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Abstract A utility maximization problem in an illiquid market is studied. The finan-
cial market is assumed to have temporary price impact with finite resilience. After
the formulation of this problem as a Markovian stochastic optimal control problem
a dynamic programming approach is used for its analysis. In particular, the dynamic
programming principle is proved and the value function is shown to be the unique
discontinuous viscosity solution. This characterization is utilized to obtain numerical
results for the optimal strategy and the loss due to illiquidity.

Keywords Liquidity risk · Price impact · Weak dynamic programming · Hamilton–
Jacobi–Bellman equation · Viscosity solution · Comparison theorem

1 Introduction

This paper studies the classical Merton problem of utility maximization in a financial
market with price impact. We chose to study the problem of optimal investment in
finite horizon. In the frictionless market, this problem is to maximize the expected
utility from terminal wealth
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E
[
U
(
y +

∫ T

0
zudSu

)]

over all admissible trading strategies z with a given utility function U (Merton 1969,
1971).

The random variable y + ∫ T
0 zudSu is the gains process and in an illiquid market it

has to be modelled by taking this friction into consideration. As in our previous paper
in discrete time (Soner and Vukelja 2013), we adopt the approach developed in Roch
and Soner (2013). This model is an extension of the one introduced by Çetin et al.
(2004) and it allows for resilience. Indeed, we assume that a purchase of z number of
shares moves the ask price at to at +2mt z for some impact processmt . This stochastic
processmt is related to the depth of the limit order book and a brief discussion is given
in the next section. Hence, when buying z number of shares the total amount paid is
at z +mt z2, where the quadratic part is due to illiquidity. In addition to the immediate
quadratic cost, the impacted price does not relax back to the original price with infinite
speed as it is the case in Çetin et al. (2004). We refer to the survey of Gökay et al.
(2011) and the references therein for more information.

We continue by describing the state dynamics. In the classical Merton problem, the
only state variables needed are the wealth process and stock price. In fact, one may
even not use the stock if its dynamics is homogenous. In our model, to describe the
evolution of the state one also needs the wealth like process Yt and the stock price
St . However, we also require to trace the portfolio position zt and a proxy lt for the
impact made on the price. In the next section, we give the precise definitions.

For these state processes, we use the dynamics derived in Roch and Soner (2013).
The starting point of their derivation is a constant dept limit order book. Let an adapted
process 1/2mt to be this constant dept. Then, a direct calculation shows that a purchase
or sale of �z amount of stock causes a trading cost of mt (�z)2 and price impact of
2mt (�z). Another key ingredient of this model is an exponential relaxation of the
price impact. This is modelled through a resilience parameter (or a process) of κu .
These observations led (Roch and Soner 2013) to postulate the following dynamics (a
brief discussion is also given in the next section),

dSu = μSudu + σ SudWu

dlu = −κuludu + 2mudzu
dYu = zu(dSu − κuludu) − z2udmu,

where the process z is assumed to be of finite variation and is the control.
Since the market impact is random, it is not a priori clear that the problem is free

from manipulation. Following Roch and Soner (2013), in Lemma 2.1 we show that
under reasonable conditions on the coefficients (e.g., for sufficiently large resilience)
the liquidity risk is non-negative in the mean.

In this paper, we specialize to the case when St has the classical Black–Scholes
dynamics, κ is constant and mt = MSt for some constant M > 0. Then, a simplifica-
tion is possible by introducing

ηt := lt − 2MSt zt .
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Utility maximization in an illiquid market in continuous. . .

This allows us to describe the problem using only three state variables St , ηt and Yt .
This reduction in the number of state variables makes the numerical computations
possible. Moreover, after this reduction one can also allow for larger class of controls
by allowing the process z to be the control without any regularity, such as bounded
variation, assumptions.

We also introduce the optimal stochastic control problem in Sect. 2. Although a
no-arbitrage result is proved, it is not a priori clear that the value function is finite.
We achieve this by first constructing a smooth supersolution to the corresponding
dynamic programming equation. Then, a classical verification argument shows that
this supersolution is an upper bound for the value function. This is the content of
Corollary 2.1.We subsequently prove in Theorem 2.1 theweak dynamic programming
principle using a covering argument. This in turn shows that the value function is a
viscosity solution of the associated dynamic programming equation. These results are
proved in Theorems 2.2 and 2.3.

It is well documented in the viscosity literature that the comparison result is key
to use the dynamic programming equation in the analysis of the control problem. In
particular, it would essentially imply that any monotone scheme, such as the one we
employ, converges due to the seminal paper of Barles and Souganidis (1991) and the
limiting function is the value function of the control problem.Hence, it is very desirable
to have an appropriate comparison result for the corresponding dynamic programming
equation. However, the classical comparison results always imply the continuity of
the value function. Since we do not know whether that is true for the control problem
under investigation, the standard statement and proof had to be changed. Indeed, in
Theorem2.4,weprove anewcomparison result that allows for discontinuous solutions.
We believe that this is a novel feature of our result andmight be useful in other contexts
in which the solution is not continuous. These more relaxed comparison results, also
allowus to prove the convergence of the numerical schemes in a relaxed sense.Namely,
the convergence is pointwise at the points of continuity of the value function v(t, x).
At other points the possible limiting values of the numerical scheme are contained in
the interval [v∗(t, x), v∗(t, x)]. These results are similar to the convergence results for
conservation law equations in which the solutions are possibly discontinuous and at
the point of discontinuity, pointwise convergence can not be expected.

This paper is organized as follows. The stochastic optimization problem is defined
in Sect. 2. In the same section the dynamic programming equation is derived and the
smooth supersolution is constructed. There we also prove the weak dynamic program-
ming principle and the comparison theorem. In Sect. 3 we give some numerical results
for the optimal trading strategy and the value function. “Appendix” provides the proof
of the classical supersolution.

2 Expected utility from terminal wealth

In this section, we state the dynamics derived in Roch and Soner (2013) and for their
derivation,we refer the reader to that paper or to our previous article (Soner andVukelja
2013). In particular, as in Roch and Soner (2013) we assume that there is no bid-ask
spread. Then, there are four state variables (St , lt ,Yt , zt ). St is the un-impacted stock
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price and lt is the price impact which can be both positive or negative and it decays
exponentially to zero when there is no more trading. The variable zt is the number of
shares in the portfolio and the wealth like process Yt is the post liquidation value of
the portfolio. It essential that Yt is not the marked to market value.

We continue with the technical description. Let � = C([0, T ],R) be the canonical
space. Then, we denote by (�,F , P) a complete probability space, where P is the
Wiener measure and F = (Ft )t∈[0,T ] is the augmentation of the filtration generated by
the Brownian motion (Wt )t≥0. The financial market consists of a risky and a risk-free
asset. The risk-free asset is taken to be a numeraire and for simplicity we assume that
the spot rate of interest is zero.

Given a state space Õ := R+ × R × R+ × R, where R+ = (0,∞), we
denote for a fixed time horizon T ∈ (0,∞) the time-augmented state space by
[0, T ] × Õ. For each (t, x̃) ∈ [0, T ] × Õ and t ∈ [0, T ], and a real valued, adapted,
bounded variation process α of [t, T ], we consider an F-adapted dynamical system
X̃t (ω) := (St (ω), lt (ω), Yt (ω), zt (ω)) and describe the continuous time dynamics of
X̃t (ω) through the following stochastic differential equations, for u ∈ (t, T ],

dSu = μSudu + σ SudWu (1)

dlu = −κludu + 2mudαu (2)

dYu = zu(dSu − κludu) − z2udmu (3)

dzu = dαu,

where κ, μ, σ > 0 andmu is a continuous F-adapted process and x̃ := (s, l, y, z) ∈ Õ
is the initial data at time t . The process α is the control and we now assume that it is
simply adapted with some technical conditions specified below. The parametersμ and
σ are classical, κ is the resilience and the process mu is related to the illiquidity of the
stock.Wewill specialize to the casemu = MSu with some constantM in then next sub-
section. This specificationwill allowus to reduce the dimension of the problem to three.

The difference in the liquidation value obtained in a frictionlessmarket y+∫ t
0 zudSu

and our current liquidity risk setup Yt is given by

Lt =
∫ t

0
κzuludu +

∫ t

0
z2udmu .

The process Lt is the liquidity cost associated to the depth 1
2mu

and the resilience κ of
the limit order book (LOB). This leads to

Yt = y +
∫ t

0
zudSu − Lt .

The following result provides the structure of the liquidity cost.

Lemma 2.1 Let ηt = lt −2mt zt and assume η0 = 0. If mt is a non-negative constant,

then Lt ≥ 0 for all t ≥ 0 P-a.s. In general, if 	t := 
2
t

mt
with 
t = e−κt is a

supermartingale, then E[Lt ] ≥ 0 for all t ≥ 0. Furthermore, Lt has the representation
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Utility maximization in an illiquid market in continuous. . .

Lt = η2t

4mt
− η20

4m0
− 1

4

∫ t

0
l2u


−2
u d	u .

The proof can be found in Roch and Soner (2013) Theorem 4.1.

Remark 2.1 If κ is a non-negative constant and mt = MSt with M > 0, then 	t is a
supermartingale under P (resp. under the equivalent martingale measure Q) if only if

κ >
σ 2 − μ

2

(
resp. κ >

σ 2

2

)
.

Proposition 2.1 Let Q be the equivalent martingale measure, α ≥ 0 be a constant.
Suppose that η0 = 0, y0 = 0. If	t is a Q-supermartingale of class (DL), YT ≥ 0 and
Ys ≥ −α Q-a.s. for all s ∈ [0, T ], then Ys ≥ 0 P-a.s. for all s ∈ [0, T ].
Proof Since 	t is a Q-supermartingale, there exists by the Doob-Meyer decomposi-
tion theorem a Q-martingale Mt and a decreasing predictable process At with A0 = 0
such that 	t = Mt + At . Furthermore, by Lemma 2.1,

Yt =
∫ t

0
zudSu − η2t

4mt
+ 1

4

∫ t

0
l2u


−2
u d	u .

Since At is decreasing we arrive at

Yt + η2t

4mt
− 1

4

∫ t

0
l2u


−2
u d Au = y +

∫ t

0
zudSu + 1

4

∫ t

0
l2u


−2
u dMu ≥ −α. (4)

The right-hand side of the Eq. (4) is a Q-local martingale, thus the left-hand side is a
Q-local martingale too. But since it is bounded from below it is a Q-supermartingale.
Therefore, also Yt is a Q-supermartingale and

0 ≤ E[YT |Fs] ≤ Ys, Q-a.s. ∀ s ∈ [0, T ].

Since Q is equivalent to P , we deduce that Ys ≥ 0 P-a.s. for all s ∈ [0, T ]. �	
Remark 2.2 By the above result (assuming that κ is sufficiently large), Yt is a Q-
super-martingale, which implies EQ[YT ] ≤ Y0, if η0 = 0. Then, this supermartingale
property of Yt implies that there cannot be a process Y so that Q(YT ≥ Y0) = 1 and
Q(YT > Y0) > 0. Since Q and P are equivalent measures, this implies that there is
no arbitrage.

If, however, η0 
= 0, it is possible to create “local arbitrage”, in the sense that the
resulting value function is larger than the Merton value function. This is illustrated
in Sect. 3 by some numerical computations. However, it is not possible to scale this
“local-arbitrage” by increasing the portfolio position z. Indeed, larger values of z
would imply larger l values, negating the advantage one has due to non-zero η0. This
is consistent with the liquidity premium derived by Çetin et al. (2010) and Gökay and
Soner (2012).
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2.1 The value function

In what follows, we always assume that

mt = MSt ,

for a constant M > 0 and κ >
σ 2−μ

2 . The assumption on κ implies that 	t is a
supermartingale, see Remark 2.1. Following the results of Soner and Vukelja (2013)
we introduce a new adapted state variable ηt = lt − 2MSt zt . By (2) we arrive at

dηt = (−κηt − 2M(κ + μ)zt St ) dt − 2Mσ zt StdWt , (5)

whereas (3) becomes

dYt =
(
−κηt zt − 2Mκz2t St + μzt St (1 − Mzt )

)
dt + σ zt St (1 − Mzt )dWt . (6)

This reduces the state space to three state variables St , ηt and Yt which evolve in time
through (1), (5) and (6). In this setup the control variable is zt and not αt . The control
variable zt is valued in R. We define O := R+ × R × R+, where R+ = (0,∞)

and set OT := [0, T ) × O. Then, we will denote the time-augmented state space by
[0, T ] × O. We use the notation Xt (ω) := (St (ω), ηt (ω), Yt (ω)) and write

dXt = b(St , ηt , zt )dt + σ(St , zt )dWt , (7)

where

b(St , ηt , zt ) =
⎛
⎜⎝

μSt
−κηt − 2M(κ + μ)zt St

−κηt zt − 2Mκz2t St + μzt St (1 − Mzt )

⎞
⎟⎠ ,

σ (St , zt ) =
⎛
⎜⎝

σ St
−2Mσ zt St

σ zt St (1 − Mzt )

⎞
⎟⎠

with initial data x = (s, η, y) ∈ O. Notice that the measurable functions b : R+ ×
R × R → R and σ : R+ × R → R do not depend on Yt . Next, we introduce the set
of admissible strategies. Let

C : R+ → R+

be a Lipschitz continuous function and non-decreasing in y. In the following
{Xt,x,z

u }u∈[t,T ] denotes the unique solution of (7) where Xt,x,z
t = x . Then, the set

of admissible strategies A(C)(t, x) is the collection of all adapted processes z on
[t, T ] satisfying,
(i) |zu | ≤ C

(
Y t,x,z
u

)
and Y t,x,z

u > 0 P-a.s. ∀ u ∈ [t, T ]
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Utility maximization in an illiquid market in continuous. . .

(ii) E
[
U

(
Y t,x,z
T

)−]
< ∞.

The first constraint above is a technical one. The main reason behind it is to obtain a
well defined Hamiltonian in the dynamic programming equation. Although bounding
the portfolio position is reasonable, one should allow this bound to grow with the
growing portfolio value as we have done above.

The above set of stochastic differential equations have a strong solution. Indeed, for
bounded St , the functions b and σ are Lipschitz continuous. Moreover, St is an uncon-
trolled process which is explicitly known. Hence, by a straightforward localization
argument we can construct global strong solutions.

Notice that

Xt,x,z· has continuous paths,

and that the set of admissible strategiesA(C)(t, x) is not empty for (t, x) ∈ [0, T ]×O.
Furthermore, if (tn, xn) → (t, x) then

sup
r∈[0,T ]

d
(
Xtn ,xn ,z
r , Xt,x,z

r

) → 0 in probability and P-a.s.,

where Xt,x,z
r = x for r ≤ t and d(·, ·) is the Euclidean metric. Note that we implicitly

assume z ∈ A(C)(tn, xn).
Next, we define the value function. We use the standard CRRA utility function,

U (y) =
⎧
⎨
⎩

y p

p , p < 1, p 
= 0,

log(y), p = 0.
(8)

Then, the value function of interest is

v(t, x) = sup
z∈A(C)(t,x)

E
[
U

(
Y t,x,z
T

)]=: sup
z∈A(C)(t,x)

J (t, x, z). (9)

Note, that v may depend on the upper bound function C(·). We suppress this depen-
dence in our notation.

2.2 Dynamic programming equation

We introduce now the Hamilton–Jacobi–Bellman equation associated to our optimal
stochastic control problem (9). We denote by S3 the set of symmetric 3 × 3 matrices
and by A′ the transpose of matrix A. For all q ∈ R

3, N ∈ S3 the Hamiltonian related
to (9) is given by

H(x, q, N ) = sup
|z|≤C(y)

{
b(s, η, z)q + 1

2
tr(σ (s, z)σ ′(s, z)N )

}
.
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Observe that H depends on C(·) and again we suppress this in our notation. Note that
the general theory of viscosity applies for nonlinear partial differential equations on
an open domain. The corresponding dynamic programming equation is

−∂tv(t, x) − H
(
x, Dxv(t, x), D2

xv(t, x)
)

= 0, (t, x) ∈ OT (10)

with the final condition

v(T, x) = U (y)

and a state space constraint at y = 0 as defined in Soner (1986). Namely, if for a
smooth function ϕ the difference v − ϕ has a maximum at some point (t0, s0, η0, y0)
with y0 = 0, then ϕ is a sub solution of the equation at this point. Notice that even if v

is smooth, since the maximum may be attained at a boundary point, the y-derivatives
of v and ϕ may not agree at this point. Still the sub solution property persists and this
is a boundary condition. We refer the reader to Fleming and Soner (2006) for a more
detailed discussion.

2.2.1 A supersolution

Let p be the exponent in the utility function U defined in (8). Then, consider the
function φ : [0, T ] × O → R,

φ(t, x) =

⎧⎪⎨
⎪⎩

f (t) 1p

(
βy + η2

s

)p
, p < 1, p 
= 0,

log
(
βy + η2

s

)
+ c(T − t), p = 0,

(11)

where f (t) = ecp(T−t); c and β are positive constants that will be chosen later. Note
that φ depends on the power p. In the proof of Theorem 2.4 below, we will write φ(p)

instead of φ only in order to indicate the exponent. For now we suppress this in our
notation.

Lemma 2.2 Let φ(t, x) be as in (11). For all β and c sufficiently large, φ is a super-
solution of

−∂tφ(t, x) − H
(
x, Dxφ(t, x), D2

xφ(t, x)
)

≥ 0, (t, x) ∈ OT .

Proof Let p < 1, p 
= 0 and set φ̃(s, η, y) = 1
p

(
βy + η2

s

)p
. We need to show that

I (φ) := −∂tφ + inf|z|≤C(y)
{−Lzφ} ≥ 0,
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Utility maximization in an illiquid market in continuous. . .

where

Lzφ := b(s, η, z)∇φ + 1

2
tr

(
σ(s, z)σ (s, z)′D2

xφ
)

= μsφs + 1

2
σ 2s2φss − (κη + 2M(κ + μ)zs) φη +

(
−κηz − 2Mκsz2

+μzs(1 − Mz)
)

φy − 2M(σ zs)2(1 − Mz)φηy − 2M(σ s)2zφsη

+ (σ s)2z(1 − Mz)φsy + 2(Mσ sz)2φηη + 1

2
(σ sz)2(1 − Mz)2φyy .

It is sufficient to show that for a constant α depending on β and p

Lzφ̃ ≤ α

(
βy + η2

s

)p

. (12)

Indeed, if (12) holds, then

I (φ) = cpφ + f (t) inf|z|≤C(y)
{−Lzφ̃} ≥ cpφ − αpφ = pφ(c − α).

Then for all c ≥ α, the function φ is a supersolution. The inequality (12) follows
from a straightforward but tedious calculation given in “Appendix”. The case p = 0
is proved analogously. �	

Applying the operator Lz to the above supersolution φ we obtain an upper bound
for the value function.

Corollary 2.1 Let β and c be as in Lemma 2.2 and

φ(t, x) =

⎧⎪⎨
⎪⎩
ecp(T−t) 1

p

(
βy + η2

s

)p
if p < 1, p 
= 0,

log
(
βy + η2

s

)
+ c(T − t) if p = 0.

Then, for every (t, x) ∈ [0, T ] × O, z ∈ A(C)(t, x) and stopping time τ ∈ [t, T ],
φ
(
τ, Xt,x,z

τ

)
is integrable and

E
[
φ
(
τ, Xt,x,z

τ

)] ≤ φ(t, x). (13)

In particular,

v(t, x) ≤ φ(t, x), ∀ (t, x) ∈ [0, T ] × O.

Proof Assume p < 1, p 
= 0. Let τ be an F-stopping time. Itô’s rule applied to
φ(t, Xt ) and Lemma 2.2 yield
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φ(t, x) = φ(τ, Xτ ) −
∫ τ

t

(
∂tφ(u, Xu) + Lzφ(u, Xu)

)
du

+ σ

∫ τ

t

(
2Mφηzu Su − φy Suzu(1 − Mzu) − φs Su

)
dWu

≥ φ(τ, Xτ ) + σ

∫ τ

t

(
2Mφηzu Su − φy Suzu(1 − Mzu) − φs Su

)
dWu .

Let Hu := σ(2Mφηzu Su−φy Suzu(1−Mzu)−φs Su) and cn be a sequence converging
to infinity. Define a stopping time τn := inf{u ≥ t : |Hu | ≥ cn} ∧ τ such that
τn ↗ τ . Then, the stochastic integral

∫ τn
t HudWu is a martingale. Let z ∈ A(C)(t, x)

and set xε := (s, η, y + ε), where ε > 0. Thus, for all z ∈ A(C)(t, x) we have
Y t,xε,z

. = Y t,x,z
. + ε and

Xt,xε,z
. =

⎛
⎝

St,s.

ηt,s,η,z
.

Y t,x,z
. + ε

⎞
⎠ .

Let αn,ε := 1
p

(
β(Y t,x,z

τn
+ ε) + (η

t,s,η,z
τn )2

St,sτn

)p
, then

(i) αn,ε ≥ (βε)p

p P-a.s.

(ii) αn,ε −→ 1
p

(
β(Y t,x,z

τ + ε) + (η
t,s,η,z
τ )2

St,sτ

)p
P-a.s. as n → ∞.

Thus, by Fatou we arrive at

φ(t, xε) ≥ lim inf
n→∞ E

⎡
⎢⎣ecp(τn−t) 1

p

⎛
⎜⎝β

(
Y t,x,z

τn
+ ε

) +
(
η
t,s,η,z
τn

)2

St,sτn

⎞
⎟⎠

p⎤
⎥⎦

≥ E

⎡
⎢⎣ecp(τ−t) 1

p

⎛
⎜⎝β

(
Y t,x,z

τ + ε
) +

(
η
t,s,η,z
τ

)2

St,sτ

⎞
⎟⎠

p⎤
⎥⎦

=E
[
φ
(
τ, Xt,xε,z

τ

)]
.

We prove (13) by letting ε → 0. The final statement follows by taking τ = T and
observing that U (Y t,x,z

T ) ≤ φ(T, Xt,x,z
T ). The case p = 0 can be proved analogously

by using

αn,ε = log

⎛
⎜⎝β

(
Y t,x,z

τn
+ ε

) +
(
η
t,s,η,z
τn

)2

St,sτn

⎞
⎟⎠

instead. �	
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Utility maximization in an illiquid market in continuous. . .

The above supersolution allows us to construct admissible controls z ∈ A(C)(t, x).
Indeed, consider an adapted process π : [0,∞) × � → [−1, 1] and the SDE

dXu = b(Su, ηu, πuC(Yu))du + σ(Su, πuC(Yu))dWu, u ∈ (t, T ]. (14)

Define for all N ∈ N

τ (N ) = inf
{
u ∈ [t, T ] : Y t,x,π

u = N , P-a.s.
}
, (15)

where we set τ (N ) = T , if
{
u ∈ [t, T ] : Y t,x,π

u = N P-a.s.
} = ∅. We also introduce

θ := θ t,x,π = inf
{
u ∈ [t, T ] : Y t,x,π

u = 0 P-a.s.
}
, (16)

where again θ t,x,π = T , if the above set is empty. It is clear that the SDE (14) has a
strong solution on [0, τ (N ) ∧ θ ]. Indeed, set

C (N )(y) =
{
C(y), 0 < y < N ,

C(N ), y ≥ N

and

b(N )(s, η, π) := b
(
s, η, πC (N )(y)

)
, σ (N )(s, π) := σ

(
s, πC (N )(y)

)
.

The SDE

dXu = b(N )(Su, ηu, πu)du + σ (N )(Su, πu)dWu

has a strong solution X (N )· on [0, τ (N ) ∧ θ ], since b(N )(·), σ (N )(·) satisfy the Lipschitz
condition. It is clear that X · = X (N )· on [0, τ (N ) ∧ θ ], where X · denotes the solution
of (14). We argue below that τ (N ) ∧ θ converges to T ∧ θ showing that X · is a strong
solution of (14) on [0, T ∧ θ ].
Lemma 2.3 Let τ (N ) be as in (15) and θ as in (16). Then,

lim
N→∞ P

(
τ (N ) ∧ θ = T ∧ θ

)
= 1.

Proof Fix (t, x) ∈ [0, T ]×O and let φ be the upper boundwith the parameter p′ = 1
2 .

Set Xu := Xt,x,z
u , where zu := πuC(Yu). Then by Corollary 2.1

E
[
φ
(
τ (N ) ∧ θ, Xτ (N )∧θ

)]
≤ φ(t, x).
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Furthermore, note that p′ = 1
2 implies φ ≥ 0. Then for all (t, x) ∈ [0, T ] × O there

exists a positive constant c̃ so that

c̃
√
N P

(
τ (N ) < θ

)
≤ E

[
φ
(
τ (N ), Xτ (N )

)
χ{τ (N )<θ}

]

≤ E
[
φ(τ (N ), Xτ (N ) )χ{τ (N )<θ}

]
+ E

[
φ (θ, Xθ ) χ{θ<τ(N )}

]

= E
[
φ
(
τ (N ) ∧ θ, Xτ (N )∧θ

)]

≤ φ(t, x).

Observe that,

{
τ (N ) ≥ θ

}
=

{
τ (N ) ≥ T ∧ θ

}
⊆

{
τ (N ) ∧ θ ≥ T ∧ θ

}
=

{
τ (N ) ∧ θ = T ∧ θ

}
,

where the last equality follows from τ (N ) ≤ T P-a.s.. Thus,

lim
N→∞ P

(
τ (N ) ∧ θ = T ∧ θ

)
≥ lim

N→∞ P
(
τ (N ) ≥ T ∧ θ

)

= 1 − lim
N→∞ P

(
τ (N ) < T ∧ θ

)
= 1.

�	

Corollary 2.2 There exists a strong solution of the SDE

dXu = b (Su, ηu, πuC(Yu)) du + σ (Su, πuC(Yu)) dWu

on [0, T ∧ θ ].

Proof The SDE (14) has a strong solution on [0, τ (N ) ∧ θ ] for all N ∈ N. Thus, it
also has a strong solution on [0, limN→∞ τ (N ) ∧ θ ]. Since τ (N ) is increasing, τ (N ) ∧ θ

converges to some τ ∗ P-a.s. By Lemma 2.3 we know that τ (N ) ∧ θ converges to T ∧ θ

in probability, which implies that τ ∗ = T ∧ θ , P-a.s. Thus, the SDE (14) has a strong
solution on [0, T ∧ θ ]. �	

Finally, for any ε > 0 small, we set θε to be the exit from (ε,∞) instead of (0,∞)

and set

zεu :=
{

πuC(Yu), on u ∈ [t, θε],
0, on u ∈ [θε, T ].

The above control zε ∈ AC (t, x).
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2.2.2 Weak dynamic programming principle

A key tool for the analysis of stochastic control problems is the dynamic programming
principle which holds a.s. for any stopping time τ ∈ [t, T )

“v(t, x) = sup
z∈At

E
[
v
(
τ, Xt,x,z

τ

)]
”.

The proof of the statement above requires that v is measurable. However, when the
value function v is known to have some regularity, then themeasurability arguments are
not needed and the proof can be simplified. Formore details on that we refer to Fleming
and Soner (2006). As an alternate approach (Bouchard and Touzi 2011) introduced a
weak version of the dynamic programming principle (WDPP). This weaker statement
avoids the measurable selection argument and can be used when the value function
has no a priori regularity. The WDPP for generalized state constraints was studied by
Bouchard and Nutz (2012). They first show theWDPP for expectation constraints and
apply the results to state constraints. In the following we will prove the WDPP for
our optimal stochastic control problem directly. We denote by T the collection of all
F-stopping times with values in [t, T ].
Theorem 2.1 Let (t, x) ∈ [0, T ] × O and τ ∈ T be a stopping time.

(i) Letϕ : [0, T ]×O → Rbeameasurable function such thatv ≤ ϕ and inf ϕ > −∞
for all (t, x) ∈ [0, T ] × O. Then,

v(t, x) ≤ sup
z∈A(C)(t,x)

E
[
ϕ
(
τ, Xt,x,z

τ

)]
. (17)

(ii) Let ϕ : [0, T ] × O → R be a continuous function such that v ≥ ϕ. Then,
ϕ
(
τ, Xt,x,z

τ

)+
is integrable for every z ∈ A(C)(t, x) and

v(t, x) ≥ sup
z∈A(C)(t,x)

E
[
ϕ
(
τ, Xt,x,z

τ

)]
. (18)

Proof (i) Fix (t, x) ∈ [0, T ] × O and let τ ∈ T . We start by defining a map
I : � × � → � by,

I(ω, ω′)s := (ω ⊗τ ω′)s =
{

ωs, s < τ(ω),

ωτ(ω) + ω′
s − ω′

τ(ω), s ≥ τ(ω).

In view of the properties of the Wiener measure, the measure defined on the Borel
subsets A of � by,

P̄(A) := P × P
((

ω,ω′) ∈ � × � : I
(
ω,ω′) ∈ A

)

is again a Wiener measure. We fix ω ∈ � and define for a given control z ∈
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A(C)(t, x) a new control

zωu
(
ω′) = zu

(
ω ⊗τ ω′) , ∀ ω′ ∈ � and u ≥ t.

Then,

E

[
U

(
Y

τ(ω),Xt,x,z
τ (ω)

(ω),zω

T

)]
=

∫

�

U
(
Y τ,Xt,x,z

τ ,zω

T (ω′)
)
P(dω′)

=
∫

�

U
(
Y t,x,z
T (ω ⊗τ ω′)

)
P(dω′).

In particular

ω �→ E

[
U

(
Y

τ(ω),Xt,x,z
τ (ω)

(ω),zω

T

)]

is Fτ -measurable. Moreover, for any Fτ -measurable bounded function h,

h
(
ω ⊗τ ω′) = h(ω), ∀ ω,ω′ ∈ �.

Hence, for any integrable function g and h as above, by Fubini’s theorem and the
property of the measure P̄ defined above, we obtain,

∫

�

h(ω)

[∫

�

g
(
ω ⊗τ ω′) P(dω′)

]
P(dω)

=
∫

�×�

h
(
ω ⊗τ ω′) g (ω ⊗τ ω′) P(dω′) P(dω)

=
∫

�

h(ω̄)g (ω̄) P̄(dω̄)

= E[hg].

Using the above with

g(ω) := E

[
U

(
Y

τ(ω),Xt,x,z
τ (ω)

(ω),zω

T

)]

we arrive at

E [hg] =
∫

�

h(ω)

[∫

�

U
(
Y τ,Xt,x,z

τ ,zω

T

(
ω′)) P(dω′)

]
P(dω)

=
∫

�

h(ω)

[∫

�

U
(
Y t,x,z
T

(
ω ⊗τ ω′)) P(ω′)

]
P(dω)

= E[hg].
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Hence,

E
[
U

(
Y t,x,z
T

) |Fτ

]
(ω) = E

[
U

(
Y

τ(ω),Xt,x,z
τ (ω)

(ω),zω

T

)]
= J

(
τ(ω), Xt,x,z

τ (ω), zω
)
.

We also note that zω belongs to A(C)(τ (ω), Xt,x,z
τ(ω) (ω)). Therefore,

E
[
U

(
Y t,x,z
T

) |Fτ

]
(ω) = J

(
τ(ω), Xt,x,z

τ (ω), zω
)

≤ v
(
τ(ω), Xt,x,z

τ (ω)
)

≤ ϕ
(
τ(ω), Xt,x,z

τ (ω)
)
, P -a.s.

Since ϕ is bounded from below, taking the expectation on both sides reveals

v(t, x) = sup
z∈A(C)(t,x)

J (t, x, z) ≤ sup
z∈A(C)(t,x)

E
[
ϕ
(
τ, Xt,x,z

τ

)]
.

(ii) By assumption ϕ ≤ v. Notice that Corollary 2.1 implies ϕ ≤ φ. Furthermore,
by Corollary 2.1 φ(τ, Xt,x,z

τ ) is integrable. Thus, ϕ(τ, Xt,x,z
τ )+ is integrable too.

Next, we prove the second statement. Fix ε > 0 and choose for all (t, x) ∈
[0, T ] × O an admissible strategy z(t, x) ∈ A(C)(t, x) such that

J (t, x, z(t, x)) ≥ v(t, x) − ε

2
.

Note that v ≥ ϕ implies

J (t, x, z(t, x)) ≥ ϕ(t, x) − ε

2
. (19)

Choose 0 < δ(t, x)=:δ0 ≤ y continuous, such that

|ϕ(t, x) − ϕ(t, x̄)| <
ε

2
, (20)

where x̄ = (s, η, y + δ0). For a given point (t ′, x ′) and any process

π ∈ A := {πu : [0,∞) × � → [−1, 1], F-adapted},

by Corollary 2.2 there exists a strong solution X on [t ′, T ∧ θ ] of

dXu = b(Su, ηu, πuC(Yu))du + σ(Su, πuC(Yu))dWu

with initial data Xt ′ = x ′. Set

zu
π
(
t ′, x ′;π

) := πuC
(
Y t ′,x ′,π
u

)
. (21)
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Then, it is clear that X · = Xt ′,x ′,zπ· . Also for z ∈ A(C)(t, x), πu := zu/C
(
Y t,x,z
u

)
is in the admissible class A. So in the following we will only use the notations

π z· (t, x) := z·(t, x)/C
(
Y t,x,z(t,x)·

)
,

and zπ
z = z.

For a given δ0 > 0 define a new control πδ0(t ′, x ′;π) by

πδ0
u

(
t ′, x ′;π

) =
⎧⎨
⎩

πu, u < θδ0
(
t ′, x ′;π

)
,

0, u ≥ θδ0
(
t ′, x ′;π

)
,

where θδ0(t ′, x ′;π) = inf
{
u ∈ [t, T ] : Y t ′,x ′,π

u = δ0

}
. Also define,

zδ0u
(
t ′, x ′;π

) := πδ0
u

(
t ′, x ′;π

)
C

(
Y t ′,x ′,zπ

δ0
u (t ′,x ′;π)

u

)
. (22)

Note that zδ0u (t ′, x ′;π) trivially satisfies the upper bound C(Y t ′,x ′,zδ0u (t ′,x ′;π)
u ).

Since by construction, Y t ′,x ′,zδ0u (t ′,x ′;π)· ≥ δ0 > 0 for all (t ′, x ′) ∈ [0, T ] × O, we
conclude that zδ0u (t ′, x ′;π) is in A(C)(t ′, x ′). We claim that for any π ∈ A,

lim inf
(t ′,x ′)→(t,x)

Y t ′,x ′,zδ0 (t ′,x ′;π)
u ≥ Y t,x,zδ0 (t,x;π)

u , P-a.s. (23)

Indeed, let z(t ′, x ′;π) be as in (21). Then,

lim inf
(t ′,x ′)→(t,x)

u′→u

Y t ′,x ′,z(t ′,x ′;π)

u′ = Y t,x,z(t,x;π)
u , P-a.s., (24)

Y t ′,x ′,zδ0 (t ′,x ′;π)
u =

{
Y t ′,x ′,z(t ′,x ′;π)
u , u < θδ0(t ′, x ′;π),

δ0, u ≥ θδ0(t ′, x ′;π),

and

lim inf
(t ′,x ′)→(t,x)

θδ0
(
t ′, x ′;π

) ≥ θδ0 (t, x;π) , P-a.s. (25)

Since Y t ′,x ′,zδ0 (t ′,x ′;π)
u ≥ δ0, by considering the two cases u ≥ θδ0(t, x;π)

and its opposite, (24) and (25) imply (23). We now use the lower bound

U (Y t ′,x ′,zδ0 (t ′,x ′;π)
T ) ≥ U (δ0) and Fatou’s Lemma to conclude that

J
(
t, x, zδ0(t, x;π)

) ≤ lim inf
(t ′,x ′)→(t,x)

J
(
t ′, x ′, zδ0

(
t ′, x ′;π

))
.
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Thus, for fixed (t, x) ∈ [0, T ]×O the map (t ′, x ′) �→ J (t ′, x ′, zδ0(t ′, x ′;π(t, x))
is lower semicontinuous and

O(t,x) =
{ (

t ′, x ′) ∈ [0, T ] × O : |ϕ (
t ′, x ′) − ϕ(t, x)| <

ε

2
,

J
(
t ′, x ′, zδ0

(
t ′, x ′;π(t, x)

))
>J (t, x, z(t, x))

}

(26)

is a family of open sets. Note that it is not clear if (t, x) ∈ O(t,x), since
zδ0(t ′, x ′;π(t, x)) may not be equal to z(t, x). But we will show that (t, x̄) with
x̄ = (s, η, y + δ0) is in O(t,x). Indeed,

Y t,x̄,z(t,x)
u = δ0 + Y t,x,z(t,x)

u , ∀ u ∈ [t, T ].

Thus, Y t,x̄,z(t,x)
u > δ0 for all u ∈ [t, T ] P-a.s., so the exit time θδ0(t, x̄; z(t, x)) =

T . This implies πδ0(t, x̄;π(t, x)) = π(t, x) and

Y t,x̄,zδ0 (t,x̄;π(t,x))
T > Y t,x,z(t,x)

T .

After noting that J is increasing in y, we arrive at

J
(
t, x̄, zδ0(t, x̄;π(t, x))

)
> J (t, x, z(t, x)).

In view of (20) this implies that x̄ := (s, η, y + δ0) ∈ O(t,x). Recall that δ0 =
δ(t, x) is chosen so that it is continuous and δ0 ≤ y. These facts imply that the
family of open sets in (26) forms an open cover of [0, T ] × O. Indeed, for fixed
t, s, η the mapping y �→ f (y) := y + δ0 = y + δ(t, x) is continuous with

lim
y→0

f (y) = 0 ≤ f (y) ≤ lim
y→∞ f (y) = ∞.

Therefore, for any given ȳ > 0 there is y so that f (y) = ȳ. Then,

(t, x̄) = (t, s, η, ȳ) = (t, s, η, f (y)) ∈ O(t,s,η,y) = O(t,x).

Thus, there exists a sequence (tn, xn) ∈ [0, T ]×O such that∪nO(tn ,xn) = [0, T ]×
O. Set

C1 := O(t1,x1), Cn+1 := O(tn+1,xn+1)\ ∪n
k=1 O(tk ,xk ).

Then, for all (t, x) ∈ [0, T ] × O there exists an integer i(t, x) = min{n | (t, x) ∈
O(tn ,xn)} such that (t, x) ∈ Ci(t,x). Note that i(t, x) is by construction measur-
able. Fix (t, x) ∈ [0, T ] × O and z ∈ A(C)(t, x). Let Xu := Xt,x,z

u be the
corresponding controlled process. Then, (τ (ω), Xt,x,z

τ(ω) (ω)) ∈ [0, T ] × O. Fur-
thermore, set i(ω) := i(τ (ω), Xτ (ω)). Since the C j ’s are disjoint and countably
many, it follows that
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(
τ(ω), Xt,x,z

τ(ω) (ω)
)

∈ ∪ j≥1C j , P-a.s.

We define

πω
u := π

δ(ti(ω),xi(ω))
u

(
τ(ω), Xt,x,z

τ (ω);π(ti(ω), xi(ω))
)
.

Then, consider the process

π̃u(t, x)(ω) :=
{

πu(ω) := zu(ω)/C(Y t,x,z
u (ω)), u < τ(ω),

πω
u , u ≥ τ(ω).

Finally, set

z̃u(t, x) := π̃u(t, x)C
(
Y t,x,π̃
u

)
.

It follows

v(t, x) ≥ J (t, x, z̃(t, x)) = E
[
E
[
U

(
Y t,x,z
T

) |Fτ

]]
(22)= E

[
J
(
τ, Xt,x,z

τ , zδ(ti(ω),xi(ω))
(
τ, Xτ ;π(ti(ω), xi(ω))

))]

(26)≥ E
[
J (ti(ω), xi(ω), z(ti(ω), xi(ω)))

]
(19)≥ E[ϕ(ti(ω), xi(ω))] − ε

2
(26)≥ E

[
ϕ
(
τ, Xt,x,z

τ

)] − ε.

The proof is completed by the arbitrariness of ε > 0 and z ∈ A(C)(t, x). �	

2.3 Viscosity solutions

The goal of this section is to use the notion of viscosity solutions in order to weaken
the smoothness condition on the value function. We will show that the value function
is a viscosity solution of the associated Hamilton–Jacobi–Bellman equation. Recall
that OT = [0, T ) × O. Since the value function may be discontinuous, we introduce

v∗(t, x) = lim sup
(t ′,x ′)→(t,x)
(t ′,x ′) ∈ OT

v(t ′, x ′) and v∗(t, x) = lim inf
(t ′,x ′)→(t,x)
(t ′,x ′) ∈ OT

v(t ′, x ′).

We note that the value function is bounded from below by U (y). This follows imme-
diately by taking z = 0. Together with Corollary 2.1 the value function is locally
bounded by

U (y) ≤ v(t, x) ≤ φ(t, x), ∀ (t, x) ∈ [0, T ] × O.
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Theorem 2.2 The value function v is a viscosity supersolution on OT of

−∂tv − H
(
·, Dxv, D2

xv
)

≥ 0.

Proof Let (t̄, x̄) ∈ OT and ϕ ∈ C1,2(OT ) be a test function such that

0 = (v∗ − ϕ)(t̄, x̄) ≤ (v∗ − ϕ)(t, x), ∀ (t, x) ∈ OT , (t̄, x̄) 
= (t, x).

Assume for contradiction

−∂tϕ(t̄, x̄) − H(x̄, Dxϕ(t̄, x̄), D2
xϕ(t̄, x̄)) < 0

and define ϕ by

ϕ(t, x) = ϕ(t, x) − ((t − t̄)2 + |x − x̄ |4).

Since H is continuous and (∂tϕ, Dxϕ, D2
xϕ)(t̄, x̄) = (∂tϕ, Dxϕ, D2

xϕ)(t̄, x̄) there
exists a ∈ R and r > 0, with t̄ + r < T such that

−∂tϕ(t, x) − La(s, η, Dxϕ(t, x), D2
xϕ(t, x)) < 0, ∀ (t, x) ∈ Br (t̄, x̄), (27)

where Br (t̄, x̄) ⊂ OT is a ball of radius r and center (t̄, x̄). Observe that there is a
δ > 0 such that

ϕ(t, x) ≥ ϕ(t, x) + 2δ, ∀ (t, x) ∈ OT \Br (t̄, x̄). (28)

Let (tn, xn)n be a sequence in Br (t̄, x̄) such that

(tn, xn) → (t̄, x̄) and v(tn, xn) → v∗(t̄, x̄),

when n goes to infinity. Furthermore let z = a be a constant control and Xtn ,xn ,a· the
solution of (7). Define the stopping time τn by τn = inf{s ≥ tn : (s, Xtn ,xn ,a

s ) /∈
Br (t̄, x̄)} and note that τn < T , since t̄ + r < T . Applying Itô’s formula to
ϕ(s, Xtn ,xn ,a

s ) we arrive by (27) at

ϕ(tn, xn) = E
[
ϕ
(
τn, X

tn ,xn ,a
τn

) −
∫ τn

tn

(
∂tϕ + La

(
·, Dxϕ, D2

xϕ
)) (

s, Xtn ,xn ,a
s

)
ds

]

≤ E
[
ϕ
(
τn, X

tn ,xn ,a
τn

)]
.

For n large enough we have

v(tn, xn) ≤ ϕ(tn, xn) + δ
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which leads by inequality (28) to

v(tn, xn) ≤ E
[
ϕ
(
τn, X

tn ,xn ,a
τn

)] + δ ≤ E
[
ϕ
(
τn, X

tn ,xn ,a
τn

)] − δ.

Since v ≥ ϕ the above contradicts (18). �	
Next, we show that the value function v is a viscosity subsolution of the associated

dynamic programming equation. We introduce the set

Oy := R+ × R × [0,∞)

and prove the subsolution property by a contraposition argument.

Theorem 2.3 The value function v is a viscosity subsolution on [0, T ) × Oy of

−∂tv − H
(
·, Dxv, D2

xv
)

≤ 0.

In particular, it is also a constrained viscosity subsolution at y = 0.

Proof Let (t̄, x̄) ∈ [0, T ) × Oy and ϕ ∈ C1,2([0, T ) × Oy) be a test function such
that

0 = (v∗ − ϕ)(t̄, x̄) ≥ (v∗ − ϕ)(t, x), ∀ (t, x) ∈ [0, T ) × Oy, (t̄, x̄) 
= (t, x).

Assume on the contrary that

−∂tϕ(t̄, x̄) − H
(
x̄, Dxϕ(t̄, x̄), D2

xϕ(t̄, x̄)
)

> 0

and set

ϕ(t, x) = ϕ(t, x) + ((t − t̄)2 + |x − x̄ |4).

By the continuity of H and since (∂tϕ, Dxϕ, D2
xϕ)(t̄, x̄) = (∂tϕ, Dxϕ, D2

xϕ)(t̄, x̄)
there exists r > 0 such that t̄ + r < T and

− ∂tϕ(t, x) − H
(
x, Dxϕ(t, x), D2

xϕ(t, x)
)

> 0,

∀ (t, x) ∈ Br (t̄, x̄) ∩ ([0, T ) × Oy). (29)

Note that for some δ > 0

ϕ(t, x) ≥ ϕ(t, x) + 2δ, ∀ (t, x) ∈ [0, T ) × Oy\Br (t̄, x̄).

By the definition of v∗ there exists a sequence (tn, xn) ∈ Br (t̄, x̄) such that

(tn, xn) → (t̄, x̄) and v(tn, xn) → v∗(t̄, x̄),

123



Utility maximization in an illiquid market in continuous. . .

as n goes to infinity. Thus, for n large enough

v(tn, xn) ≥ ϕ(tn, xn) − δ. (30)

For an arbitrary z ∈ A(C)(tn, xn) define a stopping time θn := inf{s ≥ tn :
(s, Xtn ,xn ,z

s ) /∈ Br (t̄, x̄)}. Note that θn < T , since t̄ + r < T . Applying Itô’s for-
mula to ϕ(s, Xtn ,xn ,z

s ) and by (29) we arrive at

ϕ(tn, xn) = E
[
ϕ
(
θn, X

tn ,xn ,z
θn

)
−

∫ θn

tn

(
∂tϕ + Lzϕ

(
Xtn ,xn ,z
u

)
du

) ]

≥ E
[
ϕ
(
θn, X

tn ,xn ,z
θn

)]
.

Note that (θn, X
tn ,xn ,z
θn

) /∈ Br (t̄, x̄), hence

ϕ(tn, xn) ≥ E
[
ϕ
(
θn, X

tn ,xn ,z
θn

)]
+ 2δ

which by (30) leads to

v(tn, xn) ≥ E
[
ϕ
(
θn, X

tn ,xn ,z
θn

)]
+ δ,

for every z ∈ A(C)(tn, xn). Since ϕ ≥ v, the above contradicts (17). �	

2.4 Comparison

In this section we prove the comparison principle. We write φ(p) instead of only φ

to indicate the exponent p. Notice that U (y) ≤ v(t, x) ≤ φ(p)(t, x) for all (t, x) ∈
[0, T ] × O and for p < p′ < 1 we have φ(p)(·) < φ(p′)(·). Let α ≥ 1 be a constant
and ω : [0,∞] → [0,∞] be such that ω(0+) = 0. Following Crandall et al. (1992)
the Hamiltonian needs to satisfy

H(x̄, α(x − x̄), N ) − H(x, α(x − x̄), N̄ ) ≤ ω(α|x − x̄ |2 + |x − x̄ |),

for all x, x̄ ∈ OT , N̄ and N ∈ S3, when

−3α

(
I3 0
0 I3

)
≤

(
N̄ 0
0 −N

)
≤ 3α

(
I3 −I3

−I3 I3

)
,

where I3 is the 3 × 3 identity matrix. This immediately implies

tr(σ (s, z)σ ′(s, z)N̄ ) − tr(σ (s̄, z)σ ′(s̄, z)N ) ≤ 3α|σ(s, z) − σ(s̄, z)|2, (31)

where σ(s, z)′ is the transpose of matrix σ(s, z).
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Lemma 2.4 Let Br be an open ball with radius r , α ≥ 1 and q = α(x − x̄) :=
α((s− s̄), (η− η̄), (y− ȳ)) ∈ Br such that y ≤ ȳ. Furthermore, let N , N̄ ∈ S3 satisfy
(31). Then, there is a constant c∗

r > 0 such that

H
(
x, q,N̄

) − H(x̄, q, N ) ≤ c∗
r α|x − x̄ |2.

Proof Let Br be an open ball with radius r . Define for all x ∈ Br

m∗
r := sup

x∈Br
C(y).

Then, for all x, x̄ ∈ Br with ȳ ≥ y we have by the monotonicity of the function C
and by (31)

H(x, q, N̄ ) − H(x̄, q, N ) = sup
|z|≤C(y)

{
b(s, η, z)q + 1

2
tr(σ (s, z)σ ′(s, z)N̄ )

}

− sup
|z|≤C(ȳ)

{
b(s̄, η̄, z)q + 1

2
tr(σ (s̄, z)σ ′(s̄, z)N )

}

≤ sup
|z|≤C(ȳ)

{|b(s, η, z) − b(s̄, η̄, z)||q|

+ 1

2
tr(σ (s, z)σ ′(s, z)N̄ ) − 1

2
tr(σ (s̄, z)σ ′(s̄, z)N )

}

≤ sup
|z|≤m∗

r

{|b(s, η, z) − b(s̄, η̄, z)||q| + 3α|σ(s, z) − σ(s̄, z)|2}

≤ Kr

√
(s − s̄)2 + (η − η̄)2|q| + 3αK 2

r (s − s̄)2

≤ Krα(2(s − s̄)2 + 2(η − η̄)2 + (y − ȳ)2) + 3αK 2
r (s − s̄)2

≤ c∗
r α|x − x̄ |2,

where Kr is the Lipschitz constant and c∗
r a sufficiently large constant. �	

Theorem 2.4 Let ε̄ > 0. Furthermore, let u (resp. v) be an upper semicontinuous
viscosity subsolution (resp. lower semicontinuous viscosity supersolution) of (10)
satisfying

U (y) ≤ u(t, x), v(t, x) ≤ φ(t, x), ∀ (t, x) ∈ [0, T ] × O.

Assume u(T, x) ≤ v(T, s, η, y + 2ε̄) on Oy . Then, for all ε̄ > 0,

u(t, x) ≤ v (t, s, η, y + 2ε̄) , on [0, T ) × Oy .

Proof 1. Let u be a viscosity subsolution on [0, T ) × Oy and v a viscosity superso-
lution on [0, T ) × O of (10) and ū(t, x) = eλt u(t, x) resp. v̄(t, x) = eλtv(t, x),
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where λ > 0. Then direct calculation shows that ū (resp. v̄) is a viscosity subso-
lution (resp. supersolution) of

−∂tw + λw − H
(
·, Dxw, D2

xw
)

= 0.

2. Let ε, δ ∈ (0, 1] and p be the exponent in the utility function. Then, fix p′ ∈ (0, 1)
so that p < p′. The function

uε,δ(t, x) :=
(
u − εφ(p′)

)
(t, x) − δ (2 log(s + 1) − log s + c(T − t))

is a viscosity subsolution to (10). Indeed, let ϕ be in C1,2([0, T ) × Oy) and
(t̃, x̃) ∈ [0, T )×Oy be such that (uε,δ −ϕ)(t̃, x̃) = max(uε,δ −ϕ). Furthermore,
define

ϕε,δ(t, x) := (ϕ + εφ(p′))(t, x) + �c(t, s),

where �c(t, s) = δ(2 log(s + 1) − log s + c(T − t)). Then, since u is a viscosity
subsolution of (10) and (u − ϕε,δ) has a maximum at (t̃, x̃) we see that

−∂tϕ
ε,δ(t̃, x̃) − H

(
x̃, Dxϕ

ε,δ(t̃, x̃), D2
xϕ

ε,δ(t̃, x̃)
)

≤ 0. (32)

Note that

H
(
x̃, Dx

(
εφ(p′)(t̃, x̃) + �c(t̃, s̃)

)
, D2

x

(
εφ(p′)(t̃, x̃) + �c(t̃, s̃)

))

= H
(
x̃, Dx

(
εφ(p′)(t̃, x̃)

)
, D2

x

(
εφ(p′)(t̃, x̃)

))
+ δK , (33)

where K =
(
μs̃

( 2
s̃+1 − 1

s̃

) − σ 2 s̃2
2

( 2
(s̃+1)2

− 1
s̃2
))
. For c ≥ K and by Lemma 2.2,

equations (32), (33) and the fact that − sup{Lzφ} − sup{Lzψ} ≤ − sup{Lzφ +
Lzψ} we arrive at

− ∂tϕ(t̃, x̃) − H(x̃, Dxϕ(t̃, x̃), D2
xϕ(t̃, x̃))

=
(
−∂tϕ

ε,δ + ε∂tφ
(p′)

)
(t̃, x̃) − δc − H

(
x̃, Dxϕ(t̃, x̃), D2

xϕ(t̃, x̃)
)

− H
(
x̃, Dx (εφ

(p′)(t̃, x̃) + �c(t̃, s̃)), D2
x (εφ

(p′)(t̃, x̃) + �c(t̃, s̃))
)

+ H
(
x̃, Dx (εφ

(p′)(t̃, x̃) + �c(t̃, s̃)), D2
x (εφ

(p′)(t̃, x̃) + �c(t̃, s̃))
)

≤
(
−∂tϕ

ε,δ + ε∂tφ
(p′)

)
(t̃, x̃) − δc − H

(
x̃, Dxϕ

ε,δ(t̃, x̃), D2
xϕ

ε,δ(t̃, x̃)
)

+ H
(
x̃, Dx (εφ

(p′)(t̃, x̃) + �c(t̃, s̃)), D2
x (εφ

(p′)(t̃, x̃) + �c(t̃, s̃))
)

≤ H
(
x̃, Dx (εφ

(p′)(t̃, x̃) + �c(t̃, s̃)), D2
x (εφ

(p′)(t̃, x̃) + �c(t̃, s̃))
)
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− H
(
x̃, Dxεφ

(p′)(t̃, x̃), D2
xεφ

(p′)(t̃, x̃)
)

+ H
(
x̃, Dxεφ

(p′)(t̃, x̃), D2
xεφ

(p′)(t̃, x̃)
)

+ ε∂tφ
(p′)(t̃, x̃) − δc

≤ H
(
x̃, Dx (εφ

(p′)(t̃, x̃) + �c(t̃, s̃)), D2
x (εφ

(p′)(t̃, x̃) + �c(t̃, s̃))
)

− H
(
x̃, Dxεφ

(p′)(t̃, x̃), D2
xεφ

(p′)(t̃, x̃)
)

− δc

= δ(K − c) ≤ 0.

3. Let ε, ε̄, δ ∈ (0, 1] and fix p′ ∈ (0, 1) such that p < p′. Recall, that p is the
exponent in the utility function. Set x (2ε̄) := (s, η, y + 2ε̄) and notice that

U (y) ≤ u(t, x), v(t, x) ≤ φ(p)(t, x)

implies

−v
(
t, x (2ε̄)

)
≤ −U (y + 2ε̄) ≤ −U (2ε̄) < ∞.

Observe that, for p′ ∈ (0, 1) such that p < p′, there exists a positive constant
c(ε, p, p′) satisfying

φ(p)(t, x) − εφ(p′)(t, x) ≤ c(ε, p, p′), ∀ (t, x) ∈ [0, T ] × O.

The function uε,δ(t, x) − v
(
t, x (2ε̄)

)
is upper semicontinuous and in view of

lim|x |→∞ sup
t∈[0,T ]

uε,δ(t, x) − v
(
t, x (2ε̄)

)

≤ lim|x |→∞ sup
t∈[0,T ]

c(ε, p, p′) −U (2ε̄)

− δ(2 log(s + 1) − log s + c(T − t)) = −∞

attains a maximum (t̃, x̃) ∈ OT . Set

max
OT

uε,δ(t, x) − v
(
t, x (2ε̄)

)
=:m.

If m ≤ 0, then for all (t, x) ∈ OT we have

u(t, x) − v
(
t, x (2ε̄)

)
= lim

ε,δ→0
uε,δ(t, x) − v

(
t, x (2ε̄)

)
≤ 0
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and we can conclude. Next, assume on the contrary

max
OT

uε,δ(t, x) − v
(
t, x (2ε̄)

)
= m > 0 (34)

and consider the following cases:
(i) if t̃ = T , then u(t̃, x̃) ≤ v

(
t̃, x̃ (2ε̄)

)
contradicts (34),

(ii) if s̃ = 0, then uε,δ(t̃, x̃) − v
(
t̃, x̃ (2ε̄)

) = −∞ which contradicts m < ∞,
(iii) ỹ = 0 is possible, but by assumption u is a viscosity subsolution on [0, T )×Oy .
Thus, the maximizer (t̃, x̃) is in [0, T ) × Oy .

4. Let ε, ε̄, δ ∈ (0, 1], α ≥ 1 and define the region

C(ε̄) = {(t, x), (t̄, x̄) | (t, x) ∈ [0, T ] × O, (t̄, s̄, η̄, ȳ − ε̄) ∈ [0, T ] × O}.

If (t, x), (t̄, x̄) ∈ C(ε̄), then ȳ ≥ ε̄ and

−v(t̄, x̄) ≤ −U (ȳ) ≤ −U (ε̄).

Consider the upper semicontinuous function

ψε,ε̄,δ,α(t, t̄, x, x̄) = uε,δ(t, x) − v(t̄, x̄) − α

2
φ(t, t̄, x, x̄)

φ(t, t̄, x, x̄) =
(
|t − t̄ |2 + |s − s̄|2 + |η − η̄|2 + |y − ȳ + 2ε̄|2

)
.

In view of

lim|x |,|x̄ |→∞ sup
t,t̄∈[0,T ]

ψε,ε̄,δ,α(t, t̄, x, x̄) = −∞

weclaim thatψε,ε̄,δ,α attains amaximumat (tα, t̄α, xα, x̄α)with (tα, xα), (t̄α, x̄α) ∈
C(ε̄) so that

max
(t,x),(t̄,x̄)∈C(ε̄)

ψε,ε̄,δ,α(t, t̄, x, x̄) = :mα.

More precisely, we assume without loss of generality that mα > 0 and for all
ε, ε̄, δ ∈ (0, 1] and α ≥ 1 there exists α∗ := α(ε, ε̄, δ, p, p′) such that for all
α > α∗ the maximizer (tα, xα), (t̄α, x̄α) ∈ [0, T ] × R+ × R × [ε̄,∞). Indeed,
(i) For any (t, x), (t̄, x̄) ∈ C(ε̄)

ψε,ε̄,δ,α(t, t̄, x, x̄) ≤ c(ε, p, p′) −U (ε̄) − δ(2 log(s + 1) − log s + c(T − t)).

Hence, there exists s1 := s1(ε, ε̄, δ, p, p′) and s2 := s2(ε, ε̄, δ, p, p′) such
that 0 < s1 ≤ s2 < ∞ and

ψε,ε̄,δ,α(t, t̄, x, x̄) ≤ 0,
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if s /∈ [2s1, 1
2 s2].

(ii) Again for any (t, x), (t̄, x̄) ∈ C(ε̄)

ψε,ε̄,δ,α(t, t̄, x, x̄) ≤ c(ε, p, p′) −U (ε̄) − α

2
φ(t, t̄, x, x̄).

Hence, the maximum of ψε,ε̄,δ,α is achieved in the region

φ(t, t̄, x, x̄) <
2

α

(
c(ε, p, p′) −U (ε̄)

)
.

Suppose that

α > α∗ = (c(ε, p, p′) −U (ε̄))

2s21
.

Then,

φ(t, t̄, x, x̄) <
2

α

(
c(ε, p, p′) −U (ε̄)

) ⇒ φ(t, t̄, x, x̄) < s21/4.

In view of the definition of φ we conclude that |s − s̄| ≤ s1/2. Since, s1 ≤ s2,
using step i), we can restrict s, s̄ in [s1, s2] provided that α > α∗.

(iii) For any (t, x), (t̄, x̄) ∈ C(ε̄) and s, s̄ ∈ [s1, s2]

ψε,ε̄,δ,α(t, t̄, x, x̄) ≤ φ(p)(t, x) − εφ(p′)(t, x) −U (ε̄).

Hence, there exists c1 := c1(ε, ε̄, p, p′) < ∞ so that if |η| > c1 or y > c1,
then ψε,ε̄,δ,α < 0. Therefore, we can restrict the maximization of ψε,ε̄,δ,α to
|η| < c1 and y < c1. Notice that yα = 0 and ȳα ≥ ε̄ is possible.

Next, we claim that

lim
α→∞

α

2
φ
(
tα, t̄α, xα, x̄α

) = 0 and lim
α→∞mα = m.

Indeed, since φ is positive, mα is decreasing when α increases. Furthermore,

m α
2

≥ uε,δ(tα, xα) − v(t̄α, x̄α) − α

4
φ(tα, t̄α, xα, x̄α)

= mα + α

4
φ(tα, t̄α, xα, x̄α).

Thus, 0 ≤ α
2φ(tα, t̄α, xα, x̄α) ≤ 2(m α

2
− mα). Since mα is a non-increasing

function of α and since it is bounded from below by zero, it has a limit as α

tends to zero. Hence, the difference m α
2

− mα converges zero as α approaches to

123



Utility maximization in an illiquid market in continuous. . .

zero. This in turn implies α
2φ(tα, t̄α, xα, x̄α) → 0. Assume now αn → ∞ and

(tαn , t̄αn , xαn , x̄αn ) → (t∗, t̄∗, x∗, x̄∗). Then,

φ
(
tαn , t̄αn , xαn , x̄αn

) → 0

which by continuity leads to φ(t∗, t̄∗, x∗, x̄∗) = 0. This implies tαn , t̄αn →
t∗, sαn , s̄αn → s∗, ηαn , η̄αn → η∗, yαn → y∗ and ȳαn → y∗ + 2ε̄. Note that since
y∗ ≥ 0, we obtain ȳαn > ε̄. Therefore, ȳαn is an interior point. Next, we prove

limα→∞ mα = m. Set x (2ε̄)
αn := (sαn , ηαn , yαn +2ε̄) and x∗(2ε̄) = (s∗, η∗, y∗+2ε̄).

Notice that

mαn ≥ supψε,ε̄,δ,αn
(
t, t, x, x (2ε̄)

)
= m

which implies m ≤ mαn . Moreover, since uε,δ − v is upper semicontinuous we
see that

m ≤ mαn ≤ uε,δ(tαn , xαn ) − v(t̄αn , x̄αn )

and

m ≤ lim sup
αn→∞

mαn ≤ uε,δ(t∗, x∗) − v
(
t̄∗, x̄∗(2ε̄)

)
≤ m.

5. Since (tα, t̄α, xα, x̄α)α converges to
(
t∗, t∗, x∗, x∗(2ε̄)

)
with (t∗, x∗) ∈ [0, T ) ×

Oy , for allα sufficiently large (tα, xα) ∈ [0, T )×Oy and (t̄α, x̄α) ∈ OT .Moreover,
since (tα, xα, t̄α, x, x̄α) is a maximum of uε,δ − φα − v, by freezing the variables
(t̄α, x, x̄α), we conclude that (tα, xα) is a maximum of

(t, x) → uε,δ(t, x) − α

2
φ(t, t̄α, x, x̄α)

and (t̄α, x̄α) is a local minimum of

(t̄, x̄) → v(t̄, x̄) + α

2
φ(tα, t̄, xα, x̄).

Set α
2φ=:φα . Following Crandall et al. (1992) by Ishii’s lemma for all ι > 0 there

exist M, N ∈ S3 such that

(
∂tφα(tα, t̄α, xα, x̄α), Dxφα(tα, t̄α, xα, x̄α), M

)
∈ P̄2,+uε,δ(tα, xα)

(
− ∂t̄φα(tα, t̄α, xα, x̄α),−Dx̄φα(tα, t̄α, xα, x̄α), N

)
∈ P̄2,−v(t̄α, x̄α)

and
(
M 0
0 −N

)
≤ D2

x,x̄φα((tα, t̄α, xα, x̄α) + ιD2
x,x̄φα((tα, t̄α, xα, x̄α))2.
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Choosing ι = 1
α
we arrive at

−3α

(
I3 0
0 I3

)
≤

(
M 0
0 −N

)
≤ 3α

(
I3 −I3

−I3 I3

)
.

Note that

tr(σ (sα, z)σ (sα, z)′M − σ(s̄α, z)σ (s̄α, z)′N ) ≤ 3α|σ(sα, z) − σ(s̄α, z)|2.

The viscosity subsolution property of uε,δ resp. viscosity supersolution property
of v in terms of superjets and subjets lead to

−α(tα − t̄α) + λuε,δ(tα, xα) − H(xα, α(xα − x̄α), M) ≤ 0

−α(tα − t̄α) + λv(t̄α, x̄α) − H(x̄α, α(xα − x̄α), N ) ≥ 0.

Set pα = α((sα − s̄α), (ηα − η̄α), (yα − ȳα + 2ε̄)). Subtracting the above two
inequalities and by Lemma 2.4 we arrive at

λ(uε,δ(tα, xα) − v(t̄α, x̄α))

≤ H(xα, pα, M) − H(x̄α, pα, N )

≤ sup
|z|≤C(ȳα+2ε̄)

{
(b(sα, ηα, z) − b(s̄α, η̄α, z))pα

+ 1

2
tr(σ (sα, z)σ (sα, z)′M − σ(s̄α, z)σ (s̄α, z)N )

}

≤ c∗
r α

[
|sα − s̄α|2 + |ηα − η̄α|2

]

≤ c∗
r αφ(tα, xα, t̄α, x̄α) → 0,

when α → ∞. This contradicts (34). Thus uε,δ(t̃, x̃) − v
(
t̃, x̃ (2ε̄)

) ≤ 0. We
conclude the proof by noting

u(t̃, x̃) − v
(
t̃, x̃ (2ε̄)

)
= lim

ε,δ→0
uε,δ(t̃, x̃) − v

(
t̃, x̃ (2ε̄)

)
≤ 0.

�	

Remark 2.3 Let ε̄ > 0. The condition u(T, x) ≤ v(T, s, η, y+2ε̄) is natural. Indeed,
since the utility function U is non-decreasing in y, u(T, x) ≤ U (y) and U (y) ≤
v(T, x) imply

u(T, x) ≤ U (y) ≤ U (y + 2ε̄) ≤ v(T, s, η, y + 2ε̄).
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2.5 Uniqueness: almost!

If the upper and lower semicontinuous envelopes of the value function at final time T
coincide withU (y), then the comparison principle immediately implies that the value
function is essentially the unique discontinuous viscosity solution of (10). By this we
mean that any the upper semi-continuous envelope of any other solution agrees with
the semi-continuous envelope of the value function.

For a function h(t, s, η, y) that is non-decreasing in the y-variable, we define

h+(t, s, η, y) := lim
ε↓0 h(t, s, η, y + ε).

Corollary 2.3 Let u and v be viscosity solutions of (10) that are non-decreasing in
the y-variable. We assume further that they satisfy,

(i) U (y) ≤ u(t, x), v(t, x) ≤ φ(t, x) for all (t, x) ∈ [0, T ] × O,
(ii) u∗(T, x) = v∗(T, x) = U (y) for all x ∈ Oy .

Then u∗(t, x) = v∗(t, x) and u(+)∗ (t, x) = v
(+)∗ (t, x) for all (t, x) ∈ [0, T ) × Oy .

Proof Observe that u∗(+) = u∗. From U (y) ≤ u(t, x), v(t, x) on [0, T ] × O it
immediately follows that v∗(T, x), u∗(T, x) ≥ U (y). Assumption (ii) implies

u∗(T, x) = U (y) ≤ U (y + ε̄) ≤ v∗(T, x (ε̄)),

where x (ε̄) = (s, η, y+ε̄). Thus, Theorem 2.4 implies

v∗(t, x) ≤ u(+)∗ (t, x) ≤ u∗(+)(t, x) = u∗(t, x) ≤ v(+)∗ (t, x) ≤ v∗(t, x)

for all (t, x) ∈ [0, T ) × Oy . Hence, v∗(t, x) = u∗(t, x) and u(+)∗ (t, x) = v
(+)∗ (t, x)

for all (t, x) ∈ [0, T ) × Oy . �	
Theorem 2.4 together with the Lemma below implies that the value function is a

unique discontinuous viscosity solution of the Hamilton–Jacobi–Bellman equation,
in the sense that all non-decreasing solutions have the same upper semi-continuous
envelope.

Lemma 2.5 Let v be the value function. Then,

v∗(T, x) = v∗(T, x) = U (y)

for all x ∈ O.

Proof For any (t, x) ∈ [0, T ] × O, v(t, x) ≥ U (y). Thus, v∗(T, x) ≥ U (y). Let
(t, x) ∈ [0, T ] × O, z ∈ A(C)(t, x),

J (t, x, z) = E
[
U

(
Y t,x,z
T

)] = E
[
U

(
Y t,x,z
T

)
χ{τ (N )=T }

] + E
[
U

(
Y t,x,z
T

)
χ{τ (N )<T }

]
,
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where N ∈ N and τ (N ) = τ
(N )
t,x,z is defined by

τ (N ) = inf{u ∈ [t, T ] : φ( 12 )(u, Xt,x,z
u ) = N , P-a.s.} ∧ T .

1. On the set {u ≤ τ (N )}

φ( 12 )
(
u, Xt,x,z

u

) ≤ N , ∀ u ∈
[
t, τ (N )

]
.

This implies that there is a constant c1 > 0 so that

Y t,x,z
u ≤ c1N

2, ∀ u ∈
[
t, τ (N )

]

and

|zu | ≤ C
(
Y t,x,z
u

) ≤ C(c1N
2), ∀ u ∈

[
t, τ (N )

]
.

Furthermore, there is a constant c2 > 0 so that

(
η
t,s,η,z
u

)2

St,su
≤ c2N

2, ∀ u ∈
[
t, τ (N )

]
.

Set

bu := b
(
St,su , ηt,s,η,z

u , zu
)
, σu := σ(St,su , zu).

The above estimates and the definition of b and σ imply that there is a constant
c3(N ), depending only on N and not on t, x, z so that

|bu | ≤ c3(N )
(
1 + St,su

)
, |σu | ≤ c3(N )

(
1 + St,su

)
.

Therefore, there exists another constant c4(N ) so that

E
[
|Y t,x,z

T − y|2
]

≤ 2E
[( ∫ T

t
budu

)2] + 2E
[( ∫ T

t
σudWu

)2]

≤ c4(N )
(
1 + s2

) [
(T − t)2 + (T − t)

]
. (35)

2. By Corollary 2.1 and by the definition of τ (N ),

NP[τ (N ) < T ] = E

[
φ

(
1
2

) (
τ (N ), Xt,x,z

τ (N )

)
χ{τ (N )<T }

]

≤ E

[
φ

(
1
2

) (
τ (N ), Xt,x,z

τ (N )

)]

≤ φ( 12 )(t, x).
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Therefore,

P[τ (N ) < T ] ≤ φ( 12 )(t, x)

N
,

which implies limN→∞ P[τ (N ) < T ] = 0.
3. By concavity of U and by (35) we arrive at

E
[
U (Y t,x,z

T )χ{τ (N )=T }
]

≤ E
[
(U (y) +U ′(y)

(
Y t,x,z
T − y

)
)χ{τ (N )=T }

]

= U (y)P[τ (N ) = T ] +U ′(y)E
[(
Y t,x,z
T − y

)
χ{τ (N )=T }

]

≤ U (y)P[τ (N ) = T ] +U ′(y)E
[
|Y t,x,z

T − y|2
] 1
2
P[τ (N ) = T ] 12

≤ U (y) − |U (y)|P[τ (N ) < T ] + |U ′(y)|E
[
|Y t,x,z

T − y|2
] 1
2
P[τ (N ) = T ] 12

≤ U (y) + |U ′(y)|
√
c4(N )(1 + s2)

(
(T − t)2 + (T − t)

)
P[τ (N ) = T ] 12 .

Hence, for every N ,

lim
(t ′,x ′)→(T,x)

sup
z∈A(C)(t ′,x ′)

E

[
U

(
Y t ′,x ′,z
T

)
χ{τ (N )

t ′,x ′,z=T }

]
≤ U (y). (36)

4. Let p′ ∈ (0, 1) and p < p′, where p is the exponent in the utility function U .
Hölder’s inequality with q = p′

p′−p and Corollary 2.1 reveal

E
[
U

(
Y t,x,z
T

)
χ{τ (N )<T }

] ≤ E
[
φ(p) (T, Xt,x,z

T

)
χ{τ (N )<T }

]

≤ c
(
p, p′) E

[
φ(p′) (T, Xt,x,z

T

)] p
p′ P

[
τ (N ) < T

] 1
q

≤ c
(
p, p′)φ(p′)(t, x)

p
p′
(
φ( 12 )(t, x)N−1

) 1
q

,

where c(p, p′) is a positive constant. Hence,

lim sup
(t ′,x ′)→(T,x)

sup
z∈A(C)(t ′,x ′)

E

[
U

(
Y t ′,x ′,z
T

)
χ{τ (N )

t ′,x ′,z<T }

]
≤ c(T, x, p, p′)(N−1)

1
q ,

(37)

where c(T, x, p, p′) is a positive constant.
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5. We combine (36), (37) and let N → ∞ to arrive at

v∗(T, x) = lim sup
(t ′,x ′)→(T,x)

sup
z∈A(C)(t ′,x ′)

J (t ′, x ′, z) ≤ U (y).

�	

3 Numerical results

In this section we provide numerical results that were also given in the earlier paper of
the authors (Soner and Vukelja 2013). In that paper the discrete-time approximation
of problem (9) is used to compute the optimal strategy z and the value function w.
However, the convergence of the scheme is not discussed there. Here, w is the value
function of the discrete-time approximation. In the discrete-time approximation the
control z is always bounded. Thus, the condition |zu | ≤ C(Y t,x,z

u ) for all u ∈ [t, T ] P-
a.s. is not needed. For admissibilityweonly needY t,x,z

u > 0.Moreover, in discrete time
we alwayswork on a bounded domain and therefore the condition holds for sufficiently
large functionsC . More details are provided in the thesis of the second author (Vukelja
2014). In particular, the convergence of this algorithm is studied in Vukelja (2014) as
well. Since the approximating scheme is the dynamic programming equation of the
discretized optimal control problem, this numerical scheme is monotone. Hence, one
can employ the classical (Barles and Souganidis 1991) result, proving the convergence
of the value functions at the points of discontinuity. Since the value function is possibly
discontinuous, one does not expect to design a numerical scheme that converges at all
points. Moreover, the possible discontinuity points are expected to be small and most
likely at the boundary.

Here we give a brief discussion of this result and for further details we refer to
Vukelja (2014).

Let vh be the solution of the discretized problem where h > 0 is the discretization
parameter. Following the Barles and Souganidis procedure, we define the relaxed
limits,

u(x) := lim sup
x ′→x,h↓0

vh, u(x) := lim inf
x ′→x,h↓0

vh .

By standard techniques, one can show that u is a viscosity sub-solution and u is a
viscosity super-solution of the Eq. (10). Let v be the value function for the continuous
time problem. We now apply the comparison result Theorem 2.4 as in Corollary 2.3
(and Lemma 2.5) to conclude :

• Since u is an upper semi-continuous sub-solution, v∗ is a super-solution of (10),
(v∗)∗ = v∗,

u ≤ (v∗)∗ = v∗;
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Fig. 1 Optimal trading strategy z∗. a At time step 1, b at different time steps k

• Since v∗ is a sub-solution, u is a lower semi-continuous super-solution of (10),

v∗ ≤ (u)∗ ≤ u;

• The above inequalities imply that

u = (v∗)∗ = v∗ = (u)∗.

Furthermore, Soner and Vukelja (2013) show that in this setting the dynamic pro-
gramming principle (DPP) holds true. Thus, we can develop an efficient algorithm
to compute the optimal strategy z∗ and the value function w backwards in time.
The optimal stochastic control problem (9) has three state variables; however, the
homotheticity property of the CRRA utility function reduces the problem to two state
variables ψ· = η·

S· and Ỹ· = Y·
S· . For more details on the dynamics of ψ and Ỹ and

the (DPP) we refer to Soner and Vukelja (2013). Clearly, the optimal trading strategy
depends on the initial data ψ, ỹ and the time step k, i.e., z∗(k, ψ, ỹ).

We set p = 0.25, σ = 0.3, μ = 0.04, κ = 5, N = 40, T = 2 and M = 0.01.
The optimal trading strategy z∗ is plotted in Fig. 1. Figure 1a shows that the optimal
strategy grows almost linearly in ψ and it seems that it changes less in ỹ. This comes
from the fact, that the state variableψ = η

s = l
s −2Mz depends on the strategy z. If we

fix l/s, for instance set l/s = 0 and plug in the computed optimal strategy z∗(k, ψ, ỹ),
then ψ = −2Mz∗(k, ψ, ỹ). Furthermore, for fixed (k, ỹ) we can find the fixed point
ψ such that ψ = −2Mz∗(k, ψ, ỹ). Let ψ∗ be that fixed point. Then, define

z̄∗ = z∗(k, ψ∗, ỹ).

We plot z̄∗ in Fig. 1b. It shows that z̄∗ is increasing in ỹ.
In Fig. 2 we plot the graph of the corresponding value function at time step 39,

Fig. 2a resp. at time step 1, Fig. 2b. We see that local arbitrage is possible, i.e., the
value function w is for some values of ψ larger than the Merton value function vm
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(a) (b)

ỹ
ψ

w

ỹ
ψ

w

Fig. 2 Value function w at different time steps. a At time step 39, b at time step 1

Table 1 Difference of w and
vm

M = 0.01 M = 0.05 M = 0.09

−0.0057 −0.0157 −0.0242

−0.0056 −0.0169 −0.0243

−0.0059 −0.0176 −0.0247

−0.0067 −0.0184 −0.0254

−0.0075 −0.0193 −0.0259

−0.0083 −0.0200 −0.0264

−0.0091 −0.0208 −0.0269

−0.0099 −0.0216 −0.0273

−0.0107 −0.0224 −0.0278

−0.0114 −0.0231 −0.0283

−0.0120 −0.0238 −0.0288

with no friction. When initial liquidity premium exists in the observed stock price,
then it is intuitively expected that the investor may and does use this to achieve a
value larger than the Merton one. Figure 2 also shows that the value function is not
concave. In Table 1 we compute the difference of the value function in the liquidity
risk setup w and Merton’s value function vm for different values of M when ψ = 0. It
shows thatw ≤ vm . For a proof of this statement we refer to Soner andVukelja (2013).
Furthermore, as expected,when the depth parameterM increases the differencew−vm

decreases.

Appendix

In this appendix we provide details on the proof of Lemma 2.2. We only prove the
lemma when p < 1, p 
= 0. The case p = 0 is proved analogously. For this, set

ξ := βy + η2

s and note that η2

s ≤ ξ . Let c1, ε, ε1, ε2 ∈ R and c2 > 0 be given
constants. Direct computations reveal
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−(c1ηz + c2z
2s) = −

( c1η

2
√
c2s

+ √
c2sz

)2 + c21
4c2

η2

s
≤ c21

4c2
ξ (38)

(zη)2 = z2
η2

s
s ≤ ξ z2s

−ηz
(η2

s

)
≤ 1

4

(η2

s

)2 + z2η2 ≤ 1

4
ξ2 + z2sξ (39)

η2z(1 − Mz) = (ε1sz(1 − Mz))2 −
(
ε1zs(1 − Mz) − η2

2ε1s

)2 +
( η2

2ε1s

)2

≤ (ε1sz(1 − Mz))2 + 1

4ε21
ξ2 (40)

sηz2(1 − Mz) ≤ (ε2zs(1 − Mz))2 + ξ z2s

4ε22
(41)

ξ p−1βμzs(1 − Mz) ≤ ξ p−2(εzs(1 − Mz))2 +
(βμ

2ε

)2
ξ p. (42)

Set φ̃(s, η, y) = 1
p

(
βy + η2

s

)p
. Equations (38)–(42) reveal

Lz φ̃ = ξ p−1
(
(−2κ − μ)

η2

s
− (4M(κ + μ) + βκ)ηz − 2Mκβz2s

)

+ ξ p−1μβzs(1 − Mz)+ σ 2ξ p−1
(η2

s
+ 4M2z2s

)
− σ 2(1 − p)

2
ξ p−2

((η2

s

)2

+ (4Mηz)2 + β2(zs(1 − Mz))2
)

+ 4Mσ 2ξ p−1ηz + σ 2(1 − p)ξ p−2

×
(

− 4Mzη
η2

s
+ βzη2(1 − Mz) + 4Mβηsz2(1 − Mz)

)

≤
(

− 2κ − μ + σ 2
)η2

s
ξ p−1 − ((4M + β)κ + 4M(μ − σ 2))ηzξ p−1

+ ξ p−1μβzs(1 − Mz) − (2Mκβ − 4(Mσ)2)z2sξ p−1

− βσ 2(1 − p)

2
(βzs(1 − Mz))2ξ p−2 − 4Mσ 2(1 − p)ξ p−2zη

η2

s
+ 4Mβσ 2(1 − p)ξ p−2ηsz2(1 − Mz) + βσ 2(1 − p)ξ p−2η2z(1 − Mz)

≤
(

− 2κ − μ + σ 2
)+

ξ p − ((4M + β)κ + 4M(μ − σ 2))ηzξ p−1

+ ξ p−1μβzs(1 − Mz) − (2Mκβ − 4(Mσ)2)z2sξ p−1

− βσ 2(1 − p)

2
(βzs(1 − Mz))2ξ p−2

+ 4Mσ 2(1 − p)ξ p−2
(1
4
ξ2 + z2sξ

)
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+ βσ 2(1 − p)ξ p−2
(
(ε1sz(1 − Mz))2 + 1

4ε21
ξ2

)

+ 4Mβσ 2(1 − p)ξ p−2
(
(ε2zs(1 − Mz))2 + ξ z2s

4ε22

)

≤ c̄ξ p − c1ηzξ
p−1 − c2z

2sξ p−1 + ξ p−1μβzs(1 − Mz)

− (zs(1 − Mz))2ξ p−2ε2,

Setting

c̄ = (−2κ − μ + σ 2)+ + Mσ 2(1 − p) + βσ 2(1 − p)

4ε21
c1 = (4M + β)κ + 4M(μ − σ 2)

c2 = 2Mκβ − 4(Mσ)2 − 4Mσ 2(1 − p) − βMσ 2(1 − p)

ε22

ε2 = σ 2(1 − p)β
(β

2
− ε21 − 4Mε22

)+
.

Set ε1 = 1 and ε22 = β
16M . It follows that ε2 > 0 if β > 4 and c2 > 0 if β >

σ 2(2M+2(1−p)+8M(1−p))
κ

. Using (42) we arrive at

Lzφ̃ ≤ c̄ξ p + c21
4c2

ξ p +
(βμ

2ε

)2
ξ p =: αξ p.
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