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Abstract. The classical optimal investment and consumption problem with infinite horizon is
studied in the presence of transaction costs. Both proportional and fixed costs as well as general
utility functions are considered. Weak dynamic programming is proved in the general setting, and a
comparison result for possibly discontinuous viscosity solutions of the dynamic programming equation
is provided. Detailed numerical experiments illustrate several properties of the optimal investment
strategies.
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1. Introduction. In this paper, we study the Merton problem with fixed and
proportional transaction costs. The problem introduced and solved by Merton [34]
is now a classical application of stochastic control to mathematical finance and has
paved the way for decades of research on extensions to more general settings. The
problem, simply stated, is to determine the optimal investment strategy for a rational,
risk-averse agent in a market consisting of one risky asset (stock) and one riskless
asset (bank account). The latter grows at the risk-free rate, whereas the former has
a higher mean rate of return but is subject to risk in the form of volatility. Merton
found that the optimal strategy was to maintain a constant proportion of total wealth
in the risky asset. That amount, called the Merton proportion, would depend on the
market parameters as well as the investor’s risk preferences. Since even the simplest
models of a stock price assumes a (geometric) Brownian motion driver, the investor
would have to continuously rebalance his/her portfolio in order to implement the
constant proportion strategy and achieve optimal returns. However, in the presence
of transaction costs, following such a strategy would immediately lead to bankruptcy.
Thus the question arises: What is the optimal strategy when there are transaction
costs?

Arguably, the most well-known example of a transaction cost that arises in prac-
tice is the bid-ask spread. We often refer to this cost as a proportional cost since it
accrues in proportion to the size of the trade. The first to study the Merton problem
with proportional costs were Magill and Constantinides [32], and later again Con-
stantinides in [9]. In these works, the notion of a buffer region around the Merton
optimal proportion within which the investor does not rebalance his/her portfolio
was first introduced. While it was not clear at the time what the optimal strategy
would have to be, they were nonetheless able to argue that transaction costs had a
profound negative impact on investment returns. Soon after, the insights provided
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1674 ALBERT ALTAROVICI, MAX REPPEN, AND H. METE SONER

by these works were further developed [13, 14, 44] to not only determine the form of
the optimal strategies, but also help place the problem on a firm theoretical footing.
The optimal strategy in this case is as follows: Do not rebalance while the portfolio
is contained inside the buffer region. However, once the boundary of the region is
breached, transact minimally so as to remain in the region.

Proportional transaction costs have received most of the attention in the literature
for a number of reasons. First, they are relevant to investors of all sizes. Second, from
a mathematical standpoint at least, their scale invariance is a useful property. Third,
although a lot of work has been done, there are still plenty of questions left to answer.
Arguably, the most important of which is, how does one compute the buffer region?

Partial answers to this question are provided in restricted settings. Davis and
Norman [13] showed that trading boundaries can be determined numerically by solving
a free-boundary problem. In the asymptotic limit for small costs, the no-trade region
and the corresponding utility loss can be determined explicitly at the leading order;
cf. Shreve and Soner [44], Whalley and Wilmott [48], Janeček and Shreve [22], as well
as many more recent studies [6, 18, 47, 38, 7]. Extensions to more general preferences
and stochastic opportunity sets have been studied numerically by Balduzzi, Lynch,
and Tan [30, 3, 31]. Corresponding formal asymptotics have been determined by
Goodman and Ostrov [19], Martin [33], Kallsen and Muhle-Karbe [25, 24], as well as
Soner and Touzi [47]. The last study [47] also contains a rigorous convergence proof
for general utilities, which is extended to several risky assets by Possamäı, Soner, and
Touzi [38].

It has been determined that proportional costs lead to strategies which rely on
infinitely many small (local-time) transactions to produce optimal outcomes. How-
ever, this theoretical result is unsatisfying from a practical point of view; conducting
infinitely many trades in any finite time horizon is impossible. On the other hand, the
inclusion of fixed costs (e.g., a brokerage fee of $1 paid each time the investor trades)
only allows for a finite number of trades over finite time intervals. In this case using
the class of strategies which are optimal for proportional costs leads to immediate
bankruptcy in the face of fixed costs (cf. [43]). When both costs are present, the op-
timal strategy prescribes using two (inner and outer) buffer regions, and rebalancing
happens as follows: The investor is inactive when the portfolio is inside the outer
region. Once the outer region is breached, he/she trades to the boundary of the inner
region. These cost structures lead to strategies that are more appealing from a prac-
tical standpoint; now the investor must determine (a set of stopping) times at which
it is optimal to transact. The impulse control problem in the context of portfolio
management was first approached by [15].

The main drawback to fixed costs from a modeling point of view is that they
destroy the favorable scaling properties that usually allow one to reduce the dimen-
sionality of the problem for utilities with constant relative or absolute risk aversion.
In particular, the no-trade region is no longer a cone, even in the simplest settings
with constant investment opportunities as well as constant absolute or relative risk
aversion. Accordingly, the literature analyzing the impact of fixed trading costs is
much more limited than for proportional costs: On the one hand, there are a number
of numerical studies [42, 28], which iteratively solve the dynamic programming equa-
tions. On the other hand, Korn [26] as well as Lo, Mamaysky, and Wang [29] have
obtained formal asymptotic results for investors with constant absolute risk aversion.
This structure resembles that of inventory problems where both fixed and proportional
costs are present. Scarf [41] introduced the notion of K-convexity to analyze these
problems in one space dimension, which was later successfully used in [39] and [5].
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FIXED AND PROPORTIONAL COSTS 1675

For small costs, these authors find that constant trading boundaries are opti-
mal at the leading order. Thus, these models are tractable but do not allow us to
study how the impact of fixed trading costs depends on the size of the investor under
consideration. The same applies to the “quasi-fixed” costs proposed by Morton and
Pliska [35] and analyzed in the small-cost limit by Atkinson and Wilmott [2]. In their
model, each trade—regardless of its size—incurs a cost proportional to the investors’
current wealth, leading to a scale-invariant model where investors of all sizes are af-
fected by the “quasi-fixed” costs to the same extent. The fixed (in the sense of Morton
and Pliska) and proportional cost problem was analyzed by Irle and Sass [21, 20] in
the context of maximizing the asymptotic growth rate of the portfolio value. They
show that “constant-boundary” policies are optimal controls; these strategies dictate
that there is an inner and an outer threshold around the optimal frictionless portfolio
allocation in which the agent trades to the inner threshold when the outer one is
breached. Korn [26] considers the same transaction cost structure as we do, i.e., fixed
and proportional costs where the fixed costs are independent of the investor’s current
wealth. For the formulation and the analysis of multidimensional problems we refer
the reader to the book by Kabanov and Safarian [23].

Shreve and Soner [44] were the first to provide a rigorous analysis of the value
function in the frictional (proportional cost) setting using the tools of viscosity theory.
In the mixed cost (fixed and proportional) setting, Øksendal and Sulem [37] study
the case of one risky asset and power utility with risk aversion between 0 and 1.
Under some technical assumptions, they prove that the value function is a viscosity
solution of the associated Hamilton–Jacobi–Bellman inequality and also provide a
comparison result in that case. More recently, Belak, Menkens, and Sass [4] revisit the
comparison problem in the case of proportional transaction costs and prove uniqueness
in the case of power and logarithmic utilities. However, the question of uniqueness
for more general utilities and the analysis of higher dimensions and the mixed case of
proportional and fixed costs remained open. We address all these issues.

Convex duality is also used to analyze the more general semimartingale models.
We refer the reader to the initial paper of Cvitanić and Karatzas [11], the recent
manuscript of Czichowsky and Schachermayer [12], and the references therein.

Main themes. The results contained in this paper consist of two themes. The
first is the analysis of the value function for the general impulse control problem in
multidimensions, assuming constant coefficient, correlated geometric Brownian mo-
tion stock price dynamics, and general utilities with asymptotic elasticity less than 1.
We do not assume a priori measurability of the value function, and we prove in sec-
tion 3.1 that it satisfies a weak dynamic programming principle (DPP). Using the
weak DPP, in section 3.2 we prove that the value function is a constrained viscosity
solution of the associated quasi-variational Hamilton–Jacobi–Bellman equation (dy-
namic programming equation, or DPE for short). Finally, we prove a comparison
principle, Theorem 15, for the DPE which circumvents the boundary singularities
associated with general utility functions. This result is proved for general discon-
tinuous sub- and supersolutions. The main contribution here is a novel technique
of an appropriate state-space translation of the viscosity supersolution in order to
avoid the boundary issues. Moreover, it provides a uniqueness result, Theorem 16,
for possibly discontinuous solutions. Since the standard comparison would imply the
continuity of the unique solution, the statements of both Theorem 15 and Theorem 16
are nonstandard and novel.

The second theme is to determine the shape of the asymptotic no-trade region

D
ow

nl
oa

de
d 

06
/0

1/
17

 to
 1

29
.1

32
.2

08
.2

51
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1676 ALBERT ALTAROVICI, MAX REPPEN, AND H. METE SONER

when there is more than one risky asset in the presence of mixed transaction costs
and/or multiple fixed costs. This includes a formal derivation of the corrector equa-
tions obtained by homogenization of the DPE. These, in turn, correspond to the DPE
of an ergodic impulse control problem. This control problem seems to only admit
explicit solutions in either one dimension or when there are no proportional costs.
Nevertheless, we are able to calculate the optimal controls and no-trade regions nu-
merically using a policy iteration scheme. By appropriately modifying the control
penalization structure, we are able to investigate a diverse set of transaction cost
structures. We perform benchmark tests on the numerical scheme using our knowl-
edge of the explicit solutions of the one-dimensional models and the fixed cost solution
in two dimensions.

2. Model and main results.

2.1. Market, trading strategies, and wealth dynamics. Consider a finan-
cial market consisting of a safe asset earning a constant interest rate r > 0, and d risky
assets with expected excess returns μi − r > 0 and invertible infinitesimal covariance
matrix σσ�:

dS0
t = S0

t rdt, dSt = Stμdt+ StσdWt

for a d-dimensional standard Brownian motion (Wt)t≥0 defined on a filtered probabil-
ity space (Ω,F , (Ft)t≥0, P ), where (Ft)t≥0 denotes the augmentation of the filtration
generated by (Wt)t≥0. Each trade incurs a fixed transaction cost λf > 0 and a pro-
portional transaction cost λp ≥ 0. As a result, portfolios can only be rebalanced
finitely many times over finite time intervals, and trading strategies can be described
by pairs (τ,m), where the trading times τ = (τ1, τ2, . . .) are a sequence of stopping
times (strictly) increasing towards infinity, and the Fτi-measurable, Rd-valued ran-
dom variables collected in m = (m1,m2, . . .) describe the transfers at each trading
time. More specifically, mj

i represents the monetary amount transferred from the safe
to the jth risky asset at time τi. Each trade is assumed to be self-financing, and the
costs are deducted from the safe asset account. Thus, the safe and risky positions
evolve as

(x, y) = (x, y1, . . . , yd) �→
(
x−

d∑
j=1

(1 + λpsgn(m
j
i ))m

j
i − λf , y

1 +m1
i , . . . , y

d +md
i

)

for each trademi at time τi. The investor also consumes from the safe account at some
rate (ct)t≥0. Hence, the wealth dynamics corresponding to a consumption-investment
strategy ν = (c, τ,m) starting from an initial position (X0−, Y0−) = (x, y) ∈ R× R

d

are given by

Xt = x+

∫ t

0

(rXs − cs)ds−
∞∑
k=1

(
λf +

d∑
j=1

(1 + λpsgn(m
j
k))m

j
k

)
1{τk≤t},

Y i
t = yi +

∫ t

0

Y i
s

dSi
s

Si
s

+

∞∑
k=1

mi
k1{τk≤t}.

We write (X,Y )ν,x,y for the solution of the above equation. The solvency region

Kλ :=

{
(x, y) ∈ R

d+1 : max

{
x+ y · 1d − λp‖y‖1 − λf , min

i=1,...,d
{x, yi}

}
≥ 0

}D
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y

x

x+ y = λf

x+ y = λf

Kλ

y

x

x+ (1− λp)y = λf

x+ (1 + λp)y = λf

Kλ

Fig. 1. With only one risky asset the solvency region is bounded by four lines, here drawn
thick. Note that in the left figure, where λp = 0, the solvency region is unbounded for every fixed
z = x + y, causing some extra obstacles in the analysis of this special case. Note that any trade
moves the position parallel to one of the two sloping lines, shifting inwards by the size of λf .

is the set of positions with nonnegative liquidation value. Here, 1d = (1, . . . , 1) ∈ R
d,

and ‖ · ‖1 denotes the Manhattan distance, namely, ‖v‖1 :=
∑d

i=1 |vi|. A visualization
of this set in the case of one risky asset is given in Figure 1.

A strategy ν = (c, τ,m) starting from the initial position (x, y) is called admissible
if it remains solvent at all times: (X,Y )ν,x,yt ∈ Kλ for all t ≥ 0, P -a.s. The set of all
admissible strategies is denoted by Θλ(x, y).

2.2. Preferences. In the above market with constant investment opportunities
(r, μ, σ) and transaction costs λ = (λf , λp) ∈ R>0 × R≥0, an investor with utility
function U and impatience rate β > 0 trades to maximize the expected utility from
consumption over an infinite horizon, starting from an initial endowment of X0− = x
in the safe and Y0− = y in the risky assets, respectively. The utility function U :
[0,∞) → {−∞}∪R is real-valued, smooth, increasing, and strictly concave on (0,∞)
and has asymptotic elasticity 1− γ. We assume that U(0) = U(0+).

The value of the investor’s consumption is given by1

(2.1) vλ(x, y) = sup
(c,τ,m)∈Θλ(x,y)

E

[∫ ∞

0

e−βtU(ct)dt

]
.

The expected qualitative properties of an optimal strategy with one risky asset are
sketched in Figure 2.

Assumption 1. We shall assume throughout that

β

γ
+

(
1− 1

γ

)(
r +

(μ− r1d)
�(σ�σ)−1(μ− r1d)

2γ

)
> 0.

Remark 2. This assumption is equivalent to saying that the frictionless value
function is finite in the case where U is a power (or logarithmic) utility function with
risk-aversion parameter γ.

In fact, if U is a more general utility function with asymptotic elasticity 1−γ < 1,
the value function is still finite. More precisely, for all 0 < γ̂ < γ such that the

1By convention, the value of the integral is set to minus infinity if its negative part is infinite.
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1678 ALBERT ALTAROVICI, MAX REPPEN, AND H. METE SONER

x

y
Trading boundary

Target positions

Fig. 2. Sample path of portfolio positions. The trader stays passive as long as the portfolio
remains in some region, and trades inwards to a target line when the process crosses the trading
boundary. The blue lines indicate movement of the portfolio from price changes, whereas the red
arcs indicate trades.

assumption holds with γ replaced by γ̂, there exist C1 and C2 such that

vλ(x, y) ≤ C1(1 + v(x, y)) ≤ C2(1 + |x+ y · 1d|1−γ̂),

where v here denotes the frictionless value function with power (or logarithmic) utility
function and risk-aversion parameter γ̂. This is a direct consequence of the properties
of U proven in [27].

We study the value function on its effective domain

D := {(x, y) ∈ Kλ : |vλ(x, y)| 
= ∞}.

Our first result shows that it is a constrained viscosity solution of the DPE (2.4) on
its effective domain D as defined in [45, 46]; see also Definition 8 below.

Note that int(Kλ) ⊂ D. This is clear by Remark 2 and the observation that for
any (x, y) ∈ int(Kλ) such that a ball centered in (x, y) with radius δ is contained in
Kλ, it is admissible to liquidate with at least δ cash left and thereafter consume the
interest. This yields

vλ(x, y) ≥ U(rδ)

β
> −∞.

More precisely, the following hold:
(i) If U(0) > −∞, then Kλ = D.
(ii) If U(0+) = −∞, then {(x, y1, . . . , yd) ∈ R

d+1
≥0 : x > 0} ∪ int(Kλ) = D.
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FIXED AND PROPORTIONAL COSTS 1679

Theorem 3. Under Assumption 1 the value function vλ of the Merton problem
with fixed costs λf > 0 and proportional costs λp ≥ 0 is a (possibly) discontinuous
constrained viscosity solution of the DPE (2.4) on its effective domain D.

Remark 4. The value function is indeed discontinuous in Kλ, and in the case
where U(0) > −∞ this is clearly true also in D. In the corner (λf ,0d) of ∂Kλ the
investor may decide to not trade and consume the interest rate, thus obtaining the
payoff U(rλf )/β. On the other hand, for any point (x, y) ∈ ∂Kλ \ R

d+1
≥0 , the only

admissible strategy is to liquidate to (0,0d). In such cases we must have vλ(x, y) =
U(0)/β. Hence, no matter how close (x, y) is to (λf ,0d),

vλ(λf ,0d)− vλ(x, y) ≥ U(rλf )− U(0)

β
.

This value is strictly greater than 0 and independent of the choice of point. Therefore,
vλ has a discontinuity at the point (λf ,0d).

2.3. The frictional dynamic programming equation. For the convenience
of the reader, we now recall how to heuristically derive the DPE with fixed trading
costs. We start with the ansatz that the value function vλ(x, y) for our infinite horizon
problem with constant model parameters should only depend on the positions in each
of the assets. Evaluated along the positions Xt, Yt corresponding to any admissible
policy ν = (c, τ,m), Itô’s formula in turn yields

dvλ(Xt, Yt)(2.2)

=

(
vλx(Xt, Yt)(rXt − ct) + μ ·Dyv

λ(Xt, Yt) +
1

2
Tr[σσ�Dyyv

λ(Xt, Yt)]

)
dt

+Dyv
λ(Xt, Yt)

�σdWt

+
∑
τi≤t

(
vλ(Xτi −mi · 1d − λ, Yτi +mi)− vλ(Xτi , Yτi)

)
,

where

Di
y = yi

∂

∂yi
, Dij

yy = yiyj
∂2

∂yi∂yj
, i, j = 1, . . . , d.

By the martingale optimality principle of stochastic control, the utility∫ t

0

e−βsU(cs)ds+ e−βtvλ(Xt, Yt)

obtained by applying an arbitrary policy ν until some intermediate time t and then
trading optimally should always lead to a supermartingale, and to a martingale if the
optimizer is used all along. Between trades—in the policy’s “no-trade region”—this
means that the absolutely continuous drift should be nonpositive, and zero for the
optimizer. After taking into account (2.2), using integration by parts, and canceling
the common factor e−βt, this leads to

0 = sup
c>0

{
− βvλ(x, y) + U(c) + (rx − c)vλx(x, y)(2.3)

+ μ ·Dyv
λ(x, y) +

1

2
Tr[σσ�Dyy]v

λ(x, y)

}
.
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1680 ALBERT ALTAROVICI, MAX REPPEN, AND H. METE SONER

By definition, the value function can only be decreased by admissible bulk trades at
any time:

0 ≥ sup
m∈Rd

{vλ(x−m · 1d − ‖m‖1λp − λf , y +m)− vλ(x, y)},

and this inequality should become an equality for the optimal transaction once the
boundaries of the no-trade region are breached. Combining this with (2.3) and switch-
ing the sign yields the dynamic programming equation:

(2.4) 0 = min{βvλ − Ũ(vλx)− L vλ, vλ −Mvλ},
where Ũ(c̃) = supc>0(U(c) − cc̃) is the convex dual of the utility function U , the
differential operator L is defined as

L = rx
∂

∂x
+ μ ·Dy +

1

2
Tr[σσ�Dyy],

and M denotes the nonlocal intervention operator
(2.5)
Mψ(x, y) = sup

m∈Rd

{ψ(x′, y′) : (x′, y′) = (x−m · 1d − ‖m‖1λp − λf , y +m) ∈ Kλ} .

In the event that there is no m ∈ R
d for which (x′, y′) = (x−m ·1d−‖m‖1λp−λf , y+

m) ∈ Kλ, then Mψ(x, y) = −∞.

3. Proof of Theorem 3. In this section we prove that the value function vλ is a
constrained viscosity solution of the corresponding DPE (2.4) on its effective domain.
We present a direct proof of the weak DPP. For a more general approach, we refer the
reader to [16]. Then we use it to prove that vλ is indeed a viscosity solution of (2.4).

3.1. Weak dynamic programming principle for vλ. Fix (x, y) ∈ D and
M := 2(x+ y · 1d). Set

Oλ := Oλ(x, y;M) = {(x′, y′) ∈ D : x′ + y′ · 1d < M}.
Define Bδ(x, y) ⊂ R

d+1 to be a (relatively) open ball (in Kλ) of radius δ centered at
(x, y). Choose δ > 0 sufficiently small so that δ < λ, Bδ(x, y) ⊂ Oλ, and (0, 0) /∈
Bδ(x, y). For any investment-consumption policy ν and initial endowment (x′, y′) ∈
Bδ(x, y), define θ := θν as the exit time of the state process (X,Y )ν,x

′,y′
from Bδ(x, y).

Following standard convention, our notation does not explicitly show the dependence
of θ on ν. It is then clear that

(Xθ− , Yθ−) ∈ Bδ(x, y) and (Xθ, Yθ) ∈ Oλ.

Let ϕ be a bounded,2 upper-semicontinuous function on Oλ which is locally C2 at
(x, y) and satisfies

vλ ≤ ϕ on Oλ.

Without loss of generality, we assume that δ > 0 was chosen small enough that
ϕ ∈ C2(Bδ(x, y)). Then we have

(3.1) vλ(x, y) ≤ sup
ν∈Θλ(x,y)

E

[∫ θ

0

e−βtU(ct)dt+ e−βθϕ
(
Xθ, Yθ

)]
.

2We can take bounded test functions because vλ is bounded from above on Oλ.
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Conversely, let ϕ be a smooth function on Oλ, satisfying

vλ ≥ ϕ on Oλ.

Then we have

(3.2) vλ(x, y) ≥ sup
ν∈Θλ(x,y)

E

[∫ θ

0

e−βtU(ct)dt+ e−βθϕ
(
Xθ, Yθ

)]
.

Without loss of generality, let Ω = C0([0,∞),Rd) be the space of continuous func-
tion starting at zero, equipped with the the Wiener measure P, a standard Brownian
motion W , and the completion {Ft}t≥0 of the filtration generated by W .

Given a control ν ∈ Θλ(x, y) and the exit time θ := θν from above, fix ω ∈ Ω and
define

νθ,ω(ω′, t) := ν
(
ω

θ⊕ ω′, t+ θ(ω)
) ∀ω′ ∈ Ω, t ≥ 0,

where

(ω
θ⊕ ω′)t =

{
ωt if t ∈ [0, θ(ω)),
ω′
t−θ(ω) + ωθ(ω) if t ≥ θ(ω).

We start with the proof of (3.1). By construction,

νθ,ω ∈ Θλ((Xθ(ω), Yθ(ω))
ν,x,y);

in particular, νθ,ω is a well-defined impulse control. Therefore,

E

[∫ ∞

0

e−βtU(cνt )dt

∣∣∣∣Fθ

]
(ω)

=

∫ θ(ω)

0

e−βtU
(
cνt (ω)

)
dt+ e−βθ(ω)

∫
Ω

∫ ∞

0

e−βtU
(
cν

θ,ω

t (ω′)
)
dtdP(ω′)

≤
∫ θ(ω)

0

e−βtU
(
cνt (ω)

)
dt+ e−βθ(ω)vλ((Xθ(ω), Yθ(ω))

ν,x,y)

≤
∫ θ(ω)

0

e−βtU(cνt (ω))dt+ e−βθ(ω)ϕ((Xθ(ω), Yθ(ω))
ν,x,y).

As a result, for any ν ∈ Θλ(x, y),

E

[∫ ∞

0

e−βtU(cνt )dt

]
≤ E

[∫ θ

0

e−βtU(cνt )dt+ e−βθϕ((Xθ, Yθ)
ν,x,y)

]
.

By taking the supremum over all policies ν, we arrive at (3.1).
To prove (3.2), set V to be the right-hand side of (3.2):

V := sup
ν∈Θλ(x,y)

E

[∫ θ

0

e−βtU(cνt )dt+ e−βθϕ((Xθ, Yθ)
ν,x,y)

]
.

For any η > 0, we can choose νη ∈ Θλ(x, y) satisfying

V ≤ η + E

[∫ θ

0

e−βtU(cν
η

t )dt+ e−βθϕ((Xθ , Yθ)
ν,x,y)

]
.(3.3)
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We begin by covering first the interior, O̊λ. For every point ζ = (x̃, ỹ) in O̊λ, set

R(ζ) := Rη(x̃, ỹ)

= {(x′, y′) ∈ O̊λ : x′ > x̃, y′ > ỹ, ϕ(x′, y′) < ϕ(x̃, ỹ) + η}.

Since ϕ is smooth, each R(ζ) is open and

O̊λ ⊂
⋃

ζ∈Ôλ

R(ζ).

Hence, by the Lindelöf covering lemma, we can extract a countable subcover

O̊λ ⊂
⋃
n∈N

R(ζn).

Only the boundary, ∂Kλ, remains to be covered. It is convenient to write

∂Kλ = S ∪C,

and Ôλ := Oλ\S, where

(3.4) S = {v = (v0, . . . , vd) ∈ ∂Kλ : ∃i, vi < 0}

and C is the relative complement of S in ∂Kλ. Note that this means that C is
the boundary of a (d + 1)-simplex bounded by the coordinate axes and the plane

{v ∈ R
d+1 : v0 +

∑d
i=1(1 − λp)v

i = λf}, with the open face in this plane removed.
The interior of each k-simplex in C, for 0 < k ≤ d, can be written as

Ck(Ik) =

{
(v0, . . . , vd) ∈ R

d+1
≥0 : vi > 0 ⇔ i ∈ Ik,

∑
i∈Ik

(1− λp1{i
=0})vi < λf

}

for some set of distinct indices Ik = {ij : j = 1, . . . , k}. For each such k-simplex, we
cover its interior using sets of the form

R(ζ) = {ζ̂ ∈ Ck(i1, . . . , ik) : ζ̂ > ζ, ϕ(ζ̂) < ϕ(ζ) + η}.

Clearly, each

Ck(i1, . . . , ik) ⊂
⋃

ζ∈Ck(i1,...,ik)

R(ζ),

and we can again extract a countable subcover. We remark that if U(0+) = −∞,
there is no need to create a covering of any simplex other than those with a nontrivial
first coordinate component (since any other simplex is not contained in the effective
domain of vλ). If, instead, U(0) > −∞, then we need to cover everything. Finally,
note that we also do not need to cover S because, provided η is sufficiently small, an
η-optimal strategy νη will force (Xθ, Yθ)

νη ,x,y /∈ S.
So far we have created a countable covering {R(ζn)}∞n=d+2 (up to re-indexing)

of Ôλ\{λfe0, λf

1−λp
e1, . . . ,

λf

1−λp
ed,0d+1}, where ei denotes the ith elementary unit

vector in R
d+1 with indexing starting at 0. For each i = 1, . . . , d, set ζi :=

λf

1−λp
ei.

Then set ζ0 = λfe0 and ζd+1 = 0d+1. Finally, define R(ζi) := {ζi} for 0 ≤ i ≤ d + 1.

Thus we have a countable covering {R(ζn)}∞n=0 of Ô.
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Now, define a mapping I : Ôλ → N,

I(x′, y′) := min{n : (x′, y′) ∈ R(ζn)} ∀(x′, y′) ∈ Ôλ

and set
ζ(x′, y′) := ζI(x′,y′).

By definition, these constructions imply

(3.5) ϕ(x′, y′) ≤ ϕ
(
ζ(x′, y′)

)
+ η ∀ (x′, y′) ∈ Ôλ.

For each n ∈ N, we choose a control νn ∈ Θλ(ζn) so that

(3.6) vλ(ζn) ≤ E

[∫ ∞

0

e−βtU(cν
n

t )dt

]
+ η.

Note that for each n ≥ 0, νn ∈ Θλ(x′, y′) for every (x′, y′) ∈ R(ζn). We now
define a composite strategy ν∗, which follows the policy νη satisfying (3.3) until the
corresponding state process (X,Y )ν

η ,x,y leaves Bδ(x, y) at time θ = θν
η

. We have
already argued that (Xθ, Yθ)

νη ,x,y ∈ Ôλ. The policy thereafter is νn, corresponding
to the index n which the state process is assigned by the mapping I:

ν∗(ω
θ⊕ ω′, t) :=

{
νη(ω, t), if t ∈ [0, θ(ω)],
νN (ω)(ω′, t− θ(ω)), if t > θ(ω),

with N (ω) = I((Xθ(ω), Yθ(ω))
νη ,x,y). This construction ensures that we have ν∗ ∈

Θλ(x, y). Hence, it follows from the definitions of the value function and ν∗, (3.6) and
vλ ≥ ϕ (which holds by definition of ϕ), as well as (3.5) and (3.3) that

vλ(x, y) ≥ E

[∫ ∞

0

e−βtU
(
cν

∗
t

)
dt

]
= E

[∫ θ

0

e−βtU (cηt ) dt+ e−βθ

∫ ∞

0

e−βtU
(
cNt
)
dt

]

≥ E

[∫ θ

0

e−βtU(cηt )dt+ e−βθ(ϕ(ζ((Xθ , Yθ)
νη ,x,y))− η)

]

≥ E

[∫ θ

0

e−βtU(cηt )dt+ e−βθ(ϕ((Xθ , Yθ)
νη ,x,y)− 2η)

]
≥ V− 3η.

Since η was arbitrary this establishes (3.2), thereby completing the proof.

3.2. vλ is a viscosity solution of (2.4). We first state and prove some facts
about the intervention operator M from (2.5), which are needed in the subsequent
proofs. Throughout, ψ∗ and ψ∗ will denote the lower and upper-semicontinuous en-
velopes of a locally bounded function ψ, respectively.

Lemma 5. Suppose λf , λp > 0. Let ϕ : Kλ → R. Then
(i) if ϕ is upper-semicontinuous, then Mϕ is upper-semicontinuous;
(ii) if ϕ is continuous, then Mϕ is continuous.

Proof. The proof can be found in [37].
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Remark 6. When λp = 0, the above lemma is no longer true. To see where the
argument breaks down, consider the smooth function h on R

2
+ defined by

h(x, y) =

⎧⎪⎨⎪⎩
h0(x− y), x+ y > 2,

htan(π(2−x−y))(x− y), 1 < x+ y ≤ 2,

0, x+ y ≤ 1,

where hζ : R → [0, 1] is the standard smooth bump function centered at ζ, i.e., with
peak hζ(ζ) = 1. Suppose that λf = 1. Consider the sequence ζn := (1 + 1

n , 1 +
1
n ) →

(1, 1). Then lim supn→∞ Mh(ζn) = 1 > 0 = Mh(1, 1), which demonstrates that upper-
semicontinuity is not preserved by M. Compactness of iso-wealth lines, however,
would preclude us from pushing bumps out to infinity.

The following lemma is needed in the case when λf > 0 and λp = 0. A funda-
mental difficulty arises in the pure fixed cost case as the set of attainable portfolios
at a fixed wealth level is no longer compact, as it was in the case when λf > 0 and
λp > 0.

Lemma 7. Suppose ϕ : Kλ → R satisfies supz∈K ‖ϕ(z, ·)‖∞ < ∞ for any non-
empty compact set K ⊂ R+.

(i) If ϕ is lower-semicontinuous, then Mϕ is lower-semicontinuous. In particu-
lar, if ϕ ≥ Mϕ, then ϕ∗ ≥ Mϕ∗.

(ii) Let ϕ ∈ C1(Kλ). If (z, ξ) �→ Dξϕ(z, ξ) is compactly supported on C × R
d for

any compact set C ⊂ R+, then Mϕ is upper-semicontinuous.

Proof. See [1] for the proof.

The following definition is an adaptation of the one given in [45, 46] to the current
problem. The main difference between the classical viscosity solution and the one
below is that for a constrained solution the subsolution property extends to the closed
domain D.

Definition 8. We say that u is a viscosity subsolution on D if for each ζ0 ∈ D
and for every upper-semicontinuous function ϕ such that ϕ is locally C2 at ζ0 and
0 = (u∗ − ϕ)(ζ0) = maxζ∈D(u

∗ − ϕ)(ζ) there holds

min

{
βϕ(ζ0)− Ũ(ϕx(ζ0))− Lϕ(ζ0), (ϕ−Mϕ)∗(ζ0)

}
≤ 0.

We say that u is a viscosity supersolution on D̊ if for each ζ0 ∈ D̊ and every smooth
ϕ such that 0 = (u∗ − ϕ)(ζ0) = minζ∈D̊(u∗ − ϕ)(ζ) there holds

min

{
βϕ(ζ0)− Ũ(ϕx(ζ0))− Lϕ(ζ0), (ϕ−Mϕ)(ζ0)

}
≥ 0.

We say that u is a constrained viscosity solution on D if it is a subsolution on D and
a supersolution in D̊.

Remark 9. In the given definition of viscosity subsolutions we have chosen a
relaxation of the conditions on the test functions, letting them be merely upper-
semicontinuous outside of some neighborhood. This is needed in the proof of Theo-
rem 15, due to the global behavior of the operator M.

Remark 10. When both λf , λp > 0, then the equations are continuous; i.e., the
lower envelope of the equation for viscosity subsolutions is not needed. The reason is
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that the operator M preserves upper-semicontinuity; in other words, the quantity in
the equation is already lower-semicontinuous.

We are now ready to tackle the proof of Theorem 3, which we split into two
lemmata.

Lemma 11. The value function vλ is a viscosity supersolution of the DPE (2.4)

on D̊.

Proof. Let (x0, y0) ∈ D̊. and let ϕ be a smooth function on Oλ := Oλ(x0, y0; 2(x0+
y0 · 1d)) satisfying

0 = (vλ∗ − ϕ)(x0, y0) = min{(vλ∗ − ϕ)(x′, y′) : (x′, y′) ∈ Oλ}.
Using Lemma 7 and the inequality vλ∗ ≥ ϕ on Oλ we obtain

ϕ(x0, y0) = vλ∗ (x0, y0) ≥ Mvλ∗ (x0, y0) ≥ Mϕ(x0, y0).

Therefore, it remains to show that(
βϕ− Ũ(ϕx)− Lϕ

)
(x0, y0) ≥ 0.

Assume to the contrary that(
βϕ− U(c∗) + c∗ϕx − L ϕ

)
(x0, y0) < 0

for some c∗ > 0, and set φ(x, y) := ϕ(x, y)− ε(|x− x0|4 + ‖y− y0‖4). Then, for ε > 0
and r > 0 small enough, continuity yields(

βφ − U(c∗) + c∗φx − L φ
)
(x, y) < 0 ∀(x, y) ∈ Br(x0, y0) ⊂ Oλ.

Select a convergent sequence of points (xn, yn, v
λ(xn, yn)) → (x0, y0, v

λ
∗ (x0, y0)) and

denote by (Xn
t , Y

n
t ) := (Xt, Yt)

xn,yn the portfolio process starting at (xn, yn) under
the consumption-only strategy ct ≡ c∗. Define

Hn := inf{t ≥ 0 : (Xn
t , Y

n
t ) /∈ Br(x0, y0)}

and note that lim infn→∞ E[Hn] > 0. Hence, there exists δ > 0 such that E[e−βHn

] >
δ for all n sufficiently large. Itô’s formula gives

φ(xn, yn)

= E

[
e−βHn

φ(Xn
Hn , Y n

Hn) +

∫ Hn

0

e−βs(βφ + c∗φx − L φ)(Xn
s , Y

n
s )ds

]

≤ E

[
e−βHn

φ(Xn
Hn , Y n

Hn) +

∫ Hn

0

e−βsU(c∗)ds

]
.

By construction of φ, there exists η > 0 such that we have ϕ ≥ φ + η on
Oλ\Br(x0, y0). Hence,

φ(xn, yn) ≤ E

[
e−βHn

ϕ(Xn
Hn , Y n

Hn) +

∫ Hn

0

e−βsU(c∗)ds

]
− δη.

Taking into account (vλ − φ)(xn, yn) → 0, we note that for n large enough

vλ(xn, yn) ≤ E

[
e−βHn

ϕ(Xn
Hn , Y n

Hn) +

∫ Hn

0

e−βsU(c∗)ds

]
− δη

2
.

This contradicts the weak DPP (3.2) for vλ, thereby completing the proof.
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The image of an arbitrary smooth function under M is upper-semicontinuous only
under additional assumptions (compare Lemma 7(ii)). As is customary in the theory
of viscosity solutions (cf., e.g., section 9 of [10]), the viscosity subsolution property
in the following lemma is therefore formulated in terms of the lower-semicontinuous
envelope of the DPE.

Lemma 12. The value function vλ is a viscosity subsolution of

min
{
βvλ − Ũ(vλx)− L vλ, (vλ −Mvλ)∗

}
= 0 on D.

Proof.
Step 1. Throughout the proof, C > 0 denotes a generic constant that may vary

from line to line. We argue by contradiction. Let (x0, y0) ∈ D, and let ϕ be an
upper-semicontinuous and bounded function on Oλ(x0, y0; 2(x0 + y0 · 1d)) which is
locally C2 at (x0, y0) and satisfies

0 = ((vλ)∗ − ϕ)(x0, y0) = max{((vλ)∗ − ϕ)(x′, y′) : (x′, y′) ∈ Oλ}.
Suppose that for some η > 0 we have

min{βϕ− Lϕ− Ũ(ϕx), (ϕ−Mϕ)∗}(x0, y0) > η.

By lower-semicontinuity, there is a small rectangular neighborhood

N = N(x0, y0, ρ) :=

{
(x, y) ∈ Oλ : max

i=1,...,d
{|x− x0|, |yi − yi0|} < ρ

}
on which ϕ is C2 and satisfies

(3.7) min{βϕ− Lϕ+ cϕx − U(c), ϕ−Mϕ}(x, y) > η

for all c > 0, (x, y) ∈ N.
Step 2. Choose a sequence N � (xn, yn) → (x0, y0) for which v

λ(xn, yn) converges
to (vλ)∗(x0, y0). At each of these points choose a 1

n -optimal control νn ∈ Θλ(xn, yn).
We denote by cnt and τn the consumption process and the first impulse time of νn,
respectively, and write (Xn

t , Y
n
t ) := (Xt, Yt)

νn,xn,yn for the corresponding controlled
process. Denote by (Ξn

t ) ∈ R
2 the same process, but without trading, i.e., the process

starting at (xn, yn) and with consumption cn.
Define the stopping times

Hn := inf{t ≥ 0 : Ξn
t /∈ N} ∧ 1

and
θn := Hn ∧ τn.

We can further decompose Hn = Hn ∧Hn ∧ 1, where

Hn := inf{t ≥ 0 : Ξn
t ∈ ∂N ∩ {x0 − ρ} × R

d}
and

H
n
:= inf{t ≥ 0 : Ξn

t ∈ ∂N ∩ {x : x > x0 − ρ} × R
d}.

The stopping time H
n
captures exit by diffusion, and Hn represents exit by consump-

tion.
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Step 3. Write
h(c, x, y) := I(c, x, y)− sup

ĉ>0
I(ĉ, x, y),

where
I(c, x, y) := −βϕ(x, y) + Lϕ(x, y)− cϕx(x, y) + U(c).

Note that I(c, x, y) < 0 for all c ∈ R+ and (x, y) ∈ N by (3.7). Setting c∗(x, y) =
(U ′)−1(ϕx(x, y)), it follows that

h(c, x, y) = I(c, x, y)− I
(
c∗(x, y), x, y

) ≤ 0.

By smoothness of ϕ and c∗ and compactness of N , there exists Lρ > 0 with
|I(c∗(x, y), x, y)| ≤ Lρ for all (x, y) ∈ N. On the other hand, there is α > 0 such
that I(c, x, y) ≤ −αc for all c > 0. This leads to the upper bound

(3.8) h(c, x, y) ≤ (−αc+ Lρ) ∧ 0 ∀c > 0, (x, y) ∈ N.

As we only consider times t up to θn, we can assume without loss of generality
that cnt = c∗(Xn

t , Y
n
t ) for t ∈ (θn, Hn]. Together with (3.8) we obtain

E

[∫ θn

0

−e−βth(cnt , Xt, Yt)dt

]
= E

[∫ Hn

0

−e−βth(cnt , Xt, Yt)dt

]

≥ CαE

[∫ Hn

0

e−rtcnt dt

]
− LρE[H

n].

≥ CαE

[∫ θn

0

e−rtcnt 1{θn=Hn}dt

]
−LρE[H

n],(3.9)

where the first inequality uses (3.8) and changes the discount factor.
Step 4. Set ζnt := (Xn

t , Y
n
t ). Weak dynamic programming (3.1) implies

vλ(xn, yn) ≤ 1

n
+ E

[∫ θn

0

e−βtU(cnt )dt+ e−βθn

ϕ(ζnθn)

]

≤ 1

n
+ ϕ(xn, yn) + E

[∫ θn

0

e−βtI(cnt , ζ
n
t )dt

]
+ E

[
e−βθn

(ϕ(ζnθn)− ϕ(ζnθn−))1{θn=τn}
]

≤ 1

n
+ ϕ(xn, yn) + E

[∫ θn

0

e−βtI(c∗t (ζ
n
t ), ζ

n
t )dt

]

+ E

[∫ θn

0

e−βth(cnt , ζ
n
t )dt

]
− CηP[θn = τn]

≤ 1

n
+ ϕ(xn, yn)− CLρηE[θ

n]− CηP[θn = τn]

+ E

[∫ θn

0

e−βth(cnt , ζ
n
t )dt

]
.
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1688 ALBERT ALTAROVICI, MAX REPPEN, AND H. METE SONER

Since vλ(xn, yn) − ϕ(xn, yn) − 1
n → 0 as n → ∞ and since the other terms on the

right-hand side are negative, they must each vanish as n tends to infinity.
Step 5. We derive a contradiction using that

(3.10) lim
n→∞max

{
E[θn] , P[θn = τn] , E

[∫ θn

0

−e−βth(cnt , ζ
n
t )dt

]}
= 0.

It will be useful to have E[Hn] → 0 and P[θn = Hn] → 1. To prove these statements,
first observe that

1 = P[θn = Hn] + P[θn = τn]− E[1{θn=Hn}1{θn=τn}],

where E[1{θn=Hn}1{θn=τn}] → 0. This implies that P[θn = Hn] → 1. In addition,

E[θn] =

∫
{θn=Hn}

HndP+

∫
{θn 
=Hn}

θndP,

where
∫
{θn=Hn} θ

ndP → 0. This implies

E[Hn]−
∫
{θn 
=Hn}

HndP → 0.

Since |Hn| ≤ 1 by definition and since P[θn 
= Hn] → 0 according to the observations
above, we obtain E[Hn] → 0. The statement that P[θn = Hn] → 1 follows the fact
that Hn = H

n ∧Hn ∧ 1 → 0 and H
n
is the exit time from N of a diffusion process

started at (xn, yn) → (x0, y0).
Step 6. As a consequence, if (x0, y0) is an interior point of D and ρ chosen small

enough,

E

[∫ θn

0

e−rtcnt 1{θn=Hn}dt

]
→ ρ,

which follows from the simple observation that, for any fixed n, the term inside the
expectation represents the amount of discounted consumption needed for cash in the
bank account to decrease from xn to x0 − ρ.

However, by (3.10) and (3.9), we must have

0 = lim
n→∞E

[∫ θn

0

−e−βth(ct, Xt, Yt)dt

]
≥ Cαρ− Lρ lim

n→∞E[Hn] = Cαρ > 0,

which is a contradiction.
Step 7. In the case U(0) > −∞, we need to discuss the solution at the boundary.

Note that if (x0, y0) ∈ ∂Kλ \ S = Kλ ∩ R
d+1
≥0 (recall (3.4)), then it is immediate from

dynamic programming that

βϕ(x0, y0)− Ũ(ϕx)(x0, y0)− L ϕ(x0, y0) = 0.

Suppose (x0, y0) ∈ S. We require that ϕ be taken so that Lemma 7(ii) applies. Note
that the previous steps of the proof are not held to this requirement. If (vλ)∗(x0, y0) =
vλ(x0, y0), then

(ϕ−Mϕ)(x0, y0) ≤ ϕ(x0, y0)−Mvλ(x0, y0)

= vλ(x0, y0)− vλ(0d+1) = 0,
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FIXED AND PROPORTIONAL COSTS 1689

since the only admissible control at (x0, y0) is liquidation.
On the other hand, if (vλ)∗(x0, y0) 
= vλ(x0, y0), then suppose by way of contra-

diction that

min{βϕ− L ϕ− Ũ(ϕx), (ϕ−Mϕ)∗}(x0, y0) > η

for some η > 0. Repeat Steps 1–5 with a sufficiently small ρ and the stopping times
Hn and H

n
redefined to be

Hn = inf{t ≥ 0 : Ξn
t ∈ ∂N ∩ S}

and
H

n
= inf{t ≥ 0 : Ξn

t ∈ ∂N \ S}.
Repeating these steps is possible since vλ is nondecreasing in each argument, and the
sequence in Step 2 can therefore be contained in the interior of D. Note that at time
Hn, the process is in S, where the only admissible control is to trade to the origin.
Hence, τn ≤ Hn, and thus also τn = θn on the set {θn = Hn}. By Step 5, this
implies

0 = lim
n→∞P[θn = τn] = lim

n→∞P[θn = Hn] = 1,

which is clearly a contradiction. Thus,

min{βϕ− L ϕ− Ũ(ϕx), (ϕ−Mϕ)∗}(x0, y0) ≤ 0,

which is the desired inequality.

4. Comparison. In this section, we assume that λf > 0 and λp ≥ 0, and we are
now considering more general utility functions.

Proposition 13. Let U be an increasing, smooth, strictly concave utility function
on R+. Then its Legendre–Fenchel transform, defined by

Ũ(c̃) := sup
c>0

{U(c)− cc̃}, c̃ ∈ R,

is decreasing.

Proof. A simple calculus argument shows that

d

dc̃
Ũ(c̃) = −(U ′)−1(c̃) < 0,

where the negativity follows by the assumptions on U .

We now aim to reformulate the definition of the intervention operator M so as to
algebraically manipulate the strategies. For each ζ ∈ D, we define the sets

I(ζ) :=
{
ν =

(
m1 −

d+1∑
i=2

λp|mi| − λf ,m
2, . . . ,md+1

)
:

d+1∑
i=1

mi = 0, ζ + ν ∈ D

}
.

Then the intervention operator satisfies

Mψ(ζ) = sup
ν∈I(ζ)

{ψ(ζ + ν)}.

By convention, if I(ζ) = ∅, then Mψ(ζ) = −∞.
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1690 ALBERT ALTAROVICI, MAX REPPEN, AND H. METE SONER

Lemma 14. If ζ ≤ ζ̂, then I(ζ) ⊂ I(ζ̂).
Proof. If I(ζ) = ∅, then the assertion is trivially true. Otherwise, if there exists

ν ∈ I(ζ), it follows that ζ̂ + ν ∈ D, since 0 ≤ (ζ + ν) · 1d+1 < (ζ̂ + ν) · 1d+1. Hence

ν ∈ I(ζ̂).
Theorem 15. Let u be an upper-semicontinuous subsolution on D, and let v be

a lower-semicontinuous supersolution in D̊ and set α := α 1d+1

‖1d+1‖1
∈ R

d+1 for some

α > 0. Suppose that u and v are nondecreasing in the variables (x, y1, . . . , yd). If

(4.1) inf
η∈D\D̊

v(η + α) > −∞

and if there exists some γ̂ ≤ γ large enough to also satisfy Assumption 1 as well as a
C > 0 such that

(4.2) u(x, y) ≤ C(1 + |x+ y · 1d|1−γ̂) ∀(x, y) ∈ D̊,

then u(η) ≤ v(η + α) for all η ∈ D.

Before presenting the proof, let us state the theorem describing the relevance to
vλ and how it relates to comparison.

Theorem 16. Let u and v be two constrained viscosity solutions, both satisfying
(4.1) and (4.2) for all α > 0. Then

(i) u∗(η) = v∗(η) for all η ∈ D;

(ii) u∗(η) = v∗(η) for all η ∈ D̊.
In particular, the value function vλ satisfies these conditions whenever the asymptotic
elasticity of the utility function U is smaller than 1.

Proof. We begin by proving

(4.3) u∗(η) ≤ (v∗)∗(η) and v∗(η) ≤ (u∗)∗(η) ∀η ∈ D

as well as

(4.4) (u∗)∗(η) ≤ v∗(η) and (v∗)∗(η) ≤ u∗(η) ∀η ∈ D̊.

Theorem 15 holds for u∗ and v∗ as u and v, respectively. Thus,

u∗(η) ≤ lim sup
α→0

v∗(η + α) ≤ (v∗)∗(η)

for any choice of η ∈ D. Similarly, for η ∈ D̊,

v∗(η) ≥ lim inf
α→0

u∗(η − α) ≥ (u∗)∗(η).

Interchanging u and v above, we obtain the other halves of the statements.
Employing (4.3) twice yields

u∗ ≤ (v∗)∗ ≤ v∗ ≤ (u∗)∗ ≤ u∗,

implying u∗ = v∗ on D. Moreover, by (4.4),

v∗ ≥ (u∗)∗ ≥ u∗ ≥ (v∗)∗ ≥ v∗,

implying v∗ = u∗ in D̊.
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FIXED AND PROPORTIONAL COSTS 1691

Finally, by Assumption 1 and Remark 2, condition (4.2) is satisfied for vλ. Now
choose any α > 0. Then, for any η ∈ D ⊂ Kλ,

vλ(η + α) ≥ vλ(α) ≥ U(rα)

β
> −∞,

which follows from the definition of Kλ and by choosing the consumption to be the
interest rα. Hence, (4.1) is also satisfied.

Note that if u is a viscosity solution satisfying (4.1) and (4.2), but not necessarily
for all α > 0, the same type of argument as in the proof yields

u∗(η) ≤ (vλ)∗(η) ∀η ∈ D

and

u∗(η) ≤ (vλ)∗(η) ∀η ∈ D̊.

This theorem also justifies the slightly unorthodox statement of comparison in
Theorem 15. Indeed, a traditional comparison formulation would always imply that
the constrained viscosity solutions are unique and therefore continuous. Hence, vλ

is truly discontinuous, so a traditional comparison formulation cannot be expected.
Therefore, the above uniqueness result is the best one could prove, as the viscosity
solutions do not distinguish the semicontinuous envelopes.

Proof of Theorem 15.
Step 1. We just prove the comparison theorem for the case of pure fixed costs

(λf > 0, λp = 0). In the case when both λf , λp > 0, the solvency region is compact for
all fixed wealth levels z. This compactness is lost when λp = 0 and the proof in the
case of pure fixed costs is in fact more complicated (and can easily be carried over to
the more general transaction costs case, mutatis mutandis). We will abuse notation
and write λ := λf .

Step 2. Suppose by way of contradiction that u(η0) − v(η0 + α) > 0 at some
point η0 ∈ D. Note that if η0 ∈ ∂D, then u(η0) > −∞. Take any γ′ < min{γ̂, 1} and
choose ε > 0 small enough so that u(η0) − v(η0 + α) − ε(z(η0 + α))1−γ′

> 0, where
z(η) := η · 1d+1. Set

Ψι(η, ξ; γ′) := u(η)− v(ξ + α)− ε(z(ξ + α))1−γ′ − 1

2
ι|η − ξ|2.

Observe that, due to the growth restrictions (4.2) on u and the finiteness assumption
on v, we have Ψι(η, ξ; γ′) → −∞ uniformly in η as |ξ| → ∞. As a result, there exists

L := L(γ′) > 0 such that whenever ξ̂ ∈ D satisfies z(ξ̂ + α) > L, then Ψι(η, ξ̂; γ′) < 0
for all η ∈ D. This construction compactifies the problem in the wealth direction;
however, maximizers of Ψι(η, ξ; γ′) may not exist since the strip {η′ ∈ D : z(η′+α) ≤
L} is not compact in the case when there are no proportional costs (i.e., λp = 0).

Step 3. The conditions on u and v imply that supη,ξ∈D Ψι(η, ξ; ε, γ′) < ∞. Con-
sequently, there exists a maximizing sequence of points (ηj , ξj) ∈ D × D for which
Ψι(ηj , ξj ; γ

′) → supη,ξ∈D Ψι(η, ξ; γ′) as j → ∞. Let us introduce a smooth bump
function hj : D → R such that its peak satisfies hj(ξj + α) = 1 and its support is
contained in a relatively open ball in D of radius r < 1

2 min{α, λ}. The bump function
hj then satisfies a simple C2 estimate

|βh− L h| ≤ c‖hj‖C2(D)
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for some generic constant c > 0 depending on the market parameters and r. Define

δj :=
3

2

(
sup

η,ξ∈D
Ψι(η, ξ; γ′)−Ψι(ηj , ξj ; γ

′)
)
.

Clearly, δj > 0 and δj → 0 as j → ∞. Finally, let us observe that

Ψι,δj (η, ξ; γ′) := Ψι(η, ξ; γ′) + δjhj(ξ + α)

has a maximizer, say (η̂j , ξ̂j), which is near (ηj , ξj). We will forego the additional
notation and just assume the maximum is at (ηj , ξj).

Step 4. We now construct a strict supersolution on the domain Dα,L(γ′) := {ξ ∈
D : α ≤ z(ξ) < L(γ′)}. We claim that, provided 0 < γ̂− γ′ is sufficiently small, then
for all ε > 0 and j sufficiently large, the function vε,δj (ξ) := v(ξ)+ε(z(ξ))1−γ′−δjhj(ξ)
is a strict supersolution of the DPE on Dα,L(γ′) ∩ D̊. Let ϕ be a smooth test function

touching v from below at some point ξ̂. Let us write g(ξ) := (z(ξ))1−γ′
. We begin

by stating a few facts about g. First, note that by the finiteness criterion for the
Merton value function, given in Assumption 1, for γ′ sufficiently close to min{γ̂, 1}
there exists ρ1 := ρ1(α,L(γ

′)) > 0 such that

βg(ξ)− L g(ξ) > ρ1 ∀ξ ∈ Dα,L(γ′).

We fix such a γ′ for the rest of the proof and will shortly suppress it from the notation.
Next, it is also clear that

∂x(εg(ξ)− δjhj(ξ)) > 0 ∀ξ ∈ Dα,L(γ′)

holds, provided j is sufficiently large (i.e., δj sufficiently small). Then

β(ϕ+ εg − δjhj)− L (ϕ+ εg − δjhj)− Ũ(ϕx + ∂x(εg − δjhj))

= βϕ− Lϕ− Ũ(ϕx) + ε(βg − L g)− δj(βhj − L hj)

+ Ũ(ϕx)− Ũ(ϕx + ∂x(εg − δjhj))

≥ ε(βg − L g)− δjc‖h‖C2

≥ ερ1
2

for j sufficiently large.

Finally, we show that there exists ρ2 := ρ2(α,L(γ
′)) > 0 such that vε,δj −Mvε,δj ≥

1
2ερ2 on Dα,L(γ′). Indeed,

vε,δj −Mvε,δj = v + εg − δjhj −M(v + εg − δjhj)

≥ v −Mv + ε(g −Mg)− δjhj −M(−δjhj)
≥ ε inf

ξ∈Dα,L(γ′)
(g −Mg)(ξ)− δjhj

≥ ερ2 − δjc‖hj‖C2

≥ 1

2
ερ2 for j sufficiently large.

Setting ρ := min{ρ1, ρ2}3 completes this step of the proof.

3Note that while γ′ increases up to γ̂, so might L(γ′) increase to infinity. However, in each case
L(γ′) is finite and all of the inequalities continue to hold for any γ′ chosen large enough.
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Step 5. We now make a few observations about the behavior of Ψι,δj(η, ξ) :=
Ψι,δj(η, ξ; γ′) and its implications. From now on, we fix j large enough so that all
relevant bounds hold. We also drop the indices altogether and assume δ := δ(ι) ∈
o(ι−1). Recall that the function Ψι(η, ξ) = u(η)− vε,δ(ξ + α) − 1

2 ι|η − ξ|2 achieves a
maximum mι at (ηι, ξι) ∈ D×D. By standard arguments

lim
ι→∞ ι|ηι − ξι|2 → 0

and

mι ↘ m := sup
η∈D

{u(η)− vε,0(η + α)} > 0.

Step 6. Write

F (x, y, w, p,X) := βw − rxp1 −
d∑

i=1

μiyipi+1 − 1

2
Tr[σ(y)σ(y)�X ]− Ũ(p1),

where we write σ(y)σ(y)� instead of σσ�Dyy to emphasize the y argument more
explicitly in the calculations. Since u is a subsolution and vε,δ is a supersolution, the
Crandall–Ishii lemma yields

(ηι, u(ηι), pι, Xι) ∈ J2,+u(ηι)

and

(ξι + α, vε,δ(ξι + α), pι, Yι) ∈ J2,−vε,δ(ξι + α).

Naturally, a test function ϕι ≥ u corresponds to (ηι, u(ηι), pι, Xι) ∈ J2,+u(ηι),
which touches u at ηι and is C2 in a neighborhood of ηι. We claim that (ϕι −
Mϕι)∗(ηι) ≤ 0 as ι → ∞. If this is not the case, then we use the fact that u is

a subsolution, that vε,δ is a supersolution, and that ξι + α ∈ D̊ to obtain

0 ≥ F (ηι, u(ηι), pι, Xι)− F (ξι + α, vε,δ(ξι + α), pι, Yι)

= βu(ηι)− rx(ηι)p
1
ι −

d∑
i=1

μiyi(ηι)p
i+1
ι − 1

2
Tr[σ(y(ηι))σ(y(ηι))

�Xι]− Ũ(p1ι )

− βvε,δ(ξι + α) + rx(ξι + α)p1ι +

d∑
i=1

μiyi(ξι + α)pi+1
ι

+
1

2
Tr[σ(y(ξι + α))σ(y(ξι + α))�Yι] + Ũ(p1ι )

≥ β(u(ηι)− vε,δ(ξι + α))− 1

2
Tr[σ(y(ηι))σ(y(ηι))

�Xι − σ(y(ξι))σ(y(ξι))
�Yι]

≥ β(u(ηι)− vε,δ(ξι + α))− 3ι|ηι − ξι|2Lσ

≥ 1

2
β(u(ηι)− vε,δ(ξι + α)) > 0 ∀ι sufficiently large,

which yields a contradiction. Thus, (ϕι −Mϕι)∗(ηι) ≤ 0 as ι→ ∞.
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Step 7. We again consider the test function ϕι from the previous step. In this
step, we aim to modify the test function ϕι so as to obtain a favorable inequality
involving u. To begin with, note that there exists a net {ηι,k(ι)}ι ⊂ D such that
|ηι − ηι,k(ι)| = o(ι−1) and

ϕι(ηι)−Mϕι(ηι,k(ι)) ≤ o(ι−1).

Consequently, I(ηι,k(ι)) 
= ∅. We may modify ϕι in the following manner. Let r̃ > 0

be sufficiently small so that ϕι is C
2 in the ball Br̃(ηι) where r̃ <

1
2 max{λ, |ηι|}. Let

Rr̃(ηι) := {η ∈ Br̃(ηι) : I(η) 
= ∅}.
Consider the set

I(Rr̃(ηι)) := {ζ + ν : ζ ∈ Rr̃(ηι), ν ∈ I(ζ)}.

Note that by construction the Hausdorff distance between Rr̃(ηι) and I(Rr̃(ηι)) is
positive. Let {ζt}t∈R ⊂ Rr̃(ηι) be any continuum of points such that z(ζs) < z(ζt) for
s < t and I({ζt}t∈R) = I(Rr̃(ηι)). Define the function

ϕ̂ι(ζ) =

⎧⎨⎩ϕι on D\I(Rr̃(ηι)),

(Mu)∗(ζt) on I ∀t ∈ R.

Redefining ϕι so that ϕι = ϕ̂∗
ι preserves its local properties at ηι, maintains upper-

semicontinuity globally, and ensures Mϕι(ηι,k(ι)) = (Mϕι)
∗(ηι,k(ι)) = (Mu)∗(ηι,k(ι)).

The first equality follows by the fact that Mϕι is upper-semicontinuous (since ϕι is
upper-semicontinuous), and the second from the definition of ϕι. This is where the
relaxation of test functions in Definition 8 is needed.

Therefore, 0 ≥ (ϕι(ηι) −Mϕι(ηι))∗ = u(ηι) − (Mu)∗(ηι,k(ι)). We already know

vε,δ(ξι + α)−Mvε,δ(ξι + α) ≥ 1
2ερ. Combining these facts with our previous observa-

tions yields

u(ηι)− vε,δ(ξι + α) < (Mu)∗(ηι,k(ι))−Mv(ξι + α)− 1

2
ερ.

We may even pass to a maximizing sequence {ηι,k(ι),l(ι)}ι such that I(ηι,k(ι),l(ι)) 
= ∅
and Mu(ηι,k(ι),l(ι)) = (Mu)∗(ηι,k(ι)) + o(ι−1) and ηι,k(ι),l(ι) = ηι + o(ι−1).

Note that |ηι − ξι| → 0 implies that for ι sufficiently large ηι,k(ι),l(ι) ≤ ξι + α.
Therefore, I(ξι + α) 
= ∅. It follows that Mv(ξι + α) > −∞.

Step 8. All the ingredients are now present to derive the desired contradiction.
As we have already seen,

u(ηι) ≤ Mu(ηι,k(ι),l(ι)) + o(ι−1)

and

vε,δ(ξι + α)−Mvε,δ(ξι + α) ≥ ερ

2
.
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We proceed to write

mι = u(ηι)− vε,δ(ξι + α)− 1

2
ι|ηι − ξι|2

≤ Mu(ηι,k(ι),l(ι))−Mvε,δ(ξι + α)− ερ

2
− 1

2
ι|ηι − ξι|2 + o(ι−1)

≤ sup
ν∈I(ηι,k(ι),l(ι))

{u(ηι,k(ι),l(ι) + ν)− vε,δ(ξι + α+ ν)} − 1

2
ι|ηι − ξι|2 − ερ

2
+ o(ι−1)

= sup
ν∈I(ηkι

ι )

{
u(ηι,k(ι),l(ι) + ν)− vε,δ(ξι + αν)− 1

2
ι|ηι,k(ι),l(ι) − ξι|2

}
− ερ

2

+
1

2
ι|ηι,k(ι),l(ι) − ξι|2 − 1

2
ι|ηι − ξι|2 + o(ι−1)

≤ mι +
1

2
ι(|ηι,k(ι),l(ι) − ξι|2 − |ηι − ξι|2) + o(ι−1)− ερ

2

≤ mι − ερ

2
+ o(1),

which yields the contradiction.

5. Numerical results. In this section, we construct and implement algorithms
to determine the no-trade region and optimal strategies at the leading order. The
approximate solutions are obtained by homogenization as λf , λp → 0. This tech-
nique has been applied successfully to the study of the Merton problem under various
frictions. The method entails expanding the frictional value function as a series in
λf , λp around the frictionless Merton value function. The technique requires that the
frictionless value function be finite (this is a standing assumption).

One of the virtues of analyzing the asymptotic problem numerically, apart from
reduction of dimensionality, is the fact that the no-trade region is bounded in each
iso-wealth plane. Therefore, if this region is contained in the computation domain, the
control will be active at the boundary, rendering the boundary conditions immaterial.

5.1. The frictionless problem. We begin by considering the problem of in-
vesting and consuming in a setting where there are no transaction costs. Since trades
are then costless, the corresponding value function does not depend separately on the
positions x, y in the safe and the risky assets, but only on total wealth z = x+ y · 1d.
As is well known (cf., e.g., [17, Chapter X]), the frictionless value function solves the
DPE

(5.1) 0 = Ũ
(
vz(z)

)− βv(z) + L0v(z),

where

(5.2) L0v(z) = vz(z)zr + vz(z)(μ− r1d) · θ(z) + 1

2
vzz(z)|σ�θ(z)|2,

and the corresponding optimal consumption rate and optimal risky positions are given
by

(5.3) κ(z) = (U ′)−1
(
vz(z)

)
and

(5.4) θ(z) := − vz(z)

vzz(z)
(σσ�)−1(μ− r1d).
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5.2. Homogenization. Before embarking on a full asymptotic analysis, it will
be convenient at this stage to rewrite λf = ε4 and λp = νpε

3. We choose this
parametrization so that all the forthcoming expansions contain only integral powers
of ε. We will also abuse notation and write vε := vλ.

Define the fast-variable in the expansion as

ξ =
y − θ(z)

ε
,

Since we perform an inner expansion in the no-trade region, we scaled ξ by the width
of the no-trade region. Standard heuristic arguments can be applied to guess that

width should be on the order of ε = λ
1/4
f ∝ λ

1/3
p . An informed guess yields the ansatz

vε(x, y) = v(z)− ε2u(z)− ε4w(z, ξ) + o(ε3).

Formally substituting the ansatz into the DPE gives rise to the so-called corrector
equations for u and w. The DPE is composed of two parts, an elliptic part and a
nonlocal part, and they require separate expansions.

5.2.1. Expansion in no-trade region. The elliptic expression has already
been approximated to leading order in a number of papers; see, e.g., [1]. The same
computation yields

βvε(x, y)− Ũ
(
vεx(x, y)

)− L vε(x, y)

= −ε2
(
βu(z)− L0u(z) + κ(z)uz(z) +

|σ�ξ|2
2

vzz(z)

− 1

2
Tr[α(z)α(z)�wξξ(z, ξ)]

)
+ o(ε2)

for the differential operator L0 from (5.2) and

α(z) = (Id − θz(z)1
�
d )diag [θ(z)]σ.

Satisfying the elliptic part of (2.4) between bulk trades—at the leading order O(ε2)—
is therefore tantamount to

(5.5) 0 = βu(z)− L0u(z) + κ(z)uz(z) +
|σ�ξ|2

2
vzz(z)− 1

2
Tr[α(z)α(z)�wξξ(z, ξ)].

5.2.2. Expansion in trade region. By definition, vε ≥ Mvε holds at all points
of the domain. Inserting the ansatz, this reads

v(z)− ε2u(z)− ε4w(z, ξ) + o(ε3) ≥ sup
ξ̂

{
v(ẑ)− ε2u(ẑ)− ε4w(ẑ, ξ̂)

}
,

where

ẑ = z − ε4 − νpε
3‖ŷ − y‖1 = z − ε4(1 + νp‖ξ̂ − ξ‖1)
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and where the supremum is taken over admissible portfolio positions ξ̂ with wealth ẑ.
If w is smooth, then w(ẑ, ξ̂) = w(z, ξ̂) + o(ε3). Proceeding formally, we observe

0 ≥ sup
ξ̂

{
v(ẑ)− v(z)− ε2(u(ẑ)− u(z))− ε4(w(ẑ, ξ̂)− w(z, ξ))

}
= ε4 sup

ξ̂

{−vz(z)(1 + νp‖ξ̂ − ξ‖1) + w(z, ξ)− w(z, ξ̂)}+ o(ε4)

= ε4
(
w(z, ξ)− vz(z)− inf

ξ̂
{vz(z)νp‖ξ̂ − ξ‖1 + w(z, ξ̂)}

)
+ o(ε4).

Therefore, at the leading order w should satisfy

w(z, ξ) ≤ vz(z) + inf
ξ′
{vz(z)νp‖ξ′ − ξ‖1 + w(z, ξ′)},(5.6)

with equality holding in the trade region.

Remark 17. The condition (5.6) has an appealing interpretation. It was shown
in previous studies that the function w can be viewed as the potential in an ergodic
control problem. Since the cost of trading from ξ to ξ̂ is (1+νp‖ξ̂−ξ‖1)ε4, the leading
order loss of utility from trading is

v(z)− v(ẑ) ≈ vz(z)(z − z′) = vz(z)(1 + νp‖ξ̂ − ξ‖1)ε4.
Thus, (5.6) implies that trades should occur precisely when the utility loss can be
offset by the change in potential w(z, ξ′)− w(z, ξ).

5.2.3. Corrector equations. Rewriting the DPE (2.4) using the formal expan-
sion results yields a pair of coupled equations called corrector equations. Given any
z > 0, we wish to find an unknown pair (a(z), w(z, ·)) ∈ R+ ×C2(Rd) which satisfies
the first corrector equation,

max

{
1

2
|σ�ξ|2vzz(z)− 1

2
Tr
[
α(z)α(z)�wξξ(z, ξ)

]
+ a(z),(5.7)

w(z, ξ)− vz(z)− inf
ξ̂∈Rd

{
vz(z)νp‖ξ̂ − ξ‖1 + w(z, ξ̂)

}}
= 0.(5.8)

A function a(z) is then obtained from the first corrector equation by solving for every
z > 0. The leading order term in the expansion of vε is obtained by solving for u(z)
in the second corrector equation,

βu(z)− L0u(z) + κ(z)u(z) = a(z), z ∈ R+.

5.3. Numerical method. As was alluded to earlier, the first corrector equation
(5.7) arises from an ergodic control problem. To be more precise, the problem is
defined as follows. Find a(z) given by

a(z) := inf
m,τ

J(z,m, τ),

where the cost functional J is defined by

J(z,m, τ) := lim sup
T→∞

1

T
E

[ ∫ T

0

−vzz(z) |σ
�ξs|2
2

ds+ vz(z)

∞∑
k=1

(1 + νp‖m‖1)1{τk≤T}

]
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and the state process ξ = (ξt)t∈[0,∞) evolves according to

ξt = ξ0 + α(z)Bt +

∞∑
k=1

mk1{τk≤t}

for a standard d-dimensional Brownian motion B.
In a setting where the control is not of impulse type, it can be approximated with

controls which are absolutely continuous with respect to time. The problem can then
be discretized in a way which makes standard policy iteration techniques apply. In
fact, if done appropriately, the discrete Hamilton–Jacobi–Bellman equation will be a
penalized version of the singular control counterpart. This is done implicitly in [38].
Similarly, the goal in our setting is to approximate the impulse controls in such a way
that policy iteration gives the solution to a penalized version of the first corrector
equation.

The problem will be solved for fixed z, and as a starting point, the problem is
discretized in the remaining space variables as described in [8]. Any discretization not
explicitly stated here will follow that scheme. The impulse control is discretized sep-
arately, as described below, and the resulting controlled process is then a continuous-
time Markov chain for which a policy iteration scheme can be implemented.

We denote by Lm the discretized infinitesimal generator of ξ on some grid, cor-
responding to the feedback control m = (m1, . . . ,md). Here mi denotes the distance
to move in direction i, i.e., the number of grid points by which to move times the
mesh width in that dimension. Then Lm(ξ, ξ′) is the transition rate from ξ to ξ′.
Let Lm = L + Lm

K , where L is the operator corresponding to the elliptic part of the
equation, and Lm

K consists of additional terms arising when a control is active. To
account for the impulse control jumps, we set

Lm
K(ξ, ξ) = −K and Lm

K(ξ, ξ +m) = K

for some suitably large value of K. This is the operator of the ergodic control problem
above, but where jumps in the direction of the control do not happen with certainty.
Instead, conditioned on a jump occurring, the state moves in the direction of the
control with some probability which tends to 1 as K → ∞. Moreover, the probability
of a jump occurring in a given time interval also tends to 1 as K → ∞ if the control
is active. In this sense the K approximates the singularity of the control.

Finally, by also discretizing the running cost, the problem is reformulated as a
continuous-time Markov decision process for which standard policy iteration tech-
niques apply (cf., e.g., [40]). That is, compute

a(z) := inf
m
J(z,m),

where J is the cost functional given by

J(z,m) := lim sup
T→∞

1

T
E

[ ∫ T

0

−vzz(z) |σ
�ξs|2
2

+Kvz(z)(1 + νp‖m‖1)1{m 
=0}ds
]
,

subject to

ξt = ξ0 + B̂α
t +

∑
s≤t

m(ξs)ΔNs

for a Poisson process N with rate K and where B̂α
t is the spatial discretization of

the process α(z)Bt corresponding to L. The DPE for this ergodic control problem is
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precisely a discretization of the elliptic part of the first corrector equation together
with a penalization term for the trade condition, where the penalty is K.

For a fixed wealth z, let D be a finite mesh on R
d, where d denotes the number

of risky assets. Denote by N the number of grid points in D and set

fm(ξ) := −vzz(z) |σ
�ξ|2
2

+Kvz(z)(1 + νp‖m‖1)1{m 
=0} ∀ξ ∈ D.

Naturally, since the computational domain D is finite, we must also specify boundary
conditions. If the probability of a controlled process reaching the boundary is small
enough, the boundary conditions have a negligible effect on the final outcome. In fact,
as mentioned above, if the no-trade region is contained in the domain, and therefore
the control active at the boundary, the effect of the boundary conditions is even further
diminished. To this end, D should be sufficiently large that the continuation region
is entirely contained in the interior of D. That is, at all points on ∂D, the investor
should want to trade into the interior of D. The boundary conditions are then chosen
so that Lm can still be interpreted as a transition rate matrix (e.g., a homogeneous
Neumann condition).

The algorithm proceeds as follows. Initialize a starting policy m0 ∈ R
d×N and

choose a starting value a0 > 0 sufficiently large. Then select a tolerance level,4 τ ≥ 0,
and iterate:

Policy iteration algorithm

(i) Compute5 (w, ai+1) ∈ R
N × R

+ such that∑
ξ′∈D

Lmi(ξ, ξ′)w(ξ′) + fmi(ξ) = ai+1 ∀ξ ∈ D.

Halt if |ai − ai+1| ≤ τ .
(ii) For each ξ ∈ D, compute mi+1(ξ), where

mi+1(ξ) ∈ argmin
ξ+m̂∈D

⎛⎝∑
ξ′∈D

Lm̂(ξ, ξ′)w(ξ′) + f m̂(ξ)

⎞⎠ .

(iii) Return to step (i).

5.4. Interpretation of results. Henceforth, the number of assets will be either
1 or 2.

In the results below we will use the following notation unless otherwise stated.
The returns of the assets are given by μ1 and μ2, i.e.,

μ =

[
μ1

μ2

]
.

4We can even take τ = 0 since eventually ai = ai+1.
5The boundary conditions on D are chosen such that

∑
ξ′∈D Lm(ξ, ξ′) = 0 for all ξ ∈ D. Since

the system is underdetermined, wj can be normalized so that w(0) = 0 without modifying the
equations.

D
ow

nl
oa

de
d 

06
/0

1/
17

 to
 1

29
.1

32
.2

08
.2

51
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1700 ALBERT ALTAROVICI, MAX REPPEN, AND H. METE SONER

The covariance matrix is defined through the variances σ1, σ2, and the correlation ρ
by

σσ� =

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2

]
.

As in the previous sections, r is the interest rate, β denotes the impatience rate,
and γ is the elasticity of the CRRA utility function

U(c) =

{
c1−γ

1−γ , γ 
= 0,

ln c, γ = 0.

The asymptotic problem is solved in the ξ-space for fixed z. To make a meaningful
interpretation of the result, we think of this as the solution in ξ-space for some nonzero
level of ε > 0. With this interpretation, the transaction costs are precisely λf = ε4

and λp = νpε
3. The value of ε only enters in the interpretation, and the choice only

affects the relationship between the two transaction costs and the wealth level. To
simplify interpretation it is chosen so that λf = 1 and λp = νp. The relative deviation
is given by ξ/z.

Finally, the two-dimensional figures are cuts in planes where the wealth level z is
fixed. The colors carry information about how to optimally trade, and their meanings
are given in the table below.

white no trading

yellow trading in asset 1

red trading in asset 2

orange trading in both assets

Whether buying or selling is optimal is not indicated by the color since the optimal
strategy always moves the portfolio closer to the Merton proportion. This is visualized
by the black points, which are the points to which the investor chooses to trade.

5.5. Benchmark testing. Since the DPE of the discrete problem is the equa-
tion of a penalized version of the impulse control problem, we expect that solutions
will converge to those of the first corrector equation. We will not undertake a rigorous
convergence analysis here. Instead, we demonstrate that solutions computed by the
scheme agree with available analytical benchmarks. These benchmarks include fixed
and proportional costs in one dimension, as well as only fixed costs in two dimensions.

In one dimension with both fixed and proportional transaction costs it is possible
to find an analytic characterization of the first corrector equation. This is accom-
plished by using a smooth fit condition between a fourth order polynomial inside the
trade region and linear growth outside, and then solving for the polynomial coeffi-
cients as well as the free boundary. A comparison between this analytic solution and
the policy iteration result is found in Figure 3, which suggests that the two solutions
coincide.

In the two-dimensional setting, the trading strategy is analytically known in the
absence of proportional transaction costs (cf. [1]). In Figure 4, the analytic free bound-
ary is plotted on top of the iterative solution, and the fit is near perfect. Moreover,
the analytic solution tells us that all trades are to the Merton proportion, and we
verify that this is indeed also the result from policy iteration.

Note that the long-term distribution in the second case does not coincide with
any of the main axes of the ellipse describing the no-trade region. We attribute this
to the fact that the risk aversion and market parameters induce a frictionless trader
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Iterative

Fig. 3. Known analytic solution plotted alongside the policy iteration solution for two different
parameter configurations.

to keep 8.6 times more of the wealth in asset one (vertical axis) than in asset two
(horizontal axis). Thus, most of the fluctuation of the portfolio position will be in the
corresponding direction. This information is incorporated in the matrix α�α. Indeed,

α�α ≈
[
42607.9 669.990
669.990 147.787

]
.

Hence, the volatility of ξ1 is around 288 times larger than that of ξ2, and the correla-
tion is approximately 10−4.

5.6. Proportional transaction costs. In the setting of only proportional trans-
action costs, Figure 5 shows the boundaries of the trade regions with changing covari-
ance matrix. For comparison with [36], we here define the covariance matrix through

σ =

[
0.4− κ κ
κ 0.4− κ

]
,

where κ is −0.1, −0.05, 0, 0.025, 0.05, and 0.075. Here the interpretation of ε is such
that λp = 0.02, i.e., such that we have proportional transaction costs of 2%.

5.7. Mixed transaction costs. Introducing an additional transaction cost to
either of the above problems induces a situation where the investor has to balance
the proportional cost associated with trading distance with the fixed cost induced
by initiating a trade. This leads to an optimal strategy characterized by a trading
boundary and a target curve. When the portfolio exits the no-trade region, i.e.,
reaches the trading boundary, the optimal action is to rebalance the portfolio such
that the new position is at the target curve.

Examples of such strategies are represented in Figure 6. In particular, the shape
resembles the shape with only proportional costs, but with the corners rounded, rem-
iniscent of the fixed cost problem. The selection of figures display how the no-trade
region changes with variations in the market parameters, all other things being equal.
The qualitative effect of such variations is very similar to that in the proportional
transaction cost problem.
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−0.1 0 0.1

−0.1

0

0.1

Numerical solution
−0.1 0 0.1

−0.1

0

0.1

Analytical solution

−0.1 0 0.1

−0.1

0

0.1

Comparison
−0.1 0 0.1

−0.1

0

0.1

Long-term portfolio distribution

−0.02 0 0.02

−0.02

0

0.02

Numerical solution
−0.02 0 0.02

−0.02

0

0.02

Analytical solution

−0.02 0 0.02

−0.02

0

0.02

Comparison
−0.02 0 0.02

−0.02

0

0.02

Long-term portfolio distribution

Rel. pos. β γ r μ1 μ2 σ1 σ2 ρ λf λp z
Top 1 2 0.03 0.08 0.08 0.4 0.4 −0.75 $1 0% $12,345.67
Bottom 1 7 0.03 0.08 0.04 0.4 0.2 0.35 $1 0% $12,345.67

Fig. 4. Two comparisons of numerical and analytical solutions, plotted as deviations from the
Merton proportions in percentages of wealth held in the risky assets. The blue centers are heat maps
(and level sets) of the (simulated) long-term distribution of portfolio positions.
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κ = −0.1

κ = 0.075

−0.1−0.08−0.06−0.04−0.02 0 0.02 0.04 0.06 0.08 0.1

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Fig. 5. Trade region boundaries with purely proportional transaction costs as the correlation
parameter κ attains the values −0.1, −0.05, 0, 0.025, 0.05, and 0.075. The risk-free rate is 3%,
μ = (0.08, 0.08), γ = 2, and the transaction cost is 2%.

At low wealth levels, fixed transaction costs are the predominant cost considera-
tion, whereas at higher wealth levels proportional costs prevail. Indeed, the results
of our computational scheme exhibit these same phenomena. Figures 7 and 8 show
the no-trade region as wealth varies ceteris paribus. In the two-dimensional case, the
no-trade region appears to interpolate between the elliptic shape associated to fixed
costs at low wealth levels and the parallelogram shape associated to proportional
costs at high wealth levels. Note also that the total transaction costs are compara-
tively smaller for a wealthier agent, resulting in smaller no-trade regions in relation to
wealth. The one-dimensional plots in Figure 8 illustrate precisely the z dependence
of the optimal trigger and optimal restart barriers.

The results indicate that when proportional costs are present, the no-trade region
is not always convex. Indeed, Figure 7 suggests that nonconvexity can persist at all
wealth levels. This is in stark contrast to the case where there are only fixed costs and
the corresponding approximate no-trade region is an ellipse at every level of wealth.

5.8. Two fixed costs with two risky assets. Appropriately modifying the
cost structure in the computational scheme enables us to experiment with more gen-
eral scenarios. For example, we now wish to examine the no-trade region and optimal
strategies when multiple fixed costs are levied for trading sets of assets. In the follow-
ing examples, a fixed transaction cost of $1 is paid for each one of the risky positions
rebalanced as opposed to paying a flat fee for rebalancing an entire portfolio of as-
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0
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−0.05 0 0.05

−0.05

0

0.05

−0.05 0 0.05

−0.05

0

0.05

−0.1 −0.05 0 0.05 0.1

−0.1

−0.05

0

0.05

0.1

−0.1 −0.05 0 0.05 0.1
−0.1

−0.05

0

0.05

0.1

−0.05 0 0.05

−0.05

0

0.05

Rel. pos. β γ r μ1 μ2 σ1 σ2 ρ λf λp z
Top left 1 3 0.03 0.08 0.08 0.4 0.4 0.30 $1 3% $10,000
Top right 1 3 0.03 0.08 0.10 0.4 0.4 0.30 $1 3% $10,000
Middle left 1 3 0.03 0.08 0.08 0.4 0.4 0 $1 3% $10,000
Middle right 1 3 0.03 0.08 0.08 0.4 0.4 −0.30 $1 3% $10,000
Bottom left 1 3 0.03 0.08 0.08 0.4 0.3 0.30 $1 3% $10,000
Bottom right 1 3 0.03 0.08 0.06 0.4 0.3 0.30 $1 3% $10,000

Fig. 6. Market parameter dependence as deviations in percentages of wealth.
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−0.5 0 0.5

−0.5

0

0.5

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

−0.4 −0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4

−0.2 0 0.2

−0.2

0

0.2

Rel. pos. β γ r μ1 μ2 σ1 σ2 ρ λf λp z
Top left 1 3 0.03 0.08 0.08 0.4 0.4 0.30 $1 3% $100
Top right 1 3 0.03 0.08 0.08 0.4 0.4 0.30 $1 3% $1,000
Bottom left 1 3 0.03 0.08 0.08 0.4 0.4 0.30 $1 3% $50,000
Bottom right 1 3 0.03 0.08 0.08 0.4 0.4 0.30 $1 3% $5,000,000

Fig. 7. Strategy wealth dependence described as deviations from the Merton portfolio, in units
of wealth. The series of figures shows the transition between the two regimes of cost structures. A
comparison of Figures 4 and 5 emphasizes the resemblance to purely fixed and purely proportional
costs in the extreme cases of wealth.

sets. As a result, not only are we able to consider a more realistic scenario in which
fixed costs are paid per asset, but we also gain a richer understanding of the inter-
action between the different cost structures and how that is manifested in the optimal
strategies.

A clear departure from the previous results is the fact that the inner (restart)
region is composed of two pairs of lines in the case λp > 0 which eventually entirely
overlap when λp = 0. Upon close inspection, the mapping of the outer boundary to
the inner boundary becomes perfectly clear. The yellow region maps orthogonally
to the closest horizontal line, and the red region maps orthogonally to the closest
vertical line. Finally, orange maps to the closest point of intersection of the pairs of
lines. The relative widths behave intuitively, as before, according to the correlation

D
ow

nl
oa

de
d 

06
/0

1/
17

 to
 1

29
.1

32
.2

08
.2

51
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1706 ALBERT ALTAROVICI, MAX REPPEN, AND H. METE SONER
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0.4

z

Trigger

Target

Merton line

0.2 0.4 0.6 0.8 1

·104

−0.1

0

0.1

z

Trigger

Target

Merton line

0.2 0.4 0.6 0.8 1

·106

−5

0

5

·10−2

z

Trigger

Target

Merton line

100 101 102 103 104 105 106 107

10−2

10−1

z

Trigger

Target

β γ r σ μ λf λp

1 5 0.01 0.2 0.04 $ 1 3 %

Fig. 8. The plots illustrate the wealth dependence of the optimal trading boundary and trading
targets as deviations from the Merton portfolio in units of wealth. The converging lines on the bottom
right figure clearly show the transition from a fixed cost regime for low wealth to the proportional
cost regime as wealth increases.

and volatilities of the assets. One of the most interesting phenomena is the pinching of
the no-trade region that occurs around the ±(ξ1+ξ2) directions in the case of positive
correlation and ±(ξ1 − ξ2) directions in the case of negative correlation (although not
illustrated here, there is no such phenomena in the uncorrelated case, and the region is
perfectly symmetric across the horizontal and vertical axes). Let us take, for example,
the extreme-looking case in the bottom right image of Figure 9. In this case, the
investor would rather allow their portfolio to deviate a lot further along the ξ1 + ξ2
axis through the optimal Merton proportion (than perhaps one might expect) than
to be transacting in just one (or both) of the assets. Moreover, a slight deviation off
that axis seems to incur an additional quadratic cost loss as it immediately leads the
investor to trade in one of the two assets.
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−0.2 −0.1 0 0.1 0.2
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−0.1

0

0.1

0.2

−0.06−0.04−0.02 0 0.02 0.04 0.06
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

−0.05 0 0.05

−0.05

0

0.05

−0.05 0 0.05

−0.05

0

0.05

Rel. pos. β γ r μ1 μ2 σ1 σ2 ρ λf λp z
Top left 1 5 0.03 0.08 0.07 0.4 0.3 −0.65 $1 1.5% $1,000
Top right 1 5 0.03 0.08 0.08 0.4 0.4 0.50 $1 0% $1,000
Bottom left 1 5 0.03 0.08 0.08 0.4 0.4 0.30 $1 3% $1,000
Bottom right 1 5 0.03 0.08 0.08 0.4 0.4 0.60 $1 3% $1,000

Fig. 9. Trading two assets incurs two fixed costs, splitting up the target boundary depending
on direction of trades. The blue path is a simulation of a portfolio starting in the upper left corner,
visualizing the optimal strategy.

5.9. Long-term distribution. By simulating the excursions of the stocks in
ξ-space and following the optimal strategy found above, it is possible to generate
the long-term distributions of portfolio positions. In Figure 10 these distributions
are pictured as heat maps where white means more time is spent at a point, and
blue means less. The target positions, i.e., the positions to which we choose to trade,
previously drawn as black lines, shine brighter and are clearly distinguishable. As
expected, more time is spent along the shorter axis due to the positive correlation.
This is especially evident in Figure 4, where the correlation parameter ρ is very large.

D
ow

nl
oa

de
d 

06
/0

1/
17

 to
 1

29
.1

32
.2

08
.2

51
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1708 ALBERT ALTAROVICI, MAX REPPEN, AND H. METE SONER

−0.05 0 0.05

−0.05

0

0.05

−0.05 0 0.05

−0.05

0

0.05

−0.05 0 0.05

−0.05

0

0.05

−0.05 0 0.05

−0.05

0

0.05

−0.05 0 0.05

−0.05

0

0.05

−0.05 0 0.05

−0.05

0
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Rel. pos. β γ r μ1 μ2 σ1 σ2 ρ λf λp z
Top 1 3 0.03 0.08 0.08 0.4 0.4 0.30 $1 3% $10,000
Bottom 1 5 0.03 0.08 0.08 0.4 0.4 0.30 $1 3% $1,000

Fig. 10. Long-term distribution of the optimal portfolio position, visualized by the probability
density. These are shown as heat maps, level sets, and as density surfaces.
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