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Introduction

In this paper we summarize the main results of [1], where we develop a
a level set approach for the description of mean curvature flow of surfaces Γt

of codimension k in Rn, generalizing previous works by Evans & Spruck and
Chen, Giga & Goto (see [5], [9]) devoted to the evolution of hypersurfaces.

The main idea, suggested by De Giorgi in [8], is to surround the surface
Γt by a family of hypersurfaces evolving with normal velocity equal to the sum
of the smallest (n − k) principal curvatures. If the hypersurfaces are the level
sets of a time depending function u, it turns out that u must satisfy a second
order nonlinear, degenerate, parabolic PDE. The theory of viscosity solutions
developed in [5], [6], [7], [10] can be applied, yielding existence of a weak solution
to the co–dimension k mean curvature flow.

We show the consistency of our weak solutions with classical solutions.
The proof is based on the analysis of the properties of the squared distance
function η from a smooth manifold Γ and on the relation between the second
fundamental form of Γ and the third order derivatives of η on Γ and near to Γ.

Moreover, we compare our level set solution with other solutions already
proposed in the literature: the measure theoretic subsolutions of Brakke (see
[4]) and Ilmanen (see [12]), the distance solutions of Soner (see [14]) and the
minimal barriers of De Giorgi (see [8]).
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1. Smooth flow by mean curvature

Let (Γt)t∈[0,T ] be (n − k)-dimensional smooth compact manifolds in Rn

without boundary.

Definition. (Γt)t∈[0,T ] is a smooth flow if there exists a smooth, one to one
deformation map φ(·, t) : Γ0 → Γt such that the Jacobian Jφ(x, t) is not
singular, φ(x, 0) = x and φt(x, t) is perpendicular to Γt at φ(x, t) or any x ∈ Γ0,
t ∈ [0, T ].
A smooth flow is a mean curvature flow if

φt(x, t) = H
(
φ(x, t), t

) ∀x ∈ Γ0, t ∈ [0, T ]

where H(y, t) is the mean curvature vector of Γt at y.

In the above definition the time derivative φt(x, t) represents the velocity
at time t of the point φ(x, t) ∈ Γt. The mean curvature vector of a manifold Γ
is locally defined by the formula

H(y) := −
k∑

j=1

divΓ
(
νj

)
νj(y) (1.1)

where ν1, . . . , νk is a smooth orthonormal vector field generating the normal
space to Γ near y and

divΓg :=
n∑

i=1

δigi

is the tangential divergence. In the co–dimension 1 case, (1.1) reduces to

H(y) := −divΓ
(
ν
)
ν(y) = −div

(
ν
)
ν(y) (1.2)

provided ν is a unit vector field defined in a full neighbourhood U of y, perpen-
dicular to Γ at any point in U ∩ Γ. We see from (1.1) that the mean curvature
vector H does not depend on the orientation and is normal to Γ.

Geometrically, H points in the direction where the (n − k) dimensional
area Hn−k of Γ decreases most. This can be seen choosing a vector field
g ∈ C1

0

(
Rn,Rn

)
, defining

Φτ (x) := x + τg(x), Γτ := Φτ (Γ)

for |τ | << 1 and looking at the derivative of τ 7→ Hn−k(Γτ ) at τ = 0. Using
the divergence theorem on Γ one finds

d

dτ

(
Hn−k

(
Γτ

))∣∣∣∣
τ=0

=
∫

Γ

divΓg dHn−k = −
∫

Γ

〈g,H〉 dHn−k.
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In the case of smooth flow by mean curvature, Γt+τ ∼
(
Id + τHt

)
Γt as τ ∼ 0,

hence
d

dt

(
Hn−k

(
Γt

))
= −

∫

Γt

|Ht|2 dHn−k. (1.3)

It it well known that the flow by mean curvature may develop singularities
in finite time even if the initial surface is smooth, making meaningless (with
the exception of simple plane curves, boundaries of convex sets and graphs)
the parametric approach. This is the main motivation for the research of a
weak definition of flow by mean curvature, consistent with the classical one
and defined for all times, even after the appearance of singularities.

2. The level set approach

The basic idea of the level set approach (see [13], [9], [5]) is to find a
parabolic PDE such that all level sets of any solution u flow by mean curvature.
The crucial property is that

t 7→ dist
(
Γt, Γ′t

)

is non decreasing for hypersurfaces Γt, Γ′t flowing by mean curvature, so that
initially disjoint hypersurfaces remain disjoint, and we can view them as level
sets of a time depending function u. We introduce the following notations

ν :=
∇u

|∇u| Pw := I − w ⊗ w

|w|2 w 6= 0.

Hence, ν is a unit normal vector to the level sets of u and Pw is the orthogonal
projection on the hyperplane normal to w.

Using (1.2) and the fact that the velocity (in the direction ν) of a point
x ∈ Rn is given by −ut(x, t)/|∇u|(x, t), we find that the PDE is

ut = |∇u|div
( ∇u

|∇u|
)

=
(
δij − νiνj

) ∂2u

∂xi∂xj

= F
(∇u,∇2u

) (2.1)

with F (w, X) := trace
(
PwX

)
(here and in the following we use the summation

convention on repeated indices). Generalized solutions of the mean curvature
flow are defined in the following steps:

1) Find u0 such that Γ0 =
{
x : u0(x) = 0

}
.

2) Solve the PDE with the initial condition u(x, 0) = u0(x).
3) Define Γt :=

{
x : u(x, t) = 0

}
.
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4) Show that Γt depends only on Γ0, i.e., it does not depend on the choice of
u0.

However, there are some difficulties: the equation ut = F
(∇u,∇2u

)
is

nonlinear, degenerate and the 0-homogeneous map w 7→ F (w,X) has no con-
tinuous extension at 0. All these difficulties can be removed using the theory of
viscosity solutions (see [6], [7]). Let us recall the definition of viscosity solution
of a second order parabolic PDE:

Definition. Let u : Rn × (0, T ) → R be a continuous function, let A be a
dense subset of Rn × Sn×n and F : A → R.

u subsolution of u− φ relative maximum at (x0, t0),
⇐⇒ φ of class C2, implies

ut = F
(∇u,∇2u

)
φt ≤ F ∗

(∇φ,∇2φ
)

at (x0, t0)

u supersolution of u− φ relative minimum at (x0, t0),
⇐⇒ φ of class C2, implies

ut = F
(∇u,∇2u

)
φt ≥ F∗

(∇φ,∇2φ
)

at (x0, t0)

u viscosity solution ⇐⇒ u subsolution and supersolution.

In the above definition Sn×n denotes the set of symme tric n×n matrices and
F ∗, F∗ denote the upper and lower semicontinuous extensions of F

F ∗(w, X) := sup
{

lim sup
h→+∞

F (wh, Xh) : (wh, Xh) ∈ A, (wh, Xh) → (w,X)
}

F∗(w,X) := inf
{

lim inf
h→+∞

F (wh, Xh) : (wh, Xh) ∈ A, (wh, Xh) → (w, X)
}

defined for all pairs w ∈ Rn and X ∈ Sn×n.
The basic assumption of the theory of viscosity solutions is the degenerate

ellipticity of F∗ and F ∗:

X ≥ Y =⇒ F∗
(
w, X

) ≥ F∗
(
w, Y

)
, F ∗

(
w,X

) ≥ F ∗
(
w, Y

)
.

The degenerate ellipticity implies that classical solutions of the equation are
viscosity solutions. Indeed, if u ∈ C2

(
Rn × (0, T )

)
is a classical solution of the
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equation and u−φ has a relative maximum at (x0, t0), then ∇u = ∇φ, ut = φt,
∇2u ≤ ∇2φ at (x0, t0), hence

F ∗
(∇φ(x0, t0),∇2φ(x0, t0)

)
= F ∗

(∇u(x0, t0),∇2φ(x0, t0)
)

≥ F ∗
(∇u(x0, t0),∇2u(x0, t0)

)

= ut(x0, t0) = φt(x0, t0)

and u is a viscosity subsolution. A similar argument works for supersolutios.
The main advantages of viscosity solutions are:

1) General existence results, by Perron’s method (see [6], [7], [5]).
2) Comparison theorems (see [10]):

u subsolution in Rn × (0, T )
v supersolution in Rn × (0, T )

=⇒ u ≤ v in Rn × (0, T ).
u, v uniformly continuous
u(x, 0) ≤ v(x, 0) for any x ∈ Rn

3) Strong stability properties with respect to uniform convergence (even Γ-
convergence) of F and/or u (see [5]).

Evans & Spruck in [9], and Chen, Giga & Goto in [5] independently proved
existence and uniqueness of viscosity solutions of





ut = F
(∇u,∇2u

)

u(x, 0) = u0(x).

Moreover, they proved that

Γt :=
{
x : u(x, t) = 0

}

depends only on Γ0 and that the smoothness of Γ0 implies the coincidence of the
level sets Γt with the classical evolution of Γ0, as long as the latter is defined.
Moreover, short time existence results for the classical evolution starting from
Γ0 have been obtained by De Mottoni & Schatzman, Huisken, Evans & Spruck.
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3. Higher codimension level set flow

The extension of the level set approach to the description of higher codi-
mension flows is not straightforward. The main difficulty is due to the fact
that a co–dimension k manifold can be represented by the intersection of k
level sets of scalar functions. Hence, the level set approach leads to a system of
PDE, without maximum principle. Geometrically, the absence of a maximum
principle is related to the fact that initially disjoint manifolds could intersect
during their flow by mean curvature. This happens, for instance, if Γ0 consists
of two chained rings. An additional difficulty is related to the computation
of H, requiring by (1.1) the local knowledge of an orthonormal basis of the
manifold.

The basic idea, due to De Giorgi, is to look at the evolution of all positive
level sets of a scalar function u ≥ 0 under a new geometric law. Specifically,
the level sets are required to flow with velocity equal to the sum of the smallest
(n−k) principal curvatures. Quite surprisingly, it turns out that the 0 level set
of u is forced to flow by mean curvature!
The necessity of removing the highest (k− 1) eigenvalues to get a nonconstant
motion can be understood by looking at the evolution of a simple smooth curve
Γ in R3. In this case, if we look at a small tubular surface S around Γ, we find
that one of the principal curvatures is very high, its order of magnitude being
the inverse of dist(S, Γ), and the other one is related to the geometry of Γ. In
particular, if we let S flow by mean curvature, we find that S becomes empty
in a very short time.

Let u be a nonnegative function, assume that u ∈ C2
({u > 0}) and

|∇u| > 0 for u > 0. For τ > 0, let

Eτ :=
{
x : u(x) = τ

}

oriented da ν. The principal curvatures of Eτ (with respect to the orientation
induced by ν) are given by the eigenvalues of the symmetric bilinear form

B(ξ, η) := 〈ξ, dηνEτ 〉 ξ, η ∈ ν⊥.

With this sign convention, if u is a convex function, the sets
{
x : u(x) < τ

}
have nonnegative principal curvatures. A simple computation shows that

B =
Pν∇2uPν

|∇u| on ν⊥. (3.1)

Hence, we define

G(w,X) : = sum of the (n− k) smallest eigenvalues

of Y := PwXPw on the space w⊥

= λ1(Y ) + . . . + λn−k(Y )

(3.2)
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removing the highest (k − 1) eigenvalues of Y .
By (3.1), (3.2), the positive level sets of a function u(x, t) flow (in the direction
−ν) with velocity equal to the sum of their smallest (n−k) principal curvatures
if and only if

ut = G
(∇u,∇2u

)
, u(x, 0) = u0(x) ≥ 0. (3.3)

To our knowledge, there are no results in the literature concerning short
time existence of C1,1 solutions of (3.3), assuming that u0 ∈ C2

({u0 > 0})
and |∇u0| > 0 for u0 > 0. Even if u0 is smooth, we cannot expect smooth
solutions, even for a short time, because X 7→ G(w, X) is not a C1 function
(only a Lipschitz function) in Sn×n.
However, the theory of viscosity solutions can be used to get weak solutions
of (3.3). In order to apply this theory, we need only to check the degenerate
ellipticity of X 7→ G(w, X). The problem is the following: given a (n − 1)–
dimensional vector space E, a symmetric bilinear form Y on E, and given the
ordered list of the eigenvalues of Y

λ1(Y ) ≤ λ2(Y ) ≤ . . . ≤ λn−1(Y )

can we say that

Y ≤ Y ′ =⇒ λi(Y ) ≤ λi(Y ′) i = 1, . . . , (n− 1) ?

The answer is positive because the numbers λi(Y ) solve a max–min problem
depending monotonically on Y :

λi(Y ) = max
{

min
p∈F\{0}

〈Y p, p〉
|p|2 : F ⊂ E, codim F ≤ (i− 1)

}
. (3.4)

The proof of (3.4) is elementary. Indeed, the inequality ≤ follows by
choosing as F the vector space spanned by the eigenvectors corresponding
to λi(Y ), λi+1(Y ), . . . , λn(Y ). The opposite inequality follows by the fact that
each subspace F with codimension not greater than (i−1) has at least a nonzero
vector in common with the vector space F0 generated by the eigenvectors cor-
responding to λ1(Y ) . . . , λi(Y ). Since

Y ≤ λi(Y )I on F0 and Y ≥ min
p∈F\{0}

〈Y p, p〉
|p|2 I on F

we obtain

λi(Y ) ≥ min
p∈F\{0}

〈Y p, p〉
|p|2 .

Hence, G(w, X) = λ1(Y ) + . . . + λn−k(Y ) is degenerate elliptic. Geometrically,
the ellipticity of G is related to the validity of an inclusion principle for open sets
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whose boundaries flow by the sum of the smallest (n− k) principal curvatures,
i.e.,

Ω(t0) ⊂ Ω′(t0) =⇒ Ω(t) ⊂ Ω′(t) ∀t ≥ t0.

Therefore, the level set approach can be used to describe this motion. The
surprising property is that the flow according to this law of a family of hyper-
surfaces Γτ

t filling Rn \ Γt forces Γt to flow by mean curvature.
Applying a general existence theorem of Chen, Giga & Goto for “geomet-

ric” parabolic equations (see [5]) we proved that





ut = G
(∇u,∇2u

)

u(x, 0) = u0(x)
(3.5)

has a unique viscosity solution for any uniformly continuous function u0.

Definition. Given a closed set Γ0, we define generalized co–dimension k flow
of Γ0 the sets

Γt :=
{
x : u(x, t) = 0

}

where u(x, t) is the solution of the problem (3.5) with a nonnegative, uniformly
continuous function u0 such that

Γ0 =
{
x : u0(x) = 0

}
.

The definition is well posed: using comparison theorems we proved that
Γt does not depend on the choice of u0. In the case k = 1 it is easy to

check that G is equal to the function F considered by Evans & Spruck, Chen,
Giga & Goto. Since the map t 7→ u(t, ·) has the semigroup property, we have
the

Semigroup property: Given s, t ≥ 0, the set Γt+s coincides with the evolu-
tion at time t starting from Γs.
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4. Main properties of co–dimension k flow

The co–dimension k level set flow Γt defined in §3 can be compared with
the classical solutions and other weak solutions of the flow by mean curvature
proposed by Brakke, Ilmanen, De Giorgi. It turns out that, if Γ0 is smooth, Γt

coincides with the classical solution of flow by mean curvature as long as the
latter is defined. We will explain in the next section the ideas involved in the
proof of this consistency result.

Let us very briefly recall Brakke’s definition of motion by mean curvature.
A family of Radon measures (µt)t≥0 in Rn is said to be a m-dimensional Brakke
motion if

d+

dt

(∫

Rn

φdµt

)
≤ B(µt, φ) ∀φ ∈ C2

0

(
(Rn, [0, +∞)

)
(4.1)

where d+/dt denotes the upper derivative and

B(µt, φ) =
∫

Rn

(−φ|Ht|2 + 〈∇φ,Ht〉
)
dµt (4.2)

if µt is equal to a m-varifold with integer density and absolutely continuous
mean curvature Htµt in {φ > 0} (see [4], [12]) and B(µt, φ) = −∞ otherwise.
For a smooth mean curvature flow, (4.2) holds and the equality in (4.1) can be
proved by a localization of (1.3).

As Ilmanen proved in [12], we can think to the level set flow as a minimal
set theoretic supersolution and to the Brakke’s flow as a measure theorethic
subsolution, because only the inequality ≤ is required in (4.1). Hence, the best
result we can hope for is an inclusion property of (n−k)–dimensional Brakke’s
motions in co–dimension k level set motions. Indeed for any Brakke motion
(see [1], Theorem 5.4) the following implication holds:

supp µ0 ⊂ Γ0 =⇒ supp µt ⊂ Γt ∀t ≥ 0.

Similar comparison properties can be stated and proved for distance so-
lutions (see [14] and §4 of [1]) and for the barrier solutions introduced by De
Giorgi (see [2], [3], [8] and §6 of [1]).



10

5. Consistency with smooth flows

The typical idea to prove the consistency result (already exploited in codi-
mension 1) is to describe the flow by mean curvature using a PDE satisfied by
the distance function, and use this to compare classical and viscosity solutions.
In the case k = 1 it is well known that

Γt = ∂Ωt is a smooth mean curvature flow

m
rt = ∆r on

{
r = 0

}

where r(x, t) is the signed distance function from Γt:

r(x, t) =




−dist

(
x, Γt

)
if x ∈ Ωt;

dist
(
x, Γt

)
if x /∈ Ωt.

In higher codimension there is no possibility to define a signed distance
function, so that the first idea could be to work with the distance function

δ(x) := dist
(
x, Γ

)
.

However, δ is a Lipschitz function in Rn but its first order derivatives (defined
in {0 < δ < τ} for small τ) are discontinuous on Γ. Moreover (k−1) eigenvalues
of the hessian matrix of δ are unbounded near Γ and even if we remove them
there is still lack of continuity. Indeed, we proved that

6 ∃ lim
y→x∈Γ

G
(∇δ(y),∇2δ(y)

)

because the limit above exists only on lines normal to Γ, depends on the direc-
tion p ∈ Sn−1 of the line and is equal to −〈H(x), p〉.

As suggested by De Giorgi, to transfer informations from Γ to a neigh-
bourhood of Γ and to characterize the flow by mean curvature we will use the
squared distance function

η(x) :=
1
2
δ2(x) =

1
2
dist2

(
x, Γ

)
.

The first result we proved (see [1], Theorem 3.5 and Lemma 3.7) is the following:

Theorem 1. Let
{
Γt

}
t∈[0,T ]

be a smooth flow of codimension k and let

η(x, t) := dist2
(
x, Γt

)
/2.
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Then, Γt is a mean curvature flow if and only if

(∇η
)
t
= ∆

(∇η
)

on
{
η = 0

}
.

The proof of Theorem 1 is based on the fact that −(∇η
)
t
(x, t) is the normal

velocity of the point x ∈ Γt and −∆
(∇η(x, t)

)
is the mean curvature vector

Ht(x) of Γt at x. Hence, one of the advantages of the function η is that it
provides a simple method for the computation of the mean curvature vector.

The second result (see [1], Theorem 3.8) shows that the system in η is
equivalent to a differential inequality in δ, where

δ(x, t) :=
√

2η = dist
(
x, Γt

)
.

Theorem 2. Let
{
Γt

}
t∈[0,T ]

be a smooth flow of codimension k, and let

Ω ⊂ Rn × (0, T ) be the maximal open set where δ is smooth. Then, Γt flows
by mean curvature if and only if

δt ≥ G
(∇δ,∇2δ

)
on Ω.

The proof of Theorem 2 also shows that the inequality

δt ≥ G
(∇δ,∇2δ

)
(5.1)

holds in Rn × (0, T ), in the viscosity sense. Moreover,

δt ≤ G
(∇δ,∇2δ

)
+ Cδ on

{
0 < δ < σ

}
(5.2)

for suitable constants C, σ > 0. From (5.2) we get that W := e−Ct
(
δ ∧ σ/2

)
satisfies

Wt ≤ G
(∇W,∇2W

)
(5.3)

in Rn × (0, T ), in the viscosity sense. Hence, using (5.1) and (5.3) we can
compare δ with the viscosity solution of





ut = G
(∇u,∇2u

)

u(x, 0) = δ(x)

obtaining W ≤ u ≤ δ in Rn × (0, T ). In particula r, since W and δ have the
same 0 level set,

Γt =
{
x : δ(x, t) = 0

}
=

{
x : u(x, t) = 0

} ∀t ∈ (0, T )
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and this shows the consistency with smooth flows.
The proof of Theorem 2 is based on the propagation properties of the

eigenvalues of∇2η on normal lines to Γ. Given a smooth, compact, codimension
k surface Γ without boundary, let τ > 0 such that η ∈ C∞

({
η ≤ τ2/2

})
and

let x /∈ Γ such that δ(x) = τ . Denoting by y ∈ Γ the point in Γ of least distance
from x, set

p :=
x− y

τ
, xs := y + sp, B(s) := ∇2η(xs)

for s ∈ [0, τ ]. Then, the following theorem holds (see [1], Theorem 3.2):

Theorem 3. (1) For s ∈ [0, τ ] the eigenvectors of B(s) do not depend on s,
B(s) has k eigenvalues equal to 1, all others λi(s) are strictly less than 1 and
satisfy ∣∣λi(s)

∣∣ ≤ Cs i = 1, . . . , n− k

with C depending only on Γ, τ .
(2) For s ∈ (0, τ ] the matrix ∇2δ(xs) has (k − 1) eigenvalues equal to 1/s, one
(corresponding a p) equal to 0, all others βi(s) are strictly less than 1/s and
satisfy ∣∣βi(s)

∣∣ ≤ C i = 1, . . . , n− k.

(3) The maps

s 7→ βi(s), s 7→ G
(∇δ(xs),∇2δ(xs)

)

are nonincreasing in (0, τ ].

The geometric interpretation of Theorem 3 is the following: consider, for in-
stance, the level set Es := {δ = s} of the distance function δ from a smooth,
simple curve Γ in Rn. Then, if Es lies in the region where δ2 is smooth, we
know that (n− 2) principal curvatures of Es are exactly equal to the 1/s.

The proof of Theorem 3 is based on the continuity of the map s 7→ B(s)
in [0, τ ] and on the fact that B(s) solves the ODE

B′(s) =
B(s)−B2(s)

s
s ∈ (0, τ ]. (5.4)

The ODE is obtained by differentiating twice |∇η|2 = 2η (this identity directly
follows from the equality |∇δ|2 = 1). Indeed, the first differentiation gives
ηijηj = ηi and the second one gives

ηijkηj + ηijηjk = ηik. (5.5)
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It is not hard to see that ηijk(xs)ηj(xs) is equal to B′
ij(s)s, hence (5.4) follows

by (5.5). The ODE implies that the matrices B(s) are diagonal in a common
basis and their eigenvalues satisfy

λ′i(s) =
λi(s)− λ2

i (s)
s

. (5.6)

On the other hand, B(0) is the orthogonal projection on the normal space to
Γ at y, hence B(0) has k eigenvalues equal to 1. Studying the solutions of (5.6)
backward in time we obtain that B(s) must have exactly k eigenvalues equal
to 1 and the other ones must be infinitesimal (with order s) as s → 0+. The
connection between the eigenvalues of ∇2δ and the eigenvalues of ∇2η comes
from the fact that ∇δ is an eigenvalue of ∇2η and from the identity

δδij = ηij − δiδj

that can be obtained by differentiation of ηi = δδi.
Now we can explain the connection, stated in Theorem 2, between the

differential inequality

δt ≥ G
(∇δ,∇2δ

)
on

{
0 < δ ≤ τ

}

and the system

(∇η
)
t
= ∆

(∇η
)

on
{
η = 0

}
.

Let us set

αi := (ηi)t −∆(ηi), β1 ≤ β2 ≤ . . . ≤ βn eigenvalues of ∇2δ.

By Theorem 3, βn−k+2 = · · · = βn = δ−1. Using again identities obtained by
differentiation of |∇δ|2 = 1 we get the following identities

αiδi= δt −∆δ + δ‖∇2δ‖2

= δt −
n∑

i=1

βi + δ

n∑

i=1

β2
i (by the symmetry of ∇2δ)

= δt −
n−k+1∑

i=1

βi + δ

n−k+1∑

i=1

β2
i (by Theorem 3)

= δt −G
(∇δ,∇2δ

)
+ O(δ) (by Theorem 3).

in the set {
(x, t) : 0 < δ(x, t) ≤ τ

}
.
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Assume that αi = 0 for η = 0. Passing to the limit we get

lim
x→y∈Γ

δt −G
(∇δ,∇2δ

)
= 0.

Since δt(x, t) is constant and G
(∇δ,∇2δ

)
is nonincreasing on normal lines to

Γ (moving away from Γ) we infer

δt ≥ G
(∇δ,∇2δ

)
on

{
0 < δ ≤ τ

}
.

Conversely, assume that the differential inequality holds. Approaching to Γ on
a line parallel to p ∈ Sn−1, since δi = pi on the line, we get

αipi ≥ 0 on
{
η = 0

}
.

Since α = H− V is normal to Γ and p is arbitrary, α = 0.
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