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Preface

These are the extended version of the Cattedra Galileiana I gave in April
2003 in Scuola Normale, Pisa. I am grateful to the Society of Amici della
Scuola Normale for the funding and to Professors Maurizio Pratelli, Marzia
De Donno and Paulo Guasoni for organizing these lectures and their hospi-
tality.

In these notes, I give a very quick introduction to stochastic optimal
control and the dynamic programming approach to control. This is done
through several important examples that arise in mathematical finance and
economics. The theory of viscosity solutions of Crandall and Lions is also
demonstrated in one example. The choice of problems is driven by my own
research and the desire to illustrate the use of dynamic programming and
viscosity solutions. In particular, a great emphasis is given to the problem
of super-replication as it provides an usual application of these methods.
Of course there are a number of other very important examples of optimal
control problems arising in mathematical finance, such as passport options,
American options. Omission of these examples and different methods in
solving them do not reflect in any way on the importance of these problems
and techniques.

Most of the original work presented here is obtained in collaboration with
Professor Nizar Touzi of Paris. I would like to thank him for the fruitful
collaboration, his support and friendship.

Oxford, March 2004.
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Chapter 1

Examples and Dynamic
Programming

In this Chapter, we will outline the basic structure of an optimal control prob-
lem. Then, this structure will be explained through several examples mainly
from mathematical finance. Analysis and the solution to these problems will
be provided later.

1.1 Optimal Control.

In very general terms, an optimal control problem consists of the following
elements:

• State process Z(·). This process must capture of the minimal neces-
sary information needed to describe the problem. Typically, Z(t) ∈ <d

is influenced by the control and given the control process it has a Marko-
vian structure. Usually its time dynamics is prescribed through an
equation. We will consider only the state processes whose dynamics is
described through an ordinary or a stochastic differential equation. Dy-
namics given by partial differential equations yield infinite dimensional
problems and we will not consider those in these lecture notes.

• Control process ν(·). We need to describe the control set, U , in
which ν(t) takes values in for every t. Applications dictate the choice
of U . In addition to this simple restriction ν(t) ∈ U , there could be
additional constraints placed on control process. For instance, in the
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stochastic setting, we will require ν to be adapted to a certain filtration,
to model the flow of information. Also we may require the state process
to take values in a certain region (i.e., state constraint). This also places
restrictions on the process ν(·).

• Admissible controls A. A control process satisfying the constraints
is called an admissible control. The set of all admissible controls will
be denoted by A and it may depend on the initial value of the state
process.

• Objective functional J(Z(·), ν(·)). This is the functional to be max-
imized (or minimized). In all of our applications, J has an additive
structure, or in other words J is given as an integral over time.

Then, the goal is to minimize (or maximize) the objective functional J
over all admissible controls. The minimum value plays an important role in
our analysis

Value function: = v = inf
ν∈A

J .

The main problem in optimal control is to find the minimizing control
process. In our approach, we will exploit the Markovian structure of the
problem and use dynamic programming. This approach yields a certain
partial differential equation satisfied by the value function v. However, in
solving this equation we also obtain the optimal control in a “feedback” form.
This means that is the optimal process ν∗(t) is given as ν̂(Z∗(t)), where ν̂ is
the optimal feedback control given as a function of the state and Z∗ is the
corresponding optimal state process. Both Z∗ and the optimal control ν∗ are
computed simultaneously by solving the state dynamics with feedback control
ν̂. Although a powerful method, it also has its technical drawbacks. This
process and the technical issues will be explained by examples throughout
these notes.

1.2 Examples

In this section, we formulate several important examples of optimal control
problems. Their solutions will be given in later sections after the necessary
techniques are developed.
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1.2.1 Deterministic minimal time problem

The state dynamics is given by

d

dt
Z(t) = f(Z(t), ν(t)) , t > 0 ,

Z(0) = z,

where f is a given vector field and ν : [0,∞) → U is the control process. We
always assume that f is regular enough so that for a given control process ν,
the above equation has a unique solution Zν

x(·).
For a given target set T ⊂ <d, the objective functional is

J(Z(·), ν(·)) := inf{t ≥ 0 : Zν
z (t) ∈ T } (or +∞ if set is empty),

:= T ν
z .

Let
v(z) = inf

ν∈A
T ν

z ,

where A := L∞([0,∞); U), and U is a subset of a Euclidean space.
Note that additional constraints typically placed on controls. In robotics,

for instance, control set U can be discrete and the state Z(·) may not be
allowed to enter into certain a region, called obstacles.

1.2.2 Merton’s optimal investment-consumption prob-
lem

This is a financial market with two assets: one risky asset, called stock, and
one “riskless” asset, called bond. We model that price of the stock S(t) as
the solution of

dS(t) = S(t)[µdt + σdW ] , (1.2.1)

where W is the standard one-dimensional Brownian motion, and µ and σ
are given constants. We also assume a constant interest rate r for the Bond
price, B(t), i.e.,

dB(t) = B(t)[rdt] .

At time t, let X(t) be the money invested in the bond, Y (t) be the invest-
ments at the stock, l(t) be the rate of transfer from the bond holdings to
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the stock, m(t) be the rate of opposite transfers and c(t) be the rate of con-
sumption. So we have the following equations for X(t), Y (t) assuming no
transaction costs.

dX(t) = rX(t)dt− l(t)dt + m(t)dt− c(t)dt , (1.2.2)

dY (t) = Y (t)[µdt + σdW ] + l(t)dt−m(t)dt . (1.2.3)

Set

Z(t) = X(t) + Y (t) = wealth of the investor at time t,

π(t) =
Y (t)

Z(t)
.

Then,

dZ(t) = Z(t)[(r + π(t)(µ− r))dt + π(t)σdW ]− c(t)dt . (1.2.4)

In this example, the state process is Z = Zπ,c
z and the controls are π(t) ∈ <1

and c(t) ≥ 0. Since we can transfer funds between the stock holdings and
the bond holdings instantaneously and without a loss, it is not necessary to
keep track of the holdings in each asset separately.

We have an additional restriction that Z(t) ≥ 0. Thus the set of admis-
sible controls Az is given by:

Az := {(π(·), c(·))| bounded, adapted processes so that Zπ,c
Z ≥ 0 a.s.} .

The objective functional is the expected discounted utility derived from con-
sumption:

J = E

[∫ ∞

0

e−βtU(c(t))dt

]
,

where U : [0,∞) → <1 is the utility function. The function U(c) = cp

p
with

0 < p < 1, provides an interesting class of examples. In this case,

v(z) := sup
(π,c)∈Az

E

[∫ ∞

0

e−βt 1

p
(c(t))pdt | Zπ,c

z (0) = z

]
. (1.2.5)

The simplifying nature of this utility is that there is a certain homotethy.
Note that due to the linear structure of the state equation, for any λ > 0,
(π, λc) ∈ Aλz if and only if (π, c) ∈ Az. Therefore,

v(λz) = λpv(z) ⇒ v(z) = v(1)zp . (1.2.6)
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Thus, we only need to compute v(1) and the optimal strategy associated to
it. By dynamic programming, we will see that

c∗(t) = (pv(1))
1

p−1 Z∗(t), (1.2.7)

π∗(t) ≡ π∗ =
µ− r

σ2(1− p)
. (1.2.8)

For v(1) to be finite and thus for the problem to have a solution, β needs to
be sufficiently large. An exact condition is known and will be calculated by
dynamic programming.

1.2.3 Finite time utility maximization

The following variant of the Merton’s problem often arises in finance. Let
Zπ

t,z(·) be the solution of (1.2.4) with c ≡ 0 and the initial condition:

Zπ
t,z(t) = z . (1.2.9)

Then, for all t < T and z ∈ <+, consider

J = E
[

U(Zπ
t,z(T ))

]
,

v(z, t) = sup
πAt,z

E[U(Zπ
t,z(T )|Ft],

where Ft is the filtration generated by the Brownian motion. Mathematically,
the main difference between this and the classical Merton problem is that
the value function here depends not only on the initial value of z but also on
t. In fact, one may think the pair (t, Z(t)) as the state variables, but in the
literature this is understood only implicitly. In the classical Merton problem,
the dependence on t is trivial and thus omitted.

1.2.4 Merton problem with transaction costs

This is an interesting modification of the Merton’s problem due to Constan-
tinides [9] and Davis & Norman [12]. We assume that whenever we move
funds from bond to stock we pay, or loose, λ ∈ (0, 1) fraction to the transac-
tion fee ,and similarly, we loose µ ∈ (0, 1) fraction in the opposite transfers.
Then, equations (1.2.2),(1.2.3) become

dX(t) = rX(t)dt− l(t)dt + (1− µ)m(t)dt− c(t)dt , (1.2.10)

dY (t) = Y (t)[µdt + σdW ] + (1− λ)l(t)dt−m(t)dt . (1.2.11)
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In this model, it is intuitively clear that the variable Z = X + Y , is not
sufficient to describe the state of the model. So, it is now necessary to
consider the pair Z := (X, Y ) as the state process. The controls are the
processes l, m and c, and all are assumed to be non-negative. Again,

v(x, y) := sup
ν=(l,m,c)∈Ax,y

E

[ ∫ ∞

0

e−βt 1

p
(c(t))pdt

]
.

The set of admissible controls are such that the solutions (Xν
x , Y ν

x ) ∈ L
for all t ≥ 0. The liquidity set L ⊂ <2 is the collection of all (x, y) that
can be transferred to a non-negative position both in bond and stock by an
appropriate transaction, i.e.,

L = {(x, y) ∈ <2 : ∃(L,M) ≥ 0 s.t.

(x + (1− µ)M − L, Y −M + (1− λ)L) ∈ <+ ×<+}
= {(x, y) ∈ <2 : (1− λ)x + y ≥ 0 and x + (1− µ)y ≥ 0} .

An important feature of this problem is that it is possibly singular, i.e.,
the optimal (l(·),m(·)) process can be unbounded. On the other hand, the
nonlinear penalization c(t)p does not allow c(t) to be unbounded.

The singular problems share this common feature that the control enters
linearly in the state equation and either is not included in the objective
functional or included only in a linear manner.

So, it is convenient to introduce processes:

L(t) :=

∫ t

0

l(s)ds, M(t) :=

∫ t

0

m(s)ds .

Then, (L(·),M(·)) are nondecreasing adopted processes and (dL(t), dM(t))
can be defined as random measures on [0,∞). With this notation, we rewrite
(1.2.10), (1.2.11) as

dX = rXdt− dL + (1− µ)dM − c(t)dt ,

dY = Y [µdt + σdW ] + (1− λ)dL− dM ,

and ν = (L, M, c) ∈ Ax,y is admissible if they are adapted (L, M) nonde-
creasing, c ≥ 0 and

(Xν
x(t), Y ν

y (t)) ∈ L ∀t ≥ 0 . (1.2.12)
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1.2.5 Super-replication with portfolio constraints

Let Zπ
t,z(·) be the solution of (1.2.4) with c ≡ 0 and (1.2.9), and let St,s(·)

be the solution of (1.2.1) with St,s(t) = s. Given a deterministic function
G : <1 → <1 we wish to find

v(t, s) := inf{z | ∃π(·) adapted, π(t) ∈ K and Zπ
t,z(T ) ≥ G(St,s(T )) a.s. } ,

where T is maturity, K is an interval containing 0, i.e., K = [−a, b]. Here
a is related to a short-sell constraint and b to a borrowing constraint (or
equivalently a constraint on short-selling the bond).

This is clearly not in the form of the previous problems, but it can be
transferred into that form. Indeed, set

X (z, s) :=

{
0, z ≥ G(s),

+∞, z < G(s).

Consider an objective functional,

J(t, s, s; π(·)) := E
[X (Zπ

t,z(T ), St,s(T )) | Ft

]
,

u(t, z, s) := inf
π∈A

J(t, s, s; π(·)) ,

and π ∈ A if and only if π is adapted with values in K. Then, observe that

u(t, z, s) =

{
0, z > v(t, s)

+∞, z < v(t, s) .

and at z = v(t, z, s) is a subtle question. In other words,

v(t, s) = inf{z| u(t, z, s) = 0} .

1.2.6 Buyer’s price and the no-arbitrage interval

In the previous subsection, we considered the problem from the perspective
of the writer of the option. For a potential buyer, if the quoted price z of a
certain claim is low, there is a different possibility of arbitrage. She would
take advantage of a low price by buying the option for a price z. She would
finance this purchase by using the instruments in the market. Then she tries
to maximize her wealth (or minimize her debt) with initial wealth of − z. If
at maturity,

Zπ
t,−z(T ) + G(St,s(T )) ≥ 0, a.s.,
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then this provides arbitrage. Hence the largest of these initial data provides
the lower bound of all prices that do not allow arbitrage. So we define (after
observing that Zπ

t,−z(T ) = −Zπ
t,z(T )),

v(t, s) := sup{z | ∃π(·) adapted, π(t) ∈ K and Zπ
t,z(T ) ≤ G(St,s(T )) a.s. } .

Then, the no-arbitrage interval is given by

[v(t, s), v(t, s)] .

In the presence of friction, there are many approaches to pricing. How-
ever, the above above interval must contain all the prices obtained by any
method.

1.2.7 Super-replication with gamma constraints

To simplify, we take r = 0, µ = 0. We rewrite (1.2.4) as

dZ(t) = n(t)dS(t) ,

dS(t) = S(t)σdW (t) .

Then, n(t) = π(t)Z(t)/S(t) is the number of stocks held at a given time.
Previously, we placed no restrictions on the time change of rate of n(·) and
assumed only that it is bounded and adapted. The gamma constraint, re-
stricts n(·) to be a semimartingale,

dn(t) = dA(t) + γ(t)dS(t) ,

where A is an adapted BV process, γ(·) is an adapted process with values in
an internal [γ∗, γ∗].

Then, the super-replication problem is

v(t, s) := inf{z| ∃ν = (n(t), A(·), γ(·)) ∈ At,s,z s.t. Zν
t,z(T ) ≥ G(St,s(T ))} .

The important new feature here is the singular form of the equation for the
n(·) process. Notice the dA term in that equation.
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1.3 Dynamic Programming Principle

In this section, we formulate an abstract dynamic programming following the
recent manuscript of Soner & Touzi [20]. This principle holds for all dynamic
optimization problems with a certain structure. Thus, the structure of the
problem is of critical importance. We formulate this in the following main
assumptions.

Assumption 1 We assume that for every control ν and initial data (t, z),
the corresponding state process starts afresh at every stopping time τ > t,
i.e.,

Zν
t,z(s) = Zν

τ,Zν
t,z(τ)(s) , ∀s ≤ τ .

Assumption 2 The affect of ν is causal, i.e., if ν1(s) = ν2(s) for all s ≤ τ ,
where τ is a stopping time, then

Zν1

t,z(s) = Zν2

t,z(s) , ∀s ≤ τ .

Moreover, we assume that if ν is admissible at (t, z) then, ν is restricted
to the stochastic interval [τ, T ] is also admissible starting at (τ, Zν

t,z(τ)).

Assumption 3 We also assume that the concatenation of admissible con-
trols yield another admissible control. Mathematically, for a stopping time τ
and ν ∈ At,z, set ην = (τ, Zν

t,z(τ)). Suppose ν̂ ∈ Aην and define

ν(s) =

{
ν(s), s ≤ τ ,
ν̂(s), s ≥ τ .

Then, we assume ν ∈ At,z. Precise formulation is in Soner & Touzi [20].

Assumption 4 Finally, we assume an additive structure for J , i.e.,

J =

∫ τ

t

L(s, ν(s), Zν
t,z(s))ds + G(Zν

t,z(τ)) .

The above list of assumptions need to be verified in each example. Under
these structural assumptions, we have the following result which is called the
dynamic programming principle or DPP in short.
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Theorem 1.3.1 (Dynamic Programming Principle) For any stopping
time τ ≥ t

v(t, z) = inf
ν∈At,z

E

[ ∫ τ

t

Lds + v(τ, Zν
t,z(τ)) | Ft

]
.

We refer to Fleming & Soner [14] and Soner & Touzi [20]for precise state-
ments and proofs.

1.3.1 Formal Proof of DPP

By the additive structure of the cost functional,

v(t, z) = inf
ν∈At,z

E(

∫ T

t

Lds + G(Zν
t,z(T )) | Ft)

= inf
ν∈At,z

E(

∫ τ

t

Lds + E[

∫ T

τ

Lds + G(Zν
t,z(T )) | Fτ ] | Ft) .(1.3.13)

By Assumption 2, ν restricted to the interval [τ, T ] is in Aτ,Zν
t,z(τ). Hence,

E[

∫ T

t

Lds + G | Fτ ] ≥ v(ην),

where
ην := ην

t,z(τ) = (τ, Zν
t,z(τ)) .

Substitute the above inequality into (1.3.13) to obtain

v(t, z) ≥ inf
ν

E[

∫ τ

t

Lds + v(ην) | Ft] .

To prove the reverse inequality, for ε > 0 and ω ∈ Ω, choose νω,ε ∈ Aην so
that

E(

∫ T

τ

L(s, νω,ε(s), Z
νω,ε

ην (s))ds + G(Z
νω,ε

ην (T ))|Fτ ) ≤ v(ην) + ε .

For a given ν ∈ At,z, set

ν∗(s) :=

{
ν(s), s ∈ [t, τ ]

νω,ε(s), τ ≤ s ≤ T

10



Here there are serious measurability questions (c.f. Soner & Touzi), but it
can be shown that ν∗ ∈ At,z. Then, with Z∗ = Zν∗

t,z ,

v(t, z) ≤ E(

∫ T

t

L(s, ν∗(s), Z∗(s))ds + G(Z∗(T )) | Ft)

≤ E(

∫ τ

t

L(s, ν(s), Z(s))ds + v(ην) + ε | Ft) .

Since this holds for any ν ∈ At,z and ε > 0,

v(t, z) ≤ inf
ν∈At,z

E(

∫ T

τ

Lds + v(ην) + |Ft) .

¤
The above calculation is the main trust of a rigorous proof. But there are

technical details that need to provided. We refer to the book of Fleming &
Soner and the manuscript by Soner & Touzi.

1.3.2 Examples for the DPP

Our assumptions include all the examples given above. In this section we look
at the super-replication, and more generally a target reachability problem
and deduce a geometric DPP from the above DPP. Then, we will outline an
example for theoretical economics for which our method does that always
apply.

Target Reachability.
Let Zν

t,z,At,z be as before. Given a target set T ⊂ <d. Consider

V (t) := {z ∈ <d : ∃ν ∈ At,z s.t. Zν
t,z(T ) ∈ T a.s.} .

This is the generalization of the super-replication problems considered before.
So as before, for A ⊂ <d, set

XA(z) :=

{
0, z ∈ T ,

+∞ z 6∈ T ,

and
v(t, z) := inf

ν∈Az,t

E[XT (Zν
t,z(T )) | Ft] .

11



Then,

v(t, z) = XV (t)(z) =

{
0, z ∈ V (t) ,

+∞, z 6∈ V (t) .

Since, at least formally, DPP applies to v,

v(t, z) = XV (t)(z) = inf
ν∈At,z

E(v(τ, Zν
t,z(τ)) | Ft)

= inf
ν∈At,z

E(XV (τ)(Z
ν
t,z(τ)) | Ft) .

Therefore, V (t) also satisfies a geometric DPP:

V (t) = {z ∈ <d : ∃ν ∈ At,z s.t. Zν
t,z(τ) ∈ V (τ) a.s. } . (1.3.14)

In conclusion, this is a nonstandard example of dynamic programming,
in which the principle has the above geometric form. Later in these notes,
we will show that this yields a geometric equation for the time evolution of
the reachability sets.

Incentive Controls.
Here we describe a problem in which the dynamic programming does not

always hold. The original problem of Benhabib [4] is a resource allocation
problem. Two players are using y(t) by consuming ci(t), i = 1, 2 . The
equation for the resource is

dy

dt
= η(y(t))− c1(t)− c2(t) ,

with the constraint
y(t) ≥ 0, ci ≥ 0 .

If at some time t0, y(t0) = 0, after this point we require y(t), ci(t) = 0 for
t ≥ t0. Each player is trying to maximize

vi(y) := sup
ci

∫ ∞

0

e−βtci(t)dt .

Set

v(y) := sup
c1+c2=c

∫ ∞

0

e−βtc(t)dt ,

so that, clearly, v1(y) + v2(y) ≤ v(y). However, each player may bring the
state to a bankruptcy by consuming a large amount to the detriment of the
other player and possibly to herself as well.
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To avoid this problem Rustichini [17] proposed a variation in which the
state equation is

d

dt
X(t) = f(X(t), c(t)) ,

with initial condition
X(0) = x .

Then, the pay-off is

J(x, c(·)) =

∫ ∞

0

e−βtL(t,X(t), c(t))dt ,

and c(·) ∈ Ax if

∫ ∞

t

e−βs L(t,X(t), c(t))ds ≥ e−βsD(Xc
x(t), c(t)), ∀t ≥ 0 ,

where D is a given function. Note that this condition, in general, violates
the concatenation property of the set of admissible controls. Hence, dynamic
programming does not always hold. However, Barucci-Gozzi-Swiech [3] over-
come this in certain cases.

1.4 Dynamic Programming Equation

This equation is the infinitesimal version of the dynamic programming prin-
ciple. It is used, generally, in the following two ways:

• Derive the DPE formally as we will do later in these notes.

• Obtain a smooth solution, or show that there is a smooth solution via
PDE techniques.

• Show that the smooth solution is the value function by the use of Ito’s
formula. This step is called the verification.

• As a by product, an optimal policy is obtained in the verification.

This is the classical use of the DPE and details are given in the book
Fleming & Soner and we will outline it in detail for the Merton problem.

The second approach is this:

13



• Derive the DPE rigorously using the theory of viscosity solutions of
Crandall and Lions.

• Show uniqueness or more generally a comparison result between sub
and super viscosity solutions.

• This provides a unique characterization of the value function which can
then be used to obtain further results.

This approach, which become available by the theory of viscosity solu-
tions, avoids showing the smoothness of the value function. This is very
desirable as the value function is often not smooth.

1.4.1 Formal Derivation of the DPE

To simplify the presentation, we only consider the state processes which are
diffusions. Let the state variable X be the unique solution

dX = µ(t,X(t), ν(t))dt + σ(t,X(t), ν(t)))dW ,

and a usual pay-off functional

J(t, x, ν) = E[

∫ T

t

L(s,Xν
t,x(s), ν(s))ds + G(Xν

t,x(T )) | Ft] ,

v(t, x) := inf
ν∈At,x

J(t, x, ν) .

We assume enough so that the DPP holds. Use τ = t + h in the DPP to
obtain

v(t, x) = inf
ν∈At,x

E[

∫ t+h

t

Lds + v(t + h,Xν
t,x(t + h)) | Ft] .

We assume, without justification, that v is sufficiently smooth. This part of
the derivation is formal and can not be made rigorous unless viscosity theory
is revoked. Then, by the Ito’s formula,

v(t + h,Xν
t,x(t + h)) = v(t, x) +

∫ t+h

t

(
∂

∂t
v + Lν(s)v)ds + martingale ,

where

Lνv := µ(t, x, ν) · ∇v +
1

2
tr a(t, x, ν)D2v ,

14



with the notation,

a(t, x, ν) := σ(t, x, ν)σ(t, x, ν)t and tr a :=
d∑

i=1

aii .

In view of the DPP,

sup
ν∈At,x

E[−
∫ t+h

t

(
∂

∂t
v + Lν(s)v + L)ds] = 0 .

We assume that the coefficients µ, a, L are continuous. Divide the above
equation by h and let h go to zero to obtain

− ∂

∂t
v(t, x) + H(x, t,∇v(t, x), D2v(t, x)) = 0 , (1.4.15)

where

H(x, t, ξ, A) := sup{−µ.ξ − 1

2
tr aA− l : (µ, a, l) ∈ A(t, x)} ,

and (µ, a, l) ∈ A(t, x) iff there exists ν ∈ At,x such that

(µ, a, l) = lim
h↓0

1

h

∫ t+h

t

(µ(x, ν(s), t), a(x, ν(s), t), L(x, ν(s), t))ds .

We should emphasize that we assume that the functions µ, a, L are suffi-
ciently regular and we also made an unjustified assumption that v is smooth.
All these assumptions are not needed in the theory of viscosity solutions as
we will see later or we refer to the book by Fleming & Soner.

For a large class of problems, At,x = L∞((0,∞) × Ω; U) for some set U .
Then,

A(t, x) = {(µ(x, ν, t), a(x, ν, t), L(x, ν, t) : ν ∈ U} ,

and

H(x, t, ξ, A) = sup
ν∈U

{−µ(x, ν, t) · ξ − 1

2
tr a(x, ν, t)A− L(x, ν, t)} .

15



1.4.2 Infinite horizon

A important class of problems are known as the discounted infinite horizon
problems. In these problems the state equation for X is time homogenous
and the time horizon T = ∞. However, to ensure the finiteness of the cost
functional, the running cost is exponentially discounted, i.e.,

J(x, ν) := E

∫ ∞

0

e−βtL(s, Xν
x(s), ν(s))ds .

Then, following the same calculation as in the finite horizon case, we derive
the dynamic programming equation to be

βv(x) + H(x,∇v(x), D2v(x)) = 0 , (1.4.16)

where for At,x = L∞((0,∞)× Ω; U),

H(x, ξ, A) = sup
ν∈U

{−µ(x, ν) · ξ − 1

2
tr a(x, ν)A− L(x, ν)} .

1.5 Examples for the DPE

In this section, we will obtain the corresponding dynamic programming equa-
tion for the examples given earlier.

1.5.1 Merton Problem

We already showed that, in the case with no transaction costs,

v(z) = v(1)zp .

This is a rare example of an interesting stochastic optimal control problem
with a smooth and an explicit solution. Hence, we will employ the first of
the two approaches mentioned earlier for using the DPE.

We start with the DPE (1.4.16), which takes the following form for this
equation (accounting for sup instead of inf),

βv(z) + inf
π∈<1,c≥0

{−(r + π(µ− r))zvz(z)− 1

2
π2σ2z2vzz + cvz − 1

p
cp} = 0 .

16



We write this as,

βv(z)− rzvz(z)− sup
π∈<1

{π(µ− r)zvz +
1

2
π2σ2z2vzz} − sup

c≥0
{−cvz +

1

p
cp} = 0 .

We directly calculate that (for vz(z) > 0 > vzz(z))

βv(z)− rzvz(z)− 1

2

((µ− r)zvz(z))2

σ2z2vzz(z)
−H(vz(z)) = 0 ,

where

H(vz(z)) =
1− p

p
(vz(z))

p
p−1 ,

with maximizers

π∗ = −(µ− r)zvz(z)

σ2z2vzz(z)
, c∗ = (vz(z))

1
p−1 .

We plug the form v(z) = v(1)zp in the above equations. The result is the
equation (1.2.7) and (1.2.8) and

v(1)

[
β − rp− p(µ− r)2

2(1− p)σ2

]
− 1− p

p
(p v(1))

p
p−1 = 0 .

The solution is

v(1) = α :=
(1− p)1−p

p

[
β − rp− p(µ− r)2

2(1− p)σ2

]p−1

,

and we require that

β > rp +
p(µ− r)2

2(1− p)σ2
.

Although the above calculations look to be complete, we recall that the
derivation of the DPE is formal. For that reason, we need to complete these
calculations with a verification step.

Theorem 1.5.1 (Verification) The function αzp, with α as above, is the
value function. Moreover, the optimal feedback policies are given by the equa-
tions (1.2.7) and (1.2.8).
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Proof. Set u(z) := αzp.
For z > 0 and T > 0, let ν = (π(·), c(·)) ∈ Az be any admissible con-

sumption, investment strategy. Set Z := Zν
z . Apply the Ito’s rule to the

function e−β t u(Z(t)). The result is

e−βT E[u(Z(T ))] = u(z) +

∫ T

0

e−βt E[−β u(Z(t)) + Lπ(t),c(t)u(Z(t))] dt,

where Lπ,c is the infinitesimal generator of the wealth process. By the fact
that u solves the DPE, we have, for any π and c,

β u(z)− Lπ,cu(z)− 1

p
cp ≥ 0.

Hence,

u(z) ≥ E[e−β T u(Z(T )) +

∫ T

0

e−β t 1

p
(c(t))p dt] .

By direct calculations, we can show that

lim
T→∞

E[e−β T u(Z(T ))] = lim
T→∞

E[e−β T α (Z(T ))p] = 0 .

Also by the Fatou’s Lemma,

lim
T→∞

E[

∫ T

0

e−β t 1

p
(c(t)p dt] = J(z; π(·), c(·)).

Since this holds for any control, we proved that

u(z) = αzp ≥ v(z) = value function .

To prove the opposite inequality we use the controls (π∗, c∗) given by the
equations (1.2.7) and (1.2.8). Let Z∗ be the corresponding state process.
Then,

β u(z)− Lπ∗,c∗u(z)− 1

p
(c∗)p = 0 .

Therefore,

Ee−βT u(Z∗(T )) = u(z) +

∫ T

0

e−βtE[−β u(Z∗(t)) + Lπ∗(t),c∗(t)u(Z∗(t))]dt

= u(z) + E[

∫ T

0

e−β t 1

p
(c∗(t))p dt] .
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Again we let T tend to infinity. Since Z∗ and the other quantities can be
calculated explicitly, it is straightforward to pass to the limit in the above
equation. The result is

u(z) = J(z; π∗, c∗).

Hence, u(z) = v(z) = J(z; π∗, c∗). ¤

1.5.2 Minimal Time Problem

For Ax = L∞((0,∞); U), the dynamic programming equation has a simple
form,

sup
ν∈U

{−f(x, ν) · ∇v(x)− 1} = 0 x 6∈ T .

This follows from our results and the simple observation that

J = τ ν
x =

∫ τν
x

0

1ds .

So we may think of this problem an infinite horizon problem with zero dis-
count, β = 0.

In the special example, U = B1, f(x, ν) = ν, the above equation simplifies
to the Eikonal equation,

|∇v(x)| = 1 x 6∈ T ,

together with the boundary condition,

v(x) = 0, x ∈ T .

The solution is the distance function,

v(x) = inf
y∈T

{|x− y|} = |x− y∗| ,

and the optimal control is

ν∗ =
y∗ − x

|y∗ − x| ∀t .

As in the Merton problem, the solution is again explicitly available. How-
ever, v(x) is not a smooth function, and the above assertions have to be
proved by the viscosity theory.
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1.5.3 Transaction costs

Using the formulation (1.2.10) and (1.2.11), we formally obtain,

βv(x, y) + inf
(l,m,c)≥0

{−rxvx − µyvy − 1

2
σ2y2vyy −

l[(1− λ)vy − vx]−m[(1− µ)vx − vy] + cvx − 1

p
cp} = 0 .

We see that, since l and m can be arbitrarily large,

(1− λ)vy − vx ≤ 0 and (1− µ)vx − vy ≤ 0 . (1.5.17)

Also dropping the l and m terms we have,

βv − rxvx − µyvy − 1

2
σ2y2vyy := βv − Lv ≥ H(vx) ,

where

H(vx) := sup
c≥0

{
1

p
cp − cvx

}
.

Moreover, if both inequalities are strict in (1.5.17), then the above is an
equality. Hence,

min{βv − Lv −H(vx), vx − (1− λ)vy, vy − (1− µ)vx} = 0 . (1.5.18)

This derivation is extremely formal, but can be verified by the theory of
viscosity solutions, cf. Fleming & Soner [14], Shreve & Soner [18]. We also
refer to Davis & Norman [12] who was first to study this problem using the
first approach described earlier.

Notice also the singular character of the problem resulted in a quasi vari-
ational inequality, instead of a more standard second order elliptic equation.

We again use homothety λpv(x, y) = v(λx, λy), to represent v(x, y) so

v(x, y) = (x + y)pf(
y

x + y
), (x, y) ∈ L ,

where

f(u) := v(1− u, u), −1− λ

λ
≤ u ≤ 1

µ
.

The DPE for v, namely (1.5.18), turns into an equation for f the coefficient
function; a one dimensional problem which can be solved numerically by
standard methods.
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Figure 1.1:

Further, we know that v is concave. Using the concavity of v, we show
that there are points
− (1−λ)

λ
≤ a∗ < π∗mert < b∗ ≤ 1

µ
so that

In Region I: βv − Lv −H(vx) = 0 for a∗ ≤ y

x + y
≤ b∗ ,

In Region II: vx − (1− λ)vy = 0 for − (1− λ)

λ
≤ y

x + y
≤ a∗ ,

In Region III: vy − (1− µ)vx = 0 for b∗ ≤ y

x + y
≤ 1

µ
.

So we formally expect that in Region 1, no transactions are made and con-

sumption is according to , c∗ = (vx(x, y))
1

p−1 . In Region 2, we sell bonds and
buy stocks, and in Region 3 we sell stock and buy bonds. Finally, the process
(X(t), Y (t)) is kept in Region 1 through reflection.

Constant b∗, a∗ are not explicitly available but can be computed numeri-
cally.
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1.5.4 Super-replication with portfolio constraints

In the next Chapter, we will show that the DPE is (with K = (−a, b) )

min{−∂v

∂t
− 1

2
s2σ2vss − rsvs + rv ; bv − svs; svs + av} = 0

with the final condition
u(T, s) = G(s) .

Then, we will show that

u(t, s) = E∗[Ĝ(St,s(T )) | Ft] ,

where E∗ is the risk neutral expectation and Ĝ is the minimal function sat-
isfying

(i). Ĝ ≥ G ,

(ii) −a ≤ sĜs(s)

Ĝs
≤ b .

Examples of Ĝ will be computed in the last Chapter.

1.5.5 Target Reachability Problem

Consider
dX = µ(t, z, ν(t))dt + σ(t, z, ν(t))dW ,

as before, A = L∞((0,∞); U). The reachability set is given by,

V (t) := {x| ∃ν ∈ A such that Xν
t,x(T ) ∈ T a.s} ,

where T ⊂ <d is a given set. Then, at least formally,

v(t, x) := XV (t)(x) = lim
ε↓0

Hε(w(t, x)) ,

where
w(t, x) = inf

ν∈A
E[G(Xν

t,x(T )) | Ft] ,

Hε(w) =
tanh(w/ε) + 1

2
,

and G : <d → [0,∞) any smooth function which vanishes only on T , i.e.,
G(x) = 0 if and only if x ∈ T . Then, the standard DPE yields,

−∂w

∂t
+ sup

ν∈U
{−µ(t, x, ν) · ∇w − 1

2
tr(a(t, x, ν)D2w)} = 0 .
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We calculate that, with wε := Hε(w),

∂wε

∂t
= (Hε)′

∂w

∂t
, ∇wε = (Hε)′∇w, D2wε = (Hε)′D2w+(Hε)′′∇w⊗∇w .

Hence,

(Hε)′D2w = D2wε − (Hε)′′

[(Hε)′]2
∇wε ⊗∇wε .

This yields,

−∂wε

∂t
+ sup

ν∈U
{−µ · ∇wε − 1

2
tr aD2wε +

1

2

(Hε)′′

[(Hε)′]2
a∇wε · ∇wε} = 0 .

Here, very formally, we conjecture the following limiting equation for v =
lim wε:

−∂w

∂t
sup

ν∈K(∇w)

{−µ · ∇w − 1

2
tr aD2w} = 0 . (1.5.19)

K(ξ) := {ν : σt(t, x, ν)ξ = 0} .

Notice that for ν ∈ K(∇wε), a∇wε · ∇wε = 0. And if ν 6∈ K(∇wε) then,
a∇wε · ∇wε = |σt∇wε|2 > 0 and (Hε)′′/[(Hε)′]2 ≈ 1/H will cause the non-
linear term to blow-up.

The above calculation is very formal. A rigorous derivation using the
viscosity solution and different methods is available in Soner & Touzi [20, 21].

Mean Curvature Flow.
This is an interesting example of a target reachability problem, which

provides a stochastic representation for a geometric flow. Indeed, consider a
target reachability problem with a general target set and state dynamics

dX =
√

2(I − ν ⊗ ν)dW ,

where ν(·) ∈ ∂B1 is a unit vector in <d. In our previous notation, the control
set U is set of all unit vectors, and A is the collection of all adapted pro-
cess with values in U . Then, the geometric dynamic programming equation
(1.5.19) takes the form

−∂v

∂t
+ sup

ν∈K(∇v)

{−tr(I − ν ⊗ ν)D2v} = 0 ,
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and

K(∇v) = {ν ∈ B1 : (I − ν ⊗ ν)∇v = 0} = {± ∇v

|∇v|} .

So the equation is

−∂v

∂t
−∆v +

D2v∇v · ∇v

|∇v|2 = 0 .

This is exactly the level set equation for the mean curvature flow as in the
work of Evans-Spruck [13] and Chen-Giga-Goto [6].

If we use
dX =

√
2Π(t)dW ,

where Π(t) is a projection matrix on <d onto (d−k) dimensional planes then
we obtain the co-dimension k mean curvature flow equation as in Ambrosio
& Soner [1].
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Chapter 2

Super-Replication under
portfolio constraints

In this Chapter, we will provide all the technical details for this specific
problem as an interesting example of a stochastic optimal control problem.

For this problem, two approaches are available. In the first, after a clever
duality argument, this problem is transformed into a standard optimal con-
trol problem and then solved by dynamic programming, we refer to Karatzas
& Shreve [15] for details of this method. In the second approach, dynamic
programming is used directly. Although, when available the first approach
provides more insight, it is not always possible to apply the dual method.
The second approach is a direct one and applicable to all super-replication
problems. The problem with Gamma constraint is an example for which the
dual method is not yet known.

2.1 Solution by Duality

Let us recall the problem briefly. We consider a market with one stock and
one bond. By multiplying er(T−t) we may take r = 0, (or equivalently taking
the bond as the numeriare). Also by a Girsanov transformation, we may
take µ = 0. So the resulting simpler equations for the stock price and wealth
processes are

dS(t) = σS(t)dW (t) ,

dZ(t) = σπ(t)Z(t)dW (t) .
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A contingent claim with payoff G : [0,∞) → <1 is given. The minimal
super-replication cost is

v(t, s) = inf{z : ∃π(·) ∈ A s.t. Zπ
t,z(T ) ≥ G(St,s(T )) a.s. } ,

where A is the set of all essentially bounded, adapted processes π(·) with
values in a convex set K.

This restriction of π(·) ∈ K, corresponds to proportional borrowing (or
equivalently short-selling of bond) and short-selling of stock constraints that
the investors typically face.

The above is the so-called writer’s price. The buyer’s point of view is
slightly different. The appropriate target problem for this case is

v̂(t, s) := sup{z : ∃π(·) ∈ A s.t. Zπ
t,−z(T ) + G(St,s(T )) ≥ 0 a.s. } .

Then, the interval [v̂(t, s), v(t, s)] gives the no-arbitrage interval. That is,
if the initial price of this claim is in this interval, then, there is no admissible
portfolio process π(·) which will result in a positive position with probability
one.

2.1.1 Black-Scholes Case

Let us start with the unconstrained case, K = <1. Since Zπ
t,z(·) is a martin-

gale, if there is z and π(·) ∈ A which is super-replicating, then

z = Zν
t,z(t) = E[Zπ

t,z(T ) | Ft] ≥ E[G(St,s(T ) | Ft] .

Our claim is, indeed the above inequality is an equality for z = v(t, s). Set

Yu := E[G(St,s(T )) | Fu] .

By the martingale representation theorem, Y (·) is a stochastic integral. We
choose to write it as

Y (u) = E[G(St,s(T ))|Ft] +

∫ u

t

σπ∗(ρ)Y (ρ)dW (ρ) ,

with an appropriate π∗(·) ∈ A. Then,

Y (·) = Zπ∗
t,z0

(·), z0 = E[G(St,s(T )) | Ft] .
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Hence, v(t, s) ≥ z0. But we have already shown that if an initial capital
supports a super-replicating portfolio then, it must be larger than z0. Hence,

v(t, s) = z0 = E[G(St,s(T )) | Ft] := vBS(t, s) ,

which is the Black-Scholes price. Note that in this case, starting with z0,
there always exists a replicating portfolio.

In this example, it can be shown that the buyer’s price is also equal to
the Black-Scholes price vBS. Hence, the no-arbitrage interval defined in the
previous subsection is the singleton {vBS}. Thus, that is the only fair price.

2.1.2 General Case

Let us first introduce several elementary facts from convex analysis. Set

δK(ν) := sup
π∈K

−πv, K̃ := {ν : δK(ν) < ∞} .

In the convex analysis literature, δK is the support function of the convex set
K. In one dimension, we may directly calculate these functions. However,
we use this notation, as it is suggestive of the multidimensional case. Then,
it is a classical fact that

π ∈ K ⇔ πν + δK(ν) ≥ 0 ∀ν ∈ K̃ .

Let z, π(·) be an initial capital, and respectively, a super-replicating portfolio.
For any ν(·) with values in K̃, let P ν be such that

W ν(u) := W (u) +

∫ u

t

ν(ρ)
1

σ
dρ

is a P ν martingale. This measure exists under integrability conditions on ν(·),
by the Girsanov theorem. Here we assume essentially bounded processes, so
P ν exits. Set

Z̃(u) := Zπ
t,z(u) exp(−

∫ u

t

δK(ν(ρ))dρ) .

By calculus,

dZ̃(u) = Z̃(u)[−(δK(ν(u)) + π(u)ν(u))du + σdW ν(u)] .
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Since π(u) ∈ K and ν(u) ∈ K̃ , δK(ν(u) + π(u)ν(u) ≥ 0 for all u. Therefore,
Z̃(u) is a super-martingale and

Eν [Z̃(T ) | Ft] ≤ Z̃(t) = Zπ
t,z(t) = z .

Also Zπ
t,z(T ) ≥ G(St,s(T )) P−a.s, and therefore, P ν-a.s. as well. Hence,

Z̃(T ) = exp(−
∫ T

t

δK(ν(v))du) Zπ
t,z(T )

≥ exp(−
∫ T

t

δK(ν(v))du) G(St,s(T )) P ν − a.s. .

All of these together yield,

v(t, s) ≥ zν := Eν [exp(−
∫ T

t

δK(ν(v))du)G(St,s(T )) | Ft] .

Since this holds for any ν(·) ∈ K̃,

v(t, s) ≥ sup
ν∈K̃

zν .

The equality is obtained through a super-martingale representation for the
right hand side, c.f. Karatzas & Shreve [15]. The final result is

Theorem 2.1.1 (Cvitanic & Karatzas [11]) The minimal super replicat-
ing cost v(t, s) is the value function of the standard optimal control problem,

v(t, s) = E

[
exp(−

∫ T

t

δK(ν(v))du) G(Sν
t,s(T )) | Ft

]
,

where Sν
t,s solve

dSν
t,s = Sν

t,s(T ) [−νdt + σdW ] .

Now this problem can be solved by dynamic programming. Indeed, an
explicit solution was obtained by Broadie, Cvitanic & Soner [5]. We will
obtain this solution by the direct approach in the next section.
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2.2 Direct Solution

In this section, we will use dynamic programming directly to obtain a solu-
tion. The dynamic programming principle for this problem is

v(t, s) = inf{Z : ∃π(·) ∈ A s.t. Zπ
t,z(τ) ≥ v(τ, St,s(τ)) a.s. } .

We will use this to derive first the dynamic programming equation and
then the solution.

2.2.1 Viscosity Solutions

We refer to the books by Barles [2], Fleming & Soner [14], the User’s Guide
[10] for an introduction to viscosity solutions and for more references to the
subject.

Here we briefly introduce the definition. For a locally bounded function
v, set

v∗(t, s) := lim sup
(t′,s′)→(t,s)

v(t, s), v∗(t, s) := lim inf
(t′,s′)→(t,s)

v(t, s) .

Consider the partial differential equation,

F (t, s, v, vt, vs, vss) = 0 .

We say that v is a viscosity supersolution if for any ϕ ∈ C1,2 and any mini-
mizer (t0, s0) of (u∗ − ϕ),

F (t0, s0, u∗(t0, s0), ϕt(t0, s0), ϕs(t0, s0), ϕss(t0, s0)) ≥ 0 . (2.2.1)

A subsolution satisfies

F (t0, s0, u
∗(t0, s0), ϕt, ϕs, ϕss) ≤ 0 , (2.2.2)

at any maximizer of (u∗ − ϕ).
Note that a viscosity solution of F = 0 is not a viscosity solution of

−F = 0.
It can be checked that the distance function introduced in the minimal

time problem is a viscosity solution of the Eikonal equation.

Theorem 2.2.1 The minimal super-replicating cost v is a viscosity solution
of the DPE,

min{−∂v

∂t
− 1

2
s2σ2vss − rsvs + rv ; bv − svs; svs + av} = 0 . (2.2.3)

The proof will be given in the next two subsections.

29



2.2.2 Supersolution

Assume G ≥ 0. Let ϕ ∈ C1,2 and

v∗(t0, s0)− ϕ(t0, s0) = 0 ≤ (v∗ − ϕ)(t, s) ∀(t, s).

Choose tn, sn, zn such that

(tn, sn) → (t0, s0), v(tn, sn) → v∗(t0, s0),

v(tn, sn) ≤ zn ≤ ϕ(tn, sn) +
1

n2
.

Then, by the dynamic programming principle, there is πn(·) ∈ A so that

Zn(tn +
1

n
) ≥ v(tn +

1

n
, Sn(tn +

1

n
)) a.s ,

where
Zn := Zπn

tn,zn
, Sn := Stn,sn .

Since ϕ ≤ v∗ ≤ v ,

Zn(tn +
1

n
) ≥ ϕ(tn +

1

n
, Sn(tn +

1

n
)) a.s .

We use the Ito’s rule and the dynamics of Zn(·) to obtain,

zn +

∫ tn+ 1
n

tn

σπn(u)Zn(u)dW (u) ≥ ϕ(tn, sn)

+

∫ tn+ 1
n

tn

(ϕt + Lϕ)(u, Sn(u))du

+

∫ tn+ 1
n

tn

σϕs(u, Sn(u))Sn(u)dW (u) .

We rewrite this as

cn +

∫ tn+ 1
n

tn

an(u)du +

∫ tn+ 1
n

tn

bn(u)dW (u) ≥ 0 a.s. ,∀n ,

where

cn := zn − ϕ(tn, sn) ∈ [0,
1

n2
],
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an(u) = −(ϕt + Lϕ)(u, Sn(u)), [Lϕ =
1

2
σ2s2ϕss],

bn(u) = σ [πn(u)Zn(u)− ϕs(u, Sn(u))Sn(u)] .

For a real number λ > 0, let P λ,n be so that

W λ
n (u) := W (u) +

∫ u

t

bn(ρ)dρ

is a P λ,n martingale. Set

Mn(u) := cn +

∫ u

tn

an(ρ)dρ +

∫ u

tn

bn(ρ)dW (ρ)

= cn +

∫ u

tn

(an(ρ)− λb2
n(ρ))dρ +

∫ u

tn

bn(ρ)dW λ,n(ρ) .

Since Mn(u) ≥ 0,

0 ≤ Eλ,nMn(tn +
1

n
)

= cn + Eλ,n[

∫ tn+ 1
n

tn

(an(ρ)− λb2
n(ρ)) dρ] .

Note that an(ρ) → −(ϕt − Lϕ)(t0, s0) as ρ → t0. We multiply the above
inequality n and let n tend to infinity. The result is for every λ > 0,

(ϕt−Lϕ)(t0, s0) ≤ −λ lim inf
n→∞

Eλ,nn

∫ tn+ 1
n

tn

σ2(πn(u)v∗(t0, s0)−s0ϕs(t0, s0))
2du.

Hence,
−(ϕt − Lϕ)(t0, s0) ≥ 0 .

lim inf
n→∞

Eλ,nn

∫ tn+ 1
n

tn

σ2(πn(u)v∗(t0, s0)− s0ϕs(t0, s0))
2du = 0 .

Moreover, since v∗ ≥ 0 and πn(·) ∈ (−a, b],

b v∗(t0, s0)− s0ϕs(t0, s0) ≥ 0,

s0ϕs(t0, s0) + a v∗(t0, s0) ≥ 0. (2.2.4)
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In conclusion,

F (t0, s0, u∗(t0, s0), ϕt(t0, s0), ϕs(t0, s0), ϕss(t0, s0)) ≥ 0, (2.2.5)

where

F (t, a, v, q, ξ, A) = min{−q − 1

2
σ2s2A; bv − sξ; av + sξ}.

Here q stands for ϕt, ξ for ϕs and A for ϕss.

¤

Thus, we proved that

Theorem 2.2.2 v is a viscosity super solution of

F (t, s, v, vt, vs, vss) = min{vt − σ2

2
s2vss; bv − svs; av + svs} ≥ 0,

on (0, T )× (0,∞).

2.2.3 Subsolution

Assume that G ≥ 0 and G 6≡ 0. Let ϕ ∈ C1,2, (t0, s0) be such that

(v∗ − ϕ)(t0, s0) = 0 ≥ (v∗ − ϕ)(t, s) ∀(t, s) .

By considering ϕ̂ = ϕ + (t − t0)
2 + (s − s0)

4 we may assume the above
maximum of (v∗−ϕ) is strict. (Note ϕ̂t = ϕt, ϕ̂s = ϕs, ϕ̂ss = ϕss at (t0, s0).)
We need to show that

F (t0, s0, v
∗(t0, s0), ϕt(t0, s0), ϕs(t0, s0), ϕss(t0, s0) ≤ 0 . (2.2.6)

Suppose to the contrary. Since v∗ = ϕ at (t0, s0), and since F and ϕ are
smooth, there exists a neighborhood of (t0, s0), say N , and δ > 0 so that

F (t, s, ϕ, ϕt, ϕs, ϕss) ≥ δ ∀(t, s) ∈ N . (2.2.7)

Since G ≥ and G 6≡ 0, and s0 6= 0 then v∗(t0, s0) > 0. So ϕ > 0 in a
neighborhood of (t0, s0). Also since (v∗−ϕ) has a strict maximum at (t0, s0),
there is a subset of N , denoted by N again so that

ϕ > 0 on N , and v∗(t, s) ≤ e−δϕ(t, s) ∀(t, s) 6∈ N .
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Set

π∗(t, s) =
sϕs(t, s)

ϕ(t, s)
, (t, s) ∈ N .

Then by (2.2.7), π∗ ∈ K. Fix (t∗, s∗) ∈ N near (t0, s0) and set S∗(u) :=
St∗,s∗(u),

θ := inf{u ≥ t∗ : (u, S∗(u)) 6∈ N} .

Let
dZ∗(u) = Z∗(u)σπ∗(u, S∗(u))dW (u), u ∈ [t∗, θ∗] ,

Z∗(t∗) = ϕ(t∗, s∗) .

By the Ito’s rule, for t∗ < u < θ∗,

d[Z∗(u)− ϕ(u, S∗(u))] = −Lϕ(u, S∗(u)) du

+σπ∗(u, S∗(u))[Z∗(u)− ϕ(u, S∗(u))]dW (u) .

Since Z∗(t∗)− ϕ(t∗, S∗(t∗)) = 0, and −Lϕ ≥ 0,

Z∗(u) ≥ ϕ(u, S∗(u)) , ∀u ∈ [t∗, θ] .

In particular,
Z∗(θ) ≥ ϕ(θ, S∗(θ) .

Also, (θ, S∗(θ)) 6∈ N , and therefore

v∗(θ, S∗(θ)) ≥ e−δ ϕ(θ, S∗(θ)) .

We combine all these to arrive at,

Z∗(θ) ≥ ϕ(θ, S∗(θ) ≥ eδ v∗(θ, S∗(θ)) ≥ eδ v(θ, S∗(θ)) .

Then,
Zπ∗

t∗,e−δϕ(t∗,s∗)(θ) = e−δZ∗(θ) ≥ v(θ, S∗(θ)) .

By the dynamic programming principle, (also since π∗(·) ∈ K)),

e−δϕ(t∗, s∗) ≥ v(t∗, s∗) .

Since the above inequality holds for every (t∗, s∗), by letting (t∗, s∗) tend to
(t0, s0), we arrive at

e−δϕ(t0, s0) ≥ v∗(t0, s0) .

But we assumed that ϕ(t0, s0) = v∗(t0, s0).
Hence the inequality (2.2.6) must hold and v is a viscosity subsolution.

¤
In the next subsection, we will study the terminal condition and then

provide an explicit solution.
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2.2.4 Terminal Condition or “Face-Lifting”

We showed that the value function v(t, s) is a viscosity solution of

F (t, s, v(t, s), vt(t, s), vs(t, s), vss(t, s)) = 0, ∀s > 0, t < T .

In particular,

b v(t, s)−svs(t, s) ≥ 0, a v(t, s)−svs(t, s) ≥ 0, ∀s > 0, t < T, (2.2.8)

in the viscosity sense. Set

V (s) := lim sup
s′→s,t′↑T

v(t′, s′), V (s) := lim inf
s′→s,t′↑T

v(t′, s′) .

Formally, since v(t′, .) satisfies (2.2.8) for every t′ < T , we also expect V
and V to satisfy (2.2.8) as well. However, given contingent claim G may not
satisfy (2.2.8).

Example.
Consider a call option:

G(s) = (s−K)+,

with K = (−∞, b) for some b > 1. Then, for s > K,

bG(s)− sGs(s) = b(s−K)+ − s .

This expression is negative for s near K. Note that the Black-Scholes repli-
cating portfolio requires almost one share of the stock when time to maturity
(T − t) near zero and when S(t) > K but close to K. Again at these points
the price of the option is near zero. Hence to be able finance this replicating
portfolio, the investor has to borrow an amount which is an arbitrarily large
multiple of her wealth. So any borrowing constraints (i.e. any b < +∞)
makes the replicating portfolio inadmissible. ¤

We formally proceed and assume V = V = V . Formally, we expect V to
satisfy (2.2.8) and also V ≥ 0. Hence,

bV (s)− sVs(s) ≥ 0 ≥ −aV (s)− sVs(s), ∀s ≥ 0, (2.2.9)

V (s) ≥ G(s), ∀s ≥ 0.
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Since we are looking for the minimal super replicating cost, it is natural to
guess that V (·) is the minimal function satisfying (2.2.9). So we define

Ĝ(s) := inf{H(s) : H satisfies (2.2.9) } . (2.2.10)

Example.
Here we compute Ĝ(s) corresponding to G(s) = (s − K)+ and K =

(−∞, b] for any b > 1. Then, Ĝ satisfies

Ĝ(s)(s) ≥ (K − s)+ ,

bĜ(s)(s)− sĜs(s) ≥ 0 . (2.2.11)

Assume Ĝ(·) is smooth we integrate the second inequality to conclude

Ĝ(s0) ≤ (
s0

s1

)bĜ(s1), ∀s0 ≥ s1 > 0 .

Again assuming that (2.2.11) holds on [0, s∗] for some s∗ we get

Ĝ(s) = (
s

s∗
)bĜ(s∗), ∀s ≤ s∗ .

Assume that Ĝ(s) = G(s) for s ≥ s∗. Then, we have the following claim

Ĝ(s) = h(s) :=

{
(s−K)+, s ≥ s∗,

( s
s∗ )

b(s∗ −K)+ s < s∗,

where s∗ > K the unique point for which h ∈ C1, i.e., hs(s
∗) = Gs(s

∗) = 1.
Then,

s∗ =
K

b− 1

It is easy to show that h (with s∗ as above) satisfies (2.2.9). It remains to
show that h is the minimal function satisfying (2.2.9). This will be done
through a general formula below. ¤

Theorem 2.2.3 Assume that G is nonnegative, continuous and grows at
most linearly. Let Ĝ be given by (2.2.10). Then,

V (s) = V (s) = Ĝ(s) . (2.2.12)
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In particular, v(t, ·) converges to Ĝ uniformly on compact sets. Moreover,

Ĝ(s) = sup
ν∈K̃

e−δK(ν)G(s, e−ν),

and
v(t, s) = E[Ĝ(St,s(T ))|Ft],

i.e., v is the unconstrained (Black-Scholes) price of the modified claim Ĝ.

This is proved in Broadie-Cvitanic-Soner [5]. A presentation is also given in
Karatzas & Shreve [15] (Chapter 5.7). A proof based on the dual formulation
is simpler and is given in both of the above references.

A PDE based proof of formulation Ĝ(·) is also available. A complete
proof in the case of a gamma constraint is given in the next Chapter. Here
we only prove the final statement through a PDE argument. Set

u(t, s) = E[Ĝ(St,s(T )) | Ft] .

Then,

ut =
1

2
σ2s2uss ∀t < T, s > 0,

and
u(T, s) = Ĝ(s) .

It is clear that u is smooth. Set

w(t, s) := bu(t, s)− sus(t, s) .

Then, since u(T, s) = Ĝ(s) satisfies the constraints,

w(T, s) ≥ 0 ∀s ≥ 0 .

Also using the equation satisfied by u, we calculate that

wt = but − sust =
1

2
σ2s2[buss]− s

2
σ2[s2uss]s

=
1

2
σ2s2[buss − 2uss − s2usss] =

1

2
σ2s2wss .

So by the Feynman-Kac formula,

bu(t, s)− sus(t, s) = w(t, s) = E[w(t, s)|Ft] ≥ 0, ∀t ≤ T, s ≥ 0 .
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Similarly, we can show that

au(t, s) + sus(t, s) ≥ 0, ∀s ≤ T, s ≥ 0 .

Therefore,

F (t, s, u(t, s), ut(t, s), us(t, s), uss(t, s)) = 0, t < T, s > 0,

where F is as in the previous section. Since v, the value function, also solves
this equation, and also v(T, s) = u(T, s) = Ĝ(s), by a comparison result for
the above equation, we can conclude that u = v, the value function.
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Chapter 3

Super-Replication with Gamma
Constraints

This chapter is taken from Cheridito-Soner-Touzi [7, 8], and Soner-Touzi
[19]. For the brevity of the presentation, again we consider a market with
only one stock, and assume that the mean return rate µ = 0, by a Girsanov
transformation, and that the interest rate r = 0, by appropriately discounting
all the prices. Then, the stock price S(·) follows

dS(t) = σS(t)dW (t),

and the wealth process Z(·) solves

dZ(t) = Y (t)dS(t),

where the “portfolio process” Y (·) is a semi-martingale

dY (t) = dA(t) + γ(t)dS(t) .

The control processes A(t) ∈ and γ(·) are required to satisfy

Γ∗(S(t)) ≤ γ(t) ≤ Γ∗(S(t)) ∀t, a.s. ,

for given functions Γ∗ and Γ∗. The triplet (Y (t) = y,A(·), γ(·)) = ν is the
control. Further restriction on A(·) will be replaced later. Then, the minimal
super-replicating cost v(t, s) is

v(t, s) = inf{z : ∃ν ∈ A s.t. Zν
t,z ≥ G(St,s(T )) a.s. } .
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3.1 Pure Upper Bound Case

We consider the case with no lower bound, i.e. Γ∗ = −∞. Since formally
we expect vs(t, S(t)) = Y ∗(t) to be the optimal portfolio, we also expect
γ∗(t) := vss(t, S(t)). Hence, the gamma constraint translates into a differen-
tial inequality

vss(t, s) ≤ Γ∗(s) .

In view of the portfolio constraint example, the expected DPE is

min{−vt − 1

2
σ2s2vss; −s2vss + s2Γ∗(s)} = 0 . (3.1.1)

We could eliminate s2 term in the second part, but we choose to write the
equation this way for reasons that will be clear later.

Theorem 3.1.1 Assume G is non-negative, lower semi-continuous and grow-
ing at most linearly. Then, v is a viscosity solution of (3.1.1)

We will prove the sub and super solution parts separately.

3.1.1 Super solution

Consider a test function ϕ and (t0, s0) ∈ (0, T )× (0,∞) so that

(v∗ − ϕ)(t0, s0) = min(v∗ − ϕ) = 0 .

Choose (tn, sn) → (t0, s0) so that v(tn, sn) → v∗(t0, s0). Further choose
vn = (yn, An(·), γn(·)) so that with zn := v(tn, sn) + 1/n2,

Zνn
tn,sn

(tn +
1

n
) ≥ v(tn +

1

n
, Stn,sn(tn +

1

n
)) a.s.

The existence of νn follows from the dynamic programming principle with
stopping time θ = tn + 1

n
. Set θ := tn + 1

n
, Sn(·) = Stn,sn(·). Since v ≥ v∗ ≥ ϕ,

Ito’s rule yield,

zn +

∫ θn

tn

Y νn
tn,yn

(u)dS(u) ≥ ϕ(tn, sn) (3.1.2)

+

∫ θn

tn

[Lϕ(u, Sn(u))du + ϕs(u, Sn(u))dS(u)] .
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Taking the expected value implies

n

∫ θn

tn

E(−Lϕ(u, Sn(u)))du ≥ n[ϕ(tn, sn)− zn]

= n[ϕ− v](tn, sn)− 1

n
.

We could choose (tn, sn) so that n[ϕ − v](tn, sn) → 0. Hence, by taking the
limit we obtain,

−Lϕ(t0, s0) ≥ 0

To obtain the second inequality, we return to (3.1.2) and use the Ito’s rule
on ϕs and the dynamics of Y (·). The result is

αn +

∫ θn

tn

an(u)du +

∫ θn

tn

∫ θn

u

bn(t)dtdS(u)

+

∫ θn

tn

∫ θn

u

cn(t)dS(t)dS(u) +

∫ θn

tn

dndS(u) ≥ 0 ,

where

αn = zn − ϕ(tn, sn),

an(u) = −Lϕ(u, Sn(u)),

bn(u) = dAn(u)− Lϕs(u, Sn(u)),

cn(u) = γn(u)− ϕss(u, Sn(u)),

dn = yn − ϕs(tn , sn) .

We now need to define the set of admissible controls in a precise way and
then use our results on double stochastic integrals. We refer to the paper
by Cheridito-Soner-Touzi for the definition of the set of admissible controls.
Then, we can use the results of the next subsection to conclude that

−Lϕ(t0, s0) = lim sup
u↓t

an(u) ≥ 0 ,

and
lim sup

u↓t
cn(u) ≥ 0 .

In particular, this implies that

−ϕss(t0, s0) ≤ Γ∗(s0) .
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Hence, v is a viscosity super solution of

min{−vt − 1

2
σ2s2vss; −s2vss + s2Γ∗(s)} ≥ 0 .

3.1.2 Subsolution

Consider a smooth ϕ and (t0, s0) so that

(v∗ − ϕ)(t0, s0) = max(v∗ − ϕ) = 0

Suppose that

min{−ϕt(t0, s0)− 1

2
σ2s2

0ϕss(t0, s0) ; −s2
0ϕss(t0, s0) + s2

0Γ
∗(s0)} > 0 .

We will obtain a contradiction to prove the subsolution property. We proceed
exactly as in the constrained portfolio case using the controls

y = ϕs(t0, s0), dA = Lϕs(u, S(u))du, γ = ϕss(u, S(u)) .

Then, in a neighborhood of (t0, s0), Y (u) = ϕs(u, S(u)) and γ(·) satisfies the
constraint. Since −Lϕ > 0 in this neighborhood, we can proceed exactly as
in the constrained portfolio problem.

3.1.3 Terminal Condition

In this subsection, we will show that the terminal condition is satisfied with a
modified function Ĝ. This is a similar result as in the portfolio constraint case
and the chief reason for modifying the terminal data is to make it compatible
with the constraints. Assume

0 ≤ s2Γ∗(s) ≤ c∗(s2 + 1) . (3.1.3)

Theorem 3.1.2 Under the previous assumptions on G,

lim
t′→T,s′→s

v(t′, s′) = Ĝ(s),

where Ĝ is smallest function satisfying (i) Ĝ ≥ G (ii) Ĝss(s) ≤ Γ∗(s). Let
γ∗(s) be a smooth function satisfying

γ∗ss = Γ∗(s) .
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Then,

Ĝ(s) = hconc(s) + γ∗(s) ,

h(s) := G(s)− γ∗(s) ,

and hconc(s) is the concave envelope of h, i.e., the smallest concave function
above h.

Proof: Consider a sequence (tn, sn) → (T, s0). Choose νn ∈ A(tn) so that

Zνn

tn,v(tn,sn)+ 1
n

(T ) ≥ G(Stn,sn(T )) .

Take the expected value to arrive at

v(tn, sn) +
1

n
≥ E(Gtn,sn(T ) | Ftn) .

Hence, by the Fatou’s lemma,

V (s0) := lim inf
(tn,sn)→(T,s0)

v(tn, sn) ≥ G(s0) .

Moreover, since v is a super solution of (3.1.1), for every t

vss(t, s) ≤ Γ∗(s) in the viscosity sense .

By the stability of the viscosity property,

V ss(s) ≤ Γ∗(s) in the viscosity sense .

Hence, we proved that V is a viscosity supersolution of

min{V (s)−G(s); −Vss(s) + Γ∗(s)} ≥ 0 .

Set w(s) = V (s)− γ∗(s). Then, w is a viscosity super solution of

min{w(s)− h(s); −wss(s)} ≥ 0 .

Therefore, w is concave and w ≥ h. Hence, w ≥ hconc and consequently

V (s) = w(s) + γ∗(s) ≥ hconc(s) + γ∗(s) = Ĝ(s) .

42



To prove the reverse inequality fix (t, s). For λ > 0 set

γλ(t, s) := (1− λ)γ∗(s) + c(T − t)s2/2 .

Set

γ(u) = γλ
ss(u, S(u)), dA(u) = Lγλ

s (u, S(u)), y0 = γλ
s (t, s) + p0,

where p0 is any point in the subdifferential of hλ,conc, hλ = G − (1 − λ)γ∗.
Then,

p0(s
′ − s) + hλ,conc(s) ≥ hλ,conc(s

′), ∀s′ .

For any z, consider Zν
t,z with ν = (y0, A(·), γ(·)). Note for t near T , ν ∈ A(t),

Zν
t,z(T ) = z +

∫ T

t

(γλ
s (t, s) + p0)dS(u)

+

∫ T

t

[

∫ u

t

Lγλ
s (r, S(r))dr + γλ

ss(r, S(r))dS(r)]dS

= z + p0 (S(T )− s) +

∫ T

t

γλ
s (u, S(u))dS(u)

≥ z + hλ,conc(S(T ))− hλ,conc(s)

+γλ(S(T ), T )− γλ(t, s)−
∫ T

t

Lγλ(u, S(u))du .

We directly calculate that with c∗ as in (3.1.3),

Lγλ(t, s) = −cs2 +
1

2
σ2s2((1− λ)γ∗ss + c(T − t))

= −s2{c− 1

2
σ2[(1− λ)Γ∗(s) + +c(T − t)]}

≤ −s2{c− 1

2
σ2[(1− λ)c∗ + c(T − t)]}+

1

2
σ2c∗

≤ 1

2
σ2c∗ ,

provided that t is sufficiently near T and c is sufficiently large. Hence, with

z0 = hλ,conc(s) + γλ(t, s) +
1

2
σ2c∗(T − t),
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we have

Zν
t,z0

≥ hλ,conc(S(T )) + γλ(S(T ), T )

≥ G(S(T ))− (1− λ)γ∗(S(T )) + (1− λ)γ∗(S(T ))

= G(S(T )) .

Therefore,

z0 = hλ,conc(s) + γλ(t, s) +
1

2
σ2c∗(T − t) ≥ v(t, s) ,

for all λ > 0, c large and t sufficiently close to T . Hence,

lim sup
(t,s)→(T,s0)

v(t, s) ≤ hλ,conc(s0) + γλ(T, s0) ∀λ > 0

= hλ,conc(s0) + (1− λ)γ∗(s0)

= (G− (1− λ)γ∗)conc(s0) + (1− λ)γ∗(s0)

= Ĝλ(s0) .

It is easy to prove that
lim
λ↓0

Ĝλ(s0) = Ĝ(s0) .

¤

3.2 Double Stochastic Integrals

In this section, we study the asymptotic behavior of certain stochastic inte-
grals, as t ↓ 0. These properties were used in the derivation of the viscosity
property of the value function. Here we only give some of the results and the
proofs. A detailed discussion is given in the recent manuscript of Cheridito,
Soner and Touzi.

For a predictable, bounded process b, let

V b(t) :=

∫ t

0

∫ u

0

b(ρ)dW (ρ)dW (u) ,

h(t) := t ln ln 1/t .

For another predictable, bounded process m, let

M(t) :=

∫ t

0

m(u)dW (u),
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V b
m :=

∫ t

0

∫ u

0

b(ρ)dM(ρ)dM(u) .

In the easy case when b(t) = β, t ≥ 0, for some constant β ∈ R, we have

V b(t) =
β

2

(
W 2(t)− t

)
, t ≥ 0 .

If β ≥ 0, it follows from the law of the iterated logarithm for Brownian
motion that,

lim sup
t↘0

2V β(t)

h(t)
= β , (3.2.4)

where

h(t) := 2t log log
1

t
, t > 0 ,

and the equality in (3.2.4) is understood in the almost sure sense. On the
other hand, if β < 0, it can be deduced from the fact that almost all paths of
a one-dimensional standard Brownian motion cross zero on all time intervals
(0, ε], ε > 0, that

lim sup
t↘0

2V β(t)

t
= −β . (3.2.5)

The purpose of this section is to derive formulae similar to (3.2.4) and
(3.2.5) when b = {b(t) , t ≥ 0} a predictable matrix-valued stochastic process.

Lemma 3.2.1 Let λ and T be two positive parameters with 2λT < 1 and
{b(t) , t ≥ 0} an Md-valued, F-predictable process such that |b(t)| ≤ 1, for
all t ≥ 0. Then

E
[
exp

(
2λV b(T )

)] ≤ E
[
exp

(
2λV Id(T )

)]
.

Proof. We prove this lemma with a standard argument from the theory of
stochastic control. We define the processes

Y b(r) := Y (0)+

∫ r

0

b(u)dW (u) and Zb(t) := Z(0)+

∫ t

0

(Y b(r))T dW (r) , t ≥ 0 ,

where Y (0) ∈ <d and Z(0) ∈ < are some given initial data. Observe that
V b(t) = Zb(t) when Y (0) = 0 and Z(0) = 0. We split the argument into
three steps.
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Step 1: It can easily be checked that

E
[
exp

(
2λZId(T )

)∣∣Ft

]
= f

(
t, Y Id(t), ZId(t)

)
, (3.2.6)

where, for t ∈ [0, T ], y ∈ <d and z ∈ <, the function f is given by

f(t, y, z) := E

[
exp

(
2λ

{
z +

∫ T

t

(y + W (r)−W (t))T dW (r)

})]

= exp (2λz) E
[
exp

(
λ{2yT W (T − t) + |W (T − t)|2 − d(T − t)})]

= µd/2 exp
[
2λz − dλ(T − t) + 2µλ2(T − t)|y|2] ,

and µ := [1− 2λ(T − t)]−1. Observe that the function f is strictly convex in
y and

D2
yzf(t, y, z) :=

∂2f

∂y∂z
(t, y, z) = g2(t, y, z) y (3.2.7)

where g2 := 8µλ3(T − t) f is a positive function of (t, y, z).

Step 2: For a matrix β ∈Md, we denote by Lβ the Dynkin operator associ-
ated to the process

(
Y b, Zb

)
, that is,

Lβ := Dt +
1

2
tr

[
ββT D2

yy

]
+

1

2
|y|2D2

zz + (βy)T D2
yz ,

where D. and D2
.. denote the gradient and the Hessian operators with respect

to the indexed variables. In this step, we intend to prove that for all t ∈ [0, T ],
y ∈ <d and z ∈ <,

max
β∈Md , |β|≤1

Lβf(t, y, z) = LIdf(t, y, z) = 0 . (3.2.8)

The second equality can be derived from the fact that the process

f
(
t, Y Id(t), ZId(t)

)
, t ∈ [0, T ] ,

is a martingale, which can easily be seen from (3.2.6). The first equality
follows from the following two observations: First, note that for each β ∈Md

such that |β| ≤ 1, the matrix Id − ββT is in Sd
+. Therefore, there exists a

γ ∈ Sd
+ such that

Id − ββT = γ2 .
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Since f is convex in y, the Hessian matrix D2
yyf is also in Sd

+. It follows that
γD2

yyf(t, x, y)γ ∈ Sd
+, and therefore,

tr[D2
yyf(t, x, y)] − tr[ββT D2

yyf(t, x, y)] = tr[(Id − ββT )D2
yyf(t, x, y)]

= tr[γD2
yyf(t, x, y)γ] ≥ 0 . (3.2.9)

Secondly, it follows from (3.2.7) and the Cauchy-Schwartz inequality that,
for all β ∈Md such that |β| ≤ 1,

(βy)T D2
yzf(t, y, z) = g2(t, y, z)(βy)T y ≤ g2(t, y, z)|y|2

= yT D2
yzf(t, y, z) . (3.2.10)

Together, (3.2.9) and (3.2.10) imply the first equality in (3.2.8).

Step 3: Let {b(t) , t ≥ 0} be an Md-valued, F-predictable process such that
|b(t)| ≤ 1 for all t ≥ 0. We define the sequence of stopping times

τk := T ∧ inf
{
t ≥ 0 : |Y b(t)|+ |Zb(t)| ≥ k

}
, k ∈ N .

It follows from Itô’s lemma and (3.2.8) that

f(0, Y (0), Z(0)) = f
(
τk, Y

b(τk), Z
b(τk)

)−
∫ τk

0

Lb(t)f
(
t, Y b(t), Zb(t)

)
dt

−
∫ τk

0

[(Dyf)T b + (Dzf)yT ]
(
t, Y b(t), Zb(t)

)
dW (t)

≥ f
(
τk, Y

b(τk), Z
b(τk)

)

−
∫ τk

0

[(Dyf)T b + (Dzf)yT ]
(
t, Y b(t), Zb(t)

)
dW (t) .

Taking expected values and sending k to infinity, we get by Fatou’s lemma,

E
[
exp

(
2λZId(T )

)]
= f(0, Y (0), Z(0))

≥ lim inf
k→∞

E
[
f

(
τk, Y

b(τk), Z
b(τk)

)]

≥ E
[
f

(
T, Y b(T ), Zb(T )

)]
= E

[
exp

(
2λZb(T )

)]
,

which proves the lemma. ¤
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Theorem 3.2.2
a) Let {b(t) , t ≥ 0} be an Md-valued, F-predictable process such that |b(t)| ≤
1 for all t ≥ 0. Then

lim sup
t↘0

|2V b(t)|
h(t)

≤ 1 .

b) Let β ∈ Sd with largest eigenvalue λ∗(β) ≥ 0. If {b(t) , t ≥ 0} is a
bounded, Sd-valued, F-predictable process such that b(t) ≥ β for all t ≥ 0,
then

lim sup
t↘0

2V b(t)

h(t)
≥ λ∗(β) .

Proof.
a) Let T > 0 and λ > 0 be such that 2λT < 1. It follows from Doob’s
maximal inequality for submartingales and Lemma 3.2.1 that for all α ≥ 0,

P

[
sup

0≤t≤T
2V b(t) ≥ α

]
= P

[
sup

0≤t≤T
exp(2λV b(t)) ≥ exp(λα)

]

≤ exp (−λα) E
[
exp

(
2λV b(T )

)]

≤ exp (−λα) E
[
exp

(
2λV Id(T )

)]

= exp (−λα) exp (−λdT ) (1− 2λT )−
d
2 .

(3.2.11)

Now, take θ, η ∈ (0, 1), and set for all k ∈ N,

αk := (1 + η)2h(θk) and λk := [2θk(1 + η)]−1 .

It follows from (3.2.11) that for all k ∈ N,

P

[
sup

0≤t≤θk

2V b(t) ≥ (1 + η)2h(θk)

]
≤ exp

(
− d

2(1 + η)

)(
1 +

1

η

)d/2

(k log
1

θ
)−(1+η) .

Since ∞∑

k=1

k−(1+η) < ∞ ,

it follows from the Borel-Cantelli lemma that, for almost all ω ∈ Ω, there
exists a natural number Kθ,η(ω) such that for all k ≥ Kθ,η(ω),

sup
0≤t≤θk

2V b(t, ω) < (1 + η)2h(θk) .

48



In particular, for all t ∈ (θk+1, θk],

2V b(t, ω) < (1 + η)2h(θk) ≤ (1 + η)2h(t)

θ
.

Hence,

lim sup
t↘0

2V b(t)

h(t)
≤ (1 + η)2

θ
.

By letting θ tend to one and η to zero along the rationals, we conclude that

lim sup
t↘0

2V b(t)

h(t)
≤ 1 .

On the other hand,

lim inf
t↘0

2V b(t)

h(t)
= − lim sup

t↘0

2V −b(t)

h(t)
≥ −1 ,

and the proof of part a) is complete.
b) There exists a constant c > 0 such that for all t ≥ 0,

cId ≥ b(t) ≥ β ≥ −cId , (3.2.12)

and there exists an orthogonal d× d-matrix U such that

β̃ := UβUT = diag[λ∗(β), λ2, . . . , λd] ,

where λ∗(β) ≥ λ2 ≥ · · · ≥ λd are the ordered eigenvalues of the matrix β.
Let

γ̃ := diag[3c, c, . . . , c] and γ := UT γ̃U .

It follows from (3.2.12) that for all t ≥ 0,

γ − β ≥ γ − b(t) ≥ 0 ,

which implies that

|γ − b(t)| ≤ |γ − β| = λ∗(γ − β) = λ∗(γ̃ − β̃) = 3c− λ∗(β) .

Hence, by part a),

lim sup
t↘0

2V γ−b(t)

h(t)
≤ 3c− λ∗(β) . (3.2.13)
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Note that the transformed Brownian motion,

W̃ (t) := UW (t) , t ≥ 0 ,

is again a d-dimensional standard Brownian motion and

lim sup
t↘0

2V γ(t)

h(t)
= lim sup

t↘0

W (t)T γW (t)− tr(γ)t

h(t)

= lim sup
t↘0

W̃ (t)T γ̃W̃ (t)− tr(γ)t

h(t)

= lim sup
t↘0

W̃ (t)T γ̃W̃ (t)

h(t)

≥ lim sup
t↘0

3c
(W̃1(t))

2

h(t)
= 3c .

(3.2.14)

It follows from (3.2.14) and (3.2.13) that

lim sup
t↘0

2V b(t)

h(t)
≥ lim sup

t↘0

2V γ(t)

h(t)
−lim sup

t↘0

2V γ−b(t)

h(t)
≥ 3c−(3c−λ∗(β)) = λ∗(β) ,

which proves part b) of the theorem.

¤

Using the above results one can prove the following lower bound for V b
m.

Theorem 3.2.3 Assume that

sup
u

E|m(u)−m(0)|4
u4

≤ ∞ .

Then,

lim sup
t↓0

V b
m(t)

h(t)
≥ a ,

for every b ∈ L∞ satisfying m(0)b(0)m(u) ≥ a > 0.

Theorem 3.2.4 Suppose that c ∈ L∞ and E|m(u)|4 ≤ c∗. Then, for all
ε > 0,

lim sup
t↓0

| ∫ t

0
(
∫ u

0
a(ρ)dρ)dM(u)|
t3/2+ε

= 0 .
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Proofs of these results can be found in Cheridito-Soner-Touzi.

Lemma 3.2.5 Suppose that b ∈ L∞ and for some δ > 0

sup
u≥0

E|b(u)− b(0)|2
u2δ

< ∞ .

Then,

lim inf
t↓0

V b(t)

t
= −1

2
b(0) .

Proof: Set b̃(u) := b(u)− b(0). Then, E|b̃(u)|2/u2δ < ∞ and

V b(t) =
1

2
b(0)W 2(t)− 1

2
b(0)t + V b̃(t) .

It can be shown that |V b̃(t)| = 0(t). Hence,

lim inf
t↓0

V b(t)

t
= −1

2
b(0) + lim inf

t↓0
1

2
b(0)

W 2(t)

t
= −1

2
b(0) .

¤

3.3 General Gamma Constraint

Here we consider the constraint

Γ∗(S(u)) ≤ γ(u) ≤ Γ∗(S(u)) .

Let

H(vt, vs, vss, s) = min{−vt − 1

2
σ2s2vss; −vss + Γ∗(s), vss − Γ∗(s)} ,

and Ĥ be the parabolic majorant of H, i.e.,

Ĥ(vt, vs, vss, s) := sup{H(vt, vs, vss + Q, s) : Q ≥ 0} .

Theorem 3.3.1 v is a viscosity solution of

Ĥ(vt, vs, vss, s) = 0, (t, s) ∈ (0, T )× (0,∞)
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The super solution property is already proved. The subsolution property is
proved almost exactly as in the upper gamma constraint case; cf [Cheridito-
Soner-Touzi].

Terminal condition is the same in the pure upper bound case. As before

Ĝ(s) = (G− γ∗)conc(s) + γ∗(s) ,

where γ∗ satisfies, γ∗ss(s) = Γ∗(s). Note that the lower gamma bound does
not effect Ĝ.

Proposition 3.3.2
lim

(t′,s′)→(T,s)
v(t′, s′) = Ĝ(s)

Proof is exactly as in the upper gamma bound case.

Theorem 3.3.3 Assume 0 ≤ G(s) ≤ c∗[1+s]. Then, v is the unique viscos-
ity solution of Ĥ = 0 together with the boundary condition v(T, s) = Ĝ(s).

Proof is given in Cheridito-Soner-Touzi.

Example. Consider the problem with Γ∗(s) ≡ 0, Γ∗(s) ≡ +∞, G(s) = s∧ 1.
For s ≤ 1, z = s, y0 = 1, A ≡ 0, γ ≡ 0 yield,

Y (u) ≡ 1, Zν
t,s(u) = s +

∫ u

t

dS(ρ) = St,s(u) .

Hence, Zν
t,s(T ) = St,s(T ) ≥ St,s(T ) ∧ 1 and for s < 1, v(t, s) ≤ s. For s ≥ 1,

let z = 1, y0 = 0, A ≡ 0, γ ≡ 0. Then,

Y (u) ≡ 0, Zν
t,1(u) = 1 ,

and Zν
t,1(T ) = 1 ≥ St,s(T ) ∧ 1. So for s ≥ 1 v(t, s) ≤ 1.

Hence, v(t, s) ≤ G(s). We can check that

Ĥ(Gt, Gs, Gss) = sup
Q≥0

{−1

2
σ2s2(Gss + Q); (Gss + Q)} = 0 .

By the uniqueness, we conclude that v = G, and the buy and hold strategy
described earlier is optimal. ¤
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3.4 Examples

In some cases it is possible to compute the solution. In this section, we give
several examples to illustrate the theory.

3.4.1 European Call Option

G(s) = (s−K)+ .

(a). Let us first consider the portfolio constraint:

−Lv ≤ svs ≤ Uv .

where (U − 1) is the fraction of our wealth we are allowed to borrow (i.e.,
shortsell the money market) and L is the shortsell constraint. According to
our results,

v(t, s) = E[Ĝ(St,s(T ))] ,

where Ĝ is the smallest function satisfying i)Ĝ ≥ G, ii)− LĜ ≤ sĜs ≤ UĜ.
By observation, we see that only the upper bound is relevant and that there
exists s∗ > K so that

Ĝ(s) = G(s) = (s−K) ∀s ≥ s∗

Moreover, for s ≤ s∗ the constraint sĜ(s) = UĜ(s) saturates, i.e.

sĜ(s) = UĜ(s) ∀s ≥ s∗

Hence
Ĝ(s) = (

s

s∗
)UĜ(s∗) = (s∗ −K)(

s

s∗
)U

Now we compute s∗, by imposing that Ĝ ∈ C1. So

Ĝs(s
∗) = Gs(s

∗) = 1 ⇒ U(s∗ −K)(
1

s∗
) = 1 .

The result is

s∗ =
U

(v − 1)
K .

Therefore,

Ĝ(s) =

{
(s−K), if s ≥ s∗

(U−1
K

)U−1U−UsU , if 0 ≤ s ≤ s∗ .
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Set,
Gpremium(s) := Ĝ(s)−G(s) .

Then,
v(t, s) = vBS(t, s) + vpr(t, s) ,

where vBS(t, s) := EG(t, s) is the Black Scholes price, and

vpr(t, s) = E[Ĝ(s)−G(S(T ))]

Moreover, vpr can be explicitly calculated (and its derivative) in terms of the
error function, as in the Black-Scholes Case.
(b). Now consider the Gamma constraint

−γ∗v ≤ s2vss ≤ γ∗v .

Again, since G is convex, the lower bound is irrelevant and the modified Ĝ
is given as in part (a) with

U(U − 1) = γ∗ ⇒ U =
1 +

√
1 + 4γ∗

2
.

So, it is interesting to note that the minimal super-replication cost of both
constraints agree provided that U and γ∗ are related as above.

3.4.2 European Put Option:

G(s) = (K − s)+ .

(a). Again let us consider the portfolio constraint first. In this case, since G
is decreasing, only lower bound is active. We compute as in the Call Option
Case:

Ĝ(s) =

{
(K − s), if 0 ≤ s ≤ s∗ ,

LL( K
L+1

)L+1s−L, if s ≥ s∗ ,

where

s∗ =
L

L + 1
K .

(b). Consider the gamma constraint

−γ∗v ≤ s2vss ≤ γ∗v .

Again lower bound inactive, and the solution is as in the portfolio case with

L = γ∗(γ∗ + 1) .
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3.4.3 European Digital Option

G(s) =

{
1, s ≥ K ,
0, s ≤ K .

(a). Again, we first consider the portfolio constraint. It can be verified that

Ĝ(s) =

{
( s

K
)U , 0 ≤ s ≤ K ,

1, s ≥ K .

If we split the price as before:

v(t, s) = vBS(t, s) + vpr(t, s) .

We have

vBS(t, s) = P(St,s(T ) ≥ 1) = N(d2) :=
1√
2π

∫ d2

−∞
e−x2/2dx ,

d2 =
ln( s

k
)− 1

2
σ2(T − t)

σ
√

T − t
,

vpr(t, s) =
1√
2π

∫ −d2

(
s

K
)UeU [σ

√
T−tx− 1

2
σ2(T−t)]e−

1
2
x2

dx

= (
s

K
)Ue

u(u−1)
2

σ2(T−t)[
1

2
−N(d2)] .

We can also compute the corresponding delta’s.
(b). Once again, the gamma constraint

s2vss ≤ γ∗v

yields the same Ĝ as in the portfolio constraint with

γ∗ = U(U − 1) ⇒ U =
1 +

√
1 + 4γ∗

2
.

If there is no lower gamma bound, v = vBS + vpr.
(c). Suppose now that there is no upper bound,

s2vss ≥ −γ∗v .
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Then the dynamic programming equation is

sup
Q≥0

min{−vt − σ2

2
(s2vss + Q); (s2vss + Q) + γ∗v} = 0 s > 0, t < T .

v(T, s) = G(s) .

By calculus, we see that this is equivalent to

−vt − σ2

2
(s2vss + γ∗v)+ +

σ2

2
γ∗v = 0 .

Since, for any real number ξ,

(ξ)+ = sup
0≤a≤1

{ a2ξ } ,

−vt + inf
0≤a≤1

{−σ2a2

2
s2vss +

σγ∗
2

(1− a2)v} = 0 .

We recognize the above equation as the dynamic programming equation for
the following stochastic optimal control problem:

v(t, s) = sup
0≤a(·)≤1

E[exp(−
∫ T

t

σ2γ∗
2

(1− a2(u))du)G(Sa
t,s(T ))] ,

where
dSa(u) = σa(u)Sa(u)dW (u) .

3.4.4 Up and Out European Call Option

This is a path-dependent option

Ĝ(St,s(·)) =

{
(St,s(T )−K)+, if maxt≤u≤T St,s(u) := M(T ) < B ,

0, M(T ) ≥ B .

We can also handle this with PDE techniques. Consider the bound

−γ∗v ≤ s2vss ≤ γ∗v .

The upper bound describes the modified final data Ĝ:
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(i) If

s∗ :=
U

U − 1
K < B (with U =

1 +
√

1 + 4γ∗

2
) ,

then Ĝ is as in the usual Call Option case.

(ii) If, however, s∗ ≥ B, then

Ĝ(s) = (K −B)(
s

B
)U .

We claim that at the lateral boundary s = B, the lower gamma bound
saturates and

s2vss(t, B) = −γ∗v(t, B) .

Using the equation, we formally guess that

−vt(t, B) =
σ2

2
s2vss(t, B) = −γ∗

σ2

2
v(t, B) .

We solve this ODE to obtain

v(t, B) = (K −B) exp(−γ∗ σ2

2
(T − t)) ∀t ≤ T . (3.4.15)

Lemma 3.4.1 The minimal super-replicating cost for the up and out call
option is the unique (smooth) solution of

−vt − σ2

2
s2vss = 0, ∀t < T, 0 < s < B ,

v(T, s) = Ĝ(s), ∀0 ≤ s ≤ B .

together with (3.4.15). In particular,

v(t, s) = E{G(St,s(T ))χ{θt,s≥T} + (K −B)e−
γ∗σ2

2
(t−θt,s)χ{θt,s<T}} ,

where
θt,s := inf{u : St,s(u) = B} .
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Proof: It is clear that

s2vss(t, B) = −γ∗v(t, B), and s2vss(T, s) ≥ 0 .

Set
w(t, s) := s2vss(t, s) + γ∗v(t, s) .

Then,

−wt − σ2

2
s2wss = 0, ∀t < T, 0 < s < B ,

w(T, s) > 0 ,

w(t, B) = 0 .

Hence, w ≥ 0. Similarly set

z(t, s) := s2vss(t, s)− γ∗v(t, s) .

Then,
z(T, s) ≤, z(t, B) < 0 .

Also,

−zt − σ2

2
s2zss = 0 .

Hence, z ≤ 0. Therefore, v solves Ĥ(vt, s
2vss, v) = 0. So by the uniqueness

v is the super-replication cost.

¤

3.5 Guess for The Dual Formulation

As it was done for the portfolio constraint, using duality is another possible
approach to super-replication is also available. We refer to the lecture notes
of Rogers [16] for this method and the relevant references. However, the dual
approach has not yet been successfully applied to the gamma problem. Here
we describe a possible dual problem based on the results obtained through
dynamic programming.

Let us first consider the upper bound case

s2vss ≤ γ∗ .

58



Then the dynamic programming equation is

min{−vt − σ2

2
s2vss; −s2vss + γ∗} = 0 .

We rewrite this as

−vt + inf
b≥1
{−σ2

2
b2s2vss +

σ2

2
γ∗(b2 − 1)} = 0 .

The above equation is the dynamic programming equation of the following
optimal control problem,

v(t, s) := sup
b(·)≥1

E

[
−σ2

2
γ∗

∫ T

t

(b2(u)− 1)du + G(Sb
t,s(T ))

]
,

dSb
t,s(u) = σb(u)Sb

t,s(u)dW (u) .

Note the change in the diffusion coefficient of the stock price process.
If we consider,

− γ∗ ≤ s2vss ,

same argument yields

v(t, s) = sup
0≤a(·)≤1

E

[
−σ2

2
γ∗

∫ T

t

(1− a2(u))du + G(Sa
t,s(T ))

]
.

Now consider the full constraint,

−γ∗ ≤ s2vss ≤ γ∗ .

The equation is

sup
Q≥0

min{−vt − σ2

2
(s2vss + Q); −(s2vss + Q) + γ∗; (s2vss + Q) + γ∗} = 0 .

We rewrite it as

−vt + inf
b≥1≥a≥0

{−σ2

2
s2a2b2vss +

σ2

2
γ∗(b2 − 1) +

σ2

2
γ∗(1− a2)} = 0 .

Hence,

v(t, s) = sup
b(·)≥1,0≤a(·)≤1

E

[
−σ2

2

∫ T

t

[γ∗(b(u)2 − 1) + γ∗(1− a2(u))]du

+G(Sa,b
t,s (T ))

]
,
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dSa,b(u) = σa(u)b(u)Sa,b(u)dW (u) .

It is open to prove this by direct convex analysis methods. We finish by
observing that if

−γ∗v ≤ s2vss ≤ γ∗v ,

then

v(t, s) = sup
b(·)≥1,0≤a(·)≤1

E
[

e
R T

t −σ2

2
[γ∗(b(u)2−1)+γ∗(1−a2(u))] du G(Sa,b

t,s (T ))
]

.

All approaches to duality (see Rogers’ lecture notes [16]) yield expressions of
the form

v(t, s) = sup E[ B Y ] ,

where B = G(S(T )) in our examples. However, in above examples S(·) needs
to be modified in a way that is not absolutely continuous with respect to P .
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