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Abstract. We survey several models of liquidity and liquidity related problems
such as optimal execution of a large order, hedging and super-hedging options for a
large trader, utility maximization in illiquid markets and price impact models with
price manipulation strategies.

1.1 What Is Illiquidity?

The study of liquidity in financial markets either invokes the ease with which
financial securities can be bought and sold, or addresses the ability to trade
without triggering important changes in asset prices. More specifically, one
can think of liquidity as an exogenous measure of the added costs per trans-
action associated to trading large quantities of the asset. This is the approach
advocated by Cetin et al. [9], in which an exogenously defined supply curve
gives the price per share as a function of transaction size. On the other hand,
one can take this idea a step further and recognize that these added costs are
the product of imbalances in the supply and demand of the asset due to the
trading of large quantities. If the imbalance is temporary and only affects the
current price paid, we are effectively in the previous setting and the transac-
tion costs depend mainly on the size of the trade. On the other hand, these
imbalances can have a lasting effect in such a way that future prices will be
affected by previous trades. For instance, Jarrow [21,22] considers the price
per share as a function of the holdings of the large trader. As we can see, these
two notions are closely related and one approach can be more convenient or
realistic than the other depending on the setting.
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There are four main themes present in the current mathematical literature
on liquidity. The first one pertains to the problem of optimal execution of large
orders. Consider the situation in which a trader plans to sell a large number
of units of a risky asset before a predetermined time horizon. Since the size
of the order is large, this trader may find it more optimal to work the order
in several smaller slices to minimize her impact on prices by trading during
times of higher liquidity and taking advantage of the resilience of the supply
and demand of the asset. On the other hand, delaying the orders for too long
increases the exposure to other risks. The goal is to find the right balance
between liquidity risk and other market risks. Many papers have been written
on this question and we survey some of the main results in Section 1.2.

The second theme we discuss in this survey relates to the familiar problem
of option pricing. On one hand, the existence of a supply curve that governs the
liquidity cost of a transaction clearly suggests that the hedging of derivatives
will be more costly that in the classical frictionless setting. On the other
hand, the hedger’s capacity to have an impact on prices may influence her
into manipulating prices in her favor. The classical hedging problem gains a
new level of complexity as the hedger’s strategy, which is chosen in terms of
the option payoff, has a repercussion on the future evolution of prices on which
the option payoff is calculated. The different approaches commonly used in
this setting are reviewed in Section 1.3 and 1.4. In Section 1.3 we review the
results on hedging for a large trader, including the papers of Cvitanic and
Ma [14], Platen, Schweizer [27], Bank and Baum [7] and Roch [28]. In Section
1.4 we introduce the supply curve model introduced in [9], discuss the super-
replication problem in this context and focus on the works of Cetin, Soner
and Touzi [11] and Gokay and Soner [18].

The third theme is related to the expected utility maximization problem
with permanent or temporary price impacts. We briefly summarize some of
the main results in this line of research in Section 1.5.

The introduction of price impacts on the evolution of the price processes
evokes the possibility of price manipulations, defined as trading strategies
with negative expected execution costs. For instance, by making the price
go up after a purchase, a large trader has the possibility of making higher
profits than average by re-selling the shares purchased if the average impact
on prices is smaller for sell orders than buy orders. This is only one example of
a price manipulation and it has lead some authors to investigate these types of
irregularities in terms of the price impact functions. It is the focus of Section
1.6.

1.2 Optimal Execution Problem
The optimal execution problem consists in allocating a large buy or sell order

of a risky asset over a fixed time horizon with the aim of minimizing the
expected cost of the order due to the relative illiquidity of the asset. The main
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challenge in this kind of allocation is to choose a trading program which is
executed on a period of time short enough to reduce the risk of the uncertainty
of future prices while dividing the large order in smaller ones distributed over
time to reduce the liquidity costs associated to this trading program.

There are mainly two approaches in the literature which we summarize
in this section. The first approach, proposed in the papers of Bertsimas and
Lo [8], Almgren [4], Almgren and Chriss [5,6], and Schied and Schéneborn [30],
measures the associated cost of a sequence of transactions in terms of a per-
manent price impact and/or a temporary price impact which are exogenously
determined and depend on the size of the transaction and the speed of change
of the position in the asset. On the other hand, the second approach presumes
the existence of a limit order book through which the orders of the large trader
are executed. In this setting, the cost of an execution strategy depends on en-
dogenous variables such as the density of the number of shares being offered
at each price and the resilience of the order book. The main references that we
will summarize for this approach are the papers of Obizhaeva and Wang [26],
Alfonsi, Fruth and Schied [1,2], and Alfonsi and Schied [3].

1.2.1 The First Approach

In the optimal execution problem, the investor wants to liquidate a certain
number Xy > 0 of units of an asset before a fixed finite time horizon T.
Dividing the trading period [0, 7] into N equal intervals of length 7 = T/N,
the investor chooses quantities & > 0 to sell at discrete times ¢t = k7 for
k=1,...,N such that Zszl &, = Xo. The number of units still held by the
investor at time ¢ is given by X = Xo — Zle &;- Note that the case Xy < 0
can be treated in a similar way.

Bertimas and Lo [8] approach this problem by minimizing expected execu-
tion costs, whereas Almgren [4], and Almgren and Chriss [5,6] extend this idea
by also incorporating the risk into the execution problem using the variance
of the associated costs.

Bertsimas and Lo [8] propose a general formulation for the price process
of the asset, of which two special cases stand out. One special case proposed
in [8] gives a stock price of the form

Sk =81 +e 7>0 (1.1)

in which {e}2_; is a sequence of independent and identically distributed ran-
dom variables with mean zero and variance o2, whereas &, is the size of the
transaction at time ¢;. The profit obtained from a strategy, also commonly
called the capture, is given by >_7_; &Sk(&k). The total cost of trading as-
sociated to a strategy X is defined as the difference between the book value

X0Sp and the capture, and is computed as

N
C(X) = X0S0 — Y _ &Sk

k=1
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In this setup, the goal is to minimize the expected execution cost

min F[C(X)]
{gk}lk\;l

subject to the constraint

N
> & =Xo.
k=1

The price impact due to the trade & is said to be permanent in (1.1) since
the price at time tj, is defined in terms of the price at time t;_; which is also
affected by the trade ;1 at time ¢;_;. For this special case there exists an
explicit optimal strategy. It is called the naive strategy and is obtained by
dividing the total order X, into N equal slices, i.e. & = %

Bertsimas and Lo [8] also consider a linear temporary price impact model.
In this setup the execution price Sy at time k, i.e. the price paid for the
transaction at time k, is decomposed into an exogenous unaffected price Sy
and a price impact as a function of the trade size. The unaffected price, also
called publicly-available price, can be interpreted as the price that would be
obtained in absence of price impacts. The execution price at time ¢ is a
function of & and assumed to be given by

Si(ér) = Sk — (€ +7Y3)Sk, 1> 0

in which Y is an adapted process. In the special case that the unaffected price
process { Sy}, follows

Sk = Sk—1 exp(ag),
and the state vector {Y;}_ | satisfies
Yie = pYie—1 + G,

in which {¢x}&_, and {a;}_, are i.i.d. normal random variables with mean
0, the authors show that the best execution strategy consists in trade sizes
which are linear functions of the remaining number of shares X and the state
variable Y.

The implicit assumption in the paper of Bertsimas and Lo [8] is that the
investor is not risk averse as she only aims to minimize the expected cost of the
execution. In the optimal execution model of Almgren [4], and Almgren and
Chriss [5,6], the investor’s tolerance for risk influences her trading decisions.
To illustrate this point, consider the two following execution strategies. On one
hand, a risk averse agent may choose to trade everything now. The advantage
of this strategy is that the cost is known and all risks regarding the future
prices of the asset are eliminated. On the other hand, the cost is high and
the investor may be willing to take some risk by dividing her orders and
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executing them through time in order to have a lower expected cost. Almgren
and Chriss characterize this trade-off between the cost and the variance of
optimal execution strategies by an efficient frontier. They show that the points
on the frontier are determined by the level of risk aversion of the agent. They
argue that the optimal strategies for the execution problem are static, i.e. these
decisions can be fully determined at the beginning of the trading period, and
give explicit solutions for some specific cases.

In addition to the above mathematical setup, we denote by v, = %" the
speed of trades on the k-th interval. In [5], the publicly-available price per
share S, is modeled as follows. Let {¢;}2_, be i.i.d. random variables with
zero mean and unit variance. We assume that

Sk:Skfl""o—\/’FCk_Tg(vk)a kzla"'va

where o > 0 is a volatility parameter and g : R — R is a permanent impact
function. The price per share paid by the investor at time k is

Sk(fk)_Skl—h<£k>, kzlaaN

T

in which A is a given function, called the temporary impact function. The
capture is computed as

N
C(X) = XoSo — nggk (€k)

k=1
N N N—-1
= ZTng(’Uk)+ZT’Ukh(Uk) 70’\/’7’2 Xka; (12)
k=1 k=1 k=1

with expected value and variance at time 0 given by

N N N
E(C(X)) = ZTng(Uk) + ZT’Ukh(Uk), Var(C(X)) = ZTUQX,z
k=1 k=1 k=1

when the strategy X is deterministic.

A strategy is called efficient if there is no strategy that has a lower expected
value for a level of variance which is equal or lower. The family of efficient
strategies is given by the solutions X*()\) of the optimization problem

min {E(C(X)) + AVar(C(X))}

for different values of A > 0. The family of solutions (X*(\))a>¢ is called the
efficient frontier. The parameter A measures the risk aversion of the investor.
Every point on the frontier corresponds to a pair

(Var(C(X™(N))), E(C(X™(N)))
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for some A. The efficient frontier gives rise to a smooth and convex function,
which we denote by £(V), assigning the optimal expected cost £(V) to each
possible value of the variance V, i.e. there exists A > 0 such that (V,E(V)) =
(Var(C(X* (), E(C(X*(M)-

In [6], the permanent impact function is taken to be linear, i.e. g(v) = yv
(with v > 0) and the temporary price impact function consists of the sum of
a fixed cost function and a linear impact function so that

h(v) =6 sign(v) +nv (v €R) (1.3)

for some positive constants 6,7 > 0. In this case, it is easy to see that the
expectation of the cost becomes

B(O(X)) = 59X3 + eZ ]+ 127 ka

Almgren and Chriss [6] show that the optimal solution for the case of ¢ linear
and h given by (1.3) can be written in terms of A > 0 as

. sinh(k(T —t;))
Xy = sinh(xT)

[ \o2
K~ ; +0(r), T—0.

If the agent is risk-neutral (A = 0), she only wants to minimize the expected
cost. Then her optimal strategy is the naive strategy & = % as we have seen
earlier. In this case, the expected cost and variance of this strategy are given
by

Xo, j=0,...,N,

in which

Ey:= 37X +eXo+ (n— 577’) =
o= BT (- ) (1 ).

The naive strategy corresponds to the minimal point of the efficient frontier,
¢ dE

in the sense that 55 evaluated at (Vj, Ey) is equal to zero. Thus for (V, E) in
the vicinity of (Vo, Ep),

, d2E

dv? ’

E—Fo~ ~(V—-)
2 V=V

in which d?&/ dV2|V:V0 is positive by the convexity of the efficient frontier.
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1.2.2 Continuous-Time Models

Let us now consider non-linear impact functions and analyze the continuous-
time limit of the previous model as 7 — 0. Let (£2,F, (F3)t>0, P) be a given
filtered probability space on which a Brownian motion W is defined. In the
continuous setup, the publicly-available price will be assumed to be given by

S, = oW, — /O g(X (1)t (1.4)

Here, X; is the derivative of X; with respect to ¢, it corresponds to v, in the
previous discrete setup. The proceeds associated to a trading strategy X and
an initial position of Xy in the risky asset and y in the riskless asset are given
by

T
Rr(X) = XoSo+y — / Xig(X¢)dt
0

T T
—/ Xth(Xt)dt—i—o/ X, dW,. (1.5)
0 0

The cost of the strategy X is defined as C(X) := X¢So + y — Rr(X). This
can be formally obtained as a limit of (1.2). The expectation and the variance
of the cost are given by

T . . . T
E(C(X)):/O X(t)g(Xy) + Xh(Xy)dt, Var(C(X)):/O o? XZdt

when X is deterministic. The problem then consists in finding a determin-
istic absolutely-continuous strategy (X¢)ic[o,r) that minimizes E(C(X)) +
AVar(C(X)) for a given risk-aversion level A.

To obtain explicit solutions to the above minimization problem, Almgren
[4] considers a linear permanent impact g(v) = yv and a temporary impact in
the form of a power law h(v) = nv* with k& > 0. For each trading horizon T,
there is an optimal strategy. Almgren finds that the optimal strategy which
takes the longest to execute can be expressed as

k+1

X (u’%%)ﬁ k41,
Xo exp (—%) ifk=1,

in which T, called the characteristic time, is given by
1/(k+1)
k—
I— (an) |

Ao?

For the linear case, k = 1, the characteristic time is independent of the
initial portfolio size Xy and corresponds to the amount of time needed for
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the portfolio position to decrease by a factor of e~ !. If k < 1, volatility risk
dominates the expected cost as the portfolio size increases and the speed of
trading decreases with time. When k > 1, the trading cost dominates volatility
risk.
When k < 1, the execution time is infinite, i.e. X; > 0 for all ¢t < co. On
the other hand, when k > 1, the trading stops after a finite time given by
T k+ 1T

PR

Next consider the same wealth equation as (1.5) with T' = oo, h(x) = Az

and g(x) = yx. This is the setup considered by Schied and Schéneborn [30].

The admissible portfolios (X;);>¢ considered are more general than in the
previous setups as they are assumed to satisfy the following conditions:

e X, is absolutely continuous and £(t) := — X (t),
XT = 07
¢ is progressively measurable with respect to the filtration (F;);>0 with

fot €2ds < oo for all t > 0,
X¢(w) is uniformly bounded in ¢t and w.

The class of admissible strategies starting with X units of the risky asset
and y shares in the riskless asset is denoted by X (Xp,r) in which r = XSy +
y — 3 X§. The goal is to maximize the expected utility of the capture Ry(X)
over the class of admissible strategies. Assume the utility function u is smooth
with risk aversion factor

U (T

b
—
=
=
Il
|
=

satisfying

0 < Apin = inf A(r) < sup A(r) := Apar < 00.
reR reR

We consider two different maximization problems. The first problem is given
by the following value function:

vi(z,7) = sup FEu(R(X))],
XeX(x,r)

where
ROO(X):r—I—U/ Xsst—/\/ des.
0 0

In the above equation we avoid the technical limiting argument and the asso-
ciated admissibility class. The second problem involves the value function

va(z,r) = sup lim F[u(R(X))],
XeX(x,r) ™
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where
t t .
Ry(X)=r+ 0/ X.dBg — /\/ X2ds.
0 0

It can be shown that v; and v, are equal and solve the Hamilton-Jacobi-
Bellman equation

1
—5023721)” + inf {)\UTCQ + va:c} =0, forz>0,7r€R (1.6)

together with the boundary condition
v(0,r) =u(r), reR.

The unique optimal control Xt* is Markovian and is given in feedback form
by

X} = (X7, Re(X7)) (1.7)

1}1,(7},7")
T 22 (z,r) "

To prove the above statements, the authors show that there exists a suf-
ficiently smooth solution & : (y,7) € Rf x R — &(y,r) € R of the partial

differential equation

in which ¢(z,r) =

2
6y - —§>\667« + Eérr

&(0,r) = @.

Moreover, the solution satisfies

O'QAmin - U2Amaw
< < A\ — v .

Also, there exists a sufficiently smooth solution @ : Rf x R — R of the
transport equation

with initial value

Wy = —ACW,
with initial value
w(0,7r) = u(r).

Then the function w(z,r) := @(z2,r) solves the HJB equation (1.6) and the
unique minimum is attained at
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2 ).

c(xz,r) = ¢é(x
A verification argument concludes that the solution of the HJB equation (1.6)
must be equal to the value functions v; and vs and the unique optimal control

satisfies (1.7) in which c(z,r) = —% Then in view of (1.7) the asset

position Xf at time ¢ under the optimal control ét is given as

N t . N
X5 = Xgexp (—/ é ((X§)2,R§) ds)
0

and because of (1.8) it is bounded as follows:

/ U2Amaz 3 / UQAmin
X() exXp <_t 2)\> S th S X(] exp <—t 2A> .

In the case with constant absolute risk aversion A = A,;n = Amas, the
optimal adaptive liquidation strategy is static and is given by

g [o2A
th = XO exp <_t 2A> .

Since the absolute risk aversion of the utility function determines the initial
condition of the partial differential equation for ¢, it is a key factor for the opti-
mal trading strategy. In particular, the optimal strategy inherits monotonicity
properties of the absolute risk aversion. Let u® and u! be two utility functions
with corresponding absolute risk aversion A°(r) and A'(r). If Al(r) > A°%(r)
for all 7, then an investor with utility function ' liquidates the same portfolio
X faster than an investor with utility function u°. More precisely, we get

' > and ftl > f? P —as.,

where ¢ and £ are obtained from the utility function u’ with i € {0,1}. As
a corollary, it follows that c(x,r) is increasing (decreasing) in r for all values
of = if and only if the absolute risk aversion parameter A(r) is increasing
(decreasing) in r. Therefore, an investor with increasing absolute risk aversion
A(r) would sell faster when prices rise, since an increase in prices lead to an
increase in r. In this case, the investor is called aggressive in-the-money. On
the other hand, an investor having a decreasing absolute risk aversion A(r) is
passive in-the-money, i.e. she would sell slower when prices increase.

1.2.3 Models of Limit Order Books

We now analyze the limit order book (LOB) models and focus on the papers
by Obizhaeva and Wang [26], and Alfonsi, Fruth and Schied [1,2]. As before,
we take the point of view of a large trader who needs to liquidate a certain
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fixed number of units of a risky asset. In limit order books, as opposed to
modeling the price process directly, one models the dynamics of supply and
demand for the asset in the market and its impact on the execution cost. Then
the supply and demand levels determine the magnitude of price impacts.

A limit order is an order to sell or buy a certain number of shares of an
asset at a specified price. The limit order book consists of the collection of
all sell and buy limit orders. A market order is an order to buy or sell a
certain number of shares at the most favorable price available in the limit
order book. The lowest specified price in the LOB for a sell order is called
the best ask price, whereas the highest price of a buy order in the LOB is
the best bid price. A market order to buy (resp. sell) is executed against
the limit orders to sell (resp. buy). In LOB models, the dynamics of the
LOB is assumed to only be affected by noise traders when the large trader is
inactive, and their actions determine the unaffected best ask price AY and the
unaffected bid price BY. The processes A° = (A4?);>0 and B = (BY?);>¢ are
adapted, exogenously defined stochastic processes on the filtered probability
space (£2,F, (Fi)i>0, P). Clearly, a natural condition to impose on these two
processes is AY > BY for all t > 0. We denote the density of the LOB at the
price A? + x (vesp. BY + ) by f(x) for z > 0 (resp. z < 0), i.e. the number
of shares offered at the price AY + x (resp. BY + ) is given by f(z)dz. It is
assumed that f : R — (0,00) is a bounded continuous function, called the
shape function of the LOB. The large trader makes buy and sell orders, thereby
temporarily depleting parts of the LOB. We denote by F' the antiderivative
of f, i.e.

F@AH@M

The actual best ask price at time ¢, denoted by A;, takes into account the
price impacts of the previous market orders of the large trader. The positive
difference between the actual and the unaffected best ask prices D{* = A; — A?
is called the extra spread. A buy order of size £ > 0 at time ¢ consumes all
shares in the LOB from the actual best ask price A; to

A = A+ DPE) - DY,
where D{(€) is determined by the relation
D ()
[, twa=c
D

The process D4 specifies the market impact of orders on the best ask price.
For a general shape function f, the market impact D{*(¢) — D{* is non-linear.
However, if we assume a block shaped LOB, i.e. an LOB in which the shape
function is equal to a constant ¢ above the actual best ask price, then the
market impact Di'(¢) — D{* is linear and equal to £/q.
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We now describe the admissible trading strategies for the large trader.
Assume the trader wants to buy « > 0 shares in N 4 1 trades within the time
interval [0, T]. The trading strategies considered by Alfonsi and Schied [3] are
simple strategies of the form

N
Xe=&+ Y &alpzr,y (0<t<T),
n=1

where 79, ...,Tx are stopping times satisfying 0 = 7p < 73 < --- < 7y and
every &, is bounded below and measurable with respect to 7, . The quantity
&, represents the size of the market order placed at time 7,,. We denote this set
of admissible strategies by Xn. In [1,2], the admissible strategies considered
are special cases of the above setup, i.e. the trading times are not stopping
times, but they are predetermined. For convenience, we denote by X,” =
&o + Zil Enl{i>r, ¢.>0} the cumulative buy orders, and X;” = X; — X" the
cumulative sell orders.

It is assumed that the market impact decays with time as the result of
new sell orders coming in the order book. This phenomenon is known as the
resilience of the LOB. In [2,3] there are two different approaches to model
resilience. Either the volume of the order book consumed by the large trader,
denoted at time ¢ by Ef}, is assumed to recover exponentially or the extra
spread D{! decays exponentially. The assumption regarding resilience is stated
as follows: there is a deterministic rate process (p;)¢>0 such that either

dEA = —p EAdt + dX;-
or
dD{ = —p;D{*dt + D AX,F)

In the specific case of a block-shaped LOB, it can be shown that
1 —[* sds
DiA = gze anP §n1{7—ngt7£n>0}' (19)

It is easy to see that these two approaches of resilience coincide for block-
shaped LOBs. The dynamics of the bid side of the LOB are modeled iden-
tically. As before, the density of the number of shares offered at the price
BY + x for z < 0 are given by the shape function f. The extra spread DF is
the difference between the actual best bid price and the best unaffected bid
price DP = B; — BY, which is non-positive. A sell order of size £ < 0 will
move the actual best bid price to

Bt+:Bf+DtB($)7DtB7

where DP(¢) is defined as before



1 Liquidity Models in Continuous and Discrete Time 13

D7 (€)
&= f(x)dx.
Dy
As before, the resilience is either modeled in terms of the volume consumed
by the large trader or the extra spread as follows:

dEP = —p,EBdt +dX;, or
dDP = —p;DEdt + DP (AX,)

The difference A; — B; between the best ask and the best bid price is called
the bid-ask spread.

A buy order of size £ > 0 at time ¢ consumes the f(z)dz available shares
at price A + x, where z ranges from D{* to D{(¢). The cost associated to
this transaction is given by

D (6) D (&)
m(€) = / (Ag + ) f(x)dx = A?f + / xf(x)dx.
Dp DA
Similarly for a sell order £ < 0 we have
DP(€) DF(€)
n©= [ B of@d =B [ @
Dp Df

The expected cost C(X) of an admissible strategy X can then be obtained by

N
Z T, (gn)] .
n=0

The goal is then to minimize C(X) among all admissible strategies X. Note
that, in contrast with the works of Almgren [4] and Almgren and Chriss [5,6],
intermediate sell orders (resp. buy orders) are allowed for execution orders of
x > 0 (resp. x < 0) shares.

In [3], it is established that minimizing C(X) over the set of admissible
strategies X' is equivalent, under some assumptions on the density function
f, to minimizing C(X) under the constraint that the trading times sequence
(10,71, --.,Ts) is given by the time spacing 7* = ({§,t5,...,t5) defined by

t: 1 T
pstZ—/ psds, 1=1,... N.
/tf N Jo

i—1

C(X)=E

The unique optimal strategy for the first model of resilience is given by

==& =& —a),

in which
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. 1 /T p
a*=exp| ——= S
P N/ Ps

—1(ex\ _ o x =1k ex
Flz—N&g—a*)) = F (fo)lili (a fo).

and &; solves

The last order &3 is determined so that
v =Xo =& — (N =11 —a”)&.

When f is constant,
x

SEmoDara) T

In the asymptotic limit, i.e. as N — oo, of the block-shaped LOB, the optimal
execution strategy is a combination of discrete and continuous trades when
the resilience factor p is constant. The initial and final trades are discrete,
whereas the intermediate ones are continuous. The optimal strategy is given
by

X 4
pT+2" dt

v« PX
& = :

6():§T: _pT+2'

Note that in the LOB price impact model described above the impact
of a trade is not permanent: the extra spread decays with time. Alfonsi et
al. [1] and Obizhaeva and Wang [26] include an additional permanent impact
factor in the block-shaped LOB model. More specifically, they let the density
function f = ¢ € R and assume the extra spread D* caused by a strategy X
satisfies

t
Dt =7 &nl{r,<tg,>0p + R Y exp <_ / pst> Enlir.<te,>0p

in which 0 < v < 1/q is the permanent effect factor and k = 1/q — v is
the proportion of the market impact that decays with time. Similar dynamics
holds for sell orders. Comparing this to (1.9), we see that a proportion ﬁ
of the consumed volume by the large trader does not recover in the long run.
It turns out that the minimization problem with permanent impact has the
same optimal trading strategy as the minimization problem with v = 0.

In [1], Alfonsi et al. consider this problem under convex constraints and
obtain closed-form solutions. The set of strategies considered is smaller how-
ever than Xy as trading is only permitted on a pre-determined time grid
to,t1,...,tn. The aim is to reduce the constrained optimization problem to
the minimization of a positive definite quadratic form on a convex subset of
Euclidean space. As a special case, they obtain closed-form solutions for the
unconstrained problem.
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1.3 Option Hedging for Large Traders

In this section we survey the large trader models for hedging options. The
trades of the large trader are assumed to have an impact on the prices so
that she has to take this effect into account when considering hedging op-
tions. There are various approaches to incorporate the trading decisions of
the large trader into the price process of the underlying. Jarrow [21,22] con-
siders the price process expressed in terms of reaction functions of the holdings
of the large trader. This turns out to be a generalization of Huberman and
Stanzl’s model for price manipulation. In [14] and [13], the coefficients of the
price process depend exogenously on the large trader’s portfolio. Platen and
Schweizer [27], Frey and Stremme [16], and Sircar and Papanicolau [31] use
an equilibrium approach to derive the reaction function for the price process.
Frey [15] assumes that this reaction function describing the price process as
a function of the holdings of the large trader is exogenously given. Bank and
Baum [7] model the price process of the risky asset in terms of a smooth fam-
ily of semimartingales (5%),cr, where S* describes the evolution of the stock
price process for constant z, which represents the size of the large trader’s
holdings. Roch [28] considers a setup similar to the limit order book mod-
els described above in which the parameter of the linear permanent impact
function is given by a stochastic process.

Throughout the remaining sections, we work with a filtered probability space
(2, F,F,P), which supports a standard Brownian motion (W;)o<¢<7. We also
fix a finite time horizon T" > 0. Unless otherwise specified, there is one risky
asset and one riskless asset in the market. We normally think of the risky
asset as a stock and the riskless asset as a money market account. The money
market account is taken to be a numéraire so that its price is normalized to
unity. The discounted price of the stock process at time ¢ is denoted by S;.
There are two types of traders in the economy, one large trader and reference
traders. The large trader can be a speculator, a program trader or a portfolio
insurer. The reference traders are typically noise traders or arbitrage-based
speculators. Let X; be the number of money market units, Y; the book value
of the stock position and Z; be the number of stocks the large trader holds at
time t. The processes X, Y and Z are assumed to be adapted to the filtration
F.

In classical settings based on the Black-Scholes model, the stock price
process S; is modeled as a solution of a linear stochastic differential equation
(SDE). The drift and volatility coefficients of the SDE are not influenced by
the agents portfolio and wealth processes. This is based on the assumption
that agents are price takers in this framework. Cvitanic and Ma [14] model
the price process of the underlying asset by a SDE taking into account that
large trader’s decisions have a price impact. In particular, they assume that
the drift and volatility coefficients depend on the large trader’s portfolio and
wealth process. The authors consider a market with d risky assets (stocks)
and one riskless asset (money market account). Let S be the price process of
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the money market account, S} be the price process of the ith stock. Then the
dynamics of these processes are given as

dSY = SPr(t,Y;, Zy)dt, 0 <t <T, S§=1,
d
S} = bi(t, S0, Yy, Zy)dt + Y 0ij(t, S, Ya, Z)dWY, 0 <t < T, Sf =s; >0,
j=1

det = l;(t, St7)/tb7 Zt)dt + 5—(t, Stynv Zt)thv 0 S t S T; K) =y> 07

where

d

b(t,s,y,z) ( Z&%) r(t,y, z +Zzz (t,s,9,2),

=1

i(t, sy, 2) Zzlawtsy, z) j=1,...,d.

Under additional assumptions on the coeflicients of the above SDE’s; the
authors show that the replication of European options with payoff in the form
g(ST) has a solution. The method is based on forward-backward stochastic
differential equations and the well-known 4-step scheme of Ma et al. [25].

Platen and Schweizer [27], Frey and Stremme [16], Frey [15] and Sircar and
Papanicolau [31] do not model the price process explicitly as in [13] and [14].
However, they follow a microeconomic equilibrium approach to understand
the feedback effects from hedging strategies. As before, there are two types of
investors in the market, a large trader and reference traders. The aggregate
demand of the reference trader at time ¢ is given by D(t, F}, Sy), where F =
(Ft)o<t<r is the fundamental state process and Sy is the price for stock. The
fundamental state process can represent various things, for instance noise or
misspecifications in the model, demand for liquidity or aggregated income
of the reference trader. Supposing that at time ¢ the large trader possesses a
fraction oy of the total supply of the stock, then the market clearing condition
states that

D(t,Ft,St) + ay = 1.

Under some assumptions it can be shown that there is a unique solution for
Sy in terms of ¢, oy and Fy, i.e. we can express Sy = (¢, Fy, ). The function
1 is called the reaction function.

Frey and Stremme [16] investigate the impact of dynamic hedging on the
price process in a general discrete time economy with the equilibrium model.
They pass to the diffusion limit and investigate the continuous-time equi-
librium price process and its volatility. The price process is still represented
by an Ito process, but the volatility increases and becomes time and price
dependent.
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Sircar and Papanicolau [31] analyze the increases in market volatility of
asset prices. Many investors use Black-Scholes trading strategies to hedge
derivatives. The use of these hedging strategies is so extensive that they have
an impact on the price of the asset, which in turn influences the price of
the derivative. In their framework, there is an interaction between reference
traders and large traders who follow a dynamic Black-Scholes hedging strat-
egy. Following an equilibrium analysis, they derive a stochastic process for the
price of the asset that depends on the hedging strategy of the large trader.
Then they derive a nonlinear partial differential equation for the derivative
price and the hedging strategy. They observe that the increase in volatility
can be attributed to the feedback effect of Black-Scholes hedging strategies.

Platen and Schweizer [27] aim to study the implied volatility structure in
the above reaction setup. In other words, instead of taking an exogenously
given price process, they develop a diffusion model for stock prices that incor-
porates the technical demand induced by the hedgers. The diffusion model is
endogenously determined by the trading decisions in the economy. With their
modeling, they can explain volatility smiles and skews as a result of feedback
effects from hedging derivatives. They consider the following specification of
the demand function:

D(t, Fy, Sy) = Fy + ~(log(S¢) — log(So))

where F; = vW; 4+ mt is a random error term and ~ > 0 represents how
reference traders react to changes in logarithmic stock prices. The last term
can be interpreted as the demand created by trading decisions of hedging
options. The option hedgers work under the assumption that the stock price
S is given by a geometric Brownian motion with constant drift po and
volatility g to hedge a given number of call options with different maturities
and strikes. This determines the term «; in the market clearing equation.
T%u;,n the market equilibrium condition determines the resulting price process
Stl by

st = s (a(sg”)th + u(St(l))dt) :

where
") = T e oa()
ws) = %U(S) * %”2(5) + %03(3)

and the term £(log(s)) represents the hedging demand created in the market.
Observe that we started with a model St(o) for stock price process and derived

another model St(l) by equilibrium approach that incorporates the hedging
decisions of the large trader. However, the sophisticated large traders could
also use the model St(l) to hedge derivatives so that we would obtain another
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model St(Q) in equilibrium. In general, one can start from S*) and use this
to compute option values and hedging strategies. The equilibrium argument
will yield a new model S+, In the end, one wonders if there exists a fixed
point S(°°) of this transformation. Such a model S(>) would be used by the
hedgers to compute their hedging strategy and would also be the one obtained
in equilibrium.

Frey [15] takes the reaction function S; = ¥(t, F}, ay) as given. He consid-
ers replicating the payoff of certain non-path dependent derivatives. In this
continuous-time setup, there is a nonlinear partial differential equation for the
hedge of the option replication problem. In particular, these hedging strategies
take the feedback effect of their implementation on the price process into ac-
count. Therefore, Frey argues that the existence of these hedging strategies for
certain payoffs corresponds to the fixed point of the volatility transformation
introduced in [27].

Bank and Baum [7] assume that there exists a smooth family of semi-
martingales S* for z € R that specify the price process of the risky asset
when the large trader’s holdings are kept at a constant size z. For fixed z, the
semimartingale S* can be interpreted as the fluctuations of the asset prices
when the large trader is not active in the market. If the large trader follows a
semimartingale strategy (Z;)o<i<7, then the asset price obtained is given by

S, = 87 =: 8(Zy,1).

The self-financing portfolio strategies are characterized by
t
Xt = XO_ - / S(Zs_7s)dZS - [S(Zv ')7Z]t~
0

Bank and Baum assume that asset prices are non-decreasing with respect to
the position of the large trader, i.e. for z < 2z’ we have S* < 5% In an illiquid
market, there are many possible ways to value the large trader’s portfolio. One
can consider the book value Y; of the portfolio evaluated at current prices,

Yi = Xi + S(Zi,t) Zy,
or the real wealth achieved by the trading strategy Z until time ¢ given by
‘/t = Xt + L(Ztvt)v

where
L(z,t):/ S(x,t)dx.
0

The term L(z,t) represents the liquidation value of z shares by splitting the
order into infinitesimally small packages and selling them over an infinites-
imally small time period. By the It6-Wentzell formula for smooth family of
semimartingales, the real wealth process has the dynamics
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t 1/t
Vi=Vo + [ LZesds) — 5 [ Sz sz
0 0

Zs
- Z ; {8(Zs,s) — S(x,s)}du.

0<s<t s~

The term fot L(Z,-,ds) represents the profit or loss coming from price fluc-

c

tuations caused by exogenous random shocks. The term %fot S'(Zs-,s)d[Z]¢

gives the transaction costs due to continuous trading and

Zs

Z {8(Zs,s) — S(z,s)} dz

sums up the transaction costs due to discrete block orders. These two transac-
tion terms disappear if one follows trading strategies that are continuous and
of bounded variation. As in [21,22], Bank and Baum investigate the possibility
of arbitrage opportunities for the large trader. On one hand, the large trader
has the power to influence the market prices, on the other hand, her trad-
ing incurs transaction costs, i.e. her orders affect the stock price before they
are exercised. If there exists a measure P* ~ P which is a local martingale
measure for all the processes PY simultaneously, then there are no arbitrage
opportunities for the investor.

A natural problem in this setting is to describe the set of payoffs the large
trader can attain with continuous strategies of bounded variation. To answer
this question, Bank and Baum introduce two definitions. A contingent claim
H € LO(Fr) is attainable modulo transaction costs for initial capital v if

T
H:v+/ L(Zs,ds)
0

almost surely for some L-integrable predictable process Z such that fo L(Zs,ds)
is uniformly bounded from below. The claim H is approximately attainable for
initial capital v if for any € > 0, there exists a self-financing strategy Z¢ such
that [ L(Z¢,ds) is uniformly bounded from below, and

|H—Vp| <e

holds P almost surely, in which V7 is the real wealth process associated to
strategy Z¢. To this end, the authors establish an approximation scheme for
stochastic integrals. Let ¢ > 0. If Z is an L-integrable, predictable process
with Zy € LY(Fy) and Zr € L°(Fr-), then there exists a predictable process
Z¢ with continuous paths of bounded variation such that Z§ = Zy, Z% = Zr
and

sup <e P-—a.s.

0<t<T

/OtL(ZS,ds) - /OtL(Zg,ds)
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From this, it is easy to see that any contingent claim H € L°(F7) which
is attainable modulo transaction costs is approximately attainable with the
same initial capital. Furthermore, under some further assumptions the at-
tainable claims in a suitable small investor model become approximately
attainable for the large trader. Moreover, the authors show that to com-
pute the superreplication cost of a claim H(w, Zr(w)) € Fr- @ B(R) one
first determines the terminal position Z7 which minimizes the payoff, i.e.
Z5(w) = argmingerH(w, z), and then compute the small investor super-
replication price of the claim H(w, Z}(w)).

Roch [28] extends the linear version of the liquidity risk model of Cetin et
al. [9] to allow for price impacts. The author considers the hedging problem
faced by a large trader who makes market order through a limit order book
with stochastic density. More specifically, it is assumed that the limit order
book has a constant density at time ¢ given by %Mt, in which M is an adapted
stochastic process. Liquidity becomes a risk factor when the magnitude of the
impact of these phenomena changes randomly over time. We denote by S the
observed marginal price process, i.e. S; is the price per share for an infinites-
imal order size at time ¢. By the constant density property of the LOB, it is
clear that a transaction of size AZ; at time ¢ has a cost of AZ,(S;+AM;AZ,).
The model proposed in [28] is based on a well-documented feature of asset
prices that volatility is high when liquidity is low, and low when liquidity is
high. Since M is a measure of illiquidity, we can expect the instantaneous
variance of the log-returns of the stock price to be in part correlated with
M. Consequently, we let F' denote the unaffected marginal price process. It
is the equilibrium (or fundamental) price process observed in absence of large
traders. It is defined by the following stochastic volatility model:

dFt == EtFtdWI,ta

in which W7 is the first component of the three-dimensional Brownian motion
W, and Y is the stochastic volatility. We are working directly under a risk
neutral measure Q for unaffected prices, hence F' has no drift term. We model
M and X as follows. Define V" and U as the solutions of

dUt = ’V(Ut + T])dt + ¢(Ut)dW2,t,
AVi = a(V; + a)dt + O(V;)dWs,,

in which W = (W) +),<3.+<7 is a three dimensional Brownian motion, and
a,v,m,a € R. We define X2 = U; +V; and let M = eI'(U), in which I is
strictly increasing and twice continuously differentiable. ¢ and @ are given
real-valued functions. We are using a three dimensional Brownian motion
since there are three different sources of risk in this model, namely the stock
price, the liquidity level and the volatility, which is, in practice, only partially
dependent on the level of liquidity.

The specification of the process S is similar to the one of the LOB mod-
els described above. Indeed, it is assumed that the observed marginal price
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process S is obtained from the unaffected process F' by directly adding the
impact of the large trader as follows:

t t
Spy = F, + 2)\/ M,_dZ, + 2)\/ dM,Z), (t<T)
0 0

for a semimartingale trading strategy Z. Siy denotes the observed price after
the trade at time ¢. A is a resilience parameter, and should be taken between
0 and 1. It measures the proportion buy (resp. sell) limit orders versus sell
(resp. buy) limit orders that come in to fill up the LOB after a market order
to buy (resp. sell).

It can be shown that the money market account position X and the posi-
tion Z in the stock satisfy the following identity:

T
Xi+ Zo(SPy — AMZy) = Xyg— + Ziy—(Sp, — MMy Zyy ) + / Zy_dS,
t
T T ’
- A/ Z2 dM, — | (1 —=NM,d[Z,Z],. (1.10)

t() 7:0

One can think of ¥; + z(S? — AM;z) as the liquidation value of a portfolio
with « shares at time ¢. Similar to the infinitely-liquid case (M = 0), (1.10)
states that the difference in the liquidation values between time ¢y and t is
equal the cumulative gains in the risky asset ftfo X.—dS,, except that in this
case there are added costs coming from the finite liquidity of the asset. First
note that if A = 0 we get a linear version of the CJP model. The integral with
respect to M is related to the impact of trading. If A = 0, the limit order
book is automatically refilled after a market order, as in the CJP model.
At the other extreme, when A = 1 the impact of trading is at its fullest. It
is interesting to notice that whatever the trading strategy used an investor
always has a partial benefit from the asset becoming more liquid. Indeed, when
M; decreases, the associated integral is positive no matter what the sign of X,
is. To understand this, it is important to remember that the hedger’s trades
have a permanent impact on the quoted price which is proportional to the level
of liquidity. If the liquidity is low when he purchases a share and high when
she sells it, the price goes up higher after her purchase then it comes down
after the sale. As a result, the hedger has a partial gain from this trade. This
is a typical characteristic of large trader models. Note that unless the hedger
uses a trading strategy with zero quadratic variation this is only a partial
benefit because there is always a liquidity cost associated to her trades.

Equation (1.10) allows us to obtain a sufficient condition to rule out arbi-
trage opportunities in this setting. Indeed, Roch [28] shows that the existence
of an equivalent measure Q under which the unaffected price process F' is a lo-
cal martingale and M is a local submartingale suffices to exclude the existence
of arbitrage opportunities. For a precise statement, we refer the reader to Def-
inition 2.5 and Theorem 2.6 of [28]. The advantage of this result is that it is
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stated in terms of the exogenously defined processes F' and M. Note that in the
terminology of Section 1.2 the impact of the hedger’s trade in the above model
is linear, i.e. a trade of size AZ; at time ¢ is in the form ¢;(AZ;) = 2AM, AZ,.
The case of M; constant corresponds to the linear permanent impact models
of Huberman and Stanzl [20], Almgren and Chriss [5] and others. In this case
M clearly is a local submartingale under any risk-neutral measure for S. In
this sense, the no arbitrage condition in [28] extends the results of Huberman
and Stanzl [20] in the case of a stochastic linear permanent impact function.

We now turn to the replication problem. The relation between liquidity
and volatility risk is a key observation which enables us to hedge derivatives.
Indeed, we will see that one can hedge against the liquidity risk by trading
variance swaps. Since volatility is one of the most correlated quantities to
liquidity risk, this is a very natural choice. We thus consider contingent claims
denoted by G; (i = 1,2) for which the payoff at time T; > T (11 # T») equals
the difference between the realized variance over the time interval [0, 7T;] and
a strike K, i.e.,

T;

Gi7T1i = / E?ds - Ki
0
T,

:/ Uy + Va)ds — K.
0

To rule out arbitrage opportunities, we assume the unaffected price processes
G' are Q-martingales (i = 1,2).

Let h be the payoff function of a European option with maturity 7". Sup-
pose h is a Lipschitz function. For x € R, define ,§1$, = Fp—2\ fOT & Zy_dM,

in which Z is the solution of the replication problem in the case A =0, € =0
and z = 1. It can be shown that S% is an approximation of the observed price
process S obtained when the large trader hedges the option with payoff h.
Jarrow [22] used a similar approach and interpreted Zt as the market’s per-
ception of the option’s “delta” Z;. The main result of the paper states that
xh(S%) can be approximately replicated in L? for all z € R in the sense that
there exists a sequence of trading strategies Z" for which the terminal wealth
X7 after liquidation converges to xh(SZ) in L?.

Due to the non-additivity of liquidity costs, it is clear that the replicating
cost of z units of the option h is not x times the replicating price of one
unit. Let H}'(x) denotes the approximate-replication cost per unit of  units
of h, then H{*(0) = E(h(S7)|F:) and H;*(x) is a.s. differentiable at z = 0.
Furthermore, it can be shown that

ft>

_E (h’(ST) < / ' stMs> ]ﬂ)

n—oo dx

T
lim dth”(O) =\E (/ (M) Z2ds
t
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when h is differentiable everywhere except at a finite number of points.

Jarrow et al. [23] have used ideas from the above setup to construct a
liquidity based model for financial bubbles which explains both bubble for-
mation and bubble bursting. In contrast with the classical approach to bubbles
based on local martingales, the authors define the asset’s fundamental price
process exogenously and asset price bubbles are endogenously determined by
market trading activity. More specifically, they assume that the stock price is
governed by the following dynamic:

t
S, =F, + 2/ AyM,_dZ, (t<T)
0

in which F' is the fundamental price process, A is a process version of the
resilience parameter \ in [28] and Z represents the signed volume of aggregate
market orders (volume of market buy orders minus volume of market sell
orders). The bubble at time ¢ is then defined by S; — F}, the difference between
the market price of the stock and its fundamental value. In their model, the
impact of trading activity on the fundamental price process - derived in terms
of a liquidity risk process M, the resilience process A and the market orders
- is what generates price bubbles. They study conditions under which asset
price bubbles are consistent with no arbitrage opportunities.

1.4 Supply Curve Models

Cetin, Jarrow and Protter [9] model illiquidity with a supply curve model.
This supply curve incorporates the temporary impact of the trade size into
the price of the security. Assume that the marginal price process S is given.
Then the price deviation at time ¢t from S; is determined by the supply curve
in terms of the size of the trade. We denote the price per share for a trade of
v shares at time ¢ by S(¢, S, v). For instance, for a supply curve of the form

S(t, St,v) = Spexp (Av) (1.11)

a trade of size v would deviate from the marginal price process by a factor of
exp(Av). Since A measures the price impact, it is called the liquidity parameter
of the market. A = 0 corresponds to a infinitely liquid market. Investors
are price-takers with respect to the curve and their trading decisions affect
the price only instantaneously, hence they have no lasting impact. Therefore,
the Cetin-Jarrow-Protter model (henceforth called CJP model) belongs to a
temporary price impact setting. An order of size v > 0 is a buy and v < 0 is
a sell. S(t, S, 0) is equal to the marginal price S;. Apart from measurability
and smoothness assumptions, we assume S(t, Sy, V) is non-decreasing in v for
v > 0 and non-increasing for v < 0. It is also non-negative.

Consider a finite horizon economy with 7" > 0. Take a filtered probabil-
ity space (12, F,F,P) satisfying the usual conditions. We let (W;)o<i<r be
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a standard Brownian motion with respect to the filtration F = (F;)o<i<7-
Assume there are two assets in the economy, one risk-free asset and one risky
asset. We consider a money market account as the risk-free asset and normal-
ize its price to unity. The risky asset is by convention a stock and the price
per share of stock is S(¢, S¢,v) with the marginal price process S;. Let X;
and Z; represent the holdings of the trader at time ¢ in the money market
account and in the stock respectively. There are various ways to value the
wealth process of the investor. One way is to look at the block liquidation
value

X+ ZiS(t, Sy, — Z4).
Another way is to consider the book or paper value of the portfolio
Yz-g = Xt + ZtSt

evaluated at the marginal process S. It is shown in [33] that this value Y;
also corresponds to infinitesimal liquidation value. In the remainder of the
section we focus on the book value Y; and specify its dynamics. It is natural
to define the self-financing condition for simple strategies of the form Z; =
Eﬁil AZr 1>7,3 with a sequence of stopping times 0 = 70 < 71 < -+ <
T~ =T by

Xy =Xr, = AZr S (Thg1s Srppa AZr ) (1.12)

Th+1 Th1)

where AZ,, ., = (Z+,., — Z~,). Then the dynamics of the book value Y for

simple strategies is described as

YTk+1 = YTk + ZTk (STk+1 - STk)

- AZp 0 [S (Tht1, Srey 10 AZr ) — Sryy] - (113)

Formally, for general semimartingale strategies Z, one can pass to the limit
as N — oo to obtain the dynamics

t
Y=y + / Zy-dSy — Y AZy[S(u,Su, AZy) — Su] (1.14)
0 0<u<t
" o8

— ; a(u, Sy, 0)d[Z, Z], (1.15)

for 0 <t < T. The term fot Z,—dS, represents the capital gains and losses.
The other terms in the above equation appear because of liquidity effects, the
first one is a result of block orders and the second one of continuous trading.
These liquidity costs can be eliminated by using continuous strategies of finite
variation. Furthermore, Cetin et al. [9] prove that for any appropriately inte-
grable predictable process Z, there exists a sequence {Z"},,>o of predictable
continuous strategies of finite variation such that
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T T
/ ZndS, — / Z,dS, in L2
0 0

This approximation also follows from the Bank and Baum [7] result as well.

Cetin et al. find sufficient conditions to rule out arbitrage in the CJP
model. They generalize the first fundamental theorem of asset pricing to their
setting. They show that there is no free lunch with vanishing risk in their
framework if and only if there exists an equivalent local martingale measure
for the marginal price process S;. They also establish that if there exists an
equivalent local martingale measure Q for the marginal price process S, then
any appropriately integrable claim C' can be attained in the L? sense. Then
the above approximation result shows that all liquidity costs can be avoided
in this setting and the value of the claim is the classical one given by EQ[C].

The previous result is sometimes seen as a shortcoming of the CJP model.
As a response, Rogers and Singh consider a temporary price impact model
in [29] in which the liquidity cost cannot be avoided by the use of contin-
uous strategies of finite variation. In their setup, the admissible portfolio
processes Z = (Z;)o<i<r are taken to be absolutely continuous with den-
sity 7 = (Zt)ogth- The cost of liquidity enters into their wealth dynamics
Y = (Y})o<i<7 as a penalization of the speed of trading like in the framework
of Almgren and Chriss [6]:

dY; = Z,dS; — Syl(Zy)dt.

They take S; as a geometric Brownian motion with zero drift and [ a convex,
non-negative function with /(0) = 0. In [7] and [9], all transaction costs due to
illiquidity can be eliminated by using continuous strategies of finite variation.
However, in the setup of Rogers and Singh [29], the use of these strategies
induces a liquidity cost. Assume that an investor holds Zy; number of shares,
z units of money market account and she wants to replicate a European
contingent claim with payoff g(St). Since the Black-Scholes hedge (¢, S¢) of a
European contingent claim is of infinite variation, it will incur infinite liquidity
costs. As a result the authors propose to minimize the mean squared hedging
error and the associated liquidity costs incurred over portfolio processes Z =
(Zt)o<i<r

2

1 T
§E (m + ZpSo + / ZydSy — g(ST)> + FE
0

/0 ' Syl (Zt) dt

They solve the Hamilton-Jacobi-Bellman equation for the associated optimal
control problem in almost closed form and study it numerically.

Cetin, Soner and Touzi [11] study the superreplication problem using
the CJP model under the additional constraint on the boundedness of the
quadratic variation and the absolute continuous parts of the portfolio pro-
cesses. Their driving motivation is the lack of liquidity premium, i.e. the extra
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amount one has to pay due to illiquidity, in the papers by Bank and Baum [7],
and Cetin et al. [9] as a result of using continuous strategies of bounded vari-
ation. They link the absence of the liquidity premium to the choice of admis-
sible strategies and show that one can find a nonzero liquidity premium in
continuous-time for a set of admissible strategies appropriately defined. Their
results and the justification for the set of admissible strategies they consider
are well supported by a convergence result of the discrete-time setting in [18].
In fact, there are no restrictions on the portfolio strategies in [18]. As the dy-
namics of the paper value of the portfolio Y in (1.14) is obtained as a limit of
the natural discrete time self-financing conditions, this is a justification of the
validity of the constraints placed on the portfolio processes in [11]. In particu-
lar, Gokay and Soner [18] analyze the asymptotic limit of the Binomial version
of the CJP model both numerically and theoretically. Although there are no
constraints placed on the portfolio processes in their model, Gokay and Soner
recover the same super-replicating cost as in [11] in the limit, hence show that
the liquidity premium persists in the continuous-time.

Cetin et al. [11] consider a marginal process S satisfying the stochastic
differential equation

S, = s—|—/ Suo(u, Sy)dW?,
t

which has a strong solution denoted by S5 with the initial condition S; = s.
Moreover, they take the portfolio process Z to be of the form

N-1

T T
Zr = zZnl{izr) +/ audu+/ r,dst,
n=0 - t t
where t = 79 < 71 < --- is an increasing sequence of [t, T]-valued F-stopping

times, the random variable
N:=inf{neN:71, =T}

indicates the number of jumps and z,, is F (7, )-measurable. The infinite vari-
ation part of this trading strategy consists of an integral with respect to the
marginal price process S, where the integrand is the gamma I = (I})o<i<T
of the portfolio. The integrands o and I" are F-progressively measurable pro-
cesses. Moreover, there are additional constraints imposed on the processes
Z, o and I similar to those in [12] and [32]. Then the authors consider su-
perreplicating a European contingent claim with payoff g. The payoff g is
continuous, non-negative and satisfies g(s) < C(1+s) for some constant C. If
the supply curve is of the form (1.11), then the superreplicating cost ¢(t, s) is
the unique viscosity solution of the following dynamic programming equation

—(t, s) + sup <—55202(¢33(t, 8) + ) — As?o?(t, 5)(pss(t, s) + ﬂ)2> =0

820
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and satisfies the terminal condition ¢(T,-) = ¢(-) along with the growth con-
dition 0 < ¢(t,s) < C(1+ s) for some constant C. With constant volatility o,
one can rewrite it as

—¢y(t,5) — 820% H(¢ss(t,5) + ) =0, (1.16)
in which

1 2 1
5 +A 2 T aA

H = { 27_ 1/17 1< _%
16 44>

and the liquidity parameter A is given as g—f(t, 0). For A = 0, one recovers the

Black-Scholes setting. In fact, if ¢ pg is the Black-Scholes value of the claim g,
then by a maximum principle argument one concludes that ¢(t, s) > ¢ps(t, s).
Moreover, ¢ and ¢pg coincide if and only if the payoff is an affine function.
This implies that there exists a liquidity premium, a difference between the
superreplicating cost ¢ and the Black-Scholes value ¢ g, for non-trivial claims
g. This result conflicts with the statement that in an illiquid market all lig-
uidity costs can be avoided by approximating with continuous strategies with
finite variation. The intuitive reasoning is that such an approximation neu-
tralizes the gamma of the portfolio process, however it makes « infinitely large
in the limit so that it no longer satisfies the imposed constraints.

Cetin et al. [11] also study the associated super-hedging strategy under
liquidity costs. They characterize a set C such that outside C, the hedging
strategy is given by ¢s(¢, s) and in C the strategy is a mixture of dynamically
replicating an auxiliary function v and applying a buy and hold strategy to
¢ — 1. The set C is determined by a level of concavity on the value function
0.

Gokay and Soner [18] study a discrete version of the supply curve model.
For a fixed step size h > 0, they divide the trading period [0,7] into equal
intervals of length h. The evolution of the marginal price process is given by a
Binomial tree, i.e. at any node (t, S;) it either goes up by a factor of 1+ ov/h
or down by a factor of 1 — ov/h. We use the notation

St+h = St(l + O'\/E)

The filtration F is generated by the marginal price process S and the portfolio
process Z is taken to be adapted with respect to F. They consider a supply
curve of the form

S(t,s,v) =S¢+ Av

with liquidity parameter A. Observe that this supply curve may take negative
values, so one may consider S(t,S;,v) = (S; + Av)*, however the analysis
in [18] shows that both supply curves yield to the same partial differential
equation in the limit. The self-financing condition is given as in (1.12) and
the book value Y has the dynamics of (1.13). We introduce the notation Z**
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to denote the portfolio process with initial condition Z; = z and Ytt’y’Z the
book value that starts Y; = y and uses the control Z.. The authors study the
super-replication problem of a European contingent claim with payoff g. As
in [11], the payoff g is continuous, non-negative and satisfies the linear growth
condition g(s) < C(1+s) for some C' > 0. The minimal super-replicating cost
#"(t,s) at time t and S; = s is given by

" (t,s) = inf {y | 3 F —adapted {Z.} so that qu’y’z' > g(S%°) a.s.} .

The main observation is that dynamic programming approach fails for the
value function ¢"(t, s), therefore to restore dynamic programming one needs
introduce the dependence of the value function on the portfolio position z in
addition to the current stock price and time. So we define

v"(t,s,2) :==1inf {y | 3 F — adapted {Z.}
so that Z; = z and Y% > g(Sh?*) a.s.}.
Clearly,

" (t,s) = inf v (t, s, 2).

The following dynamic programming is the key element of the analysis of
Gokay and Soner [18]

v"(t,s,2) = inf {y |3 F — adapted {Z.}
.t Z; = z and Y% > o (r,SL%, Z,) a.s.},
in which ¢t = nh < 7 =mh < T for some n,m € N. In particular for 7 =t+h
we have the following form
v"(t,s,2) = max (min {Uh(t + h, su,z 4+ a) — zsoVh + Aaz} ,
mbin {vh(t + h,sd,z+b) + zsoVh + Abz} >

This equation is complemented by the terminal data
V(T s,2) = g(s).

Using the theory of viscosity solutions, the authors pass to the limit by
letting the time step A | 0. In particular, they show that v" (¢, s, z) converges to
the solution ¢(t, s) of the partial differential equation (1.16) locally uniformly
as h | 0. To this aim they consider the standard upper and lower relaxed
limits in the theory of viscosity solutions

¢*(t,s,2) = limsup (¥, s, 2),
(1 ) (15.2)
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bu(t,s,z) = liminf "¢, s, 2).
h—0
(t',87,2" )= (t,5,2)

The authors prove that ¢*(t, s, z) is independent of z and set
P (t,8) == 9" (t, s, 2).

However, it is difficult to derive directly a similar claim for ¢.(¢,s,z). In
fact, the challenge in proving this convergence result is that in discrete-time
the value function v"(t, s, z) depends on the initial portfolio value z, whereas
this dependence becomes irrelevant in the limit ¢(¢, s). Therefore, the authors
overcome this difficulty by defining

¢4 (t,s) = inf liminf  o"(¢, 5, 2")
: (t’,s’,z}})_i(t,s,z)

and developing further the idea of corrector functions as in the applications of
viscosity solutions to homogenization. The authors proceed by showing that
the upper semi-continuous relaxed limit ¢* (¢, s) is a viscosity subsolution and
the lower semi-continuous relaxed limit ¢, (¢, s) is a viscosity supersolution of
the partial differential equation (1.16). Moreover, both ¢, and ¢* are growing
almost linearly and attain ¢, (7, s) = ¢*(T,s) = g(s). So by the comparison
argument established in [11], they conclude that ¢, = ¢* and it is equal to
the unique viscosity solution of (1.16). Now the local uniform convergence of
v"(t, s, ) to ¢(t,s) will follow from the definitions of ¢, and ¢*.

1.5 Expected Utility Maximization in Illiquid Markets

In this section, we briefly review some results regarding the problem of ex-
pected utility maximization in illiquid markets. We first consider the per-
manent price impact setting of Ly Vath et al. [24], and then the setup of
temporary price impacts in discrete time, as done in Cetin and Rogers [10].

Ly Vath et al. [24] solve the expected utility maximization problem with
permanent price impacts in continuous time with admissible strategies of the
form

N
Zy =& + anl{tzq-n} 0<t<T), (1.17)
i=1

in which {7, },>1 is a sequence of stopping times and &, € F,, for all n > 1.
A trade of size £ at time t is assumed to have a permanent impact of the
exponential form. Furthermore, they assume that the stock price evolves as a
geometric Brownian motion between trades, i.e.

dSt = /,LSt_dt + O'St_th + ASt_dZt
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for some positive constants A\, > 0 and p € R. Each time a transaction is
made, the investor pays a fixed transaction cost k so that the money market
account obeys the following equation:

t t
0 0

i>1

A strategy Z belongs to the set of admissible strategies A(t, , z, s) started at
time ¢t with Xy =z, Z; = z and S; = s if it satisfies the solvency constraint

X+ S5 e MoZ,— k>0

for all t < s < T. The second term in the above inequality is the liquidation
value of a position of size Z; in the risky asset S. The solvency constraint
states that the liquidation value of an admissible portfolio is always positive.
Due to this fixed cost at each transaction, the authors show that the optimal
trading strategy which maximizes the expected utility is indeed in the form
of (1.17) and they describe the optimal trading times 7, in terms of the value
of the money market account, the position in the risky asset and the current
price. Their main result is to show that the value function

v(t,z,z,8) = sup EU(Xr+ Sr_e 7 Zpy — k)
ZeA(t,x,z,s)

is a viscosity solution of the following quasi-variational Hamilton Jacobi Bell-
man inequality:

min{—— —re— — Lv,v — Hv} =0

in which £ is the infinitesimal generator of a geometric Brownian motion and
‘H is an impulse generator of the form

Ho(t, x, z,s) = supv(t, z — se ¢, 2z — £, s %)
13

with the supremum taken over the set of transactions that satisfy the solvency
condition.

Cetin and Rogers [10] study the discrete-time utility maximization problem
using a supply curve of the form

S(t7 Sta V) = @(V)Sta

in which ¢ is a strictly increasing and strictly convex function. Their objective
is to maximize utility from terminal liquidation value Yy = Xy 4+ ZnSh,
where Zny = 0 and U is a strictly concave and strictly increasing utility
function. They show that this problem has a solution. Moreover, the marginal
utility of optimal terminal wealth U’(Y}) is an equivalent martingale measure
and the process M,, = ¢/(AZ,)S,, becomes a martingale under this measure.
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1.6 Price Manipulation strategies in Price Impact
Models

So far, there is one fundamental notion of finance we have not addressed: ar-
bitrage from price manipulations. The assumption that the large trader has a
temporary and permanent impact on the prices clearly suggests the possibil-
ity that she can manipulate the prices in her favor. In Section 1.2, this issue
has been partly avoided by either assuming a priori that the execution of the
large sell (resp. buy) order is restricted to smaller sell (buy) orders or that this
condition is satisfied a posteriori as a consequence of the assumptions made.
Indeed, in the former case, arbitrage is not possible since a sell order makes
the price lower so that the next sell order will come at a less favorable price.
In more general models, however, there sometimes exists weaker version of the
arbitrage condition. For instance, the widespread concept of quasi-arbitrage
and price manipulations which correspond to strategies with a negative ex-
pected cost is often considered in the literature. This particular approach
can be found in the papers of Huberman and Stanzl [19], Gatheral [17], and
Jarrow [21,22].

To make the notion of quasi-arbitrage more precise, Huberman and Stanzl
[19] define the notion of a round trip, a trading strategy that starts with zero
shares and terminates with zero shares of the risky asset. They consider a
model in discrete time, with n time steps. There are noise traders and we
denote by 7, the number of shares of the risky asset they purchase at time
k. As before, & denotes the trade size of the large trader at time k. Let
{Ck }r=1,... n be i.i.d. random variables with zero expectation. We also assume
{nk}r=1,. ~n are ii.d. random variables with zero expectation. The authors
consider the following dynamic for the marginal price of the risky asset:

Sk = Sk—1+ 9(&k + i) + G

They also hypothesize the existence of a temporary price impact function A, so
that the large trader pay a total of £ (Sx+h(Ex+nk)) at time k. The temporary
impact includes the noise traders’ trading volume 7, and the n;’s are assumed
to be unknown by the large trader at the moment of the transaction at time
k. The profit of a round trip is given by 7(£§) = — >} _; & (Sk + i (&k + mi))-
Huberman and Stanzl [19] define a price manipulation as a round trip with
positive expected value. They also define a quasi-arbitrage as a sequence of
round trips £ = {{* }k=1,..n for m =1,2,... such that lim,, .., Ex (™) =
oo and
) E?T(fm)
im —=—=
m—ee \/Var(m(£™))
Their main result states that if P(n, =0) =1 (k= 1,...,n) or the ni’s
are normally distributed then the absence of price manipulation implies that
the permanent impact function g is linear. On the other hand, no restrictions
is required on the temporary impact function h.
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Gatheral [17] considers models for stock prices with price impacts that
decay with time. More specifically, he focuses on models on the following
form:

t
Sy = So + / g(X)G(t — s)ds + oW,
0
in which g is the permanent impact function and G is the decay factor. In
words, the permanent impact of a trade at time ¢ decays with time due to
the function G. The setting is the same as in (1.4) when G = 1. The author
finds a relationship between the shape of the market impact function f and
the resilience function G under the no-dynamic-arbitrage assumption. In par-
ticular, he obtains similar results to Huberman and Stanzl [19] regarding the
linearity of the price impact function.

In [21], Jarrow considers a discrete-time economy. In his model, the stock
price can be expressed in terms of a sequence {g;, fo<k<n With g, @ 2 X
R!*! — R such that

St (W) = g1, (w, Zt, (W), ..., Zo(w)) YVwe R, 0<k<N.

The functions {g¢, to<k<n are the reaction functions, which reflect how the
participants of the market react to large trader’s portfolio decisions. Particu-
lar cases of these functions are the permanent and temporary impact function
described in Section 1.2. These reaction functions provide the reduced form
equilibrium relationship between relative prices and the large trader’s trades.
In [21], Jarrow concentrates on market manipulation strategies for the large
trader. In Jarrow’s terminology, a market manipulation strategy is a strat-
egy that can generate positive real wealth for the large trader without taking
any risk. The real wealth for the large trader is characterized as the value
of her portfolio after liquidation. Market manipulation strategies are shown
to sometimes exist in this economy. Sufficient conditions are provided that
restrict the market manipulation strategies. These conditions include the re-
quirement that the stock price process is independent of the past holdings of
the large trader and depends only on her instantaneous holdings, i.e.

Stk (W) = G, (wv Zy, (w))

and that if the large trader is not active in the time interval [tx, tx41], then
there are no arbitrage opportunities available for the reference traders in this
time period. In [22], Jarrow extends this framework for markets that include
a derivative security. He finds sufficient conditions to exclude market manipu-
lation strategies, after showing that market manipulation strategies can exist
after the introduction of the derivative security. To avoid market manipulation
strategies, the market must be in synchrony. This means that the number of
shares, whether bought in the stock market or acquired jointly in the stock
and derivative market, should yield the same stock price. Moreover, Jarrow
shows that one can hedge options using the standard method based on the
binomial model with random volatilities.
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