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Foreword

During the six lectures I have given at the CRM 1995 Summer School in Banff,
I outlined recent weak theories for front propogation and approximation by
Ginzburg-Landau reaction-diffusion equations. The level set type, weak-viscosity
theories were initiated by the papers of Evans and Spruck [ES] and Chen, Giga
and Goto [CGG] who were motivated by earlier papers of Osher and Sethin
[Se, OS] and Ohta, Jasnow and Kawasaki [OJK]. In my lectures, I followed the
more intrinsic approach developed in my paper [S1].

This new weak-viscosity theory was later used to prove the global in-time
convergence of the scalar Ginzburg-Landau (or Cahn-Allen) equation to mean
curvature flow; thus verifying the formal results of Rubinstein, Sternberg and
Keller [RSK] and extending a short time result of Chen [Ch]. First global re-
sult was proved by Evans, Soner and Souganidis [ESS] and later extended by
Barles, Soner and Souganidis [BSS], Ilmanen [Il] and by myself [S2]. A more
complete list of references is given in [S2]. In these notes, I followed the more
recent approach of Jerrard and myself [JS] which also applies to the systems
of Ginzburg-Landau as well. Also, this new method shows that, for the scalar
equations, a convergence result to smooth flows is sufficient to prove the conver-
gence to weak flows. To make this statement rigorous, I used the properties of
the intrinsic solutions instead of the level set solutions.

In these lecture notes, I have not covered the higher codimension flows such
as the evolution of vortex lines in three dimensional space. Recently, together
with Ambrosio, I have developed a weak-viscosity theory for the mean curvature
flow in any codimension, and the corresponding approximation of the higher
co-dimension flows by the Ginzburg-Landau systems is proved in a paper by
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Jerrard and myself [JS]. Also, I have not covered the analysis of the phase field
equations of solidification [S3].

1 Codimension-one Geometric Flows

1.1 Introduction

The problem is an initial value problem of finding a one parameter family of
compact sets

{
Γ(t)

}
t≥0

⊂ Rd that are the boundaries of open sets Ω(t) and
satisfy:

v = V (x, t, ~n,D~n), on t > 0, x ∈ Γ(t),(1.1)

Γ(0) = Γ0,(1.2)

where Γ0 = ∂Ω0 is a given initial set, v is the outward normal velocity of Γ(t),
~n is the outward, unit normal vector at x ∈ Γ(t) and V is a given nonlinear
function. We will always assume that ~n is extended off Γ(t), as a unit vector,
and D is differentiation in Rd.

Typical examples are the following.

Example 1.1 (Mean Curvature flow) In this example, the normal velocity
is equal to the sum of the principal curvatures of the hypersurface Γ(t) and,
therefore, the nonlinear function V in (1.1) is given by,

V = −∇ · ~n.

In the vector form, we may rewrite this equation as

~v := V ~n = − ~H := −(∇ · ~n)~n,

where ~v and ~H are, respectively, the normal velocity vector and the mean cur-
vature vector. Note that both ~v and ~H are orientation independent. Hence, in
this example,

{
Γ(t)

}
t≥0

need not be a boundary to be defined as a solution.

Example 1.2 In this example, V is independent of ~n and V = α(x, t), where α
is a given function. In contrast to mean curvature flow, this flow is orientation
dependent, and therefore, we have to take Γ(t) to be a boundary.

Example 1.3 (Gurtin’s anisotropic flow) This type of flows arise in several
models for supercooled solidification: see Gurtin [Gu]. For a given convex,
positively homogenous of degree one function H,

V = −∇ · (DH(~n)
)

+ c,
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where c is a constant. In two dimensions, we may rewrite this equation as:

V = −(
f(θ) + f ′′(θ)

)
k + c,

where k is the curvature of the curve Γ(t), θ is such that ~n = (cos θ, sin θ), and

f(θ) = H(cos θ, sin θ).

It is well known that even if Γ(0) is smooth, in finite time solutions develop
singularities: see for instance, Barles-Soner-Souganidis [BSS], or consider the
equation v = 1, with initial data

Ω(0) =
{
x ∈ R2 : |x| < 1

} ∪ {
x ∈ R2 : |x− (4, 0)| < 1

}
.

Clearly at t = 1, the solution develops a geometric singularity. Hence a notion
of a weak solution is necessary.

1.2 Level set formulation

Suppose that
{
Γ(t) = ∂Ω(t)}t≤0 is a solution of (1.1). We assume that there is

a smooth auxiliary function ϕ(x, t) satisfying:

Ω(t) =
{
x : ϕ(x, t) > 0

}
, Γ(t) =

{
x : ϕ(x, t) = 0

}
,

∣∣∇ϕ(x, t)
∣∣ > 0, ∀x ∈ Γ(t).

Then, a direct computation shows that, on Γ(t),

v =
ϕt

|∇ϕ| , ~n = − ∇ϕ

|∇ϕ| ,

and therefore

v =
ϕt

|∇ϕ| = V

(
x, t,− ∇ϕ

|∇ϕ| ,−∇
( ∇ϕ

|∇ϕ|
))

, on Γ(t).

We rewrite this equation as

ϕt = F (x, t,∇ϕ,∇2ϕ),(1.3)

where for p ∈ Rd \ {0} and a symmetric d× d matrix A,

F (x, t, p, A) = |p|V
(

x, t,− p

|p| ,−
[
I − p⊗ p

|p|2
]

A

|p|
)

.

Note that F , defined as above, has the following property, which we call geomet-
ric,

F (x, t, λp, λA + µp⊗ p) = λF (x, t, p, A), ∀λ > 0, µ ∈ R1.(1.4)

We also assume that V is such that, F is (degenerate) em elliptic, i.e.,

F (x, t, p, A + B) ≥ F (x, t, p, A), ∀B ≥ 0.(1.5)

3



The idea of Osher and Sethian [Se], [OS] and Ohta, Jasnow and Kawasaki
[OJK] is to solve (1.3) on the whole Rd × (0,∞) instead of solving (1.1) on the
unknown hypersurface Γ(t). Then, a weak solution of (1.1) and (1.2) is defined
as follows: given Γ0 = ∂Ω0, choose a continuous function ϕ0(x) so that

Ω0 =
{
x : ϕ0(x) > 0

}
, Γ0 = ∂Ω0 =

{
x : ϕ0(x) = 0

}
.

There are such functions, for instance the signed distance to Γ0:

ϕ0(x) = −dist(x, Ω0) + dist(x,Rd \ Ω0).

Let ϕ(x, t) be a viscosity solution (a notion that will be defined later) of (1.3)
in Rd × (0,∞) satisfying:

ϕ(x, 0) = ϕ0(x), x ∈ Rd.(1.6)

Then, we define a weak solution of (1.1) and (1.2) as the zero level set of ϕ:

Γ(t) =
{
x : ϕ(x, t) = 0

}
.

This definition makes sense provided that there is a unique solution ϕ of (1.3)-
(1.6) and that, for all t > 0, the zero level set of ϕ(·, t) depends only on the zero
level set of ϕ0(·) but not ϕ0 itself. The latter is required because we are given
only Γ0 = ∂Ω0 but not ϕ0 itself, and therefore, the arbitrary choice we make for
ϕ0 should not alter Γ(t). Indeed, in §1.4, we will show that if ϕ(x, t) and ϕ̃(x, t)
are uniformly continuous viscosity solutions of (1.3) and if

{
ϕ(x, 0) = 0

}
=

{
ϕ̃(x, 0) = 0

}
and

{
ϕ(x, 0) < 0

}
=

{
ϕ̃(x, 0) < 0

}
,

then, for all t ≥ 0,
{
x : ϕ(x, t) = 0

}
=

{
x : ϕ̃(x, t) = 0

}
,
{
x : ϕ(x, t) < 0

}
=

{
x : ϕ̃(x, t) < 0

}
.

We close this section by computing the function F for the examples considered
in §1.2.

Example 1.4 For the mean curvature flow

V = −∇ · ~n = −trace(D~n).

Since ~n = −∇ϕ/|∇ϕ|,

V = ∇ ·
( ∇ϕ

|∇ϕ|
)

=
1

|∇ϕ|
(
∇ϕ− D2ϕ∇ϕ · ∇ϕ

|∇ϕ|2
)

,

and therefore, for a symmetric matrix A and p ∈ Rd \ {0},

F (p, A) = trace

(
I − p⊗ p

|p|2
)

A.

The level set equation (E) takes the form

ϕt = ∆ϕ− D2ϕ∇ϕ · ∇ϕ

|∇ϕ|2 .(1.7)

Note that F is not well defined when p = 0!
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Example 1.5 In this example F is simpler:

F (x, t, p) = α(x, t)|p|.

Example 1.6 For the Gurtin’s equation a similar computation yields

F (p,A) = trace

[
D2H

(
p

|p|
)(

I − p⊗ p

|p|2
)

A

]
+ c|p|,

and again F is not defined at p = 0.

All these examples indicate that F is degenerate in the p direction, a property
that every geometric F has in view of (1.4), and also F may not be well defined
at p = 0. Therefore the appropriate notion of a solution of (1.3) is the viscosity
solutions of Crandall and Lions [CL]: also see Crandall-Ishii-Lions [CIL] and
Fleming-Soner [FS].

1.3 Viscosity solutions

In this section we will give a brief introduction to viscosity solutions. For more
information we refer to the User’s Guide [CIL] and [FS]. Let O be a subset of
Euclidian space and w be a scalar valued function on O. On the closure Ō of
O we define two functions, the upper semicontinuous envelope w? and the lower
semicontinuous envelope w? by

w?(x) := lim
ε↓0

sup
|y − x| ≤ ε
y ∈ O

w(y), x ∈ Ō,

w?(x) = −(−w)?(x)
= lim

ε↓0
inf

|y − x| ≤ ε
y ∈ O

w(y), x ∈ Ō.

Definition 1.7 Let u be a locally bounded function on Rd× [0, T ] with T ≤ ∞.

(a) We say that u is a viscosity subsolution of (1.3) in Rd × (0, T ), if for any
ϕ ∈ C∞

(Rd × [0, T ]
)

ϕt(x0, t0) ≤ F ?
(
x0, t0, Dϕ(x0, t0), D2ϕ(x0, t0)

)
,(1.8)

at every local, strict maximizer (x0, t0) ∈ Rd × (0, T ) of the difference
u? − ϕ.

(b) We say that u is a viscosity supersolution of (1.3) in Rd× (0, T ), if for any
ϕ ∈ C∞

(
[0, T ]×Rd

)

ϕt(x0, t0) ≥ F?

(
x0, t0, Dϕ(x0, t0), D2ϕ(x0, t0)

)
,(1.9)

at every local, strict maximizer (x0, t0) ∈ Rd × (0, T ) of the difference
u? − ϕ.
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(c) A viscosity solution is both a sub and a supersolution.

Since F is degenerate elliptic, (1.5), if u ∈ C2,1
(Rd × (0, T )

)
is a classical

subsolution (or a supersolution) then, by calculus, it is a viscosity subsolution
(or a supersolution, resp.).

Inequalities (1.8) (or (1.9)) also hold at any maximizer (or minimizer, resp.)
which is not necessarily strict.

To clarify the definition consider the mean curvature flow. Then,

F (p,A) = trace

(
I − p⊗ p

|p|2
)

A, ∀p 6= 0.

Hence, for p 6= 0, F ?(p,A) = F?(p,A) = F (p,A) and for p = 0:

F ?(0, A) = sup
|ν|=1

trace(I − ν ⊗ ν)A, F?(0, A) = inf
|ν|=1

trace(I − ν ⊗ ν)A.

Exercise 1.8 Given R0 > 0, let

R(t) =
√

R2
0 − 2(d− 1)t, ∀t ∈

[
0,

R2
0

2(d− 1)

]
.

Then, R(t) solves:

d

dt
R(t) =

d− 1
R(t)

, t ∈
(

0,
R2

0

2(d− 1)

)
.

Hence Ω(t) =
{
x ∈ Rd : |x| < R(t)

}
is a classical solution of the mean curvature

flow with initial data Ω0 =
{|x| < R0

}
. Show that

u(x, t) =
{

0, |x| < R(t) and t < R2
0/2(d− 1),

1, |x| ≥ R(t) or t ≥ R2
0/2(d− 1),

is a viscosity solution of (1.7) in Rd × (0,∞).

Exercise 1.9 This is a generalization of the previous exercise. Assume that

F ?(x, t, 0,O) ≥ 0 ≥ F?(x, t, 0,O).

Suppose that
{
Γ(t) = ∂Ω(t)

}
t∈[0,T ]

is a classical solution of (1.1). Show that

the indicator of Ω(t), XΩ(t)(x) is a viscosity solution of (1.3) in Rd × (0, T ).

The following property of viscosity solutions is very powerful. Note that in
the following statement ( due to Barles and Perthame), we make no assumptions
on the convergence of the derivatives of the sequence un and we do not use the
fact that (1.3) is a geometric equation.
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Theorem 1.10 (Stability) Let {un} be a sequence of viscosity subsolutions of

un,t ≤ Fn(x, t,Dun, D2un) in Rd × (0, T ).

Suppose that for any compact set K ⊂ Rd × [0, T ],

sup
n

sup
K
|un| < ∞,

and
lim sup

(xn, tn, pn, An) → (x, t, p, A)
n →∞

Fn(xn, tn, pn, An) ≤ F ?(x, t, p, A).

Then,

ū(x, t) := lim sup
(xn, tn) → (x, t)

n →∞

u?
n(xn, tn), (x, t) ∈ Rd × (0, T ),

is a viscosity subsolution of (1.3) in Rd × (0, T ). An analogous statement holds
for supersolutions.

PROOF. Observe that ū? = ū. Let ϕ ∈ C∞(Rd×[0, T ]) and (x0, t0) ∈ Rd×(0, T )
be a strict, local maximizer of ū − ϕ. Then, there is a subsequence nk and a
sequence (xk, tk) → (x0, t0) such that (xk, tk) is a local maximizer of u?

nk
− ϕ.

Then, by the viscosity property of unk
,

ϕt(xk, tk) ≤ Fnk

(
xk, tk, Dϕ(xk, tk), D2ϕ(xk, tk)

)
.

Now send k →∞ and use the assumption on Fn.

The following property is a consequence of the geometric property (1.4).

Theorem 1.11 (Relabelling) Let θ be a continuous, non decreasing scalar
function of the real line and u be a viscosity subsolution (or a supersolution) of
(1.3) in Rd × (0, T ). Then θ(u) is a viscosity subsolution (or a supersolution,
resp.) of (1.3) in Rd × (0, T ).

PROOF. (1). First suppose that θ is twice continuously differentiable and θ′ > 0.
Let ϕ ∈ C∞

(Rd × [0, T ]
)

and (x0, t0) ∈ Rd × (0, T ) be a strict, local maximizer
of

(
θ(u)

)?−ϕ. Note that, by the monotonicity of θ,
(
θ(u)

)? = θ(u?) and u?−ψ
has a strict, local maximum at (x0, t0), where

ψ = θ−1(ϕ),

and θ−1 is the inverse of θ. Clearly ψ is smooth and by the viscosity property
of u,

ψt(x0, t0) ≤ F ?
(
x0, t0, Dψ(x0, t0), D2ψ(x0, t0)

)
.
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(2). Set G = θ−1 and compute

Dψ = G′(ϕ)Dϕ, D2ψ = G′′(ϕ)Dϕ⊗Dϕ + G′(ϕ)D2ϕ.

Then, by (1.4),

F ?(x0, t0, Dψ, D2ψ) = G′(ϕ)F (x0, t0, Dϕ, D2ϕ).

Therefore, (1.8) holds at (x0, t0).

(3). Now suppose that θ is continuous and nondecreasing. Let ξ(r) ∈ [0, 1]
be a smooth function with compact support and

∫
ξ(r)dr = 1. For a positive

integer n, set

θn(r) =
∫

θ

(
r − ρ

n

)
ξ(ρ)dρ +

1
n

r

so that θn is smooth and θ′n ≥ 1/n and, by Step 1, wn = θn(u) is a viscosity
subsolution of (1.3) in Rd × (0, T ). Since θn → θ uniformly on compact sets, by
Theorem 1.10, w = θ(u) is a viscosity subsolution of (1.3) in Rd × (0, T ).

(4). The supersolution property is proved exactly the same way.

For two real numbers a, b, set a ∨ b = max{a, b} and a ∧ b = min{a, b}.

Proposition 1.12 Let u, v be a viscosity subsolution of (1.3) in Rd×(0, T ) and
k > 0 be a constant. Then u ∨ v, u ∧ k and u ∨ k are viscosity subsolutions of
(1.3) in Rd × (0, T ). An analogous statement holds for supersolutions.

PROOF. Let ϕ ∈ C∞
(Rd × [0, T ]

)
and (x0, t0) ∈ Rd × (0, T ) be a strict, local

maximizer of (u∨v)?−ϕ. Suppose that u?(x0, t0) ≥ v?(x0, t0). Since (u∨v)? =
u? ∨ v?, (x0, t0) is a local maximizer of u? − ϕ and the viscosity property of u
yields (1.8). If u?(x0, t0) ≤ v?(x0, t0), then (x0, t0) is a local maximizer of v?−ϕ
and the viscosity property of v yields (1.8).

Since the function θ(r) = r ∨ k and θ̂(r) = r ∨ k are non decreasing, by
Theorem 1.11, u ∧ k = θ(u) and u ∨ k = θ̂(u) are viscosity subsolutions of (1.3)
in Rd × (0, T ).

1.4 Level set solutions: Definition and consistency

In this section we prove that the level set solutions are well defined and agree
with classical solutions whenever the latter exist. All of these results crucially
depend on a comparison result between the viscosity sub and supersolutions
of (1.3). Under some technical assumptions on F , these results were proved
by Chen, Giga and Goto [CGG] and by Evans and Spruck [ES] for the mean
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curvature flow. (Also see Giga, Goto, Ishii and Sato [GGIS].) Here we shall
assume that there is a comparison-principle. More precisely, set

Q = Rd × (0,∞).

Let UC(Rd) be the set of all uniformly continuous functions on Rd and A be
the collection of all function satisfying

Kw(T ) := sup
x∈Rd, t≤T

|w(x, t)|
|x|+ 1

< ∞, ∀T < ∞.

Definition 1.13 We say that the equation (1.3) has comparison in Q if for any
viscosity subsolution u of (1.3), and a viscosity supersolution v of (1.3) satisfy

sup
Q̄

(u? − v?) ≤ sup
Rd

(
u?(·, 0)− v?(·, 0)

)
,

provided that u or v is in A.

All the examples of Section 1.1 including the mean curvature flow has com-
parison in Q: see Giga, Goto, Ishii and Sato [GGIS].

The additional hypothesis that u or v is in A is necessary due to a counterex-
ample of Ilmanen [Il].

In what follows, we shall assume that

(1) Given u0 ∈ UC(Rd), there exists a unique viscosity solution u ∈ A of (1.3)
in Q, satisfying the initial condition u(·, 0) = u0(·).

(2) Equation (1.3) has comparison in Q.

(3) F (t, x, p, A) is smooth on p 6= 0.

The following result implies that the level set definition is independent of the
choice of the initial data and therefore has the semigroup property. Moreover,
by the uniqueness of solutions of (1.3), (1.6), the level set definition is unique.

Theorem 1.14 Let Γ0 = ∂Ω0 be a closed subset of Rd, Ω0 be an open set and
u0 be a uniformly continuous function satisfying

Γ0 =
{
x : u0(x) = 0

}
, Ω0 =

{
x : u0(x) > 0

}
.

Let u ∈ A be the unique viscosity solution of (1.3) in Q satisfying (1.6). Under
our standard assumptions, the zero level sets

Γ(t) :=
{
x : u(x, t) = 0

}
,

and the set
Ω(t) :=

{
x : u(x, t) > 0

}
,

are independent of the choice of u0, and therefore Γ(t) is a well defined weak
solution of (1.1).
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PROOF. (1). Let ũ0(x) ∈ UC(Rd) be an initial data satisfying

Γ(0) =
{
x: ũ0(x) = 0

}
, Ω(0) =

{
x: ũ0(x) > 0

}
.

Let ũ ∈ A be the viscosity solution of (1.3) in Q with initial data ũ0. Set

Γ̃(t) :=
{
x: ũ(x, t) = 0

}
, Ω̃(t) :=

{
x: ũ(x, t) > 0

}
.

We will show that

Γ̃(t) = Γ(t), Ω̃(t) = Ω(t), ∀t ≥ 0.

(2). Set

w(x, t) :=
{

0, if u(x, t) ≤ 0
1, if u(x, t) > 0.

Then, w? = w and

w(x, t) = lim inf
(xn, tn) → (x, t)

n →∞

θn

(
u(xn, tn)

)
,

where θn(r) = 0 on r ≤ 0, θn(r) = 1 on r ≥ 1/n and on [0, 1/n], θn(r) = nr. By
Theorem 1.10, w is a viscosity supersolution of (1.3) in Q and by Theorem 1.11,
ũ(x, t) ∧ 1 is a viscosity solution of (1.3) in Q. Hence, by comparison,

ũ(x, t) ∧ 1− w(x, t) ≤ sup{ũ0 ∧ 1− w(·, 0)} = 0,

and therefore,
{
x: ũ(x, t) > 0

} ⊂ {
x: w(x, t) = 1

}
=

{
x: u(x, t) > 0

}
, ∀t ≥ 0.

Since the argument is symmetric,
{
x: ũ(x, t) > 0

}
=

{
x: u(x, t) > 0

}
, ∀t ≥ 0.

(3). Set

z(x, t) :=
{ −1 if u(x, t) < 0

0 if u(x, t) ≥ 0.

Then, z? = z and

z(x, t) = lim sup
(xn, tn) → (x, t)

n →∞

{
θn

(
u(x, t) +

1
n

)
− 1

}
,

where θn is as in Step 2. Arguing as in the previous step, we conclude that

z(x, t) ≤ ũ(x, t) ∨ (−1).

Hence {
x:u(x, t) ≥ 0

}
=

{
x: z(x, t) = 0

} ⊂ {
x : ũ(x, t) ≥ 0

}
.

and, by symmetry,
{
x: u(x, t) ≥ 0

}
=

{
x: ũ(x, t) ≥ 0

}
, ∀t ≥ 0.
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Our next result shows that the level set definition agrees with the classical
solutions whenever the latter exist.

Theorem 1.15 (Consistency) Let Γ(t) = ∂Ω(t) be the level set solution of
(1.1) with (1.2) and

{
Γ̃(t) = ∂Ω̃(t)

}
t∈[0,T ]

be a family of smooth, compact sets
solving (1.1), (1.2). Then

Γ(t) = Γ̃(t), Ω(t) = Ω̃(t), ∀t ∈ [0, T ].

PROOF. Set

d0(x) := −dist(x, Ω0) + dist(x,Rd \ Ω0),

d(x, t) := −dist
(
x, Ω̃(t)

)
+ dist

(
x,Rd \ Ω̃(t)

)
, t ∈ [0, T ],

and, for δ > 0, set

Iδ :=
{
(x, t) ∈ Rd × [0, T ]:

∣∣d(x, t)
∣∣ < δ

}
.

Let u(x, t) be the unique solution of (1.3) in Q with initial data d0.

(1). Choose δ > 0 so that d is smooth on Iδ and

c? := ‖d‖C2(Īg) < ∞.

Since on Γ̃(t),
v = dt, ~n = −∇d,

d satisfies
dt = F (x, t,Dd, D2d) on Γ̃(t), t ∈ (0, T ).

Therefore, there is a constant K depending on F and c?, such that
∣∣dt − F (x, t, Dd, D2d)

∣∣ ≤ K|d|, onIδ.

(2). Set w(x, t) := eKt
(
(d(x, t) ∨ 0) ∧ δ

)
. Then,

wt − F (x, t, Dw, D2w) ≥ 0,

on Iδ ∩ {d > 0} and, by Theorem 1.11, w is a supersolution of (1.3) in Q. Since
Γ̃(t) is compact, w ∈ A and by comparison,

u(x, t) ∧ δ ≤ w(x, t), ∀x ∈ Rd, t ∈ [0, T ],

and therefore,
{
x : u(x, t) > 0

} ⊂ {
x: d(x, t) > 0

}
, ∀t ≤ T,

or equivalently,
Ω(t) ⊂ Ω̃(t), ∀t ≤ T.
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(3). Set z(x, t) := e−Kt
(
(d(x, t)∧0)∨(−δ)

)
and argue as in Step 2. The result

is:
z(x, t) ≤ u(x, t) ∨ (−δ), ∀x ∈ Rd, t ∈ [0, T ],

and, by Step 2,
Ω̃(t) = Ω(t), ∀t ≤ T.

(4). There is constant k > 0 such that for |ε| ¿ δ, the set

Γε(t) :=
{
x: d(x, t) = ε + kεt

}
, t ∈ [0, T ],

is a classical supersolution of (1.1). Let dε(x, t) be the signed distance to Γε(t).
As in Step 2, set

wε(x, t) := eKt
(
(dε(x, t) ∨ 0) ∧ (δ − ε)

)
.

Then, wε is a viscosity supersolution of (1.3) in Q. Set

m(ε) := inf
y

(
dε(y, 0)− d0(y)

)
.

For ε < 0, m(ε) > 0. Since u(x, t) + m(ε) is a viscosity solution of (1.3) on Q,
(
u(x, t) + m(ε)

) ∧ (δ − ε) ≤ wε(x, t), ∀x ∈ Rd, t ≤ T,

and therefore,
{
x : u(x, t) ≥ 0} ⊂ {

x: u(x, t) > −m(ε)
} ⊂ {

x: wε(x, t) > 0
}

=
{
x: d(x, t) > ε + kεt

}
.

By letting ε ↑ 0, {
x:u(x, t) ≥ 0

} ⊂ {
x: d(x, t) ≥ 0

}
.

(5). A similar argument shows that
{
x:u(x, t) ≤ 0

} ⊂ {
x: d(x, t) ≤ 0

}
.

Combining the previous steps, Γ(t) = Γ̃(t), Ω(t) = Ω̃(t) for all t ≤ T .

1.5 Distance solutions

The level set approach to geometric problems provide a unique weak solution
with several useful properties. However, in some cases the zero level set may not
be hypersurface. Indeed consider the mean curvature flow of the initial data

Γ0 =
{
(x1, x2) : |x1| = |x2|

} ⊂ R2.

Then, for all t > 0, Γ(t) =
{
x ∈ R2: ϕ(x, t) = 0

}
has nonempty interior.

In certain applications, it is convenient to have an intrinsic definition which
restricts the solutions to be hypersurfaces. Brakke [Br] gave such a definition,
by using the theory geometric measure theory. Here we follow [S1] to give an
intrinsic weak solution again using the theory of viscosity solution. As a general
rule, all of these intrinsic solutions are generally nonunique, but they are all
included in the zero level set of ϕ.
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Definition 1.16 Let
{
Γ(t) = ∂Ω(t)

}
t≥0

be a family of compact set. Set

d(x, t) := −dist
(
x, Ω(t)

)
+ dist

(
x,Rd \ Ω(t)

)

(1) We say that
{
Γ(t)

}
t≥0

is a distance subsolution of (1.1) if (d ∧ 0) is a
viscosity subsolution of the level set equation (1.3).

(2) We say that
{
Γ(t)

}
t≥0

is a distance supersolution of (1.1) if (d ∨ 0) is a
viscosity supersolution of the level set equation (1.3).

(3) A distance solution is both a sub and a supersolution.

Let XA be the indicator of the set A ⊂ Rd.

Theorem 1.17
{
Γ(t) = ∂Ω(t)

}
t∈[0,t]

is a distance subsolution (or a supersolu-
tion ) if and only if XΩ(t) is a viscosity subsolution (or a supersolution, resp.)
of (1.3).

PROOF. (1). Let Γ be a distance subsolution of (1.1). For a positive integer n,
let

θn(r) :=





0, r ≤ − 1
n ,

1, r ≥ 0,
1 + nr, r ∈ [− 1

n , 0
]
.

Then,
w(x, t) := lim sup

(xn, tn) → (x, t)
n →∞

θn

(
d(xn, tn) ∧ 0

)
,

is a viscosity subsolution of (1.3). Moreover, w = (XΩ)?.

(2). Suppose that (XΩ) is a viscosity subsolution of (1.3). For K > 0, by
Theorem 1.11, K(XΩ − 1) is a viscosity subsolution of (1.3). Set

wK(x, t) := sup
{
K

(
XΩ(y, t)− 1

)− |x− y|: y ∈ Rd
}
.

Then, it is straightforward to show that wK is a subsolution and therefore, by
Theorem 1.10,

w := lim
K↑∞

wK

is also a viscosity subsolution. Since

wK(x, t) =
(
d(x, t) ∧ 0

) ∨ (−K), w = d ∧ 0.

(3) Supersolution property is proved similarly.
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Level set solutions and the distance solutions are closely related as seen in the
following result.

Theorem 1.18 Let u ∈ A be a viscosity solution of (1.3). Then, the sets

Γ1(t) = ∂L(t), L(t) :=
{
x:u(x, t) > 0

}
,

and
Γ2(t) = ∂U(t), U(t) :=

{
x:u(x, t) ≥ 0

}
,

are distance solutions. Moreover,

L(t) ⊂ Ω(t), Ω̃(t) ⊂ U(t), ∀t ≥ 0,(1.10)

for any distance supersolution Γ(t) = ∂Ω(t) and distance subsolution Γ̃(t) =
∂Ω̃(t) satisfying (1.10) at t = 0.

PROOF. (1). Let θn be as in Step 1 of Theorem 1.17. Then

(XL)?(x, t) = lim sup
(xn, tn) → (x, t)

n →∞

θn

(
u(xn, tn)− 1

n

)
,

is a viscosity subsolution and therefore Γ1 is a distance subsolution. Moreover,

(XL)?(x, t) = lim inf
(xn, tn) → (x, t)

n →∞

θn

(
u(xn, tn)− 1

n

)
,

is a viscosity supersolution and therefore Γ1 is a distance solution of (1.1).

(2). Also Γ2 is a distance solution of (1.1) because:

(XU )?(x, t) = lim sup
(xn, tn) → (x, t)

n →∞

θn

(
u(xn, tn)

)
,

(XU )?(x, t) = lim inf
(xn, tn) → (x, t)

n →∞

θn

(
u(xn, tn)

)
.

(3). Let ū be the viscosity solution of (1.3) with initial data

ū(x, 0) = −dist
(
x, {u(·, 0) ≥ 0}) + dist

(
x, {u(·, 0) < 0}).

Then,
U(t) = {ū ≥ 0}, L(t) = {ū > 0}.

Let d be the signed distance to Ω(·) and d̃ be the signed distance to Ω̃(·). Since
(1.10) satisfied at t = 0,

d̃(x, 0) ∧ 0 ≤ ū(x, 0) ≤ d(x, 0) ∨ 0.

Then, by comparison, d̃ ∧ 0 ≤ ū ≤ d ∨ 0 and (1.10) follows.
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Remark 1.19 If (1.4) holds for all λ ∈ R1, instead of λ > 0, then (1.1) is
orientation independent. Mean curvature flow is an example of such equation.
In this case, we can extend the notion of distance solution to set Γ̂(t) that are not
necessarily the boundary of an open set. We say that

{
Γ̂(t)

}
t≥0

is an unoriented

distance solution if d(x, t) := dist
(
x, Γ̂(t)

)
a viscosity supersolution of (1.3).

Lemma 1.20 Suppose that (1.4) holds for all λ ∈ R and
{
Γ̂(t)

}
is an unori-

ented distance solution. Let u ∈ A be the unique viscosity solution of (1.3) with
initial data u(x, 0) = dist

(
x, Γ̂(0)

)
. Then,

Γ̂(t) ⊂ {
x ∈ Rd : u(x, t) = 0

}
, ∀t ≥ 0.(1.11)

PROOF. Set d(x, t) := dist
(
x, Γ̂(t)

)
. By comparison, d ≥ u and (1.11) follows.
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2 Ginzburg-Landau Approximation

2.1 Introduction

For 0 < ε, let

Iε(ϕ) =
∫

Rd

1
2
|∇ϕ|2 +

1
ε2

W (ϕ) dx

where W (ϕ) is a bistable potential with zeroes at ±1. The typical example is

W (ϕ) =
1
2
(1− ϕ2)2.(2.1)

Then, it is known that, as ε ↓ 0, the Γ-limit of Iε is the surface area functional
[M]. Since the mean curvature flow is the gradient flow of the area functional,
formally we expect the gradient flow of Iε to approximate the mean curvature
flow. The gradient flow of Iε is

uε
t −∆uε +

1
ε2

W ′(uε) = 0 in Rd × (0,∞).(2.2)

(Allen and Cahn [AC] derived this equation from different considerations.)

In this section, we will prove that (2.2) approximates the mean curvature flow.
Such approximations are also available for more general geometric flows: see for
instance Barles, Soner, Souganidis [BSS].

First, we consider the case d = 1 and look for a stationary solution uε(x, t) =
q(x/ε). This yields the ordinary differential equation

q′′ = W ′(q),

with boundary data q(±∞) = ±1, and q(0) = 0. The unique solution q satisfyies

q′(r) =
√

2W (q) := h(q) > 0.

When W is as in (2.1), q(r) = tanh(r). Note that

Iε

(
q

( ·
ε

))
=

∫ ∞

−∞

1
ε2

(
1
2

(
q′

(
x

ε

))2

+ W

(
q

(
x

ε

)))
dx

=
1
ε

∫ ∞

−∞
2W

(
q(y)

)
dy

=
1
ε

∫ ∞

−∞
h
(
q(y)

)
q′(y)dy

=
H(1)−H(−1)

ε
,

where H ′ = h.
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We now use the stationary wave q to analyze the asymptotic behavior of uε.
Since q′ > 0, its inverse q−1 exists and we define

Zε := εq−1(uε) ⇒ uε = q

(
Zε

ε

)
.

Then,

Zε
t −∆Zε +

2q′′

εq′
(
1− |∇Zε|2) = 0.(2.3)

Formally, we conclude that, as ε ↓ 0, |∇Zε| ∼ 1. Therefore, Zε is approximately
equal to the signed distance function, d, of a front Γ(t). Moreover, when Zε = 0,
q′′ = 0 and Zε

t = ∆Zε and

dt = ∆d on { d = 0 }.

Hence, formally, the front Γ(t) evolves according to its mean curvature.

For future reference we record that, by maximum principle,
∣∣∇Zε(t, x)

∣∣2 ≤ 1, ∀(x, t),(2.4)

provided (2.4) is satisfied by the initial data.

The main goal of the following three sections is to prove the following result.
Set

dµε
t (x) := εEε(t, x) dx, Eε(t, x) =

1
2
|∇uε|2 +

1
ε2

W (uε).

We assume that
C0 := sup

ε>0
µε

0(Rd) < ∞,(2.5)

and, as ε ↓ 0, µε
0 converges to µ0 in the weak* topology of Radon measures.

Theorem 2.1 There are a subsequence εn ↓ 0 and a Radon measure µt such
that

µεn
t

?
⇀ µt

in the weak? toplogy of Radon measures, and Γ(t) = spt(µt) is a distance solution
of the mean curvature flow, i.e., dist

(
x, Γ(t)

)
is a viscosity supersolution of (1.7).

Off Γ(t), uεn converges to ±1 locally uniformly.

Moreover, if Hd−1
(
Γ(0)

)
< ∞, then Hd−1

(
Γ(t)

)
< ∞ for all t ≥ 0, where

Hd−1 is the d− 1 dimensional Hausdorff measure.

Remark 2.2 Under the assumption Hd−1
(
Γ(0)

)
< ∞, Γ(t) is a Brakke solu-

tion: see Ilmanen [I].
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2.2 Energy estimates

Following the presentation in Jerrard and Soner [JS], we calculate that

Eε
t = −|uε

t |2 + div(∇uεuε
t ),(2.6)

∇Eε = −∇uεuε
t + div(∇uε ⊗∇uε).(2.7)

Let η ≥ 0 be a smooth compactly supported function. Multiply (2.6) by η and
(2.7) by ∇η and substract the two identities. Then use the resulting identity to
compute the time derivative of the integral of ηEε. The result is:

d

dt

∫
ηEε =

∫
(ηt −∆η)Eε + D2η∇uε · ∇uε −

∫
η|uε

t |2.(2.8)

If we add the two identities and then proceed similarly, we obtain the following
identity:

d

dt

∫
ηEε =

∫
(ηt + ∆η)Eε −D2η∇uε · ∇uε(2.9)

+
|∇η · ∇uε|2

η
−

∫
η

∣∣∣∣uε
t −

∇η · ∇uε

η

∣∣∣∣
2

.

The special case of (2.8) with η ≡ 1 yields the classical energy estimate,

∫
Eε(x, t) dx +

∫ t

0

∫
|uε

t |2 dx ds =
∫

Eε(x, 0) dx.(2.10)

Suppose that
{
Γ(t)

}
t∈[t0,t1]

is a classical solution of the mean curvature flow.

Then, there are δ > 0, C > 0 and a smooth function η : Rd × [t0, t1] → [0,∞]
satisfying

η(x, t) =
(
dist(x, Γ(t)0)

)2
/2, ∀dist

(
x, Γ(t)

)
< δ,

η(x, t) ≥ δ2/2, ∀dist
(
x, Γ(t)

) ≥ δ,
η(x, t) = δ2, ∀dist

(
x, Γ(t)

) ≥ 2δ,
‖η‖C2 ≤ C.

Set O =
{
(x, t) ∈ Rd × [t0, t1]: dist

(
x, Γ(t)

)
< δ

}
. Then, on O,

D2η(x, t)ξ · ξ ≤ |ξ|2, ∀ξ ∈ Rd.

Let d(x, t) be the signed distance of x to Γ(t). Then, on O,

ηt −∆η = d[dt −∆d]− |∇d|2.

Since dt −∆d = 0 on Γ(t), |dt −∆d| ≤ C|d| on O and therefore, on O,

|ηt −∆η + 1| = |d| |dt −∆d| ≤ C|d|2 = 2Cη.
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Hence, on O,

(ηt −∆η)Eε + D2η∇uε · ∇uε ≤ −Eε + 2CηEε + |∇uε|2

= 2CηEε +
1
2
|∇uε|2 − 1

ε2
W (uε).

Since uε = q(Zε/ε) and |∇Zε|2 ≤ 1,

1
2
|∇uε|2 − 1

ε2
W (uε) =

1
2ε2

(
q′

(
Zε

2

))2 (|∇Zε|2 − 1
) ≤ 0.

Therefore,
(ηt −∆η)Eε + D2η∇uε · ∇uε ≤ 2CEεη, on O.(2.11)

On the complement of O, η is smooth and positive. Hence, on Oc,

(ηt −∆η)Eε + D2η∇uε · ∇uε ≤ CEε ≤ 2C

δ2
Eεη,

and therefore, (2.11) holds, possibly with a larger C, on all of Rd × [t0, t1].
Substitute this into (2.8):

d

dt

∫
ηEε ≤ C

∫
ηEε, ∀t ∈ [t0, t1],

and integrate,
∫

η(x, t)Eε(x, t) dx ≤ eC(t−t0)

∫
η(x, t0)Eε(x, t0) dx, ∀ ∈ [t0, t1].(2.12)

The above estimate will be used in the next section.

Fix, x0 ∈ Rd, t0 > 0 and use (2.9) with

η(x, t) = ρ(x, t) :=
√

4π(t0 − t)G(x− x0, t0 − t),

where G is the heat kernel, i.e.,

G(y, t) := (4πt)−d/2 exp
(
−|y|

2

4t

)
, t > 0, y ∈ Rd.

We compute:

ρt + ∆ρ = − 1
2(t0 − t)

ρ,

D2ρξ · ξ = − |ξ|2
2(t0 − t)

ρ +
(ξ − (x− x0))2

4(t0 − t)2
ρ, ∀ξ ∈ Rd,

|∇ρ · ξ|2
ρ

=
(ξ · (x− x0))2

4(t0 − t)2
ρ, ∀ξ ∈ Rd.

Hence,
d

dt

∫
ρEε ≤ 1

2(t0 − t)

∫
ρ
(|∇uε|2 − Eε

) ≤ 0, ∀t < t0.(2.13)
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This inequality is known as the monotonicity formula. For systems of equations,
it was first used by Struwe [St] and later by Chen-Struwe [CS]. For (2.2), it
was derived by Ilmanen [I] following the computation of Huisken. The following
clearing-out Lemma is a powerful one in the analysis of (2.2) and the mean
curvature flow. Set

αε(t; x0, t0) =
∫

ρ(x, t) dµε
t (x), t < t0.

Lemma 2.3 (Clearing-out) Suppose that ε‖∇uε‖∞ ≤ k1. Then there is a
constant
C = C(k1) satisfying

W
(
uε(x0, t0 − ε2)

) ≤ C(k1)(αε(t0 − ε2; x0, t0)
)1/d+1

,

≤ C(k1)
(
αε(t; x0, t0)

)1/d+1
, ∀t ≤ t0 − ε2.

PROOF. Set
w0 := W

(
uε(x0, t0 − ε2)

)

so that

W
(
uε(x, t0 − ε2)

) ≥ w0 − ‖∇W‖∞ ‖∇uε‖∞ |x− x0| ≥ w0

2
,

for all |x−x0| ≤ εKw0, with a constant K ≥ 1, depending on k1, and W . Since
ρ(x, t) = ρ̂

(|x− x0|, t0 − t
)

and ρ̂ is decreasing in |x− x0|,

αε(t0 − ε2, x0, t0) ≥
∫

BεKw0 (x0)

ρ(x, t0 − ε2)
W (uε(x, t0 − ε2))

ε2
dx,

≥ (εKw0)dρ̂(εKw0, ε
2)

w0

2ε2
,

= Ĉwd+1
0 e−

K2w2
0

4 ≥ Cwd+1
0 .

2.3 Convergence to a smooth flow

In this section, we prove Theorem 2.1 when there is a smooth solution of
the mean curvature flow. Let µε

t and Γ0 be as in Theorem 2.1. Suppose
that µ0 = C?Hd−1 Γ(0) for some C? > 0 and a smooth, compact hypersur-
face Γ(0) = ∂Ω(0). (Here Hd−1 Γ(0) is the surface measure of Γ(0)). Let{
Γ(t) = ∂Ω(t)

}
t∈[0,T ]

be the local, classical solution of the mean curvature flow
with initial data Γ(0).

Theorem 2.4 As ε ↓ 0, uε converges to ±1, locally uniformly away from Γ(t).
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PROOF. (1). By (2.12) with t0 = 0 and
{
Γ(t)

}
t∈[0,T ]

,

∫
η(x, t) dµε

t (x) ≤ C

∫
η(x, 0) dµε

0(x), ∀t ∈ [0, T ].

Since µε
0

?
⇀ Hd−1 Γ(0) and η(x, 0) = 0 on Γ(0),

lim
ε↓0

∫
η(x, t) dµε

t (x) = 0, ∀t ∈ [0, T ].

Moreover, by the standard energy estimate and (2.5),

µε
t (Rd) ≤ µε

0(Rd) ≤ C0, ∀t ≥ 0.

(2). Fix t0 ∈ (0, T ], x0 /∈ Γ(t0) and set R = (dist
(
x0,Γ(t0)

)
/2. For ε > 0 and

t < t0,

αε(t; x0, t0) =
∫

BR(x0)

ρ(x, t) dµε
t (x) +

∫

Rd\BR(x0)

ρ(x, t) dµε
t (x)

≤ sup
y∈BR(x0)

ρ(y, t)
η(y, t)

∫
η(x, t) dµε

t (x)

+ sup
y/∈BR(x0)

ρ(y, t)µε
t (Rd)

≤ C

R2(t0 − t)(d−1)/2

∫
η(x, t) dµε

t (x) + ρ̂(R, t0 − t)C0,

where, as before, ρ(x, t) = ρ̂
(|x− x0|, t0 − t

)
. By Step 1 and the definition of ρ̂,

for any γ > 0,

lim
ε↓0

sup
{
αε(t0 − δ;x0, t0): t ∈ [δ, T ], dist

(
x, Γ(t)

) ≥ γ
} ≤ C0ρ̂(γ, δ).

Hence, for any γ > 0,

lim
δ↓0

lim
ε↓0

sup
{
αε(t0 − δ; x0, t0): t ∈ [δ, T ], dist

(
x, Γ(t)

) ≥ γ
}

= 0.

By the clearing-out Lemma, for any γ > 0,

lim sup
ε↓0

sup
{
1−

∣∣uε(x, t)
∣∣: t ∈ [γ, T ], dist

(
x, Γ(t)

) ≥ γ
}

= 0.

Hence, |uε| → 1 locally uniformly away from Γ(t). Since uε is continuous,
uε → ±1 away from Γ(t).

The previous theorem and the comparison between solutions of (2.2) yield the
following more general result.
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Lemma 2.5 Let
{
Γ(t) = ∂Ω(t)

}
t∈[t0,t1]

be a classical solution of the mean cur-
vature flow. Suppose that

lim
ε↓0

∫

Rd\Ω(t0)

dµε(t0, x) = 0.

Then,

lim
ε↓0

∫

Rd\Ω(t)

dµε(t, x) = 0, ∀t ∈ [t0, t1].

PROOF. For t ∈ [t0, t1], let η(t, x) be as in the previous subsection. Set

η(x, t) := η(x, t)
(
1−XΩ(t)(x)

)
,

I(η) := (ηt −∆η)Eε + D2η∇uε · ∇uε,

so that I(η) = 0 on Ω(t) and I(η) = I(η) on the complement of Ω(t). Therefore
(2.12) holds with η, i.e.,

∫
η(x, t) dµε

t (x) ≤ eC(t−t0)

∫
η(x, t0) dµε

t0(x), t ∈ [t0, t1].

By the hypothesis of the lemma, for all t ∈ [t0, t1],

lim
ε↓0

∫

Rd\Ω(t)

dµε(t, x) ≤ lim
∫

η(x, t0) dµε
t0(x) = 0.

An immediate corollary to Lemma 2.5 is the following.

Corrollary 2.6 Suppose that

lim
ε↓0

µε
t0

({|x| ≤ R0}
)

= 0.

Then,
lim
ε↓0

µε
t

({|x| ≤ R(t)}) = 0, ∀t ≥ 0,

where R(t) is the solution of R(t0) = R0,

d

dt
R(t) = −d− 1

R(t)
, t > t0.
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2.4 Proof of Theorem 2.1

We start with a result first proved by Brakke.

Lemma 2.7 There are εn ↓ 0 and Radon measures µt such that µεn
t converges

to µt, in the weak* topology, for all t ≥ 0. Moreover, for any function ξ(·) ≥ 0,
and t0 > 0

lim
t↑t0

∫
ξ(x) dµt(x) ≥

∫
ξ(x) dµt0(x) ≥ lim

s↓t0

∫
ξ(x) dµs(x).(2.14)

PROOF. (1). In view of (2.5), for each t ≥ 0, there are subsequence along which
µε

t is convergent. Let Q ⊂ [0,∞) be dense set. By a Cantor diagonal argument,
we construct εn ↓ 0 and Radon measures µt so that

µεn
t

?
⇀ µt, ∀t ∈ Q.

(2). Let
{
ϕm(x)

}
be a dense subset of D(Rd). Then, by (2.8) with η = ϕm,

d

dt

∫
ϕm(x) dµε

t (x) ≤ k̂mµε
t (Rd) ≤ km,

where km is a constant depending on ϕm but not on ε. Hence, the function

fm,ε(t) :=
∫

ϕm(x) dµε
t (x)− kmt, t ≥ 0,

is non increasing. Moreover,

fm(t) := lim
n→∞

fm,εn(t),

exists for all t ∈ Q and m = 1, 2, . . .. For t ≥ 0, define

fm(t) := lim
s↑t

fm(s).

Let Q̂ ⊂ [0,∞) be the set of discontinuities of {fm}. Clearly Q̂ is countable and

fm(t) = lim
m→∞

fm,εn(t), ∀t /∈ Q̂ \Q.

(3). By redefining εn, if necessary, we may assure that Q ⊃ Q̂. Then fm,εn(t)
converges to fm(t) for all t ≥ 0 and m = 1, 2, . . .. Since fm(t) depends linearly
on ϕm, there are Radon measures µt, such that

fm(t) =
∫

ϕm dµt − kmt, ∀t ≥ 0, m = 1, 2, . . . .

Since {ϕm} is dense, µεn
t

?
⇀ µt for all t > 0.
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By the monotonicity, proved in Step 2, dµ := dµt dt is a Radon measure. Set

Γ(t) = sptµt, Γ = sptµ.

Lemma 2.8
Γ =

⋃
t>0

Γ(t)× {t}.

Moreover, uεn converges to ±1, locally uniformly on the complement of Γ.

PROOF. (1). Let
C :=

⋃
t>0

Γ(t)× {t}.

The inclusion Γ ⊂ C̄ is immediate. To prove the reverse inclusion, suppose that
t0 > 0 and (x0, t0) /∈ Γ. Then, there are δ ∈ (0, t0) and a smooth nonnegative
function ξ, with compact support such that ξ(x0) > 0 and

∫ to+δ

t0−δ

∫

Rd

ξ(x) dµt(x) dt = 0.

Hence, ∫

Rd

ξ(x) dµt(x) = 0,

for almost every t ∈ (t0 − δ, t0 + δ). However, by (2.14), this holds for every
t ∈ (t0 − δ, t0 + δ). In particular, x0 /∈ C. Hence, C ⊂ Γ ⊂ C̄. Since Γ is closed,
Γ = C̄.

(2). Let (xn, tn) → (x0, t0) /∈ Γ, as n →∞. Then,

lim
n→∞

αεn(tn;xn, tn + ε2
n) = 0,

and, by the clearing out lemma,
∣∣uεn(xn, tn)

∣∣ → 1. Since uεn is continuous, this
proves the local uniform convergence of uεn on the complement of Γ.

We are now in a position to prove Theorem 2.1.

PROOF OF THEOREM 2.1. Set

δ(x, t) := dist
(
x, Γ(t)

)
, d(x, t) := dist(x, Γt),

where Γt is the t-cross section of Γ. In view of Lemma 2.8, δ? = d.

(1). We will first show that δ, or equivalently d, is a viscosity supersolution of
(1.7) on {d > 0}. Suppose to the contrary. Then, there are ϕ ∈ C∞(Q̄), a strict
minimizer (x0, t0) ∈ Q of δ? − ϕ = d− ϕ with d(x0, t0) > 0 such that

β := −[
ϕt(x0, t0)− F?

(
Dϕ(x0, t0), D2ϕ(x0, t0)

)]
> 0.
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Since d− ϕ has a minimum at (x0, t0), we may assume that d(x0, t0) < ∞.

In the next three steps, we will obtain a contradiction.

(2). Since any distance function is semiconcave on its positive set, and since
d − ϕ attains its minimum at (x0, t0) with d(x0, t0) > 0, d is differentiable at
(x0, t0), and therefore,

∣∣∇ϕ(x0, t0)
∣∣ =

∣∣∇d(x0, t0)
∣∣ = 1.

Choose y0 ∈ Rd so that

d(x0, t0) = |x0 − y0|, (y0, t0) ∈ Γ.

Set ψ(x, t) := ϕ(x + x0 − y0, t) and

Ω(t) :=
{
x ∈ Rd: ψ(x, t) < ϕ(x0, t0)

}
.

Then, y0 ∈ ∂Ω(t0).

For 0 < r < t0, set Qr = Br(y0)× [t0 − r, t0 + r] and choose r? > 0 satisfying

ψt − F?(Dψ, D2ψ) ≤ −β

2
,

1
2
≤ |Dψ| ≤ 2,

on Q2r? . Then, ∂Ω(t) ∩B2r?(x0) ∈ C∞ for all |t− t0| ≤ 2r?.

(3). Note that
Γt ⊂ Ω(t), ∀t ≥ 0,

and
Γt ∩ ∂Ω(t) = φ, ∀t 6= t0, Γt0 ∩ ∂Ω(t0) = {y0}.

Set

α0 :=
inf{(δ − ψ)(x, t): (x, t) /∈ Qr}

2(1 + ‖∇ψ‖∞)
∧ r?.

Then, a straightforward analysis yields
{
(x, t):x ∈ Γt, dist

(
x, ∂Ω(t)

) ≤ α0

} ⊂ Qr? .

(4). Let d̂(x, t) be the signed distance to ∂Ω(t), and let H : R1 → R1 be a
smooth function satisfying :

H(r) = 0, r ≥ α0, H(r) = (r−α0)2/2, r ∈ [−r?, α0], H ′(r) = 0, r ≤ −2r?.

Set η̂(x, t) := H(d̂(x, t)) so that, by Step 3,

Ut := Γt ∩ spt
{
η̂t + |D2η̂|} ⊂ Br?(y0) ∩ Ω(t), ∀|t− t0| ≤ 2r?,

and therefore, d̂ is smooth on Ut. Then, for |t− t0| < 2r?,

d

dt

∫
η̂ dµε

t ≤
∫

(η̂t −∆η̂) dµε
t + ε

∫
D2η̂∇uε · ∇uε := Jε(t),
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and

lim inf Jε(t) = lim inf
∫

Br? (y0)∩Ω(t)

(η̂t −∆η̂) dµε
t + εD2η̂∇uε · ∇uεdx.

Fix t ∈ [t0 − r?, t0 + r?] and x ∈ Ut. Then, d̂(x, t) ∈ [0, α0] and

η̂t −∆η̂ = H ′(d̂)[d̂t −∆d̂]−H ′′(d̂)|∇d̂|2
= (d̂− α0)[d̂t −∆d̂]− 1.

Let y ∈ ∂Ω̂(t) be such that −|x− y| = d̂(x, t). Then, y ∈ B2r?(y0) and

d̂t(x, t)−∆d̂(x, t) ≤ d̂t(y, t)−∆d̂(y, t) =
ψt(y, t)− F (Dψ, D2ψ)

|Dψ(y, t)| < 0.

On Ut, D2η ≤ I, and therefore,

(η̂t −∆η̂)dµε
t (x) + εD2η̂∇uε · ∇uεdx ≤ 0,

for all |t− t0| < r?. Hence,

d

dt

∫
η dµt ≤ lim inf Jε(t) ≤ 0, ∀|t− t0| < r?.

Moreover, since Ut0−r? = ∅,
∫

η(x, t0 − r?) dµt0−r?(x) = 0,

and consequently, ∫
η(x, t0) dµt0(x) = 0.

On the other hand, y0 ∈ ∂Ω(t0)∩ Γ(t0) and η̂(y0, t0) > 0. This contradicts with
the above statement. Hence, δ is a viscosity supersolution of (1.7) on {δ > 0}.

In the next step, we will show that δ is a supersolution of (1.7) on the whole
domain.

(5). For ε > 0, let hε(r) = (r− ε)+. We claim that hε(d) is a viscosity super-
solution of (1.7) in Q. Let ϕ ∈ C∞(Q̄) and (x0, t0) ∈ Q be a strict minimizer of
hε(d)− ϕ.

First suppose that d(x0, t0) > 0. Since d is a supersolution on {d > 0},
Theorem 1.11 yields

ϕt − F?(Dϕ, D2ϕ) ≥ 0 at (x0, t0).(2.15)

Now suppose that d(x0, t0) = 0. We claim that there are xn → x0 and tn ↑ t0
such that d(xn, tn) = 0. Indeed, if there is no such sequence, there exists δ > 0
such that

µt

(
Bδ(x0)

)
= 0, ∀t ∈ [t0 − δ, t0).
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Then, by the clearing-out lemma,

µt

(
Bδ/2(x0)

)
= 0,

for all t sufficiently close to t0 and therefore (x0, t0) /∈ Γ which contradicts with
d(x0, t0) = 0. Hence there is such a sequence and consequently ϕt(x0, t0) ≥ 0.
Moreover hε

(
d(x, t0)

)
= 0 for all |x−x0| < ε and Dϕ(x0, t0) = 0, D2ϕ(x0, t0) ≤

0. Hence (2.15) holds and hε(d) is a viscosity supersolution of (1.7) in Q. Now
let ε ↓ 0 to conclude that d is also a viscosity supersolution of (1.7) in Q.

(6). The Hausdorff dimension estimates follow from the clearing-out lemma
and a standard covering lemma . See Ilmanen [I] for the details.
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