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Abstract. Convex duality for two different super-replication problems in a continuous
time financial market with proportional transaction cost is proved. In this market, static
hedging in a finite number of options, in addition to usual dynamic hedging with the
underlying stock, are allowed. The first one of the problems considered is the model-
independent hedging that requires the super-replication to hold for every continuous
path. In the second one the market model is given through a probability measure �
and the inequalities are understood the probability measure almost surely. The main
result, using the convex duality, proves that the two super-replication problems have the
same value provided that the probability measure satisfies the conditional full support
property. Hence, the transaction costs prevents one from using the structure of a specific
model to reduce the super-replication cost.
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1. Introduction
The problem of super-replication is a convex optimization problem in which the investor minimizes the cost of a
portfolio among those satisfying the hedging constraints. In the classical case, the financial market is frictionless
and the investors can buy or sell any quantity of the stocks and other financial instruments at the same price.
Then, the corresponding problem is linear and the optimization problem is in fact an infinite dimensional
linear program. In the quantitative finance literature, this problem is well studied and is known to be related
to arbitrage. One central result is a convex duality result, which contains deep financial insights, including the
fundamental theorem of asset pricing.
In the celebrated papers of Dalang et al. [9], Delbaen and Shachermayer [10], and Kreps [18], the financial

market is modelled through a probability measure � that describes the future movements of the stock prices in
the time interval [0,T]. The stock price process S and the measure � are defined on a probability space Ω and
a filtration �� {F t}{t∈[0,T]}. The main object of study is an uncertain liability that will be revealed in the future.
It is usually modelled through a F T measurable random variable ξ, and the main goal is to reduce the risk
related to ξ by appropriately trading in the financial market. The investment opportunities are given abstractly
through a linear set Â, denoting the set of all admissible portfolios π with a final portfolio value Zπ

T at time T.
Then, the super-replication problem is to minimize the cost among all portfolios that reduces the risk related
to the liability ξ to zero. Mathematically,

V(ξ) :� inf{L(π): ∃π ∈ Â such that Zπ
T ≥ ξ, �-a.s.}, (1)

where L(π) ∈� is the cost of the portfolio π. Once a market model is fixed through a probability measure �, then
all statements are supposed to be understood �-almost surely. Hence, the only role of the probability measure �
is to describe the null sets or equivalently all impossible future scenarios. Any other probability measure that
is equivalent to � (i.e., any measure with the same null sets) would yield the same super-replication cost. This
problem is studied extensively when the market is frictionless or equivalently L is linear and when only the
adapted dynamic trading of the stock without constraints is considered. Under no-arbitrage type assumptions
and mild technical integrability conditions, the convex dual is the following maximization problem:

D(ξ) :� sup
�∈Q

Ɛ�[ξ],
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where Q is the set of all “martingale” measures that are equivalent to �. Precise statements in continuous time
are technical and we refer the reader to the seminal paper of Delbaen and Shachermayer [10].
These classical results were then extended to markets with trading frictions. It is shown that super-replication

in markets with (proportional) transaction costs is prohibitively costly as first proved in Soner et al. [23] and
later generalized in Levental and Skorohod [19], Cvitanic et al. [8], Bouchard and Touzi [6], Jakubenas et al. [17],
Guasoni et al. [15], and Blum [4] and for the game options in Dolinsky [11]. In all of these examples, the super-
replication cost is minimized among all “trivial” strategies. Hence, the investor does not benefit from dynamic
hedging when the objective is to super replicate with certainty. Also, in all of these examples not the null sets
of � but rather the support of it is important. The related question of the fundamental theorem of asset pricing
and super-hedging duality with a given � is studied by Schachermayer [20, 21] and the references therein.
One may reduce the hedging cost by including liquid derivatives in the super-replicating portfolio. In partic-

ular, this might be the case for semi-static hedging, which is detailed in the next section. Namely, the investor
is allowed to take static positions in a finite number of options (written on the underlying asset) with initially
known prices. In addition to these static option positions, the stock is also traded dynamically, and all of these
trades are subject to proportional transaction costs. In terms of the above notation, the set Â of admissible
portfolios is enlarged by static option trades but the transaction costs make the cost functional L to be convex
rather than to be linear, as in the classical papers. We refer the reader to the survey of Hobson [16], a recent
paper of the authors Dolinsky and Soner [14], and the references therein for information on semi-static hedging
in continuous time.
While the model-independent approach with semi-static hedging received considerable attention in recent

years, there are only few results for such markets with friction. Indeed, recently the authors proved a model
independent duality result for semi-static hedging with transaction costs in discrete time (Dolinsky and
Soner [13]). Again, in discrete time a fundamental theorem of asset pricing was studied in Bayraktar and
Zhang [2] and in Bouchard and Nutz [5] in markets with transaction costs. These later papers consider the
quasi-sure criterion given by a set of probabilistic models. To the best of our knowledge, in continuous time
semi-static hedging with transaction costs under model uncertainty has not yet been studied.

In this paper, we consider a continuous time financial market that consists of one risky asset with continu-
ous paths. In such a financial market, we study two super-replication problems of a given (path dependent)
European option. We assume that the dynamic hedging of the stock as well as the static option trading are
subject to transaction fees. In the first problem, the market model is given through a probability measure �.
Then, the optimization problem corresponds to a straightforward extension of (1). The second one is the model-
independent problem referring to super-replication for all continuous stock price processes. Namely, in (1) we
require the inequality Zπ

T ≥ ξ to hold not �-almost surely but rather for every possible stock price path. These
definitions are given in the Section 2.5.
Our main result in Theorem 2.7 states that these two problems described above have the same value provided

that the distribution � of the stock price process satisfies the conditional full support property; see Definition 2.6.
Hence, in the presence of transaction costs, the knowledge of the model does not reduce the super-replication
cost. This explains the earlier results on super-replication with friction and why the optimal hedge in these
examples are the trivial ones.
Theorem 2.7 is proved under regularity in Assumptions 2.1, 2.2, and a no-arbitrage type of condition in

Assumption 2.3. However, we do not assume any admissibility conditions on the portfolio. Furthermore, we
provide a duality result for the mutual value in terms of consistent price systems on the space of continuous
functions that are consistent with the option prices. This duality is very similar to the one proved in discrete
time in Dolinsky and Soner [13].

The proof of Theorem 2.7 is completed in four major steps. First, we reduce the problem to bounded payoffs
by applying the pathwise inequalities that were obtained in Acciaio et al. [1] and earlier by Burkholder [7].
In the second step, we obtain a lower bound for the super-replication cost in the case where the model is
given. This bound is expressed in terms of modified model-free super-replication problems with appropriately
lowered rate of transaction costs. The third step is to derive an upper bound for the model-free problem. This
step is done by applying the recent results of Schachermayer [21] together with a lifting procedure similar to
the one developed in our earlier work (Dolinsky and Soner [12]). The last step is a probabilistic proof for the
equality between (the asymptotic behaviour of) the lower and the upper bounds.

The paper is organised as follows. Main results are formulated in the next section. In Section 3, we reduce
the problem to bounded claims. A lower bound for the super-replication price in a given model is obtained
in Section 4. Section 5 derives an upper bound for the model-free super-replication price. The last section is
devoted to the proof of the equality between the lower and the upper bounds.
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2. Preliminaries and Main Results
2.1. Market and Notation
The financial market consists of a savings account that is normalized to unity Bt ≡ 1 by discounting and of a
risky asset St , t ∈ [0,T], where T <∞ is the maturity date. Let s :� S0 > 0 be the initial stock price and without
loss of generality set s � 1. We assume that the risky asset could be any continuous process with this initial
data.
In the sequel, we use the following notations. For s ≥ 0, t ∈ [0,T), we set

C+

s [t ,T] :�
{

f : [t ,T]→ [0,∞) | f is continuous, f (t)� s
}
,

C+[t ,T] :�
⋃
s≥0

C+

s [t , T];

and for s > 0,

C++

s [t ,T] :�
{

f ∈C+

s [t ,T] | f (u) > 0,∀ u ∈ [t ,T]
}
,

C++[t ,T] :�
⋃
s>0

C++

s [t ,T].

Then,
Ω :�C++

1 [0,T]

represents the set of all possible stock prices or the probability space. We let � � (�t)0≤t≤T be the canonical
process given by �t(ω) :�ωt , for all ω ∈Ω and �t :� σ(�s , 0 ≤ s ≤ t) be the canonical filtration (which is not right
continuous). We say that a probability measure � on the space (Ω, �) is a martingale measure, if the canonical
process (�t)Tt�0 is a martingale with respect to �.
Further, we let

�[0,T] :� { f : [t ,T]→ [0,∞) | f is càdlàg},

be the Skorokhod space of càdlàg functions with the usual sup-norm

‖υ‖ :� sup
0≤t≤T

|υt |.

2.2. The Claim and Its Regularity
We model the liability of the claim through a deterministic map of the whole stock price process. Indeed, for a
given deterministic map

G: �[0,T]→�+ ,

a general path-dependent European option has the payoff ξ � G(S). Hence, although we consider only contin-
uous stock price processes, we implicitly assume that the option is defined for all bounded measurable maps.
Our regularity assumption on the payoff is the same as the one used in Dolinsky and Soner [12]. For the

convenience of the reader, we briefly review this assumption, but refer to Dolinsky and Soner [12] for an
extended discussion and its connection with the Skorokhod metric. In particular, all options on the running
maximum and Asian type options satisfy it. We make the following standing assumption on G.

Assumption 2.1. We assume that there exists a constant L > 0 satisfying,
(i) |G(ω) −G(ω̃)| ≤ L‖ω− ω̃‖ , ω, ω̃ ∈�[0,T], and
(ii) |G(υ) −G(υ̃)| ≤ L‖υ‖∑n

k�1 |∆tk −∆t̃k |, for every piecewise constant function υ, υ̃ ∈�[0,T] of the form

υt �

n−1∑
i�0

viχ[ti , ti+1)(t)+ vnχ[tn ,T](t) and υ̃t �

n−1∑
i�0

viχ[t̃i , t̃i+1)(t)+ vnχ[t̃n ,T](t),

where t0 � 0 < t1 < · · · < tn < T, t̃0 � 0 < t̃1 < · · · < t̃n < T are two partitions and as usual ∆tk :� tk − tk−1, ∆t̃k :� t̃k − t̃k−1,
χA is the characteristic function.
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2.3. Static Positions
Next, we describe the assumptions on the static options. We assume that there are N many options

f1 , . . . , fN : �[0,T]→�

that are initially available for static hedging. These options may be path dependent. We assume that their prices
L1 , . . . ,LN ∈ � are known and that we can take static long positions on these options. In this context, short
positions can also be allowed by including the negative of the options, but the prices of these two (option and
its negative) should add up to a positive value equaling the bid-ask spread on this option. Set

F (S) :� (1, f1(S), . . . , fN(S)) and L :� (1,L1 , . . . ,LN),

where the first function that is identically equal to one stands for investment in the nonrisky asset and we
assume that the investor can take long or short positions only in this option. But as discussed before, we allow
only long positions in the other options. Thus, a static position in the these options is represented by c ∈�×�N

+

indicating an investment of a European option with the payoff c ·F (S) for the price

L(c) :� c ·L , (2)

where “ ·” denotes the standard inner product of �N+1.
We assume that the static options satisfy some regularity assumptions and one of the static options has a

super quadratic growth. More precisely, we assume the following.

Assumption 2.2. Functions f1 , . . . , fN−1 satisfy Assumption 2.1. We also assume that if fi is path dependent (i.e., do not
depend only on the value of the stock at the maturity) then it is bounded. For i � N , we assume that fN(ω)� q(ωT) where
q: �+→�+ is a convex function satisfying

|q(x) − q(y)| ≤ L |x − y |
(
1+

q(x)
x

+
q(y)

y

)
, ∀ x , y > 0

and
lim inf

x→∞

q(x)
x2 > 0. (3)

Since we consider hedging under proportional transaction costs, it is reasonable to assume that the options
f1(S), . . . , fN(S) are also subject to transaction costs. This together with no-arbitrage considerations (see also
Bayraktar and Zhang [2], Bouchard and Nutz [5]) leads us to the following assumption.

Assumption 2.3. There exists a martingale measure � on the canonical space (Ω, �) such that

Ɛ�[ fi(�)] <Li , ∀ i � 1, . . .N,

where Ɛ� denotes the expectation with respect to the probability measure �.

Remark 2.4 (Comments on the Assumptions). In this paper, we assume that there are only finitely many static
options. This setup is different from the one in Dolinsky and Soner [12, 13, 14], where we assumed that the
set of static options equals to { f (ST): f : �+ → �} (and includes power options). The present assumptions
seem to be more realistic. We still assume that we have an option with super quadratic payoff fN . This is
needed for reducing the problem to bounded claims and for dealing with the hedging and the pricing error
estimates arising in our discretization procedure. In fact, it is sufficient to include an option with super linear
payoff, however for the simplicity of computations we assume super-quadratic growth. Since the main focus
of this paper is the equivalence between two different super-replication problems, we do not seek the most
general assumptions on the static options. It is plausible that the main result holds under weaker assumptions.
In particular, for bounded claims one might be able to avoid the use of the quadratic option as in Dolinsky and
Soner [13].
The second assumption states that there exists a linear pricing rule that is consistent with the observed option

data. This implies in particular no-arbitrage in this market. Also the strict inequality implies that the options are
subject to proportional transaction costs. The equivalence of no-arbitrage and the existence of such measures is
in fact a difficult question. Only recently, several discrete time results in this direction were proved in Bayraktar
and Zhang [2] and Bouchard and Nutz [5].
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2.4. Hedging with Transaction Costs
We continue by describing the continuous time trading with proportional transaction costs, in the underlying
asset S. Let κ ∈ (0, 1) be the proportional transaction cost rate. Denote by γt the number of shares of the risky
asset in the portfolio π at moment of time t before the transaction at this time. Due to transaction costs, it has
to be of bounded variation. Hence, we assume that the process γ � {γt}Tt�0 is an adapted process (to the raw
filtration generated by the stock price process) of bounded variation with left continuous paths with γ0 � 0. Let

γt � γ
+

t − γ−t

be a decomposition of γ into positive and negative variations. Namely, γ+

t denotes the cumulative number of
stocks purchased up to time t not including the transfers made at time t and, respectively, γ−t , denotes the
cumulative number of stocks, sold up to time t again not including the transfers made at time t. Let A be the
set of all such processes.
In this financial market, a hedge is a pair π � (c , γ) ∈ Â :��×�N

+
×A and the corresponding portfolio liquidation

value at the maturity date T is given by

Zπ
T (S) :� c ·F (S)+ [γT − κ |γT |]ST + (1− κ)

∫
[0,T]

Su dγ−u − (1+ κ)
∫
[0,T]

Su dγ+

u ,

where the above integrals are the standard Stieltjes integrals and F (S) is as in Section 2.3. Notice that the term
−κ |γT | ST in the first line is due to liquidation cost at maturity. The cost of this portfolio π � (c , γ) is equal to L(c)
as defined in (2).

2.5. Super-Replication Problems
In this subsection, we introduce two super-replication problems. For the liability ξ �G(S), the model-free super-
replication cost is defined by

Vκ(G) :� inf
{
L(c): ∃π ∈ Â��×�N

+
×A so that Zπ

T (S) ≥ G(S), ∀S ∈Ω
}
.

For the second problem, we assume that a probability measure � on the canonical space Ω is given. Then, the
corresponding problem is

V�
κ (G) :� inf

{
L(c): ∃π ∈ Â��×�N

+
×A so that Zπ

T (S) ≥ G(S), �-a.s
}
.

The main goal of this paper is to obtain the convex duality for these functionals and prove that they are equal
if the measure � has conditional full support as defined in the next subsection.

2.6. Main Results
To formulate our results, we need the following definitions. Recall that C++[t ,T] and the canonical space Ω �

C++

1 [t ,T] are defined in Section 2.1.

Definition 2.5. Consider the sample space Ω̂ :�Ω×C++[0,T]. Let �̂ � (�(1) ,�(2)) be the canonical process on Ω̂
and �̂t :� σ(�̂s , 0 ≤ s ≤ t) be the canonical filtration. A (κ,L) consistent price system is a probability measure �̂ on
Ω̂ satisfying,

(1) �(2) is a �̂ martingale with respect to �̂;
(2) (1− κ)�(1)t ≤ �

(2)
t ≤ (1+ κ)�

(1)
t , �̂-a.s; and

(3) Ɛ�̂[ fi(�(1))] ≤Li , for all i � 1, . . . ,N.
The set of all (κ,L) consistent price systems is denoted by Mκ,L.

Next, we recall the notion of conditional full support. As usual, the support of a probability measure � on a
separable space, denoted by supp�, is defined as the minimal closed set of full measure.

Definition 2.6. We say that a probability measure � has the conditional full support property if for all t ∈ [0,T)

supp�(�|[t ,T] |�t)�C+

�t
[t , T], a.s.,

where �(�|[t ,T] | �t) denotes the �t-conditional distribution of the C+[t ,T] valued random variable �|[t ,T], which
is the restriction of the canonical process to [t ,T].
We are ready to state our main result.
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Theorem 2.7. Suppose Assumptions 2.1–2.3 hold. Assume 0 < κ < 1/8 and let � be a probability measure that satisfies
the conditional full support property. Then,

V�
κ (G)� Vκ(G)� sup

�̂∈Mκ,L

Ɛ�̂[G(�(1))].

Clearly, V�
κ (G) ≤ Vκ(G). Therefore, in order to prove Theorem 2.7, it suffices to prove the following two

inequalities:
V�
κ (G) ≥ sup

�̂∈Mκ,L

Ɛ�̂[G(�(1))] (4)

and
Vκ(G) ≤ sup

�̂∈Mκ,L

Ɛ�̂[G(�(1))]. (5)

The lower bound (4) is proved in Lemma 6.2 and the upper bound (5) is established in Lemma 6.3.
In the sequel, we always assume, without explicitly stating, that 0 < κ < 1/8.

3. Reduction to Bounded Claims
The following result shows that in this market one can hedge certain claims in the tails with small cost. Similar
to Dolinsky and Soner [12, 13], the proof is done by combining Assumption 2.2 and the results of Acciaio
et al. [1].

Lemma 3.1. For any K > 0 consider the European claim

αK(S) :�
‖S‖
K

+ ‖S‖χ{‖S‖≥K}(S), S ∈Ω,

where as before χA is the characteristic function. Under Assumption 2.2,

lim
K→∞

Vκ(αK)� 0.

Proof. Let
θ0 :� θ0(S)� 0

and for a positive integer k we recursively define the stopping times by

θk :� θk(S)� T ∧ inf{t > θk−1: |St − Sθk−1
| � 1}.

Let � :��(S)�min{k: θk �T}. Clearly, � <∞ for every S ∈Ω. By (3), it follows that there exists cq > 1 such that

q(x) ≥ x2

cq
, ∀ x ≥ cq . (6)

Consider the portfolio π � (c , γ), where

γt �−
�−1∑
i�0

max
0≤ j≤i

Sθj
χ(θi , θi+1](t), t ∈ [0,T],

and
c � (c2

q , 0, . . . , 0, cq),

i.e., we buy cq many options q(ST) and invest in the riskless asset c2
q dollars. By summation by parts, Acciaio

et al. [1, Proposition 2.1] (see also Burkholder [7]) and (6), it follows that

Zπ
T (S) � c2

q + cq q(ST) −
�−1∑
i�0

[
max
0≤ j≤i

Sθj

]
(Sθi+1

− Sθi
)

− κ
�−1∑
i�1

Sθi

[
max
0≤ j≤i

Sθj
− max

0≤ j≤i−1
Sθj

]
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− κS2
0 − κST

[
max

0≤ j≤�−1
Sθj

]
≥ (1− 8κ)

4 max
0≤ j≤�

S2
θj
.

Observe that
‖S‖ ≤ 1+ max

0≤ j≤�
Sθj
≤ 2 max

0≤ j≤�
Sθj
.

Also, since for any S ∈Ω, S0 � 1, ‖S‖ ≥ 1. Hence,

KαK(S) ≤ ‖S‖ + ‖S‖2 ≤ 2‖S‖2 ≤ 8 max
0≤ j≤�

S2
θj
.

Thus, (recall that κ < 1
8 )

Zπ
T (S) ≥

(1− 8κ)
4

(
max
0≤ j≤�

S2
θj

)
≥ K(1− 8κ)

32 αK(S).

We conclude that the super-replication cost of [K(1−8κ)/32]αK is no more than the cost of this portfolio. Hence,

Vκ(αK) ≤
32

(1− 8κ)
c2

q + cqLN

K
(7)

and the result follows after taking K to infinity. �

Next, we establish the reduction to bounded claims.

Lemma 3.2. Under the assumptions of Theorem 2.7, it is sufficient to prove Theorem 2.7 for bounded claims.

Proof. Let L be the Lispschitz constant in Assumption 2.1. For any K ≥ 1 set

GK(S) :� G(S) ∧ [LK +G(0)], S ∈Ω.

From Assumption 2.1, it follows that G(S) ≤ G(0)+ L‖S‖. Therefore, for all K ≥ 1,

G(S) ≤ GK(S)+ (G(0)+ L)αK(S).

Consequently,
Vκ(G) ≤ Vκ(GK)+ (G(0)+ L)Vκ(αK), V�

κ (G) ≤ V�
κ (GK)+ (G(0)+ L)Vκ(αK).

Since GK is bounded, if Theorem 2.7 holds for such a claim, by the monotone convergence theorem we would
have

Vκ(G)� lim
K→∞

Vκ(GK)� lim
K→∞

sup
�∈Mκ,L

Ɛ�[GK(�(1))]� sup
�∈Mκ,L

Ɛ�[G(�(1))].

Similar identities hold for V�
κ (G) as well, proving the main theorem for all claims satisfying the

Assumption 2.1. �

From now on, we will assume (without loss of generality) that there exists a constant K > 0 such that 0≤G ≤K.

4. Lower Bound
In this section, we establish estimates for the lower bound (4), under the assumptions of Theorem 2.7. We start
with several definitions.
Recall that �[0,T] is the set of all càdlàg functions f : [0,T] → �+. Denote by �̃t the canonical process (i.e.,

�̃t(ω) :� ωt) on �[0,T]. As usual, we consider the Borel σ-algebra with respect to the sup-norm (this Borel
σ-algebra coincides with the one generated by the Skorohod topology). Let �̃t � σ{�̃u | u ≤ t} be the canonical
filtration.
Let ε > 0, n ∈ � and T :� {T1 , . . . ,Tn ,T} be a partition of the interval [0,T], i.e., 0 < T1 < · · · < Tn < T. In the

sequel we shall always assume that ε < ln(1+ 1/L) and ε < Ti+1 −Ti , i � 0, 1, . . . , n − 1.

Definition 4.1. For any 0 < κ̃ < κ, let MT , ε
κ̃,L be the set of all probability measures �̃ on the space �[0,T]

satisfying,
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(1) The canonical process �̃ is of the form

�̃t �

n−1∑
k�0

�̃τ̃(ε)k
χ[τ̃(ε)k , τ̃(ε)k+1)

+ �̃τ̃(ε)n
χ[τ̃(ε)k , τ̃(ε)n+1]

,

where 0� τ̃(ε)0 ≤ τ̃
(ε)
1 ≤ · · · ≤ τ̃

(ε)
n+1 � T and �̃0 � 1.

(2) For any k ≤ n, on the event τ̃(ε)k+1 < T we have��ln �̃τ̃(ε)k+1
− ln �̃τ̃(ε)k

��� ε.
(3) For any 1 ≤ k ≤ n + 1, τ̃(ε)k ∈ T , �̃-a.s.
(4) There exists a (�̃, �̃) càdlàg martingale {M̃t}

T
t�0 such that

(1− κ̃)�̃t ≤ M̃t ≤ (1+ κ̃)�̃t , �̃-a.s.

(5) Finally,

Ɛ�̃[ fi(�̃)] ≤ L i − LĈ(e4ε
+ ε− 1), i � 1, . . . ,N − 1,

E�̃[ fN(�̃)] ≤
LN(1− L(eε − 1)) − LĈ(eε − 1)

1+ L(eε − 1) ,

where Ĉ :� 8
√

c2
q + cqLN , and cq is given in (6).

The following result provides a lower bound on the super-replication price V�
κ (G).

Lemma 4.2. Let � be a probability measure on Ω, which satisfies the conditional full support property. Assume that

min
(
1+ κ
1+ κ̃ ,

1− κ̃
1− κ

)
≥ e2ε . (8)

Then, for every partition T � {T1 , . . . ,Tn ,T},

V�
κ (G) ≥ sup

�̃∈MT , ε
κ̃,L

Ɛ�̃[G(�̃)] − LĈ(e4ε
+ ε− 1).

We always use the standard convention that the supremum over the empty set is minus infinity.

Proof. Fix, ε > 0 κ̃, T as above. If MT , ε
κ̃,L � � then the statement is trivial. Thus without loss of generality we

assume that MT , ε
κ̃,L ,�. We fix an arbitrary measure �̃ ∈ MT , ε

κ̃,L , and we will show that

V�
κ (G) ≥ Ɛ�̃[G(�̃)] − LĈ(e4ε

+ ε− 1). (9)

The proof of the above inequality is completed in two steps. In the first step, we use the conditional full support
property of � and construct a consistent price system that is “close” to �̃. In the second step, we use the
super-replication property and the constructed consistent price system in order to obtain a lower bound on
the price.
Step 1. In this step, we use the conditional full support property of � in a similar way to Guasoni et al. [15].
Set τ(ε)0 :� τ(ε)0 (�)� 0, and for any positive integer k > 0, recursively define

τ(ε)k :� τ(ε)k (�)� T ∧ inf{t > τ(ε)k−1: | ln�t − ln�τ(ε)k−1
| � ε},

where as before we denote by � the canonical process on Ω. Define a random integer by,

� :��(�)�min{k: τ(ε)k � T} − 1.

Then, it is clear that 0 ≤� <∞. We also set,

Sk :��τ(ε)k∧�
, 1 ≤ k ≤ n + 1,
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and
σk �min{t ∈ T : t ≥ τ(ε)k }. (10)

Recall that the positive integer n is the number of points in the fixed partition T � {T1 , . . . ,Tn ,T}.
For δ > 0, i � 1, . . . , n and j �±1, let g i , j : [0,Ti]→�+, be the linear functions satisfying

g i , j
0 � 1 and g i , j

Ti
� eε j

+ 2δ j.

We assume that δ is sufficiently small so that g i , j is strictly positive. Next, on Ω we define the events

A( j)i :�
{

sup
0≤t≤Ti

|�t − g i , j
t | < δ

}
, i � 1, . . . , n , j �±1,

A(0)T :�
{

sup
0≤t≤T

|�t − 1| < δ
}
.

In view of the conditional full support property, all of these events have nonzero � probability. Also, observe
that for sufficiently small δ, for i � 1, . . . , n, j �±1

A( j)i ⊆ B( j)i :�
{
τ(ε)1 ∈ [Ti − ε/n ,Ti],�τ(ε)1

� exp(±ε)
}
.

Also A(0)T ⊂ B(0)T :� {τ(ε)1 � T}. Thus, we conclude that the events B(0)T , B( j)i , i � 1, . . . , n, j � ±1 have nonzero �
probabilities as well.
We proceed by induction. Assume that for a given k ≥ 1 and any j1 , . . . , jk � ±1, 1 ≤ i1 < · · · < ik ≤ n, we have

proved that the probability of the sets

B( j1 ,..., jk )i1 ,...,ik
:�

k⋂
m�1

{
τ(ε)m ∈ [Tim

− ε/n ,Tim
], �τ(ε)m

� exp
(
ε

m∑
r�1

jr

)}
and

B( j1 ,..., jk−1 , 0)
i1 ,...,ik−1 ,T

:�
k−1⋂
m�1

{
τ(ε)m ∈ [Tim

− ε/n ,Tim
],�τ(ε)m

� exp
(
ε

m∑
r�1

jr

)}
∩ {τ(ε)k � T}

have nonzero � probabilities.
Let j1 , . . . , jk+1 � ±1, 1 ≤ i1 < · · · < ik+1 ≤ n. On the event τ(ε)k ≤ Tik

define the random, linear function
g ik+1 , jk+1 : [τ(ε)k , Tik+1

]→�+ by

g ik+1 , jk+1

τ(ε)k

� exp
(
ε

k∑
r�1

jr

)
and g ik+1 , jk+1

Tik+1
� exp

(
ε

k+1∑
r�1

jr

)
+ 2δ jk+1.

From the conditional full support property and Guasoni et al. [15, Lemma 2.9], it follows that for any event
B ∈ �τ(ε)k

the conditional probabilities

�

(
sup

τ(ε)k ≤t≤Tik+1

|�t − g ik+1 , jk+1
t | < δ

���� B( j1 ,..., jk )i1 ,...,ik
∩ B

)
> 0,

and
�

(
sup

τ(ε)k ≤t≤T

�����t − exp
(
ε

k∑
r�1

jr

)���� < δ ���� B( j1 ,..., jk )i1 ,...,ik
∩ B

)
> 0,

provided that �(B( j1 ,..., jk )i1 ,...,ik
∩ B) > 0. Thus, similarly to the case k � 1, for sufficiently small δ we conclude that the

� probabilities of the following events

B( j1 ,..., jk+1)
i1 ,...,ik+1

:�
k+1⋂
m�1

{
τ(ε)m ∈ [Tim

− ε/n ,Tim
],�τ(ε)m

� exp
(
ε

m∑
r�1

jr

)}
and

B( j1 ,..., jk , 0)i1 ,...,ik ,T
:�

k⋂
m�1

{
τ(ε)m ∈ [Tim

− ε/n ,Tim
],�τ(ε)m

� exp
(
ε

m∑
r�1

jr

)}
∩ {τ(ε)k+1 � T}

are positive. This holds true for any k ≤ n + 1.
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Recall the measure �̃ ∈ MT , ε
κ̃,L that was fixed at the start of the proof and the σk ’s defined by (10). In view

of the above discussion, and by using similar arguments as in Guasoni et al. [15, Lemma 2.4], it follows that
there exists another probability measure �̂� � such that the distribution of (S1 , . . . , Sn+1 , σ1 , . . . , σn+1) under �̂
is equal to the distribution of (�̃τ̃(ε)1

, . . . , �̃τ̃(ε)n+1
, τ̃(ε)1 , . . . , τ̃

(ε)
n+1) under �̃, and in addition for any i ≤ n, we have

�̂(�i+1 , σi+1 | �τ(ε)i
)� �̂(�i+1 , σi+1 | �1 , . . . ,�i , σ1 , . . . , σi), �̂ a.s. (11)

Also observe that from our construction it follows that for any k,

|σk − τ(ε)k | ≤
ε
n
, �̂ a.s. (12)

and
Sk+1e−2ε ≤ �t ≤ Sk+1e2ε , ∀ t ∈ [τ(ε)k , τ

(ε)
k+1], �̂ a.s. (13)

Now, we arrive to the second step of the proof.

Step 2. Since �̃ ∈MT , ε
κ̃,L, the definition of this set implies that there exists an associated martingale {M̃t}

T
t�0, which

satisfies
(1− κ̃)�̃t ≤ M̃t ≤ (1+ κ̃)�̃t , t ∈ [0,T], �̃ a.s.

Then, for any k ≤ n + 1 there exists a measurable function

ψk : �k ×T →�+

such that
M̃τ̃(ε)k

� ψk(�̃τ̃(ε)1
, . . . , �̃τ̃(ε)k

, τ̃(ε)1 , . . . , τ̃
(ε)
k ).

Moreover,
(1− κ̃)�̃τ̃(ε)k

≤ M̃τ̃(ε)k
≤ (1+ κ̃)�̃τ̃(ε)k

, k ≤ n + 1, �̃ a.s. (14)

Then, on Ω we define the stochastic process M simply by

Mk � ψk(S1 , . . . , Sk , σ1 , . . . , σk).

In view of (11) and (14), it follows that for any k,

Ɛ�̂(Mk+1 | �τ(ε)k
)� Mk (15)

and
(1− κ̃)Sk ≤Mk ≤ (1+ κ̃)Sk , �̂ a.s. (16)

Now, let π � (c , γ) be a � almost-surely super-replicating portfolio. By (8), (13)–(16) and by summation by parts,
it follows that

Ɛ�̂

(
γT�T − κ |γT |�T + (1− κ)

∫
[0,T]

�u dγ−u − (1+ κ)
∫
[0,T]

�u dγ+

u

)
≤ Ɛ�̂

(
γT Mn+1 + (1− κ̃)

n∑
k�0

Sk+1

∫
[τ(ε)k , τ(ε)k+1]

dγ−u

)
− Ɛ�̂

(
(1+ κ̃)

n∑
k�0

Sk+1

∫
[τ(ε)k , τ(ε)k+1]

dγ+

u

)
≤ Ɛ�̂

(
γT Mn+1 +

n∑
k�0

Mk+1

(∫
[τ(ε)k , τ(ε)k+1]

dγ−u −
∫
[τ(ε)k , τ(ε)k+1]

dγ+

u

))
� Ɛ�̂

( n∑
k�1

γτ(ε)k
(Mk+1 −Mk)

)
� 0. (17)

Next, we introduce the stochastic process {S̃t}Tt�0 by,

S̃t :�
n−1∑
k�0

Skχ[σk , σk+1)(t)+ Snχ[σn ,T](t),
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where we set σ0 � 0. From our construction, it follows that the distribution (on the space �[0,T]) of {S̃t}Tt�0
under �̂ is equal to the distribution of �̃ under �̃. Thus,

Ɛ�̂G(S̃)� Ɛ�̃G(�̃) and Ɛ�̂ fi(S̃)� Ɛ�̃ fi(�̃), i ≤ N. (18)

We next use the Assumption 2.1 and the properties (12)–(13). The result is the following inequalities that
hold �̂ a.s.,

|G(S̃) −G(�)| ≤ L(e4ε
+ ε− 1)‖S̃‖ ,

| fi(S̃) − fi(�)| ≤ L(e4ε
+ ε− 1)‖S̃‖ , for i ≤ N − 1. (19)

From Assumption 2.2 it follows that (recall that eε < (L + 1)/L) for any positive real numbers x, y

| ln x − ln y | ≤ ε ⇒ q(y) ≤
q(x)(1+ L(eε − 1))+ L(eε − 1)x

1− L(eε − 1) .

We conclude that
fN(�) ≤

fN(S̃)(1+ L(eε − 1))+ L(eε − 1)‖S̃‖
1− L(eε − 1) , �̂ a.s. (20)

From (6), Assumption 2.2, and the Doob inequality, it follows that

Ɛ�̂[‖S̃‖2] � Ɛ�̃[‖�̃‖2] ≤ 4Ɛ�̃[‖M̃‖2] ≤ 16Ɛ�̃[M̃2
T]

≤ 64Ɛ�̃[�̃
2
T] ≤ 64[c2

q + cqLN]� Ĉ2 ,

where the constants Ĉ and cq are as in Definition 4.1. Also, the Hölder inequality yields that

Ɛ�̂[‖S̃‖] ≤ Ĉ. (21)

Finally (18)–(21) and the fact that �̃ ∈MT , ε
κ̃,L imply that Ɛ�̂ fi(�) ≤ Li , for every i ≤ N . Therefore, using (17)–(21)

and the relation �̂� � , we arrive at

L(c) ≥ Ɛ�̂[c · f (�)] ≥ Ɛ�̂[G(�)] ≥ Ɛ�̃G[(�̃)] − LĈ(e4ε
+ ε− 1).

Since the above inequality holds for every � almost-surely super-replicating strategy π � (c , γ), this proves the
inequality (9) and completes the proof of this lemma. �

5. Estimates for the Upper Bound
In this section we establish estimates that will be used in the proof of the upper bound, under the assumptions
of Theorem 2.7.
We fix ε ∈ (0, ln(1+ 1/L)) and start with two definitions.

Definition 5.1. A function F ∈�[0,T] belongs to �(ε), if it satisfies the following:
(1) F0 � 1.
(2) F is piecewise constant with jumps at times t1 , . . . , tn , where

t0 � 0 < t1 < t2 < · · · < tn < T.

(3) For any k � 1, . . . , n, | ln Ftk
− ln Ftk−1

| � ε.
(4) For any k � 1, . . . , n, tk − tk−1 ∈U (ε)k , where

U (ε)k :� {iε/(2k) : i � 1, 2, . . . , } ∪ {ε/(i2k): i � 1, 2, . . . , },

are the sets of possible differences between two consecutive jump times. We emphasise, in the fourth condition,
the dependence of the set U (ε)k on k. So as k gets larger, jump times take values in a finer grid.

Definition 5.2. For κ̃,Λ > 0, let Mε,Λ
κ̃,L be the set of all probability measures �̃ on the space �[0,T] such that the

following holds:
(1) The probability measure �̃ is supported on the set �(ε).
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(2) There exists a càdlàg (�̃, �̃) martingale {M̃t}
T
t�0 such that

(1− κ̃)�̃t ≤ M̃t ≤ (1+ κ̃)�̃t , �̃ a.s.

(3) Let Ĉ be as in Definition 4.1 and L be as in Assumption 2.1. Set

B :� L(e2ε
+ ε− 1) Ĉ2

2(1− 8κ) + 2L(eε − 1)LN + ε.

For any i < N ,
Ɛ�̃[ fi(�̃)] ≤Li + B,

and
Ɛ�̃[ fN(�̃) ∧Λ(�̃T + 1)] ≤LN + B.

The following result provides an upper bound on the model-free super-replication price Vκ(G).
Lemma 5.3. Assume that

min
(
1+ κ̃
1+ κ ,

1− κ
1− κ̃

)
≥ e4ε . (22)

Then
Vκ(G) ≤

(
sup

�̃∈Mε,Λ
κ̃,L

Ɛ�̃[G(�̃)]
)+

+ L(e2ε
+ ε− 1) Ĉ2

2(1− 8κ) .

Again, we use the standard convention that the supremum over the empty set is minus infinity. In particular,
if Mε,Λ

κ̃,L is empty, then the above lemma states that Vκ(G) ≤ L(e2ε + ε− 1)(Ĉ2/(2(1− 8κ))).
Proof. The proof is completed in two steps. In the first step, we apply the results that deal with the “classical”
super-replication with proportional transaction costs.
Step 1. Since �(ε) is countable, there exists a probability measure �̃ satisfying �̃(�(ε)) � 1 and �̃({F}) > 0 for all
F ∈ �(ε). Consider the filtered probability space (�[0,T], {�̃t}

T
t�0 , �̃T , �̃). Denote by Mκ̃ the set of all consistent

price systems in �(ε). Namely, �̃ ∈Mκ̃ if �̃ is equivalent to �̃ and there exists a càdlàg martingale {M̃t}
T
t�0 (with

respect to �̃ and �̃) such that
(1− κ̃)�̃t ≤ M̃t ≤ (1+ κ̃)�̃t , �̃ a.s.

Let X :� X(�̃) be a random variable that is �̃T measurable and bounded from below by a multiple of 1+ �̃T . Set

c0 :� sup
�̃∈Mκ̃

Ɛ�̃[X]. (23)

From Schachermayer [21, Theorem 1.5], it follows that there exists a predictable stochastic process of bounded
variation {γ̃t}Tt�0 such that γ̃0 � γ̃T � 0 and

c0 + (1− κ̃)
∫
[0,T]

�̃u dγ̃−u − (1+ κ̃)
∫
[0,T]

�̃u dγ̃+

u ≥ X, �̃ a.s.

Thus, there exists a predictable map γ̃: �(ε)→ �∞[0,T] such that for any F ∈�(ε) γ̃0(F)� γ̃T(F)� 0 and

c0 + (1− κ̃)
∫
[0,T]

Fu dγ̃−u (F) − (1+ κ̃)
∫
[0,T]

Fu dγ̃+

u (F) ≥ X(F), (24)

where �∞[0,T] is the set of all bounded functions on the interval [0,T]. Next, choose (c1 , . . . , cN) ∈ �N
+

and
consider the random variable

X � X(�̃)� G(�̃) −
N−1∑
i�1

ci fi(�̃) − cN

(
fN(�̃) ∧Λ(�̃T + 1)

)
.

Recall, that in Assumption 2.2 we assumed that if fi is path dependent then it is bounded. This together with
the Lipschitz continuity of fi , i � 1, . . . ,N − 1 yields that f1(�̃), . . . , fN−1(�̃) are bounded by a multiple of 1+ �̃T ,
and so X is bounded by a multiple of 1+ �̃T as well.

Let (c0 , γ̃) be such that (23) and (24) hold true.
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Next, we lift the trading strategy γ̃ to a trading strategy on the space Ω. We start with some preparations.
Recall the definition of the stopping times τ(ε)k :� τ(ε)k (�), k ≥ 0, and � :��(�)�min{k: τ(ε)k � T} − 1.
Set,

τ̂(ε)k :�
k∑

i�1
∆τ̂(ε)i , where

∆τ̂(ε)i � max
{
∆t ∈U (ε)i : ∆t < ∆τ(ε)i :� τ(ε)i − τ

(ε)
i−1

}
.

It is clear that 0� τ̂(ε)0 < τ̂(ε)1 < · · · < τ̂(ε)� < T and τ̂(ε)k < τ(ε)k for all k � 0, . . . ,�.
We now define Ψ: Ω→�(ε) by

Ψt(�) :�
�−1∑
k�0

�τ(ε)k
χ[τ̂(ε)k , τ̂(ε)k+1)

(t)+�τ(ε)�
χ[τ̂(ε)� ,T](t).

Finally, define the hedge π � (c , γ), where c � (c0 , c1 , . . . , cN) and

γ(�) :�
�∑

k�1
γ̃τ̂(ε)k
(Ψ(�))χ(τ(ε)k , τ(ε)k+1]

(t).

We continue by estimating the portfolio value Zπ
T (�). Set

I :� I(�)� γT�T − κ |γT |�T + (1− κ)
∫
[0,T]

�u dγ−u − (1+ κ)
∫
[0,T]

�u dγ+

u

− (1− κ̃)
∫
[0,T]
Ψu(�) dγ̃−u (Ψ(�))+ (1+ κ̃)

∫
[0,T]
Ψu(�) dγ̃+

u (Ψ(�)).

From Assumption 2.2 it follows that for any x, y > 0

| ln x − ln y | < ε ⇒ q(x) ≥
(1− L(eε − 1))q(y) − L(eε − 1)y

1+ L(eε − 1) .

Thus, from Assumptions 2.1, 2.2, and (24), it follows that

Zπ
T (�) −G(�) ≥ I −

(
G(�) −G(Ψ(�))

)
−

N∑
i�1

ci

(
fi(Ψ(�)) − fi(�)

)
≥ I − L

(
1+

N−1∑
i�1

ci

) (
e2ε

+

∞∑
j�1
ε2− j − 1

)
‖�‖ − LcN(eε − 1)

2 fN(�)+ ‖S‖
1+ L(eε − 1)

≥ I − L
(
1+

N−1∑
i�1

ci

)
(e2ε

+ ε− 1)‖�‖ − LcN(eε − 1)
(
2 fN(�)+ ‖S‖

)
. (25)

It remains to estimate the term I. To simplify the calculations, we use the notation γ � γ(�) and γ̃ � γ̃(Ψ(�)).
Then, in view of (22),

γT�T − κ |γT |�T + (1− κ)
∫
[0,T]

�u dγ−u − (1+ κ)
∫
[0,T]

�u dγ+

u

≥ γT�T − κ |γT |�T +

�∑
k�1

�τ(ε)k−1

∫
[τ(ε)k , τ(ε)k+1]

[
(1− κ̃) dγ−u − (1+ κ̃) dγ+

u

]
� γT�T − κ |γT |�T +

�∑
k�1

�τ(ε)k−1

∫
[τ(ε)k , τ(ε)k+1]

[
−dγu − κ̃ |dγu |

]
≥ γT�T − κ |γT |�T +

�−1∑
k�0
Ψτ̂(ε)k
(�)

∫
[τ̂(ε)k , τ̂(ε)k+1]

[
−dγ̃u − κ̃ |dγ̃u |

]
� γT�T − κ |γT |�T + (1− κ̃)

∫
[0, τ̂(ε)� ]

Ψu(�) dγ̃−u − (1+ κ̃)
∫
[0, τ̂(ε)� ]

Ψu(�) dγ̃+

u

≥ (1− κ̃)
∫
[0,T]
Ψu(�)dγ̃−u − (1+ κ̃)

∫
[0,T]
Ψu(�) dγ̃+

u .
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Hence, we conclude that I ≥ 0. We use this inequality together with (7) and (25). The result is,

Vκ(G) ≤ L(c)+ L(e2ε
+ ε− 1)

(
1+

N∑
i�1

ci

)
Vκ(‖�‖)+ 2L(eε − 1)cNVκ( fN(�))

≤ L(c)+ L(e2ε
+ ε− 1) Ĉ2

2(1− 8κ)

(
1+

N∑
i�1

ci

)
+ 2L(eε − 1)cNLN .

This together with (23) yields

Vκ(G) ≤ inf
c1 ,...,cN≥0

sup
�̃∈Mκ̃

(
Ɛ�̃[ξ]+

N∑
i�1

ciAi

)
+ L(e2ε

+ ε− 1) Ĉ2

2(1− 8κ) , (26)

where

ξ :� G(�̃) −
N−1∑
i�1

ci fi(�̃) − cN( fN(�̃) ∧Λ(�̃T + 1)),

Ai :� Li + L(e2ε
+ ε− 1) Ĉ2

2(1− 8κ) + 2L(eε − 1)LN �Li + B − ε, i ≤ N.

Step 2. The next step is to interchange the order of the infimum and supremum in (26). Consider the compact
set H :� [0,K/ε]N , where recall K is satisfying G ≤ K. Define the function G: H ×Mκ̃→� by

G(h , �̃)� Ɛ�̃

[
G(�̃) −

N−1∑
i�1

hi fi(�̃) − hN( fN(�̃) ∧Λ(�̃T + 1))
]
+

N∑
i�1

hiAi ,

where h � (h1 , . . . , hN). Notice that G is affine in each of the variables, and continuous in the first variable.
The set Mκ̃ can be naturally considered as a subset of the vector space ��(ε) . Let us show that Mκ̃ is a convex
set. Let �̃1 , �̃2 ∈Mκ̃ and let λ ∈ (0, 1). Consider the measure �̃ � λ�̃1 + (1− λ)�̃2. For i � 1, 2 let {M̃(i)

t }
T

t�0 be a
martingale with respect to �̃i and �̃, such that

(1− κ̃)�̃t ≤ M̃(i)
t ≤ (1+ κ̃)�̃t , �̃ a.s.

Define the stochastic process

M̃t � λM̃(1)
t

[
d�̃1

d�̃

���� �̃t

]
+ (1− λ)M̃(2)

t

[
d�̃2

d�̃

���� �̃t

]
, t ∈ [0,T].

Clearly, {M̃t}Tt�0 is a martingale with respect to �̃ and �̃. Also, since M̃t is a (random) convex combination
of M̃(1)

t and M̃(2)
t ,

(1− κ̃)�̃t ≤ M̃t ≤ (1+ κ̃)�̃t , �̃ a.s.
Hence, �̃ ∈Mκ̃. This proves that Mκ̃ is a convex set. Next, we apply the min–max theorem, in Beiglböck et al. [3,
Theorem 2] to G. The result is,

inf
h∈H

sup
�̃∈Mκ̃

G(h , �̃)� sup
�̃∈Mκ̃

inf
h∈H

G(h , �̃) ≤ sup
�̃∈Mκ̃

G(h�̃ , �̃),

where
h�̃

i �
K
ε
χ{Ɛ�̃[ fi (�̃)]≥Li+B} , i ≤ N − 1, h�̃

N �
K
ε
χ{Ɛ�̃[ fN (�̃)∧Λ(�̃T+1)]≥LN+B} .

The definitions of h�̃, the set Mε,Λ
κ̃,L , and the fact that G ≤ K implies that

G(h�̃ , �̃) ≤ 0, ∀ �̃ ∈Mκ̃ but �̃ <Mε,Λ
κ̃,L .

In particular, sup�̃∈Mκ̃
G(h�̃ , �̃) ≤ 0, if the set Mε,Λ

κ̃,L is empty. These together with (26) imply that

Vκ(G) ≤ sup
�̃∈Mκ̃

G(h�̃ , �̃)+ L(e2ε
+ ε− 1) Ĉ2

2(1− 8κ)

≤
(

sup
�̃∈Mε,Λ

κ̃,L

Ɛ�̃[G(�̃)]
)+

+ L(e2ε
+ ε− 1) Ĉ2

2(1− 8κ) . �
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6. Asymptotical Analysis of the Bounds
In this section we complete the proof of Theorem 2.7. This is achieved by proving that the lower and the upper
bounds from Sections 4 and 5 are asymptotically equal to each other.
Recall the probability measure � from Assumption 2.3. Set, Di � Ɛ�[ fi(�)], i ≤ N . Denote D�

∏N
i�1(Di ,∞). Let

H � (H1 , . . . ,HN) ∈D and let κ̃ ∈ (0, 1). Define Mκ̃,H to be the set of all probability measures on Ω̂ :�Ω×C++

[0,T]
that satisfy the conditions of Definition 2.5, with κ,L1 , . . . ,LN replaced by κ̃,H1 , . . . ,HN . Observe that � ∈Mκ̃,H
and so, the set Mκ̃,H is not empty. Define the function Γ: D× (0, 1)→� by

Γ(H, κ̃) :� sup
�̂∈Mκ̃,H

Ɛ�̂[G(�(1))],

where, recall the canonical process �̂� (�(1)t ,�
(2)
t )0≤t≤T given in Definition 2.5. The following lemma is central in

the analysis of the asymptotic behaviour of the bounds.

Lemma 6.1. The function Γ: D× (0, 1)→� is continuous.

Proof. Fix a compact set J ⊂D×(0, 1). It suffices to prove that there exists a a continuous function m J : �+→�+

(modulus of continuity) so that

Γ(H(1) , κ̃1) −Γ(H(2) , κ̃2) ≤ m J

( N∑
k�1
|H(1)k −H(2)k | + |κ̃1 − κ̃2 |

)
for any pair (H(1) , κ̃1), (H(2) , κ̃2) ∈ J satisfying

|κ̃1 − κ̃2 | ≤
ln(1+ 1/L)

C(1)J

, (27)

where L is the constant in the Assumption 2.2 and C(1)J is a constant depending only on J that will be chosen below.
Choose ε > 0. There exists �̂1 ∈Mκ̃1 ,H(1) such that

Γ(H(1) , κ̃1) < ε+ Ɛ�̂1
[G(�(1))]. (28)

On the space Ω̂, define the stochastic processes ρ and Ûρ by,

ρt :�
�(2)t

�(1)t

and Ûρt :� (1− κ̃2) ∨ (ρt ∧ (1+ κ̃2)), t ∈ [0,T].

Next, introduce the stochastic process Û�� ( Û�(1)t , Û�
(2)
t )0≤t≤T by

Û�(1)t :�
�(2)t

Ûρt

Ûρ0

ρ0
�
ρt

Ûρt

Ûρ0

ρ0
�(1)t and Û�(2)t :�

Ûρ0

ρ0
�(2)t , t ∈ [0,T].

Observe that there exists a constant C(1)J > 0 such that

sup
0≤t≤T

��ln Û�(1)t − ln�(1)t

��� sup
0≤t≤T

��lnρt + ln Ûρ0 − ln Ûρt − lnρ0

�� ≤ C(1)J |κ̃1 − κ̃2 |. (29)

We choose the constant C(1)J above to be the one in (27).
The idea behind the definition of the process Û� is to construct a stochastic process that is “close” to � and

satisfies properties (1) and (2) of Definition 2.5, for κ̃2 instead of κ̃1. In addition, we require that Û�(1)0 � 1. Indeed,
observe that Û�: Ω̂→ Ω̂. Thus, define the probability measure �̂2 to be the distribution of Û� under the probability
measure �̂1. Namely, �̂2 is a probability measure on Ω̂, which is given by �̂2(A)� �̂1( Û�

−1(A)) for any Borel set
A ⊂ Ω̂. Clearly, for any t ∈ [0,T]

(1− κ̃2) Û�
(1)
t ≤ Û�

(2)
t ≤ (1+ κ̃2) Û�

(1)
t , �̂1 a.s.

and
Ɛ�̂1
( Û�(2)T | Û�u , u ≤ t)� Û�(2)t .
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Thus, for any t ∈ [0,T],
(1− κ̃2)�(1)t ≤ �

(2)
t ≤ (1+ κ̃2)�(1)t , �̂2 a.s. (30)

and
Ɛ�̂2
(�(2)T | �̂t)��(2)t . (31)

Next, similarly to (21) we obtain that there exists a constant C(2)J such that

Ɛ�̂1
[‖�(1)‖] ≤ C(2)J .

We now apply the Assumptions 2.1–2.2 in a similar way to (19)–(20), and also use (27) and (29) to construct
another constant C(3)J satisfying,��Ɛ�̂2

[G(�(1))] − Ɛ�̂1
[G(�(1))]

�� � ��Ɛ�̂1
[G( Û�(1))] − Ɛ�̂1

[G(�(1))]
��

≤ LC(2)J

(
exp(C(1)J |κ̃1 − κ̃2 |) − 1

)
≤ C(3)J |κ̃1 − κ̃2 | (32)

and ��Ɛ�̂2
[ fi(�(1))] − Ɛ�̂1

[ fi(�(1))]
�� � ��Ɛ�̂1

[ fi( Û�
(1))] − Ɛ�̂1

[ fi(�(1))]
��

≤ LC(2)J

(
exp(C(1)J |κ̃1 − κ̃2 |) − 1

)
≤ C(3)J |κ̃1 − κ̃2 |, i ≤ N − 1, (33)

and for i � N

Ɛ�̂2
[ fN(�(1))] � Ɛ�̂1

[ fN( Û�
(1))]

≤
Ɛ�̂1
[ fN(�(1))](1+ L(exp(C(1)J |κ̃1 − κ̃2 |) − 1))

1− L(exp(C(1)J |κ̃1 − κ̃2 |) − 1)
(34)

+
L(exp(C(1)J |κ̃1 − κ̃2 |) − 1)Ɛ�̂1

[‖�(1)‖]
1− L(exp(C(1)J |κ̃1 − κ̃2 |) − 1)

≤ Ɛ�̂1
[ fN(�(1))]+C(3)J |κ̃1 − κ̃2 |. (35)

Next, we modify the probability measure �̂2 so it will satisfy property (3) of Definition 2.5 for H(2)1 , . . . ,H(2)N .
Clearly, the measure � ⊗� is a probability measure on Ω̂, where the probability measure � is given in As-
sumption 2.3. For any λ ∈ (0, 1) consider the probability measure

�̂λ �
√
λ[�⊗�]+ (1−

√
λ)�̂2.

Observe that
Ɛ�⊗�[ fi(�(1))]� Ɛ�[ fi(�)]� Di , i ≤ N.

Set Λ �
∑N

k�1 |H
(1)
k −H(2)k | + |κ̃1 − κ̃2 |. From (33)–(35) and the fact that Di < H(1)i it follows that for Λ sufficiently

small

Ɛ�̂Λ
[ fi(�(1))] ≤

√
ΛDi + (1−

√
Λ)

(
H(1)i +C(3)J |κ̃1 − κ̃2 |

)
≤ H(1)i −

√
Λ(H(1)i −Di)+C(3)J Λ < H(1)i −Λ ≤ H(2)i .

This together with (30)–(31) yields that �̂Λ ∈Mκ̃2 ,H(2) . Finally, from (28) and (32) we obtain

Γ(H(1) , κ̃1) −Γ(H(2) , κ̃2) ≤ ε+ Ɛ�̂1
[G(�(1))] − (1−

√
Λ)Ɛ�̂2

[G(�(1))]
≤ ε+C(3)J |κ̃1 − κ̃2 | +

√
ΛK.

Since ε > 0 was arbitrary, this completes the proof. �

Now, we are ready to prove the lower bound of Theorem 2.7.
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Lemma 6.2.
V�
κ (G) ≥ sup

�̂∈Mκ,L

Ɛ�̂[G(�(1))].

Proof. In view of Lemma 6.1, it is sufficient to prove that

V�
κ (G) ≥ Ɛ�̂[G(�(1))], (36)

for every �̂ ∈Mκ̃, L̃ with κ̃ < κ and L̃i <Li , i ≤ N .
We proceed in two steps. In the first step, we modify the process �(1). In the second step, we apply Lemma 4.2

to the modified process.
Step 1. Let ε > 0. Define the stopping times, τ(ε)0 :� τ(ε)0 (�

(1))� 0 and for k > 0,

τ(ε)k :� τ(ε)k (�
(1))� T ∧ inf

{
t > τ(ε)k−1: �

(1)
t � exp(±ε)�(1)

τ(ε)k−1

}
,

and the random variable � :�min{k: τ(ε)k � T} − 1 <∞. Let n ∈ �. Introduce the stochastic process

S̃(n)t �

n−1∑
i�0

�(1)
τ(ε)i

χ[τ(ε)i , τ(ε)i+1)
(t)+�(1)

τ(ε)�∧n

χ[τ(ε)n ,T](t), t ∈ [0,T].

The stochastic process S̃(n) is a pure jump process that agrees with �(1) at the jump times τ(ε)1 , . . . , τ
(ε)
n∧� and

remains constant afterward.
We argue that for sufficiently large n the terms Ɛ�̂ | fi(S̃(n)) − fi(�(1))|, i � 1, . . . ,N and Ɛ�̂ |G(S̃(n)) − G(�(1))|

are small. Indeed, as before the fact �̂ ∈ Mκ̃, L̃ implies that Ɛ�̂[‖�(1))‖] ≤ Ĉ (where, recall the constant Ĉ from
Definition 4.1) and so limn→∞ Ɛ�̂[‖�(1)‖χ{�≥n}]� 0. From Assumptions 2.1 and 2.2 we get

limsup
n→∞

��Ɛ�̂[ fi(�(1))] − Ɛ�̂[ fi(S̃(n))]
��

≤ limsup
n→∞

Ɛ�̂

[
| fi(�(1)) − fi(S̃(n))|χ{�<n}

]
+ 2L lim

n→∞
Ɛ�̂

[
‖�(1)‖χ{�≥n}

]
≤ L(eε − 1)Ɛ�̂[‖�(1)‖] ≤ L(eε − 1)Ĉ.

Similarly,
limsup

n→∞

��Ɛ�̂[G(�(1))] − Ɛ�̂[G(S̃(n))]
�� ≤ L(eε − 1)Ĉ. (37)

It remains to treat the case i � N . From Assumption 2.2 it follows that there exists δ > 0 such that

| ln x − ln y | < δ ⇒ q(y) < 2(q(x)+ x).

We conclude that there exists a constant C4 such that for any x, y > 0 we have

(1− κ̃)x ≤ y ≤ 1
1− κ̃ x ⇒ q(y) ≤ C4(q(x)+ x).

This together with property (2) of Definition 2.5 yields

Ɛ�̂

[
q
(
�(1)
τ(ε)n

)
χ{�≥n}

]
≤ C4Ɛ�̂

[ (
q
(
�(2)
τ(ε)n

)
+�(2)

τ(ε)n

)
χ{�≥n}

]
.

Since �(2) is a martingale and {�≥ n}� {τ(ε)n < T} ∈ �̂τ(ε)n
, then from the Jensen inequality (for the convex function

q(x)+ x) we obtain,

Ɛ�̂

[
q(�(1)

τ(ε)n
)χ{�≥n}

]
≤ C4Ɛ�̂

[
(q(�(2)T )+�(2)T )χ{�≥n}

]
≤ C4Ɛ�̂

[
(C4[q(�(1)T )+�(1)T ]+ (1+ κ̃)�

(1)
T )χ{�≥n}

]
.

Thus the inequality Ɛ�̂[(q(�(1)T )] <∞ implies

limsup
n→∞

��Ɛ�̂[ fN(�(1))] − Ɛ�̂[ fN(S̃(n))]
��

≤ limsup
n→∞

Ɛ�̂

[
( fN(�(1))+ fN(S̃(n)))χ{�≥n}

]
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≤ limsup
n→∞

Ɛ�̂

[
((1+C2

4)q(�
(1)
T )+C4(1+ κ̃+C4)�(1)T )χ{�≥n}

]
� 0.

We conclude that for sufficiently large n��Ɛ�̂[G(�(1))] − Ɛ�̂[G(S̃(n))]
�� ≤ 2L(eε − 1)Ĉ and��Ɛ�̂[ fi(�(1))] − Ɛ�̂[ fi(S̃(n))]
�� ≤ 2L(eε − 1)Ĉ, i ≤ N. (38)

We fix n sufficiently large that the above inequalities hold and set S̃ :� S̃(n).
Next, we modify the jump times so they will lie on a grid. Let m ∈ �. Define by recursion the following

sequence of random variables:

τ̂(ε)k :�
k∑

i�1
∆τ̂(ε)i , where

∆τ̂(ε)i � min
{
∆t ∈ {T/m , 2T/m , . . . ,T}: ∆t ≥ ∆τ(ε)i :� τ(ε)i − τ

(ε)
i−1

}
,

and
σk � Tχ{τ(ε)k �T} + τ̂

(ε)
k ∧ (T(1− 2−k/m))χ{τ(ε)k <T} , k � 0, 1, . . . , n.

Observe that for any i, σi+1 ≥ σi and σi+1 � σi if and only if σi � T. Notice that σ1 , . . . , σn are not (in general)
stopping times with respect to the filtration �̂. Define the stochastic process

ÛSt :� ÛS(m)t �

n−1∑
i�0

�(1)
τ(ε)i

χ[σi , σi+1)(t)+�(1)
τ(ε)�∧n

χ[σn ,T](t), t ∈ [0,T].

Step 2. The process ÛSt is a piecewise constant process, and the jump times are lying on a finite grid. Thus the
natural filtration that is generated by ÛS is right continuous, and so the martingale

M̂t :� Ɛ�̂(�(2)T | ÛSu , u ≤ t)

is a càdlàg martingale. Let k ≤ n. Clearly, σk is a stopping time with respect to the natural filtration generated
by ÛS. Furthermore ÛS[0, σk ] is measurable with respect to �̂τ(ε)k

. This together with the fact that

e−ε ≤
ÛSσk

�(1)
τ(ε)k

≤ eε

and properties (1)–(2) in Definition 2.5, imply that

|M̂σk
− ÛSσk

| �
��Ɛ�̂

(
Ɛ�̂[�(2)T | �̂τ(ε)k

] | ÛSu , u ≤ σk

)
− ÛSσk

��
≤ ÛSσk

(
(1+ κ̃)eε − 1

)
≤ ÛSσk

(κ̃+ 2ε),

where in the last equality we assume that ε is sufficiently small. Let σn+1 �T. Then, for any k ≤ n and t ∈ [σk , σk+1],
we conclude that

e−2ε(1− κ̃− 2ε) ÛSt ≤ M̂σk+1
≤ e2ε(1+ κ̃+ 2ε) ÛSt .

Since M̂ is a martingale with respect to the natural filtration of ÛS, we conclude that for sufficiently small ε,

|M̂t − ÛSt | ≤ (1+ κ̃+ 5ε) ÛSt . (39)

Clearly,
lim

m→∞
‖S̃− ÛS(m)‖ � 0, �̂ a.s.

Observe that the above processes are uniformly bounded. Hence, by Assumptions 2.1–2.2,

Ɛ�̂[G(S̃)] � limm→∞ Ɛ�̂[G( ÛS(m))] and
Ɛ�̂[ fi(S̃)] � limm→∞ Ɛ�̂[ fi( ÛS(m))], i ≤ N. (40)
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Denote by Û�m the distribution of ÛS(m) on the space �[0,T]. Let us choose ε such that κ̂ :� κ̃+ 6ε satisfies

min
(
1+ κ
1+ κ̂ ,

1− κ̂
1− κ

)
≥ e2ε ,

and

Li − L(Ĉ +LN)(e4ε
+ ε− 1) > 3L(eε − 1)Ĉ + L̃i , i < N,

LN(1− L(eε − 1)) − LĈ(eε − 1)
1+ L(eε − 1) > 3L(eε − 1)Ĉ + L̃N .

From (38)–(40), it follows that for sufficiently large m the measure Û�m ∈MT , ε
κ̂,L with the choice T :� {kT2−n/m}2n m

k�0 .
Thus, in view of Lemma 4.2, we have

V�
κ (G) ≥ Ɛ�̂[G( ÛS(m))] − LĈ(e4ε

+ ε− 1).

We now apply (38), (40) and take the limit as m tends to infinity. The result is

V�
κ (G) ≥ Ɛ�̂[G(�(1))] − 2L(eε − 1)Ĉ − LĈ(e4ε

+ ε− 1).

Now, (36) follows after taking the limit as ε tends to zero. �

Next, we establish the upper bound (5).

Lemma 6.3.
Vκ(G) ≤ sup

�̂∈Mκ,L

Ɛ�̂[G(�(1))].

Proof. Let � be the probability measure from Assumption 2.3. Then, �⊗� ∈Mκ, (L1 ,...,LN ). Therefore, if Vκ(G) ≤ 0,
then (5) is trivial. So we may assume without loss of generality that Vκ(G) > 0. Choose ε > 0, Λ > 1, κ̂ > κ̃ > κ
and L̃i > Li , i ≤ N . Assume that ε is sufficiently small so L(e2ε + ε − 1)(Ĉ2/(2(1 − 8κ))) < Vκ(G) and κ̃ satisfies
(22). This together with Lemma 5.3 yields that there exists a probability measure �̃ ∈Mε,Λ

κ̃,L such that

Vκ(G) < Ɛ�̃[G(�̃)]+ L(e2ε
+ ε− 1) Ĉ2

(1− 8κ) . (41)

Next, we proceed in three steps. In the first step (similarly to Lemma 6.2), we modify the stochastic process �̃.
In the second step, we use the Wiener space in order to construct a continuous consistent price system with
(almost) the required properties. In the last step, we modify again the constructed continuous consistent price
system in order to get rid of the truncation in the term fN(�(1)) ∧Λ�(1)T . Finally, we apply Lemma 6.1.

Step 1. Let
(1− κ̃)�̃t ≤ M̃t ≤ (1+ κ̃)�̃t , t ∈ [0,T],

be the associated martingale corresponding to the probability measure �̃ ∈Mε,Λ
κ̃,L . Let τ̃

(ε)
0 :� τ̃(ε)0 (�̃) � 0, and for

k > 0 set,
τ̃(ε)k :� τ̃(ε)k (�̃)� T ∧ inf

{
t > τ̃(ε)k−1:

��ln �̃τ̃(ε)k+1
− ln �̃τ̃(ε)k

��� ε}
and �̃�min{k: τ̃(ε)k �T} −1 <∞. Observe that the probability measure �̃ supported on �(ε) and so τ̃k , k ≥ 0 are
indeed stopping times.
Let n ∈ �. Set,

S̃(n)t :�
n−1∑
i�0

�̃τ̃(ε)i
χ[τ̃(ε)i , τ̃(ε)i+1)

(t)+ �̃τ̃(ε)
�̃∧n
χ[τ̃(ε)n ,T](t), t ∈ [0,T].

From the definition of the set Mε,Λ
κ̃,L it follows that Ɛ�̃[q(�̃T) ∧Λ(�̃T + 1)] <∞, and so and Ɛ�̃[�̃T] <∞, as well.

Moreover,

Ɛ�̃[�̃τ̃(ε)n
χ{�̃≥n}] ≤ (1+ κ̃)Ɛ�̃[M̃τ̃(ε)n

χ{�̃≥n}]� (1+ κ̃)Ɛ�̃[M̃Tχ{�̃≥n}]
≤ (1+ κ̃)2Ɛ�̃[�̃Tχ{�̃≥n}].
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We conclude that
lim
n→∞

Ɛ�̃[(�̃τ̃(ε)n
+ �̃T)χ{�̃≥n}]� 0. (42)

As in the proof of Lemma 5.3, we will use the fact that fi(S), i <N are bounded (from both sides) by a multiple
of 1 + ST . This together with (42) and the fact that S̃(n) � �̃ on the event {n > �̃} yields that for sufficiently
large n, ��Ɛ�̃[G(�̃)] − Ɛ�̃[G(S̃(n))]

�� ≤ ε,��Ɛ�̃[ fi(�̃)] − Ɛ�̃[ fi(S̃(n))]
�� ≤ ε, i ≤ N − 1, (43)��Ɛ�̃[q(�̃T) ∧Λ(�̃T + 1)] − Ɛ�̃[q(S̃(n)T ) ∧Λ(S̃

(n)
T + 1)]

�� ≤ ε.
We choose n sufficiently large and set S̃ :� S̃(n).

Next, let m ∈ �. Define by recursion the following sequence of random variables,

τ̂(ε)k :�
k∑

i�1
∆τ̂(ε)i , where

∆τ̂(ε)i � min{∆t ∈ {T/m , 2T/m , . . . ,T}: ∆t ≥ ∆τ̃(ε)i :� τ̃(ε)i − τ̃
(ε)
i−1},

and
σk � Tχ{τ̃(ε)k �T} + τ̂

(ε)
k ∧ (T(1− 2−k/m))χ{τ̃(ε)k <T} , k � 0, 1, . . . , n.

Similarly, to Lemma 6.2 we have that for any i, σi+1 ≥ σi and σi+1 � σi if and only if σi � T. Define the stochastic
process

ÛSt :� ÛS(m)t �

n−1∑
i�0

�̃τ̃(ε)i
χ[σi ,σi+1)(t)+ �̃τ̃(ε)

�̃∧n
χ[σn ,T](t), t ∈ [0,T].

Again, as in Lemma 6.2 the process ÛSt is a piecewise constant process, and the jump times are lying on a finite
grid. Introduce the (càdlàg) martingale

M̂t :� Ɛ�̂(M̃T | ÛSu , u ≤ t).

By using the same arguments as in (39)–(40) we get

|M̂t − ÛSt | ≤ (1+ κ̃+ 5ε) ÛSt , (44)

and

Ɛ�̃[G(S̃)] � lim
m→∞

Ɛ�̃[G( ÛS(m))],

Ɛ�̃[ fi(S̃)] � lim
m→∞

Ɛ�̃[ fi( ÛS(m))], i ≤ N − 1 (45)

Ɛ�̃[q(S̃T) ∧Λ(�̃T + 1)] � lim
m→∞

Ɛ�̃[q( ÛS(m)T ) ∧Λ( ÛS
(m)
T + 1)].

From (7) and (45), it follows that we can choose m sufficiently large such that��Ɛ�̃[G(�̃)] − Ɛ�̃[G( ÛS(m))]
�� ≤ 2ε,��Ɛ�̃[ fi(�̃)] − Ɛ�̃[ fi( ÛS(m))]

�� ≤ 2ε, i ≤ N − 1, (46)��Ɛ�̃[q(�̃T) ∧Λ(�̃T + 1)] − Ɛ�̃[q( ÛS(m)T ) ∧Λ( ÛS
(m)
T + 1)]

�� ≤ 2ε.

Choose such m and denote ÛS � ÛS(m). The stochastic process { ÛSt}
T
t�0 is a piecewise constant process, and the jump

times are lying on a finite grid. Denote the grid by T � {t1 , . . . , tr ,T}, where 0� t0 < t1 < · · · < tr < T.
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Step 2. Let (ΩW ,FW ,�W ) be a complete probability space together with a standard Brownian motion and the
natural filtration FW

t � σ{Ws | s ≤ t}.
From Skorokhod [22, Theorem 1] and the fact that the random variables Wti+1

−Wti
, i � 0, . . . , r − 1 are inde-

pendent, it follows that we can find a sequence of measurable function g(1)i , g(2)i : �2i−1→�, i � 1, . . . , r with the
following property. The stochastic processes (adapted to the Brownian filtration) { ÛSW

ti
}r

i�0
and {M̂W

ti
}r

i�0
, which

are given by the recursion relations
ÛSW

t0
� 1, M̂W

t0
� M̂0

and for i > 0

ÛSW
ti

� g(1)i

(
Wti+1

−Wti
, ÛSW

t0
, . . . , ÛSW

ti−1
, M̂W

t0
, . . . , M̂W

ti−1

)
,

M̂W
ti

� g(2)i

(
Wti+1

−Wti
, ÛSW

t0
, . . . , ÛSW

ti−1
, M̂W

t0
, . . . , M̂W

ti−1

)
,

have the same joint distribution as the processes { ÛSti
}r

i�0 and {M̂ti
}r

i�0. Namely, the distribution of

( ÛSW
t0
, . . . , ÛSW

tr
, M̂W

t0
, . . . , M̂W

tr
)

under the probability measure �W is equal to the distribution of

( ÛSt0
, . . . , ÛStr

, M̂t0
, . . . , M̂tr

)

under the probability measure �̃.
Since the Brownian motion increments are independent, for any i < r,

Ɛ�W (M̂W
ti+1
| FW

ti
)� Ɛ�W

(
M̂W

ti+1
| ÛSW

t1
, . . . , ÛSW

ti
, M̂W

t1
, . . . , M̂W

ti

)
� M̂W

ti
.

Thus, we can extend the martingale {M̂W
ti
}r

i�0
to a continuous time martingale (Brownian martingale)

M̂W
t � Ɛ�W (M̂W

tr
| FW

t ), t ∈ [0,T].

Next, we define the stochastic process {SW
t }

T
t�0 by the following linear interpolation:

SW
t � χ[0, t1](t)+

r∑
i�1

(t − ti) ÛSW
ti
+ (ti+1 − t) ÛSW

ti−1

ti+1 − ti
χ(ti , ti+1](t),

where we set tr+1 � T. Observe that the stochastic process SW is continuous and adapted to the Brownian
filtration. Since ÛSW

ti+1

ÛSW
ti

∈ {1, eε , e−ε},

it follows from (44) that (for ε sufficiently small)

|M̂W
t − SW

t | ≤ (κ̃+ 10ε)SW
t , t ∈ [0,T]. (47)

Set,
ÛSW

t �

r−1∑
i�0

ÛSW
ti
χ[ti , ti+1)(t)+ ÛS

W
tr
χ[tr ,T](t), t ∈ [0,T].

Clearly, the processes ÛSW and ÛS have the same distribution and consequently,

Ɛ�W [G( ÛSW )] � Ɛ�̃[G( ÛS)],
Ɛ�W [ fi( ÛSW )] � Ɛ�̃[ fi( ÛS)], i ≤ N − 1,

Ɛ�W [q( ÛSW
T ) ∧Λ( ÛSW

T + 1)] � Ɛ�̃[q( ÛST) ∧Λ( ÛST + 1)]. (48)

Also, (7) and (48) imply that
Ɛ�W [q( ÛSW

T ) ∧Λ( ÛSW
T + 1)] ≤ 2ε+LN + B,
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where B is given in Definition 5.2. Therefore, there exists a constant C (which does not depend on ε > 0 and
Λ > 1) such that Ɛ�W ÛSW

T ≤ C. This, together with the Kolmogorov inequality for the martingale M̂W , yield that

�W

(
‖SW ‖ > 1

√
ε

)
≤ �W

(
‖M̂W ‖ > 1

(1+ κ̃+ 10ε)
√
ε

)
≤ Ɛ�W [M̂W

T (1+ κ̃+ 10ε)
√
ε] ≤ C(1+ κ̃+ 10ε)2

√
ε.

Observe that by construction ‖SW − ÛSW ‖ ≤ 4ε‖SW ‖. Thus from Assumption 2.1 it follows that

Ɛ�W [|G(SW ) −G( ÛSW )|] ≤ Ɛ�W [Kχ{|SW ‖>1/
√
ε} + 4L

√
εχ{|SW ‖≤1/

√
ε}]

≤ (KC(1+ κ̃+ 10ε)2 + 4L)
√
ε.

Similarly for path-dependent fi we have

Ɛ�W [| fi(SW ) − fi( ÛSW )|] ≤ (2‖ fi ‖∞C(1+ κ̃+ 10ε)2 + 4L)
√
ε,

where ‖ fi ‖∞ is the uniform bound of the path-dependent claim | fi |. Since SW
T � ÛSW

T then for nonpath-dependent fi

we have a trivial estimate. We now use these inequalities together with (7) and (48), to construct a constant C̃
satisfying, ��Ɛ�W [G(SW )] − Ɛ�̃[G(�̃)]

�� ≤ C̃
√
ε,��Ɛ�W [ fi(SW )] − Ɛ�̃[ fi(�̃)]

�� ≤ C̃
√
ε, i ≤ N − 1, (49)��Ɛ�̃[q(SW

T ) ∧Λ(SW
T + 1)] − Ɛ�̃[q(�̃T) ∧Λ(�̃T + 1)]

�� ≤ C̃
√
ε.

Step 3. Let xΛ be the solution of the equation q(x) �Λ(x + 1) where we assume that Λ > q(0) so the equation
has exactly one solution. Indeed (if by contradiction) we have two solutions 0 < x < y then

q(y) − q(x)
y − x

�Λ <
q(x) − q(0)

x

and we get contradiction to convexity. Define the stochastic processes by

ρt :�
M̂W

t

SW
t

, Mt :� Ɛ�W (M̂W
T ∧ ρT xΛ | FW

t ),

and
St :�

Mt

ρt

t + (T − t)ρ0/M0

T
, t ∈ [0,T].

In view of (7),

Ɛ�W [M̂W
T χM̂W

T >ρT xΛ] ≤ 2Ɛ�W [SW
T χSW

T >xΛ]

≤ 2
Λ
Ɛ�̃[q(SW

T ) ∧Λ(SW
T + 1)]

≤ 2(C̃
√
ε+LN + B)
Λ

. (50)

Thus |M0 − ρ0 | � |M0 − M̂W
0 | ≤ C1/Λ for some constant C1. This together with (47) implies that for sufficiently

large Λ we have the following inequality:

|Mt − St | ≤
(
κ̃+ 10ε+ 1

√
Λ

)
St , t ∈ [0,T]. (51)

Next, consider the martingale
mt :� Ɛ�W [M̂W

T χ{M̂W
T >ρT xΛ} | F

W
t ], t ∈ [0,T].

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

13
2.

21
1.

11
4]

 o
n 

07
 J

un
e 

20
17

, a
t 0

5:
15

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Dolinsky and Soner: Convex Duality with Transaction Costs
470 Mathematics of Operations Research, 2017, vol. 42, no. 2, pp. 448–471, ©2016 INFORMS

Observe that 0 ≤ M̂W
t −Mt ≤ mt , t ∈ [0,T]. Thus we obtain that there exists a constant C2 such that

‖SW − S‖ ≤ |MW −M‖ sup
0≤t≤T

1
ρt

+ ‖M‖ sup
0≤t≤T

���� 1
ρt
−

t + (T − t)ρ0/M0

Tρt

����
≤ 2‖m‖ + C2

Λ
‖MW ‖. (52)

The Kolmogorov inequality and (50) imply that

�W (‖m‖ > 1/
√
Λ) ≤ C3/

√
Λ

for some constant C3. Moreover,

�W (‖MW ‖ >
√
Λ) ≤

MW
0√
Λ
≤ 2
√
Λ
.

From (52) we conclude that

�W

(
‖SW − S‖ > 2+C2√

Λ

)
≤ 2+C3√

Λ
.

Thus from Assumption 2.2, it follows that

Ɛ�W [|G(SW ) −G(S)|] ≤ Ɛ�W

[
Kχ{|SW−S‖>(2+C2)/

√
Λ} + L((2+C2)/

√
Λ)χ{|SW ‖≤(2+C2)/

√
Λ}

]
≤ C4√
Λ

(53)

for some constant C4. Similarly, for path-dependent fi we get

Ɛ�W [| fi(SW ) − fi(S)|] ≤
C4√
Λ
. (54)

For nonpath-dependent fi , i < N we have

Ɛ�W [| fi(SW ) − fi(S)|] ≤ LƐ�W [|SW
T − ST |]

≤ LƐ�W [SW
T χSW

T >xΛ]

≤ L(C̃
√
ε+LN + B)
Λ

, (55)

where the last inequality follows from (50). The only remanning delicate point is i � N . From the fact that
ST � SW

T ∧ xΛ we get
Ɛ�W [q(ST)] ≤ Ɛ�W [q(SW

T ) ∧Λ(SW
T + 1)].

This together with (7), (51), and (53)–(55) yields that for sufficiently large Λ and small ε > 0 the distribution of
(S,M) on the space Ω̂ :�Ω×C++

[0,T] is an element in Mκ̂, (L̃1 ,...,L̃N ). Furthermore,

|Ɛ�W [G(S)] − Ɛ�̃[G(�̃)]| ≤ C̃
√
ε+

C4√
Λ
.

We now use (41), to obtain

Vκ(G) < L(e2ε
+ ε− 1) Ĉ2

(1− 8κ) + C̃
√
ε+

C4√
Λ

+ sup
�̂∈Mκ̂, (L̃1 ,...,L̃N )

Ɛ�̂[G(�(1))].

Finally, we apply Lemma 6.1 and take the limits Λ→∞, ε ↓ 0, κ̂ ↓ κ, L̃i ↓Li , i ≤ N . The result is

Vκ(G) ≤ sup
�̂∈Mκ,L

Ɛ�̂[G(�(1))].

This concludes the proof of the lemma as well as the proof of the main result. �
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