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Preface to Second Edition

This edition differs from the previous one in several respects. The use of sto-
chastic calculus and control methods to analyze financial market models has
expanded at a remarkable rate. A new Chapter X gives an introduction to
the role of stochastic optimal control in portfolio optimization and in pricing
derivatives in incomplete markets. Risk-sensitive stochastic control has been
another active research area since the First Edition of this book appeared.
Chapter VI of the First Edition has been completely rewritten, to empha-
size the relationships between logarithmic transformations and risk sensitiv-
ity. Risk-sensitive control theory provides a link between stochastic control
and H-infinity control theory. In the H-infinity approach, disturbances in a
control system are modelled deterministically, instead of in terms of stochastic
processes. A new Chapter XI gives a concise introduction to two-controller,
zero-sum differential games. Included are differential games which arise in
nonlinear H-infinity control and as totally risk-averse limits in risk-sensitive
stochastic control. Other changes from the First Edition include an updated
treatment in Chapter V of viscosity solutions for second-order PDEs. Mate-
rial has also been added in Section I.11 on existence of optimal controls in
deterministic problems. This simplifies the presentation in later sections, and
also is of independent interest.

We wish to thank D. Hernandez-Hernandez, W.M. McEneaney and S.-J.
Sheu who read various new chapters of this edition and made helpful com-
ments. We are also indebted to Madeline Brewster and Winnie Isom for their
able, patient help in typing and revising the text for this edition.

W.H. Fleming
May 1, 2005 H.M. Soner



Preface

This book is intended as an introduction to optimal stochastic control for con-
tinuous time Markov processes and to the theory of viscosity solutions. We ap-
proach stochastic control problems by the method of dynamic programming.
The fundamental equation of dynamic programming is a nonlinear evolution
equation for the value function. For controlled Markov diffusion processes on
n - dimensional euclidean space, the dynamic programming equation becomes
a nonlinear partial differential equation of second order, called a Hamilton —
Jacobi — Bellman (HJB) partial differential equation. The theory of viscos-
ity solutions, first introduced by M. G. Crandall and P.-L. Lions, provides a
convenient framework in which to study HJB equations. Typically, the value
function is not smooth enough to satisfy the HJB equation in a classical sense.
However, under quite general assumptions the value function is the unique vis-
cosity solution of the HJB equation with appropriate boundary conditions. In
addition, the viscosity solution framework is well suited to proving continuous
dependence of solutions on problem data.

The book begins with an introduction to dynamic programming for de-
terministic optimal control problems in Chapter I, and to the corresponding
theory of viscosity solutions in Chapter II. A rather elementary introduction
to dynamic programming for controlled Markov processes is provided in Chap-
ter III. This is followed by the more technical Chapters IV and V, which are
concerned with controlled Markov diffusions and viscosity solutions of HJB
equations. We have tried, through illustrative examples in early chapters and
the selection of material in Chapters VI — VII, to connect stochastic con-
trol theory with other mathematical areas (e.g. large deviations theory) and
with applications to engineering, physics, management, and finance. Chapter
VIII is an introduction to singular stochastic control. Dynamic programming
leads in that case not to a single partial differential equation, but rather to
a system of partial differential inequalities. This is also a feature of other im-
portant classes of stochastic control problems not treated in this book, such
as impulsive control and problems with costs for switching controls.



xiv Preface

Value functions can be found explicitly by solving the HJB equation only
in a few cases, including the linear—quadratic regulator problem, and some
special problems in finance theory. Otherwise, numerical methods for solving
the HJB equation approximately are needed. This is the topic of Chapter IX.

Chapters III, IV and VI rely on probabilistic methods. The only results
about partial differential equations used in these chapters concern classical
solutions (not viscosity solutions.) These chapters can be read independently
of Chapters IT and V. On the other hand, readers wishing an introduction to
viscosity solutions with little interest in control may wish to focus on Chapter
II, Secs. 4-6, 8 and on Chapter V, Secs. 4-8.

We wish to thank M. Day, G. Kossioris, M. Katsoulakis, W. McEneaney, S.
Shreve, P. E. Souganidis, Q. Zhang and H. Zhu who read various chapters and
made helpful comments. Thanks are also due to Janice D’Amico who typed
drafts of several chapters. We are especially indebted to Christy Newton. She
not only typed several chapters, but patiently helped us through many revi-
sions to prepare the final version.

W.H. Fleming
June 1, 1992 H.M. Soner
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