4ǫ2

.

By calculus and (6.1),

(eǫ)t = −|uǫ
t|2 + divpǫ,(6.3)

∇eǫ = −pǫ + div(∇uǫ ⊗∇uǫ),(6.4)

pǫ := ∇uǫ uǫ
t

To localize the energy estimates, let η ≥ 0 be a smooth compactly supported test function.
Multiply (6.3) by η and (6.4) by ∇η and subtract the two identities. Then use the resulting
identity to compute the time derivative of the integral of ηeǫ. The result is:

d

dt

∫

η eǫ =

∫

(ηt − ∆η) eǫ +D2η∇uǫ · ∇uǫ −
∫

η |uǫ
t|2.(6.5)

Although we will not use it in these notes, let us mention that if we add the two identities
instead of subtracting them, we obtain the following identity:

d

dt

∫

η eǫ =

∫

(ηt + ∆η) eǫ −D2η∇uǫ · ∇uǫ(6.6)

+
|∇η · ∇uǫ|2

η
−

∫

η

∣

∣

∣

∣

uǫ
t −

∇η · ∇uǫ

η

∣

∣

∣

∣

2

.

In [33], Struwe used the above identity with the special choice for η:

η(t, x) =
1

(4(t0 − t))(n−m)/2
exp

(

− |x− x0|2
4(t0 − t)

)

, t < t0, x ∈ IRn,
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where t0 > 0 and x0 ∈ IRn are arbitrary, and m is the dimension of the range of u.

The special case of (6.5) with η ≡ 1 yields the classical energy estimate,

∫

eǫ(t, x) dx+

∫ t

0

|uǫ
t|2 dxdt =

∫

eǫ(0, x) dx.(6.7)

6.2 Mean curvature flow and the distance function

The distance and the square distance functions to a smooth manifold can be used to de-
scribe all the relevant geometric quantities. These functions were first used in [17] in the
convergence proofs.

Let {Γt}t∈[0,T ] be a smooth solution of co-dimension two mean curvature flow. Then the
square distance function η(t, x) satisfies

ηt − ∆η = −2, on Γt,(6.8)

∇ [ηt − ∆η] = 0, on Γt,(6.9)

D2η ≤ In, on whenever it is smooth.(6.10)

The equation (6.9) is an observation of DeGiorgi. It can be viewed as the definition of the
codimension two mean curvature flow. We refer to [3] for information on the mean curvature
flow in any codimension. However, (6.8), and (6.10) are the properties of any square distance
function to a smooth codimension two manifold.

Since Γt is smooth, η is smooth in a tubular neighborhood of Γt. (6.8) and (6.9) imply
that in this neighborhood,

|ηt − ∆η + 2| ≤ C η,(6.11)

for some constant C. We extend η smoothly to all of [0, T ] × IRn so that the extension
satisfies (6.10), (6.11), and

η ≥ 0, and η(t, x) = 0, if and only if x ∈ Γt.(6.12)

In (6.5) we choose η to be the square distance function, modified as above. Set

αǫ(t) :=
1

ln(1/ǫ)

∫

η eǫ(t, x) dx,

so that by (6.5), (6.10) and (6.11),
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d

dt
αǫ(t) ≤ 1

ln(1/ǫ)

∫

[

C ηt eǫ − 2eǫ + |∇uǫ|2
]

− 1

ln(1/ǫ)

∫

|uǫ
t|2 dx

≤ C αǫ(t) − 1

ln(1/ǫ)

∫

|uǫ
t|2 dx.(6.13)

6.3 Convergence.

In this subsection, we prove the convergence of the solutions of 6.1 to smooth solutions of
the mean curvature flow. This is first proved in [17], and here we follow a new approach
using the compactness result on the Jacobians. The convergence to weak solutions of the
mean curvature flow is still not known. A first step in this direction is proved in [4].

Here we assume that the initial data concentrates on a smooth co-dimension two manifold
Γ0 and that there exists a smooth solution {Γt}t∈[0,T ] of the codimension two mean curvature
flow. then, we will prove that the energy measure concentrates on the smooth solution.

Set

µǫ
t(V ) :=

1

ln(1/ǫ)

∫

V

Eǫ(uǫ(t, x)) dx,

be the rescaled Ginzburg-Landau energy. Precisely, we assume that uǫ
0 is such that

µǫ
0

⋆
⇀ π Hn−2 Γ0,

in the weak∗ topology of Radon measure, where Hn−2 Γ0 is the n−2 dimensional Hausdorff
measure restricted to the codimension two manifold Γ0, i.e, it is the surface area measure of
Γ0.

A simple, consequence of this assumption is that

C∗ := sup
ǫ

µǫ
0(IR

n) < ∞.

This together with the energy estimate (6.7) imply

sup{ µǫ
t(IR

n) | t ∈ [0, T ], ǫ > 0 } ≤ C∗.

Using an argument due to Brakke (see [17] for details), this implies that there exists a
subsequence, denoted by ǫ again, such that

µǫ
t

⋆
⇀ µt, t ∈ [0, T ],

to some nonnegative Radon measures {µt}t∈[0,T ].
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Theorem 6.1 Suppose that
{

Γ(t)
}

t∈[t0,t1]
is a collection of compact sets which is a classical

solution of the codimension two mean curvature flow. Let µt be a weak∗ limit of the rescaled
energy measure µǫ

t. Then,

µt ≥ πH1 Γt, t ∈ [0, T ],

and

support µt = Γt, t ∈ [0, T ].

Proof.

Since each connected component of the solution can be studied separately, without loss
of generality, we may assume that Γt is conneceted with no boundary.

1. Let αǫ(t) be as in the previous subsection. Then by the convergence of µǫ
t,

lim
ǫ→0

αǫ(t) = α(t) :=

∫

η µt(dx).

In view of (6.12) and our assumption on µ0,

α(0) = 0.

Then by (6.13) and the Gronwald’s inequality

α(t) ≤ α(0) eCt = 0.

Since η is nonnegative, this implies that the support of µt is included in the zero set of η.
Hence by (6.12),

support µt ⊂ Γt, t ∈ [0, T ].

2. Fix t ∈ [0, T ] and let Jǫ
t := Juǫ(t, ·). Since the rescaled Ginzburg-Landau energy µǫ

t(IR
n)

is uniformly bounded in ǫ, we may apply the compactness result proved earlier. Then, on a
subsequence denoted by ǫ again, Jǫ

t converges to a signed Radon measure Jt in the topology
of (C0,α)∗ for every α > 0. Moreover,

d|Jt|
dµt

≤ 1, µt a.e.,

where |Jt| is the total variation of the vector valued measure Jt and µt is the weak∗ limit of
µǫ

t.

Hence, by step 1,
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support Jt ⊂ support µt ⊂ Γt.

3. Since

Jǫ
t = dj(uǫ(t, ·)),

dJǫ
t = 0, ⇒ dJt = 0.

If we see Jt as a current, the above states that it has no boundary. By the previous step Jt

is included in a smooth manifold Γt which has no boundary. In Lemma 6.2 below, we will
show that these fact imply that the density of |Jt| on Γt

Θt :=
d|Jt|

dHn−2 Γt

is constant.

We postpone the proof of this result to Lemma 6.2 and complete the proof of this theorem.

In view of our compactness result, this constant has to be an integer multiple of π, i.e.,

θt ≡ nt π, Hn−2 Γt a.e.,

for some integer nt.

4. It suffices to show that nt ≡ 1 for t ∈ [0, T ]. Indeed this implies that

|Jt| = π Hn−2 Γt.

Since |Jt| ≤ µt,

µt ≥ π Hn−2 Γt.

and

Γt ⊂ support µt.

The opposite inclusion is proved in Step 1.

5. To prove that nt ≡ 1, consider the space-time Jacobian Jǫ of uǫ on [0, T ] × IRn. The
space-time Ginzburg-Landau energy is

Eǫ :=
1

2

[

|∇uǫ|2 + |uǫ
t|2

]

+
(1 − |uǫ|2)2

4ǫ2
,
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and in view of (6.7),

sup
ǫ

{ 1

ln(1/ǫ)

∫ T

0

∫

IRn

Eǫ dx dt } <∞.

Hence we may apply our compactness result to Jǫ, concluding that on a subsequence, de-
noted by ǫ again, it converges to a Radon measure J∗. Moreover

|J∗|([0, T ]× IRn) ≤ µ([0, T ] × IRn),

where µ is the weak∗ limit of the space-time energy. Then,

µ([0, T ]× IRn) =

∫ T

0

µt(IR
n) dt+ ν([0, T ]× IRn),

where ν is the weak∗ limit of

νǫ(dt× dx) :=
1

ln(1/ǫ)
|uǫ

t|2 dt× dx.

Let η and α be as in Step 1. By (6.5), and the properties of η,

d

dt
αǫ(t) = C αǫ(t) − 1

2 ln(1/ǫ)

∫

IRn

η(t, x) |uǫ
t|2 dx.

By the Gronwald’s inequality

αǫ(T ) ≤ αǫ(0) eCT − 1

2 ln(1/ǫ)

∫ T

0

∫

IRn

eC(T−t)η(t, x) |uǫ
t|2 dx dt

≤ αǫ(0) eCT − 1

2 ln(1/ǫ)

∫ T

0

∫

IRn

η(t, x) νǫ(dt× dx).

Since αǫ tends to zero as ǫ approaches to zero. In the limit we obtain

∫ T

0

∫

IRn

η ν = 0.

Hence, the support of ν is included in the graph Γ of {Γt}t∈[0,T ]:

Γ := { (t, x) ∈ [0, T ]× IRn | x ∈ Γt }.

Therefore,
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support J∗ ⊂ Γ.

Using Lemma 6.2, we conclude that

|J∗| = π Hn−1 Γ,

and consequently

|Jt| = π Hn−2 Γt, t ∈ [0, T ].

2

In the following lemma we assume J is a Radon measure of the form in Theorem 5.2. In
particular it satisfies (5.1):

∫

φ(x)J(dx) =

∫

M

φ(x) · ν(x)θ(x)Hm−2(dx) ∀φ ∈ C0(IRm; Λ2IRm).

Lemma 6.2 Let J be as above. Further assume that M ⊂ IRn be a codimension two, smooth
manifold with no boundary. Then, θ is constant on M .

Proof.

Let J̃ be the same as J but with θ ≡ 1, i.e.,

∫

φ(x)J̃(dx) =

∫

M

φ(x) · ν(x)Hm−2(dx) ∀φ ∈ C0(IRm; Λ2IRm).

Since M has no boundary and since M is smooth, we directly calculate that dJ̃ = 0. We
also know that dJ = 0. Using these two facts we calculate that

0 = d J = d [θ J̃ ] = θ d J̃ + d θ ∧ J̃
= d θ ∧ J̃ .

Hence

∇tanθ = 0, on M,

where ∇tan is the tangential derivative on M . Since M is connected, this implies that θ is
constant on M .
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