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Abstract We consider the problem of hedging a European contingent claim in a Bachelier
modelwith temporary price impact as proposed byAlmgren andChriss (J Risk 3:5–39, 2001).
Following the approach of Rogers and Singh (Math Financ 20:597–615, 2010) and Naujokat
and Westray (Math Financ Econ 4(4):299–335, 2011), the hedging problem can be regarded
as a cost optimal tracking problem of the frictionless hedging strategy. We solve this prob-
lem explicitly for general predictable target hedging strategies. It turns out that, rather than
towards the current target position, the optimal policy trades towards a weighted average
of expected future target positions. This generalizes an observation of Gârleanu and Ped-
ersen (Dynamic portfolio choice with frictions. Preprint, 2013b) from their homogenous
Markovian optimal investment problem to a general hedging problem. Our findings comple-
ment a number of previous studies in the literature on optimal strategies in illiquid markets
as, e.g., Gârleanu and Pedersen (Dynamic portfolio choice with frictions. Preprint, 2013b),
Naujokat and Westray (Math Financ Econ 4(4):299–335, 2011), Rogers and Singh (Math
Financ 20:597–615, 2010), Almgren and Li (Option hedging with smooth market impact.
Preprint, 2015), Moreau et al. (Math Financ. doi:10.1111/mafi.12098, 2015), Kallsen and
Muhle-Karbe (High-resilience limits of block-shaped order books. Preprint, 2014), Guasoni
and Weber (Mathematical Financ. doi:10.1111/mafi.12099, 2015a; Nonlinear price impact
and portfolio choice. Preprint, 2015b), where the frictionless hedging strategy is confined to
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diffusions. The consideration of general predictable reference strategies is made possible by
the use of a convex analysis approach instead of the more common dynamic programming
methods.

Keywords Hedging · Illiquid markets · Portfolio tracking

Mathematics Subject Classification 91G10 · 91G80 · 91B06 · 60H30

JEL Classification G11 · C61

1 Introduction

The construction of effective hedging strategies against financial risk is one of the key prob-
lems in Mathematical Finance. The seminal work of Black and Scholes [5] and Merton [19]
showed how this task can be carried out in an idealized frictionless market by dynamically
trading perfectly liquid assets. However, in recent years there has been a growing awareness
that these idealizations can lead to misguided hedging strategies with non negligible costs,
particularly when these prescribe a fast reallocation of assets in short periods of time in the
presence of liquidity frictions like price impact. This has spurred the development of new
financial models which take into account the impact of transactions on execution prices; see,
e.g., the survey by Gökay et al. [13].

The twomost widely usedmodels go back to Almgren and Chriss [2] as well as Obizhaeva
and Wang [22], respectively: Loosely speaking, the model of Almgren and Chriss is char-
acterized by directly specifying functions describing the temporary and permanent impacts
of a given order on the price. The model of Obizhaeva and Wang assumes that trading takes
place in a block-shaped limit order book with persistent price impact which is vanishing at
a finite resilience rate. As recently discussed in Kallsen and Muhle-Karbe [17], the former
can be regarded as the high-resilience limit of the latter.

Within these two models, most of the existing literature studies the problem of optimally
liquidating an exogenously given position by some fixed time horizon (cf., e.g., Alfonsi et
al. [1], Almgren and Chriss [2], Almgren [4], Obizhaeva and Wang [22], Predoiu et al. [23],
Schied and Schöneborn [25]). Further work is also devoted to the more involved problem
of optimal portfolio choice, cf., e.g., Gârleanu and Pedersen [11,12], Guasoni and Weber
[14,15], Kallsen and Muhle-Karbe [17], Moreau et al. [20]. However, only a few papers
directly address the problem of hedging a contingent claim in the presence of price impact
as modeled above, cf. Almgren and Li [3], Guéant and Pu [16], Rogers and Singh [24], and
also Naujokat and Westray [21].

The papers most closely related to ours mathematically are Rogers and Singh [24] and
Naujokat andWestray [21]. Rogers andSingh [24] analyse the problemof hedging aEuropean
contingent claim in a Black–Scholes model in the presence of purely temporary price impact
as in Almgren and Chriss [2]. They relate the hedging problem to a cost optimal tracking
problem of the frictionless Black–Scholes delta hedge. Naujokat and Westray [21] directly
study the problem of optimally following a given target strategy in an illiquid financial market
under the same type of liquidity costs; see also Cartea and Jaimungal [7] for a Markovian
order flow tracking problem. By contrast to these papers, we will focus on a non-Markovian
setup with general predictable target strategies.

Instead of the more common dynamic programming methods used in the papers cited
above, our approach is convex analytic along the lines of Pontryagin’s maximum princi-
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ple. This allows us to consider general predictable target strategies and not only continuous
diffusion-type processes. This is particularly important for hedging in illiquid markets when
the frictionless reference hedge portfolio prescribes sizable instantaneous reallocations as,
e.g., already in the case of discrete Asian options which was not covered by the literature
so far. We derive first order conditions of the considered quadratic optimization problems
which take the form of a linear forward backward stochastic differential equation (FBSDE).
Solutions to these are explicitly available and give us the optimal frictional hedges. In fact,
when considered in a Brownian setting, our approach can be viewed as a special case of the
stochastic linear-quadratic control problem studied by Kohlmann and Tang [18]. Mathemat-
ically, the novelty of our contribution is the interpretation of the optimal tracking strategy.
Indeed, it turns out that the optimal policy does not instantaneously trade from its current
position towards the current target position but towards a weighted average of expected future
target positionswhich does not occur in the work of Kohlmann and Tang [18]. An interesting
consequence from a financial point of view is that this averaging allows us to understand
how singularities in the frictionless reference strategy have to be addressed in a model with
frictions: A singularity in the frictionless target hedge is smoothed out when averaging the
weighted future target positions which yields sensible hedging strategies for illiquid markets.
Additionally, we also study a constrained version of the problem where the terminal hedging
position is restricted to a certain exogenously prescribed level. This can be viewed as a way
to deal with physical delivery in derivative contracts. Our explicit solution reveals how the
hedger’s focus shifts systematically from tracking the frictionless target position to attain-
ing the prescribed terminal position. Here, our convex analytic approach allows us to avoid
the consideration of nonlinear Hamilton–Jacobi–Bellmann equations with singular terminal
conditions and the challenges that these entail. We also give a sharp characterization of those
terminal positions which can be reached with finite expected trading costs by characterizing
the speed at which the size of these positions is revealed towards the end.

Conceptually, our result generalizes an observation by Gârleanu and Pedersen [12] who
consider quadratic utility maximization in homogeneous Markovian models on an infinite
time horizon and interpret their solution as trading towards an exponentially weighted aver-
age of future expected Markowitz portfolios. A similar interpretation is given by Naujokat
and Westray [21] in their equally Markovian Example 7.1; see Cartea and Jaimungal [7]
for a similarly Markovian study of tracking of order flow in high-frequency trading. These
strategies as well as ours contrast with strategies targeting the present frictionless optimum
directly, which are considered inmany papers on asymptotically optimal portfolioswith small
transaction costs, includingGuasoni andWeber [14,15],Moreau et al. [20], Rogers and Singh
[24], and Kallsen and Muhle-Karbe [17]. In all the literature cited above, the authors confine
consideration to diffusion-type target strategies which, at least asymptotically, are equivalent
to our averaged targets. Our approach, by contrast, allows one to deal with general predictable
frictionless target strategies and so the examples considered in this paper include strate-
gies with jumps or even singularities where the differences between these hedges become
apparent.

Almgren and Li [3] study a quite similar hedging problem but they consider a model
with permanent price impact which feeds into their target strategies via the well-known
functions for Black–Scholes deltas and gammas. Hence, they consider a model where the
target strategy is also affected by the targeting strategy which leads to a feedback effect that
we are disregarding in our problem formulation. We refer to the introduction in Rogers and
Singh [24] for further discussion of this idealization.

The rest of the paper is organized as follows. In Sect. 2 we introduce the setup and
motivate our problem formulation by following the approach of Rogers and Singh [24] (cf.
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also Naujokat and Westray [21]). Our main result is presented in Sect. 3 and provides the
explicit solution for a general hedging problem of a European style option in a Bachelier
market model with temporary price impact. Section 4 contains some illustrations of optimal
solutions in three examples. The technical proofs are deferred to Sect. 5.

2 Problem setup and motivation

We fix a finite deterministic time horizon T > 0, a filtered probability space (�,F ,

(Ft )0≤ t ≤ T , P) satisfying the usual conditions of right continuity and completeness and
consider an agent who is trading in a financial market consisting of a risky asset, e.g., stock.
The number of shares the agent holds at time t ∈ [0, T ] of the risky stock is defined as

Xu
t � x +

∫ t

0
usds, 0 ≤ t ≤ T, (1)

where x ∈ Rdenotes her given initial holdings. The real-valued stochastic process (ut )0≤ t ≤ T

represents the agent’s turnover rate, that is, the speed at which the agent trades in the risky
asset. It is assumed to be chosen in the set

U �
{
u : u progressively measurable s.t. E

∫ T

0
u2t dt < ∞

}
.

The square-integrability requirement ensures that the induced quadratic transaction costs
which are levied on the agent’s respective turnover rates due to temporary price impact as in
Almgren and Chriss [2] are finite.

In such a frictional market, our agent seeks to track a target strategy which can be thought
of, for instance, as a hedging strategy adopted from a frictionless setting.Mathematically, this
problem can be formalized as follows: given a real-valued predictable process (ξt )0≤ t ≤ T in
L2(P ⊗ dt) and a fixed constant κ > 0, the agent’s objective is to minimize the performance
functional

J (u) � E

[
1

2

∫ T

0
(Xu

t − ξt )
2dt + 1

2
κ

∫ T

0
u2t dt

]
. (2)

This leads to the optimal stochastic control problem

J (u) → min
u∈U . (3)

Since the agent’s terminal position Xu
T may be important (for her future plans or physical

delivery), we also consider the optimal stochastic control problem

J (u) → min
u∈U �

x

(4)

where U �
x is the set of constrained policies defined as

U �
x �

{
u : u ∈ U satisfying Xu

T ≡ x +
∫ T

0
usds = �T P-a.s.

}

with predetermined terminal position �T ∈ L2(P,FT ) such that
∫ T

0

dE[�2
t ]

T − t
< ∞ (5)

where �t � E[�T |Ft ] for 0 ≤ t ≤ T .
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Remark 2.1 (1) Lemma 5.4 below shows that a target�T can be reachedwith finite expected
costs in the sense thatU �

x �= ∅ if and only if (5) is satisfied. Observe that this condition
implies, in particular, that �T ∈ FT−. In fact, (5) can be interpreted as a condition on
the speed at which one learns about the ultimate target position �T as t ↑ T .

(2) Concerning physical delivery atmaturity T , it would be sufficient to impose the constraint
Xu
T ≥ �T . However, this would lead to an interesting, yet technically rather different

optimization problem which is left for future research.

One motivation of the objective functional in (2) and its connection to the problem of
hedging a European contingent claim in the presence of temporary price impact is the fol-
lowing (cf. also Rogers and Singh [24] and Almgren and Li [3]): Assume the agent wants to
hedge a European-type option with payoff H at maturity T in a market where, for simplicity,
interest rates are zero and the price process S of the underlying risky asset follows a Brownian
motion with volatility σ > 0:

St = S0 + σWt , 0 ≤ t ≤ T .

In a frictionless setting, the payoff H can be perfectly replicated by a predictable hedging
strategy ξ H . In amarketwith frictionswhere the agent faces liquidity costs as, e.g., inAlmgren
and Chriss [2], she may be confined to follow strategies Xu as in (1). As a consequence,
starting from some initial wealth v0 ∈ R, her profits and losses from market fluctuations will
incur a risk of deviating from H at maturity T that can be measured, e.g., by

E

[(
H − (v0 +

∫ T

0
Xu
t dSt )

)2]
= (E[H ] − v0)

2 + E

[∫ T

0
(Xu

t − ξ H
t )2σ 2dt

]
,

see Föllmer and Sondermann [9]. This deviation can be made arbitrarily small if the agent is
willing to incur arbitrarily high transaction costs. If, however, she puts a cap c > 0 on these
she may want to solve the optimization problem

E

[∫ T

0
(Xu

t − ξ H
t )2σ 2dt

]
→ min

u∈U subject to E

[∫ T

0
u2t dt

]
≤ c, (6)

which in its Lagrangian formulation amounts to an objective functional of the form (2).

Remark 2.2 1. A similar hedging problem as formulated in (2) is also studied in Rogers
and Singh [24] and Almgren and Li [3]. In contrast to our setting, Rogers and Singh [24]
consider a Black–Scholes framework. Almgren and Li [3] also include permanent price
impact.

2. Apart from hedging, the minimization problem of the objective in (2) is also related to the
problem of optimally executing a VWAP order as studied using dynamic programming
methods in a Markovian setup in Cartea and Jaimungal [7] and Frei and Westray [10],
or, more generally, to the optimal curve following problem as discussed in Naujokat and
Westray [21] as well as Cai et al. [6].

3. In a Brownian setting, our problem (3) is a special case of a stochastic linear-quadratic
control problem as studied, e.g., by Kohlmann and Tang [18].
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3 Main result

Our main results are the following explicit descriptions of the optimal controls for problems
(3) and (4) and their corresponding minimal costs for which it is convenient to introduce

τκ(t) �
T − t√

κ
, 0 ≤ t ≤ T .

Theorem 3.1 The optimal stock holdings X̂ of problem (3) with unconstrained terminal
position satisfy the linear ODE

d X̂t = tanh(τ κ (t))√
κ

(
ξ̂t − X̂t

)
dt, X̂0 = x, (7)

where, for 0 ≤ t < T , we let

ξ̂t � E

[∫ T

t
ξuK (t, u)du

∣∣∣∣Ft

]

with the kernel

K (t, u) �
cosh(τ κ (u))√
κ sinh(τ κ(t))

, 0 ≤ t ≤ u < T .

The minimal costs are given by

inf
u∈U J (u) = 1

2

√
κ tanh(τ κ(0))

(
x − ξ̂0

)2 + 1

2
E

[∫ T

0
(ξt − ξ̂t )

2dt

]

+ 1

2
E

[∫ T

0

√
κ tanh(τ κ (t))d〈ξ̂ 〉t

]
< ∞. (8)

For the constrained problem we have similarly:

Theorem 3.2 The optimal stock holdings X̂� of problem (4) with constrained terminal posi-
tion �T ∈ L2(P,FT ) such that (5) holds satisfy the linear ODE

d X̂�
t = coth(τ κ(t))√

κ

(
ξ̂�
t − X̂�

t

)
dt, X̂�

0 = x, (9)

where, for 0 ≤ t ≤ T , we let

ξ̂�
t �E

[
1

cosh(τ κ (t))
�T +

(
1 − 1

cosh(τ κ (t))

) ∫ T

t
ξuK

�(t, u)du

∣∣∣∣Ft

]
,

with the kernel

K�(t, u) �
sinh(τ κ (u))√

κ(cosh(τ κ(t)) − 1)
, 0 ≤ t ≤ u < T .

The solution X̂� of (9) satisfies the terminal constraint in the sense that

lim
t↑T X̂�

t = �T P-a.s.

The minimal costs are given by

inf
u∈U �

J (u) = 1

2

√
κ coth(τ κ (0))

(
x − ξ̂�

0

)2 + 1

2
E

[∫ T

0
(ξt − ξ̂�

t )2dt

]

+ 1

2
E

[∫ T

0

√
κ coth(τ κ(t))d〈ξ̂�〉t

]
< ∞. (10)
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The convex-analytic proofs of Theorems 3.1 and 3.2 are deferred to Sect. 5.
Note that, rather than towards the current target position ξt , the optimal frictional hedging

rules in (7) and (9) prescribe to trade towards weighted averages ξ̂t and ξ̂�
t , respectively,

of expected future target positions of ξ . Indeed, for each 0 ≤ t ≤ T , K (t, .) and K�(t, .)
specify nonnegative kernels which integrate to one over [t, T ], and so ξ̂ and ξ̂� average out
the expected future positions of ξ . For ξ̂� one chooses a convex combination of this average
of ξ with the expected terminal position �T , where the weight shifts gradually to �T as
t ↑ T since 1/ cosh(τ k(t)) ↑ 1 in that case.

According to Eqs. (7) and (9), the optimal tracking rate trades towards these targets
at a speed proportional to their distance to the investor’s position at any time. The coef-
ficient of proportionality is controlled by both the cost parameter κ and the remaining
time-to-maturity T − t . For the unconstrained solution in (7), since limt↑T tanh(τ κ(t)) = 0,
trading slows down when approaching the final time T ; in other words, towards the end,
the investor does not worry about tracking ξ anymore, but seeks to minimize trading costs.
This becomes intuitive when comparing the effect of early interventions to later ones: with
early interventions the investor ensures that she stays reasonably close to the target for the
foreseeable future, but late interventions only can impact the investor’s performance for very
short periods and therefore do not warrant, at least asymptotically, the associated costs. For
the constrained solution in (9) by contrast, we have limt↑T coth(τ κ (t)) = +∞ and so the
optimal strategy trades with increased urgency towards ξ̂�, which itself is easily seen to
converge to the ultimate target position �T = limt↑T ξ̂�

t P-a.s. (cf. Proof of Theorem 3.2 in
Sect. 5).

Our tracking result generalizes an observation fromGârleanu and Pedersen [12] from their
homogeneous Markovian optimal investment problem to a general hedging problem with a
general predictable target strategy ξ , also allowing for a random terminal portfolio position
�T . It also sheds further light on the general structure of optimal portfolio strategies in
markets with frictions. Indeed, the description of (asymptotically) optimal trading strategies
obtained in Kallsen andMuhle-Karbe [17], Moreau et al. [20], or Guasoni andWeber [14,15]
prescribe a reversion towards the frictionless strategy ξ itself, not towards an average such as
ξ̂ or ξ̂�. For sufficiently smooth ξ , e.g., of diffusion type, this is still optimal asymptotically
for small liquidity costs as then these averages do not differ significantly from ξ . The next
section, however, shows that this is no longer the case when we allow for singularities in the
reference strategy.

Finally, our representations (8) and (10) for the values of the tracking problems (3) and (4),
respectively, show how these depend on the initial position x and the L2-distance between
the target ξ and the respective signal processes ξ̂ and ξ̂�. It also reveals the importance
of the signals’ quadratic variation 〈ξ̂ 〉, 〈ξ̂�〉 which can be viewed as a measure for how
effectively one can predict the target positions ξ and �T . To the best of our knowledge, the
key role played by the signals ξ̂ , ξ̂� was not observed in the general theory of stochastic
linear-quadratic control problems as discussed, e.g., by Kohlmann and Tang [18].

Remark 3.1 As mentioned in the description of our problem setup in Sect. 2, the quadratic
cost term in our objective function in (2) is due to linear temporary price impact as in themodel
proposed by Almgren and Chriss [2]. In this regard, one might likewise extend the objective
functional also in order to account for expected costs resulting from linear permanent price
impact (cf. in Almgren and Chriss [2]). This would lead to the inclusion of the additional
term

E

[
θ

(∫ T

0
utdt

)2]
= θE

[
(Xu

T − x)2
]

(11)
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for some constant θ > 0. For the constrained problem in (4), this extra cost term obviously
does not depend on the strategy and is thus irrelevant. For the unconstrained problem in (3),
these extra costs can be regarded as a penalization term forcing the final position Xu

T to be
close to the initial position x . For ease of exposition, we refrain in the present paper from
inducing this additional term, since our main intention here is to outline the key role played
by the optimal tracking signals ξ̂ , ξ̂� in the description of the optimal control as well as
the corresponding minimal costs. A more general setup allowing for stochastic price impact,
stochastic volatility and a penalization on the terminal position as in (11) is left for future
research.

4 Illustrations

In this section we present a few case studies illustrating the structure of the optimal hedging
strategies we found in Theorems 3.1 and 3.2. The first two case studies are simple determin-
istic toy examples which allow us to understand the effect of jumps as well as of initial and
terminal positions. The final case study considers a discretely monitored Asian option where
random jumps in the reference hedge occur naturally.

In the first two cases we assume the initial position to be x = 0 and consider a time horizon
of T = 1 when, in the constrained case, the position has to be liquidated, i.e., �T = 0. We
depict ξ along with its averages ξ̂ and ξ̂�, respectively, as well as the corresponding optimal
frictional hedges X̂ and X̂�.We also include a “myopic” benchmark strategy X̃ which directly
targets ξ (without final constraint) given by

d X̃t = 1√
κ

(ξt − X̃t )dt, 0 ≤ t ≤ T,

in order to compare with analogous strategies considered in Guasoni and Weber [14,15],
Moreau et al. [20], Rogers and Singh [24], and Kallsen and Muhle-Karbe [17].

0.0 0.2 0.4 0.6 0.8 1.0
time0.0

0.5

1.0

1.5

2.0

2.5

3.0
number of shares

Fig. 1 Frictionless hedge ξ with a jump at t = T/2 (blue), corresponding unconstrained (orange, dashed)
and constrained (green, dashed) targets ξ̂ and ξ̂�, respectively, as well as the corresponding frictional hedges
X̂ (orange line) and X̂� (green line). The myopic benchmark hedge X̃ is plotted in red
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0.2 0.4 0.6 0.8 1.0
time

4

2

0

2

4

number of shares

_

_

Fig. 2 Frictionless hedge ξ with a singularity at t = T/2 (blue), corresponding unconstrained (orange,
dashed) and constrained (green, dashed) targets ξ̂ and ξ̂�, respectively, as well as the corresponding frictional
hedges X̂ (orange line) and X̂� (green line). The myopic benchmark hedge X̃ is plotted in red

4.1 Frictionless deterministic hedge with a jump

In our first case study we consider a deterministic target strategy ξ (solid blue line in Fig. 1)
which can be viewed as a stock-buying schedule that prescribes to hold one stock until
time T/2 when the position is doubled by a jump. One can observe that the effective target
strategies ξ̂ and ξ̂� of the optimal controls û and û�, respectively, are smoothing out the jump
of ξ . The target ξ̂� additionally takes into account the liquidation constraint �T = 0 of the
agent’s position until maturity T . As expected, the optimal frictional hedges X̂ and X̂� are
indeed anticipating the upward jump of the target strategy ξ at t = T/2 by building up their
positions beyond the actual current position of ξ even before the occurrence of the jump.
This is not the case for the myopic benchmark strategy X̃ which increases its position much
more slowly and exhibits a kink when the jump occurs after which trading speed picks up
significantly. Finally, the optimal holdings X̂� in the constrained setting, where the position
has to be unwound ultimately, are decreasing when time approaches maturity and end up in
the final desired position X̂�

T = 0.

4.2 Frictionless deterministic hedge with a singularity

The second target strategy ξ (solid blue line in Fig. 2) is again deterministic and also exhibits
a singularity midway at t = T/2, this time, however, it is a jump from −∞ to +∞. Once
more, one can observe that the effective target strategies ξ̂ and ξ̂� of the optimal controls û
and û�, respectively, are smoothing out the singularity of ξ . Again, the target ξ̂� additionally
takes into account the liquidation constraint �T = 0 of the agent’s position until maturity
T . In contrast to the benchmark strategy X̃ , the optimal frictional hedges X̂ and X̂� are
anticipating the singularity of the target strategy ξ at t = T/2 by gradually building up
their positions before the singularity occurs. Actually, they are trading away from the current
target positions of ξ for some time prior to T/2. This is in stark contrast with the myopic
benchmark strategy which keeps selling short more and more intensely even milliseconds
before the reference strategy jumps to +∞.
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4.3 Discrete Asian option

In this final example we investigate a situation where the target strategy ξ is stochastic and
exhibits a random jump. Specifically, we consider hedging a discrete Asian call with maturity
T > 0 in the Bachelier model where the underlying risky asset S is modeled by a Brownian
motion with volatility σ > 0:

St = S0 + σWt , 0 ≤ t ≤ T .

For simplicity, we assume that the average is discretely monitored over two fixing dates T/2
and T . That is, the payoff at maturity T is given by

H �
(
1

2
(ST/2 + ST ) − K

)+

for some strike K ∈ R. The Bachelier price of the discrete Asian option at time t ∈ [0, T )

can be computed as

πt �

⎧⎨
⎩

σ
√
5T/8 − t ϕ

(
St−K

σ
√
5T/8−t

)
+ St�

(
St−K

σ
√
5T/8−t

)
, 0 ≤ t < T/2

1
2σ

√
T − t ϕ

(
ST/2+St−2K

σ
√
T−t

)
+ ( 1

2 (ST/2 + St ) − K
)
�

(
ST/2+St−2K

σ
√
T−t

)
, T/2 ≤ t < T

where ϕ and � denote the density and the cumulative distribution function of the standard
normal distribution, respectively. Accordingly, the frictionless delta-hedging strategy is

ξt =
⎧⎨
⎩

�
(

St−K
σ
√
5T/8−t

)
, 0 ≤ t ≤ T/2

1
2�

(
ST/2+St−2K

σ
√
T−t

)
, T/2 < t < T .

Note that the delta-hedge exhibits a negative random jump at time T/2 since

ξ T
2 + − ξ T

2 − � lim
t↓ T

2

ξt − lim
t↑ T

2

ξt = −1

2
�

(
ST/2 − K

σ
√
T/8

)
.

We assume that the initial position x coincides with the initial frictionless delta, i.e., e.g.,
x = 1/2 in the case of an at-the-money option with K = S0. This allows us to focus on
the hedging performance itself and avoids distortions from the initial built up of a sensible
hedging position. As before, the terminal position will be allowed to be either unconstrained
or mandating liquidation, i.e., �T = 0.

The effective targets ξ̂ and ξ̂� of the optimal frictional hedging strategy in (7) and (9),
respectively, can be explicitly computed:

ξ̂t =
{

�
(

2(St−K )

σ
√
5T/2−4t

) (
1 − 1

2
sinh(τ κ (T/2))
sinh(τ κ (t))

)
, 0 ≤ t < T/2,

ξt , T/2 ≤ t < T,

and

ξ̂�
t =

⎧⎨
⎩

�
(

2(St−K )

σ
√
5T/2−4t

) (
1 − 1

2
cosh(τ κ (T/2))+1

cosh(τ κ (t))

)
, 0 ≤ t < T/2(

1 − 1
cosh(τ κ (t))

)
ξt , T/2 ≤ t < T .

Observe that the Bachelier delta-hedge ξ is a martingale on [T/2, T ] and thus the signal
ξ̂ coincides with it in this period. However, the optimal target ξ̂ differs from the frictionless
hedge ξ on [0, T/2] since it is anticipating and systematically smoothing out the random jump
at T/2 whose size is determined by the option’s moneyness at this point. The constrained

123



Math Finan Econ (2017) 11:215–239 225

0.0 0.2 0.4 0.6 0.8 1.0

0

0.5

0

time

nu
m
be

ro
fs

ha
re
s

m
on

ey
ne

ss

Fig. 3 Frictionless hedge ξ with a jump at t = T/2 (blue), corresponding unconstrained (orange, dashed)
and constrained (green, dashed) targets ξ̂ and ξ̂�, respectively, as well as the corresponding frictional hedges
X̂ (orange line) and X̂� (green line). The myopic benchmark hedge X̃ is plotted in red. The moneyness is
indicated by the light gray line

target ξ̂� anticipates the liquidation requirement at maturity which plays a more and more
dominating role after time T/2.

Again, the myopic benchmark strategy

d X̃t = σ√
κ

(ξt − X̃t )dt, 0 ≤ t < T

is not taking into account the random jump at time T/2 and keeps on tracking the frictionless
delta-hedge even milliseconds before T/2 (see Fig. 3).

5 Proofs

In order to prove our main Theorems 3.1 and 3.2 we use tools from convex analysis. Note
that the performance functional u �→ J (u) in (2) is strictly convex. Given a control u ∈ U
recall the definition of the Gâteaux derivative of J at u in the direction of w ∈ L2(P ⊗ dt):

〈J ′(u), w〉 � lim
ρ→0

J (u + ρw) − J (u)

ρ
.

The following lemma provides an explicit expression for the Gâteaux derivative of our per-
formance functional J :

Lemma 5.1 For u ∈ U we have

〈J ′(u), w〉 = E

[∫ T

0
ws

(
κus +

∫ T

s
(Xu

t − ξt )dt

)
ds

]

for any w ∈ L2(P ⊗ dt).
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Proof Let ρ > 0, u ∈ U and w ∈ L2(P ⊗ dt). Note that Xu+ρw
t = Xu

t + ρ
∫ t
0 wsds. Then,

we have

J (u + ρw) − J (u) = ρE

[∫ T

0
κutwt +

(∫ t

0
wsds

)
(Xu

t − ξt )dt

]

+ ρ2
E

[
κ

2

∫ T

0
w2
t dt + 1

2

∫ T

0

(∫ t

0
wsds

)2

dt

]
.

Hence,

〈J ′(u), w〉 = E

[∫ T

0
κutwt +

(∫ t

0
wsds

)
(Xu

t − ξt )dt

]
.

Note that due to Fubini’s Theorem we can write the second part of the above integral as
∫ T

0

(∫ t

0
wsds

)
(Xu

t − ξt )dt =
∫ T

0

(∫ T

s
(Xu

t − ξt )dt

)
wsds

which finally yields the assertion. ��
Let us next derive necessary and sufficient first order conditions for problems (3) and (4).

Lemma 5.2 (First order conditions)

1. In the unconstrained problem (3), a control û ∈ U with X � Xû minimizes the functional
J if and only if X satisfies

X0 = x, d Ẋt = 1

κ
(Xt − ξt )dt + dMt for 0 ≤ t ≤ T, ẊT = 0, (12)

for a suitable square integrable martingale (Mt )0≤t≤T .
2. In the constrained problem (4), a control û ∈ U �

x with X � Xû minimizes the functional
J if and only if X satisfies

X0 = x, d Ẋt = 1

κ
(Xt − ξt )dt + dMt for 0 ≤ t < T, XT = �T , (13)

for a suitable square integrable martingale (Mt )0≤ t < T .

In other words, the first order conditions in (12) and (13) are taking the form of a coupled
linear forward backward stochastic differential equation (FBSDE) for the pair (X, u):

dXt = utdt,

dut = 1

κ
(Xt − ξt )dt + dMt ,

with some square integrable martingale M subject to

X0 = x and

{
uT = 0 unconstrained case,

XT = �T constrained case.

Proof (1)We start with the unconstrained problem (3). Since we are minimizing the strictly
convex functional u �→ J (u) overU , a necessary and sufficient condition for the optimality
of û ∈ U with corresponding Xû = x + ∫ ·

0 ûsds is given by

〈J ′(û), w〉 = 0 for all w ∈ U

123



Math Finan Econ (2017) 11:215–239 227

(cf., e.g., Ekeland and Témam [8]). In view of Lemma 5.1 this means that û ∈ U is optimal
if and only if

E

[∫ T

0
ws

(
κ ûs +

∫ T

s
(Xû

t − ξt )dt

)
ds

]
= 0 (14)

for allw ∈ U . We will now show that the first order condition in (14) is satisfied (i.e., û ∈ U
is optimal) if and only if Xû satisfies the dynamics in (12).

Necessity Assume that û ∈ U with Xû = x + ∫ ·
0 ûsds minimizes J , i.e., condition (14)

is satisfied by û. Then, by Fubini’s Theorem and optional projection, we also get that

E

[∫ T

0
ws

(
κ ûs + E

[∫ T

s
(Xû

t − ξt )dt

∣∣∣∣Fs

])
ds

]
= 0

for all w ∈ U . However, this is only possible if

ûs = − 1

κ
E

[∫ T

s
(Xû

t − ξt )dt

∣∣∣∣Fs

]
dP ⊗ ds-a.e. on � × [0, T ]. (15)

Hence, by defining the square integrable martingale

Ms � E

[∫ T

0
(Xû

t − ξt )dt

∣∣∣∣Fs

]
, 0 ≤ s ≤ T, (16)

we obtain the representation

ûs = − 1

κ

(
Ms −

∫ s

0
(Xû

t − ξt )dt

)
dP ⊗ ds-a.e. on � × [0, T ], (17)

in other words, Xû satisfies the dynamics in (12). In particular, Xû
0 = x and Ẋ û

T = ûT = 0
P-a.s.

SufficiencyAssume now that û ∈ U with corresponding Xû satisfies the dynamics in (12)
with Xû

0 = x and Ẋ û
T = 0 P-a.s. Note that the unique strong solution to this linear FBSDE

in (12) is indeed given by (15) or, equivalently, by (17). However, using this representation
of û and applying Fubini’s Theorem yields

E

[∫ T

0
ws

(
κ ûs +

∫ T

s
(Xû

t − ξt )dt

)
ds

]
= E

[∫ T

0
ws (MT − Ms) ds

]

= E

[∫ T

0
wsE[MT − Ms |Fs]ds

]
=

∫ T

0
E [ws (E[MT |Fs] − Ms)] ds = 0

for all w ∈ U , since M is a martingale. Consequently, the first order condition in (14) is
satisfied and û ∈ U is optimal.

(2) Similar as above, a necessary and sufficient condition for the optimality of û� ∈ U �
x

with corresponding Xû� = x + ∫ ·
0 û

�
s ds satisfying Xû�

T = �T P-a.s. for the constrained
problem (4) is given by

〈J ′(û�),w〉 = 0 for all w ∈ U 0
0 .

In contrast to the unconstrained case, observe now that we have an additional constraint on
w. Again, in view of Lemma 5.1, we get that û� ∈ U �

x is optimal if and only if

E

[∫ T

0
ws

(
κ û�

s +
∫ T

s
(Xû�

t − ξt )dt

)
ds

]
= 0 for all w ∈ U 0

0 . (18)
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We will now show that the first order condition in (18) is fulfilled (i.e., û� ∈ U �
x is

optimal) if and only if Xû�
satisfies the dynamics in (13).

Sufficiency Assume that û� ∈ U �
x with corresponding Xû�

satisfies the dynamics in (13)

with Xû�

0 = x and Xû�

T = �T P-a.s. That is, we have the representation

û�
t = û�

0 + 1

κ

∫ t

0
(Xû�

s − ξs)ds + Mt dP ⊗ dt-a.e. on � × [0, T )

for some square integrable martingale (Mt )0≤ t < T . From û�, ξ ∈ L2(P ⊗ dt), it follows
that E[∫ T

0 M2
s ds] < ∞. Defining the square integrable martingale

N�
s � E

[∫ T

0
(Xû�

t − ξt )dt

∣∣∣∣Fs

]
, 0 ≤ s ≤ T,

the above representation of û� yields

E

[∫ T

0
ws

(
κ û�

s +
∫ T

s
(Xû�

t − ξt )dt

)
ds

]

= E

[∫ T

0
ws

(
κ û�

0 + N�
T + κMs

)
ds

]

= E

[
(κ û�

0 + N�
T )

∫ T

0
wsds

]
+ κE

[∫ T

0
wsMsds

]

= 0 for all w ∈ U 0
0

by virtue of Lemma 5.3 below. Consequently, the first order condition in (18) is satisfied and
û� ∈ U �

x is optimal.
Necessity As shown in the proof of Theorem 3.2 below (which does not use the necessity

assertion of the present lemma), the optimal control û� in (9) satisfies the dynamics in (13).
Moreover, by strict concavity of the objective functional in (2), the solution to problem (4)
is unique. Therefore, the assertion is indeed necessary. ��

The following technical lemma is needed in the proof of Lemma 5.2 for the constrained
problem (3).

Lemma 5.3 Let M be an adapted càdlàg process on [0, T ) with E[∫ T
0 M2

s ds] < ∞. Then,

E

[∫ T

0
wsMsds

]
= 0 for all w ∈ U 0

0 (19)

if and only if M is a square integrable martingale on [0, T ).

Proof First, assume that M is a square integrable martingale on [0, T ) with E[∫ T
0 M2

s ds] <

∞. Consider a w ∈ U 0
0 such that w = 0 on � × [T − ε, T ] for some ε > 0. Then, by

applying Fubini’s Theorem we have

E

[∫ T

0
wsMsds

]
= E

[∫ T−ε

0
wsE[MT−ε|Fs]ds

]
= E

[
MT−ε

∫ T

0
wsds

]
= 0.

Now, letw ∈ U 0
0 be arbitrary and consider an approximating sequence (w(n))n≥1 ⊂ U 0

0 with
w(n) = 0 on�×[T − εn, T ] for some εn ↓ 0 such thatw(n) → w in L2(�×[0, T ], P⊗dt)
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for n → ∞. Then, by the Cauchy-Schwarz inequality we obtain

lim
n→∞ E

[∫ T

0
|(w(n)

s − ws)Ms |ds
]

= 0.

Consequently,

E

[∫ T

0
wsMsds

]
= lim

n→∞ E

[∫ T

0
w(n)
s Msds

]
= 0,

where the last identity follows from our initial consideration forws with support in [T −ε, T ],
ε > 0. Hence, the condition in (19) is satisfied.

Conversely, assume now that the condition in (19) is satisfied. We have to show that M is
a square integrable martingale on [0, T ). Let 0 ≤ t < u < T , A ∈ Ft , be arbitrary. For any
ε > 0 such that t + ε, u + ε < T we define

wε
s (ω) � 1A(ω)

1

ε

(
1[t,t+ε](s) − 1[u,u+ε](s)

)
on � × [0, T ].

Obviously, w is progressively measurable, in L2(P ⊗ ds) and satisfies
∫ T
0 wsds = 0 P-a.s.

Hence, by assumption (19) we have

0 = E

[∫ T

0
wε
s Msds

]
= E

[
1A

1

ε

∫ t+ε

t
Msds

]
− E

[
1A

1

ε

∫ u+ε

u
Msds

]
.

Passing to the limit ε ↓ 0, we obtain by right-continuity of M ,

0 = E [1A(Mt − Mu)] for all 0 ≤ t < u < T .

Consequently, M is a martingale on [0, T ). By assumption, we have that E[∫ T
0 M2

s ds] < ∞
which implies that M is square integrable on [0, T ). ��

Now, we are ready to prove our main result by simple verification. We start with Theorem
3.1 for the unconstrained problem (3).

Proof of Theorem 3.1 We divide the proof in two parts. First, we prove optimality of the
solution given in (7). Then, we compute the corresponding minimal costs given in (8).

Optimality of (7): In order to show that our candidate in (7) is the optimal solution for
problem (3), we need to check the first order condition in Lemma 5.2(1). For this, define the
processes

Yt �
∫ t

0
ξs cosh(τ

κ(s))ds and M̃t � E[YT |Ft ], 0 ≤ t ≤ T .

Since YT ∈ L2(P), we have that (M̃t )0≤t≤T is a square integrable martingale. Moreover,
note that Y, M̃ ∈ L2(P ⊗ dt). Hence, the process ξ̂ in Theorem 3.1 can be written as

ξ̂t = 1√
κ sinh(τ κ(t))

(
M̃t − Yt

)
dP ⊗ dt-a.e. on � × [0, T ) (20)

with corresponding dynamics

d ξ̂t = −coth(τ κ (t))√
κ

(ξt − ξ̂t )dt + 1√
κ sinh(τ κ(t))

d M̃t on [0, T ). (21)
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Due to Lemma 5.5(b), we know that ξ̂ ∈ L2(P ⊗ dt). Now, the density of the solution from
(7) satisfies

dût = − 1

κ
(1 − tanh(τ κ(t))2)

(
ξ̂t − X̂t

)
dt + 1√

κ
tanh(τ κ(t))

(
d ξ̂t − d X̂t

)

= 1

κ

((
X̂t − ξt

)
dt + 1

cosh(τ κ(t))
d M̃t

)
dP ⊗ dt-a.e. on � × [0, T ],

that is, û satisfies the BSDE-dynamics in (12). Obviously, it holds that X̂0 = x . Solving
equation (7) for X̂ yields upon differentiation

ût = − 1√
κ

sinh(τ κ(t))

cosh(τ κ(0))
x

− 1

κ
sinh(τ κ (t))

∫ t

0
ξ̂s

sinh(τ κ(s))

cosh(τ κ(s))2
ds + 1

κ

M̃t − Yt
cosh(τ κ(t))

(22)

andweobserve that limt↑T ût = 0P-a.s., i.e., the terminal condition in (12) is indeed satisfied.
It remains to show that û ∈ L2(P ⊗ dt). Since M̃, Y ∈ L2(P ⊗ dt), it suffices to observe that
sinh(τ κ(s))/ cosh(τ κ (s))2 is bounded and therefore

E

[∫ T

0

(∫ t

0
ξ̂s

sinh(τ κ(s))

cosh(τ κ(s))2
ds

)2
]
dt ≤ constE

[∫ T

0

(∫ t

0
|ξ̂s |ds

)2

dt

]

≤ const
T 2

2
‖ξ̂‖2L2(P⊗dt) < ∞.

Computation of minimal costs To compute the minimal costs associated to the optimal
control û given in (8), note first that û ∈ L2(P ⊗ dt) implies X̂ ∈ L2(P ⊗ dt) and thus
J (û) < ∞. For ease of presentation, we define

c(t) �
√

κ tanh(τ κ(t)), 0 ≤ t ≤ T,

so that ût = c(t)(ξ̂t − X̂t )/κ . Hence, the minimal costs can be written as

∞ > J (û) = E

[
1

2

∫ T

0
(X̂s − ξs)

2ds + 1

2
κ

∫ T

0
û2s ds

]

= lim
t↑T

{
1

2
E

[∫ t

0
X̂2
s ds

]
− E

[∫ t

0
X̂sξsds

]
+ 1

2
E

[∫ t

0
ξ2s ds

]

+ 1

2κ
E

[∫ t

0
c(s)2ξ̂2s ds

]
− 1

κ
E

[∫ t

0
c(s)2 X̂s ξ̂sds

]

+ 1

2κ
E

[∫ t

0
c(s)2 X̂2

s ds

]}
, (23)

due to monotone convergence. Observe that, using integration by parts and the dynamics of
ξ̂ from (21), we have, for all t < T ,

E[c(t)X̂2
t ] = c(0)x2 + 2

κ
E

[∫ t

0
c(s)2 X̂s ξ̂sds

]

− 1

κ
E

[∫ t

0
c(s)2 X̂2

s ds

]
− E

[∫ t

0
X̂2
s ds

]
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as well as

E[c(t)X̂t ξ̂t ] = c(0)ξ̂0x + 1

κ
E

[∫ t

0
c(s)2ξ̂2s ds

]
− E

[∫ t

0
X̂sξsds

]

and

E[c(t)ξ̂2t ] = c(0)ξ̂20 + 1

κ
E

[∫ t

0
c(s)2ξ̂2s ds

]
− 2E

[∫ t

0
ξ̂sξsds

]

+ E

[∫ t

0
ξ̂2s ds

]
+ E

[∫ t

0
c(s)d〈ξ̂ 〉s

]
.

Using these identities, we can write (23) as

∞ > J (û) = lim
t↑T

{
1

2
c(0)(x − ξ̂0)

2 + 1

2
E

[∫ t

0
(ξ̂s − ξs)

2ds

]

+1

2
E

[∫ t

0
c(s)d〈ξ̂ 〉s

]
− 1

2
c(t)E[(X̂t − ξ̂t )

2]
}

. (24)

To conclude our assertion for the minimal costs in (8), observe that

E[(X̂t − ξ̂t )
2] ≤ 2

(
E[X̂2

t ] + E[ξ̂2t ]
)

,

and let us argue why

lim
t↑T c(t)E[X̂2

t ] = 0 and lim
t↑T c(t)E[ξ̂2t ] = 0. (25)

By Jensen’s inequality, we have

E[X̂2
t ] ≤ tE

[∫ t

0
û2s ds

]
≤ T E

[∫ T

0
û2s ds

]
< ∞.

Hence, due to limt↑T c(t) = 0, the first convergence in (25) holds true. Concerning the
second convergence in (25), we use the representation in (20) for ξ̂ to obtain, again with
Jensen’s inequality as well as the Cauchy-Schwarz inequality,

0 ≤ c(t)E[ξ̂2t ] = c(t)

κ sinh(τ κ (t))2
E[(M̃t − Yt )

2]

≤ c(t)

κ sinh(τ κ(t))2
E[(YT − Yt )

2]

= c(t)

κ sinh(τ κ (t))2
E

[(∫ T

t
ξs cosh(τ

κ(s))ds

)2]

≤ cosh(τ κ(0))2√
κ cosh(τ κ (t))

1

sinh(τ κ(t))
(T − t)E

[∫ T

t
ξ2s ds

]

≤ cosh(τ κ(0))2

cosh(τ κ(t))
E

[∫ T

t
ξ2s ds

]
−→
t↑T 0,

where for the last inequality we used that sinh(τ ) ≥ τ for all τ ≥ 0. In other words, also the
second convergence in (25) holds true. This finishes our proof of the representation of the
minimal costs in (8). ��

Next, we come to the proof of Theorem 3.2 concerning the constrained problem (4).
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Proof of Theorem 3.2 Again, we will proceed in two steps. First, we prove optimality of the
solution given in (9). Then, we compute the corresponding minimal costs given in (10).

Optimality of (9): The verification of the optimality of X̂� = x + ∫ ·
0 û

�
t dt in Theorem

3.2 for the constrained problem (4) follows along the same lines as in the unconstrained case.
Again, we have to check the first order condition in Lemma 5.2(2). For this, we define the
processes

Yt �
1√
κ

∫ t

0
ξs sinh(τ

κ(s))ds and M̃�
t � E[YT + �T |Ft ]

for all 0 ≤ t ≤ T . Since YT , �T ∈ L2(P), we have that (M̃�
t )0≤t≤T is a square integrable

martingale. Moreover, note that Y, M̃� ∈ L2(P⊗dt). Hence, the process ξ̂� in Theorem 3.2
can be written as

ξ̂�
t = 1

cosh(τ κ(t))

(
M̃�

t − Yt
)

dP ⊗ dt-a.e. on � × [0, T ] (26)

with corresponding dynamics

d ξ̂�
t = − tanh(τ κ(t))√

κ
(ξt − ξ̂�

t )dt + 1

cosh(τ κ(t))
d M̃�

t on [0, T ]. (27)

In particular, we observe that ξ̂� ∈ L2(P⊗dt). Similar to the unconstrained case above, one
easily checks that

dû�
t = 1

κ
(X̂�

t − ξt )dt + 1√
κ

1

sinh(τ κ(t))
d M̃�

t dP ⊗ dt-a.e. on � × [0, T ),

that is, û� satisfies the dynamics in (13). Obviously, it holds that X̂�
0 = x .

Next, we have to check the terminal condition in (13), that is, limt↑T X̂�
t = �T P-a.s. In

order to show this, first note that we can consider a càdlàg version of (ξ̂�
t )0≤t≤T due to its

representation in (26). Hence, since �T isFT−-measurable by assumption (5) we obtain the
P-a.s. limit

lim
t↑T ξ̂�

t = E[�T |FT−] = �T

in (26). In other words, for every ε > 0 there exists a random time ϒε ∈ [0, T ) such that
P-a.s.

�T − ε ≤ ξ̂�
t ≤ �T + ε for all t ∈ [ϒε, T ].

For limt↑T X̂�
t = �T P-a.s., it clearly suffices to show that for any ε > 0 it holds that

lim sup
t↑T

X̂�
t ≤ �T + ε and lim inf

t↑T X̂�
t ≥ �T − ε P-a.s.

Define Xε
t � �T + ε − X̂�

t so that ξ̂�
t − X̂�

t ≤ Xε
t P-a.s. for t ∈ [ϒε, T ). This yields

dXε
t = −d X̂�

t = − 1√
κ
coth(τ κ (t))(ξ̂�

t − X̂�
t )dt

≥ − 1√
κ
coth(τ κ (t))Xε

t dt.

Moreover, note that for all ω ∈ � the linear ODE on [ϒε(ω), T ) given by

dZt = − 1√
κ
coth(τ κ (t))Ztdt, Zϒε(ω) = Xε

ϒε(ω)(ω),
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admits the solution

Zt = Xε
ϒε

exp

(
− 1√

κ

∫ t

ϒε

coth(τ κ(s))ds

)
= Xε

ϒε

sinh(τ κ (t))

sinh(τ κ(ϒε))
, t < T,

with limt↑T Zt = 0. By the comparison principle for ODEs, we get P-a.s. Xε
t ≥ Zt for all

t ∈ [ϒε, T ). Hence,
lim inf
t↑T Xε

t ≥ lim
t↑T Zt = 0 P-a.s.,

that is, lim supt↑T X̂�
t ≤ �T + ε P-a.s. Similarly, define X̃ε

t � �T − ε − X̂�
t and observe

as above that P-a.s. on [ϒε, T ) we have

d X̃ε
t ≤ − 1√

κ
coth(τ κ(t))X̃ε

t dt.

Again, as above by comparison principle we obtain

lim sup
t↑T

X̃ε
t ≤ 0 P-a.s.,

i.e., lim inf t↑T X̂�
t ≥ �T − ε P-a.s. as remained to be shown for (13).

Finally, we have to argue that û� ∈ L2(P ⊗ dt). For this, we may assume without loss of
generality that x = 0. Moreover, let us denote û�,ξ � û�, X̂�,ξ � X̂� and ξ̂�,ξ � ξ̂� to
emphasize also the dependence on the given target process ξ . With this notation it holds that

û�,ξ = û�,0 + û0,ξ .

Hence, we have to show that û�,0 ∈ L2(P ⊗ dt) and û0,ξ ∈ L2(P ⊗ dt).
Concerning û�,0, observe that, using ξ̂

�,0
t = �t/ cosh(τ κ(t)) with �t � E[�T |Ft ],

0 ≤ t ≤ T , as well as the explicit solution X̂�,0
t for the ODE in (9), we obtain

û�,0
t = coth(τ κ(t))√

κ

(
ξ̂

�,0
t − X̂�,0

t

)

= coth(τ κ(t))√
κ

(
e
− ∫ t

0
coth(τκ (u))√

κ
du

ξ̂
�,0
0

+ e
− ∫ t

0
coth(τκ (u))√

κ
du

∫ t

0
e
∫ s
0

coth(τκ (u))√
κ

du
d ξ̂�,0

s

)

= cosh(τ κ(t))√
κ sinh(τ κ(0))

ξ̂
�,0
0 + cosh(τ κ(t))

κ

∫ t

0

�s

cosh(τ κ(s))2
ds

+ cosh(τ κ(t))√
κ

∫ t

0

2

sinh(2τκ(s))
d�s, (28)

where we used integration by parts in the second line. Obviously, the first two terms in (28)
belong to L2(P ⊗ dt). The third term is in L2(P ⊗ dt) since, using Fubini’s Theorem as well
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as sinh(τ ) ≥ τ for all τ ≥ 0, we get

E

[∫ T

0

(∫ t

0

2d�s

sinh(2τκ(s))

)2

dt

]
= E

[∫ T

0

∫ t

0

(
2

sinh(2τκ(s))

)2

d〈�〉sdt
]

= E

[∫ T

0
(T − s)

(
2

sinh(2τκ(s))

)2

d〈�〉s
]

≤ E

[∫ T

0

κ

T − s
d〈�〉s

]

= κ

∫ T

0

dE[�2
s ]

T − s
< ∞

by assumption (5).
Concerning û0,ξ , we use the explicit expressions for ξ̂

0,ξ
t and X̂0,ξ

t to obtain in (9) that

û0,ξt = coth(τ κ (t))√
κ

(
ξ̂
0,ξ
t − X̂0,ξ

t

)

= cosh(τ κ(t)) − 1√
κ sinh(τ κ(t))

E

[∫ T

t
ξuK

�(t, u)du
∣∣∣Ft

]

− cosh(τ κ(t))

κ

∫ t

0

cosh(τ κ(s)) − 1

sinh(τ κ(s))2
E

[∫ T

s
ξuK

�(s, u)du
∣∣∣Fs

]
ds. (29)

Note that all the ratios in (29) involving the functions cosh(·) and sinh(·) are actually bounded
on [0, T ]. Moreover, we have by Lemma 5.5(c) below that

E

[∫ T

t
ξuK

�(t, u)du
∣∣∣Ft

]
∈ L2(P ⊗ dt),

as well as, using Jensen’s inequality,

E

[∫ T

0

(∫ t

0
E

[∫ T

s
ξuK

�(s, u)du
∣∣∣Fs

]
ds

)2

dt

]

≤ T 2

2
E

[∫ T

0

(
E

[∫ T

s
ξuK

�(s, u)du
∣∣∣Fs

])2

ds

]
< ∞.

Together, this shows û� ∈ L2(P ⊗ dt) as desired.
Computation of minimal costs Now, we compute the minimal costs associated to the

optimal control û� given in (10). We will follow along the same lines as in the unconstrained
case above. First of all, note that û� ∈ L2(P ⊗ dt) implies X̂� ∈ L2(P ⊗ dt) and hence
J (û) < ∞. For ease of presentation, we define

c(t) �
√

κ coth(τ κ(t)), 0 ≤ t < T,

i.e., û�
t = c(t)(ξ̂�

t − X̂�
t )/κ . Analogously to the unconstrained case above, we can write

J (û�) as

∞ > J (û�) = lim
t↑T

{
1

2
c(0)(x − ξ̂�

0 )2 + 1

2
E

[∫ t

0
(ξ̂�

s − ξs)
2ds

]

+1

2
E

[∫ t

0
c(s)d〈ξ̂�〉s

]
− 1

2
c(t)E[(X̂�

t − ξ̂�
t )2]

}
. (30)

To conclude our assertion for the minimal costs in (10), observe that

E[(X̂�
t − ξ̂�

t )2] ≤ 2
(
E[(X̂�

t − �t )
2] + E[(�t − ξ̂�

t )2]
)

,
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where �t � E[�T |Ft ], 0 ≤ t ≤ T , and let us argue why

lim
t↑T c(t)E[(X̂�

t − �t )
2] = 0 and lim

t↑T c(t)E[(�t − ξ̂�
t )2] = 0. (31)

Concerning the first convergence in (31), Jensen’s inequality, monotonicity of the function
cosh(·) as well as the estimate sinh(τ ) ≥ τ for all τ ≥ 0 yield

c(t)E[(X̂�
t − �t )

2] ≤ c(t)E[(X̂�
t − X̂�

T )2]

≤ κ cosh(τ κ(0))

T − t
E

[(∫ T

t
û�
s ds

)2]

≤ κ cosh(τ κ(0))E

[∫ T

t
(û�

s )2ds

]
−→
t↑T 0, (32)

since �T = X̂�
T and û� ∈ L2(P ⊗ dt).

Concerning the second convergence in (31), we insert the definition for ξ̂� to obtain that

c(t)E[(�t − ξ̂�
t )2]

= c(t)E

[(
cosh(τ κ (t)) − 1

cosh(τ κ(t))
�t − cosh(τ κ (t)) − 1

cosh(τ κ(t))
E

[∫ T

t
ξuK

�(t, u)du
∣∣∣Ft

])2]

≤ 2c(t)

(
cosh(τ κ(t))−1

cosh(τ κ (t))

)2

E[�2
T ] + 2c(t)

(
cosh(τ κ (t))−1

cosh(τ κ(t))

)2

E

[∫ T

t
ξ2u K

�(t, u)du

]

≤ 2
√

κ

cosh(τ κ (t))

(cosh(τ κ(t)) − 1)2

sinh(τ κ(t))
E[�2

T ]

+ 2 sinh(τ κ(0))

cosh(τ κ(t))

cosh(τ κ (t)) − 1

sinh(τ κ(t))
E

[∫ T

t
ξ2u du

]
−→
t↑T 0,

since �T ∈ L2(P), ξ ∈ L2(P ⊗ dt) and limt↑T (cosh(τ κ(t)) − 1)/ sinh(τ κ (t)) = 0. Con-
sequently, also the second convergence in (31) holds true. This finishes our proof of the
representation of the minimal costs in (10). ��

The next lemma shows that the set U �
x is not empty under the assumption (5).

Lemma 5.4 For �T ∈ L2(P,FT ) we have that U �
x �= ∅ if and only if condition (5) holds,

i.e., if and only if
∫ T
0

dE[�2
t ]

T−t < ∞ with �t � E[�T |Ft ] for all 0 ≤ t ≤ T .

Proof Let �T ∈ L2(P,FT ). We first prove necessity. Assume there exists u ∈ U �
x , i.e.,

u ∈ L2(P ⊗ dt) such that

Xu
T = x +

∫ T

0
usds = �T .

Then, applying Fubini’s Theorem, we obtain

∫ T

0

dE[�2
t ]

T − t
= 1

T
(E[�2

T ] − E[�2
0]) +

∫ T

0
E[�2

T − �2
s ]d

(
1

T − s

)
.
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Moreover, E[�2
T − �2

s ] = E[(�T − �s)
2] ≤ E[(Xu

T − Xu
s )

2] due to the L2-projection
property of conditional expectations. Hence, we get

∫ T

0

dE[�2
t ]

T − t
≤ 1

T
(E[�2

T ] − E[�2
0]) +

∫ T

0
E

[(∫ T

s
ur dr

)2]
d

(
1

T − s

)

= 1

T
(E[�2

T ] − E[�2
0]) + E

[∫ T

0

(
1

T − s

∫ T

s
ur dr

)2

ds

]
< ∞

by �T ∈ L2(P) and Lemma 5.5(a).
For sufficiency, simply consider the optimizer û� from Theorem 3.2 which we proved to

be in U �
x under the condition (5). ��

The final lemma collects estimates concerning the L2(P ⊗ dt)-norm which are needed
several times in the proofs above.

Lemma 5.5 Let (ζt )0≤t≤T ∈ L2(P⊗dt) be progressivelymeasurable.Moreover, let K (t, u),
K�(t, u), 0 ≤ t ≤ u < T , denote the kernels from Theorems 3.1 and 3.2, respectively.

a) For ζ̄t � 1
T−t

∫ T
t ζsds, t < T , we have

‖ζ̄‖L2(P⊗dt) ≤ 2‖ζ‖L2(P⊗dt).

b) For ζ K
t � E[∫ T

t ζuK (t, u)du|Ft ], t < T , we have

‖ζ K ‖L2(P⊗dt) ≤ c‖ζ‖L2(P⊗dt)

for some constant c > 0.
c) For ζ K�

t � E[∫ T
t ζuK�(t, u)du|Ft ], t < T , we have

‖ζ K�‖L2(P⊗dt) ≤ c‖ζ‖L2(P⊗dt)

for some constant c > 0.

Proof a) By Fubini’s Theorem and the Cauchy-Schwarz inequality, we have

‖ζ̄‖2L2(P⊗dt) = E

[∫ T

0

∫ T

0
ζr ζs

∫ r∧s

0

(
1

T − t

)2

dtdrds

]

= E

[∫ T

0

∫ T

0
ζr ζs

1

T − r ∧ s
drds

]
− 1

T
E

[(∫ T

0
ζsds

)2]

≤ E

[
2

∫ T

0
ζr

∫ r

0
ζs

1

T − s
dsdr

]

= 2E

[∫ T

0
ζs

(
1

T − s

∫ T

s
ζr dr

)
ds

]

≤ 2‖ζ‖L2(P⊗dt)‖ζ̄‖L2(P⊗dt)

and hence the assertion.
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b) First, assume that (ζt )0≤ t ≤ T is deterministic, and so ζ K
t = ∫ T

t ζuK (t, u)du. By similar
computations as in (a) we obtain

‖ζ K ‖2L2(dt) =
∫ T

0

∫ T

0
ζr ζs

∫ r∧s

0
K (t, r)K (t, s)dtdrds

≤
∫ T

0

∫ T

0
ζr ζs

1√
κ
cosh(τ κ(r)) cosh(τ κ(s)) coth(τ κ(r ∧ s))drds

= 2
∫ T

0
ζr
cosh(τ κ(r))√

κ

∫ r

0
ζs cosh(τ

κ(s)) coth(τ κ(s))dsdr

= 2
∫ T

0
ζs cosh(τ

κ (s))2ζ K
s ds

≤ 2 cosh(τ κ (0))2‖ζ‖L2(dt)‖ζ K ‖L2(dt),

i.e., ‖ζ K ‖L2(dt) ≤ c‖ζ‖L2(dt) for some constant c > 0. Now, for general (ζt )0≤t≤T ∈
L2(P ⊗ dt) progressively measurable, we get with Fubini’s Theorem

E

[∫ T

0
(ζ K

t )2dt

]
=

∫ T

0

∫ T

t

∫ T

t
E

[
E[ζr |Ft ]E[ζs |Ft ]

]
K (t, r)K (t, s)drdsdt.

Again, application of Cauchy-Schwarz’s and Jensen’s inequalities yields

E [E[ζr |Ft ]E[ζs |Ft ]] ≤ ‖ζr‖L2(P)‖ζs‖L2(P), t ≤ r, s ≤ T .

Consequently,

‖ζ K ‖2L2(P⊗dt) ≤
∫ T

0

∫ T

t

∫ T

t
‖ζr‖L2(P)‖ζs‖L2(P)K (t, r)K (t, s)drdsdt

=
∫ T

0

(∫ T

t
‖ζr‖L2(P)K (t, r)dr

)2

dt.

Now, put ζ̃t � ‖ζt‖L2(P) and apply the estimate already proved for deterministic functions
to conclude

‖ζ K ‖2L2(P⊗dt) =
∫ T

0

(∫ T

t
ζ̃r K (t, r)dr

)2

dt

≤ c
∫ T

0
|ζ̃t |2dt = c

∫ T

0
E[ζ 2

t ]dt = c‖ζ‖2L2(P⊗dt).

c) Jensen’s inequality and Fubini’s Theorem give

‖ζ K�‖2L2(P⊗dt) = E

[∫ T

0
(ζ K�

t )2dt

]
≤

∫ T

0

∫ T

t
E[ζ 2

u ]K�(t, u)dudt

=
∫ T

0
E[ζ 2

u ]
∫ u

0
K�(t, u)dtdu.

Now, using cosh(τ ) − 1 ≥ τ 2/2 for all τ ≥ 0, we get

0 ≤
∫ u

0
K�(t, u)dt =

∫ u

0

sinh(τ κ (u))√
κ(cosh(τ κ(t)) − 1)

dt

≤ sinh(τ κ(u))√
κ

∫ u

0

2κ

(T − t)2
dt ≤ 2

√
κ
sinh(τ κ (u))

T − u
−→
u↑T 1.
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Thus, the above integral over K� is bounded uniformly in 0 ≤ u ≤ T by some constant
c > 0, and so

‖ζ K�‖2L2(P⊗dt) ≤ c
∫ T

0
E[ζ 2

u ]du = c ‖ζ‖2L2(P⊗dt)

yielding the assertion in (c). ��
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