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Abstract We establish the existence and characterization of a primal and a dual
facelift—discontinuity of the value function at the terminal time—for utility maxi-
mization in incomplete semimartingale-driven financial markets. Unlike in the lower
and upper hedging problems, and somewhat unexpectedly, a facelift turns out to exist
in utility maximization despite strict convexity in the objective function. In addition
to discussing our results in their natural, Markovian environment, we also use them
to show that the dual optimizer cannot be found in the set of countably additive (mar-
tingale) measures in a wide variety of situations.
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1 Introduction

Valuation, or pricing, is one of the central problems in mathematical finance. Its goal
is to assign a monetary value to a contingent claim based on the economic principles
of supply and demand. When the claim is liquidly traded in a financial market, the
only meaningful notion of price is the one at which the claim is trading. When the
claim is not traded, but is replicable in an arbitrage-free market, its unique price is de-
termined by the no-arbitrage principle. The case of a nonreplicable claim is the most
complex one. Here, the no-arbitrage principle alone does not suffice, and additional
economic input is needed. This input usually comes in the form of a risk profile of the
agents involved in the transaction. In extreme cases, one comes up with the notions
of upper and lower hedging prices, whereas in between those, the pricing procedure
typically involves a solution of a utility maximization problem.

Utility maximization problems arise in contexts such as optimal investment and
equilibrium problems. In fact, they play a central role in mathematical finance and
financial economics. This fact is quite evident from the range of literature both in
mathematics as well as economics and finance that treats them. Instead of providing
a list of the most important references, we simply point the reader to the monograph
[12] and the references therein for a thorough literature review from the inception
of the subject to 1998. The more recent history, at least as far as the relevance to
the present paper is concerned, can be found in the papers [11] and [5], where the
problem is treated in great mathematical generality.

Both in pricing and utility maximization, there is a significant jump in mathemati-
cal and conceptual difficulty as one transitions from complete to incomplete models.
In pricing, it is well known that the upper (and lower) hedging price of a nonrepli-
cable claim cannot be expressed as the expectation under a (local, σ -) martingale
measure (see [6, Theorem 5.16]). In other words, when viewed as a linear optimiza-
tion problem over the set of martingale measures, the value of the upper hedging
problem is attained only when a suitable relaxation is introduced. This relaxation al-
most always (implicitly or explicitly) involves a closure in the weak∗ topology and
the passage from countably additive to merely finitely additive measures. This phe-
nomenon is well understood not only from the functional-analytic, but also from the
control-theoretic and analytic points of view. Indeed, stochastic target problems (in-
troduced in [21]; see [22, Chap. 8] for an overview and further references) provide an
approach using the related partial differential equations. We also understand that the
passage from countable to finite additivity corresponds, loosely speaking, to the lack
of weak compactness of minimizing sequences, and that it often leads to a disconti-
nuity in the problem’s value function at the terminal time. In mathematical finance,
this naturally leads to a “facelifting” procedure where one upper-hedges (or lower-
hedges) a contingent claim by (perfectly) hedging another contingent claim whose
payoff is an upper majorant of the original payoff in a specific class (see, e.g., [2,
3, 19–21, 7], and [4]). Let us note that in the present paper, the term facelift refers
to a formally different concept. Namely, it pertains to the discontinuity of the value
function in an optimization problem at the terminal time. This is related—but not
identical—to the terminology used, for example, in [7], where “facelift” refers to the
modified replicable claim, which is perfectly replicated in order to superhedge the
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original claim. However, in a typical Markovian setting, such a claim will be given as
a function of the state variables, whose difference from the original payoff is exactly
the size of the discontinuity in the value function (superreplication price). Yet other,
slightly different interpretations can be found in the literature, but they all seem to
fall within the conceptual ballpark of our use.

The literature on nonlinear problems such as utility maximization and utility-based
pricing is much narrower in scope. In this context, one must also distinguish between
the need for relaxation and the existence of a facelift. Whereas, as we show below,
the existence of a facelift is related to the nonexistence of a minimizer without an ap-
propriate relaxation in most cases of interest, the opposite implication does not hold.
In fact, the only known cases in the literature where it is shown that a relaxation is
necessary (in [11] and [8]) do not come with a facelift (as can be deduced from our
main theorem). Moreover, they appear in non-Markovian settings, are constructed us-
ing heavy functional-analytic machinery (the Rosenthal subsequence splitting lemma
in [8], e.g.) and do not involve a nonreplicable random endowment.

When a nonreplicable random endowment is present—which is invariably the case
when one wants to consider pricing approaches other than marginal utility-based pric-
ing (such as indifference or conditional marginal pricing)—no answer can be found
in the existing literature. Indeed, the papers [5, 13], and others treat such problems
theoretically, and both pose and solve a class of dual utility maximization problems
over an appropriate relaxation of the set of (σ - or local) martingale measures. Intu-
itively, this relaxation is helpful because of the interplay between the strong intertem-
poral admissibility constraints on the trading strategies and the sudden appearance of
the endowment at the terminal date. Nevertheless, no rigorous proof of the necessity
of such an enlargement has been given in the literature before. One can speculate
that one reason why such results do not exist is because we never expected to see
a facelift in such problems. Therefore, by a somewhat perverted logic, we did not ex-
pect a finitely additive relaxation to be truly necessary, except in pathological cases.
After all, the objective function is strictly convex—there are no “flat parts” to produce
infinite Hamiltonians and the related explosion in control, which leads to the emer-
gence of a facelift (see, e.g., [15, Sect. 4.3.2] for an accessible treatment). Indeed,
if one tries to apply the “exploding Hamiltonian” test to virtually any Markovian
incarnation of a (primal or dual) utility maximization problem with a random en-
dowment, the results will be inconclusive—the Hamiltonian never explodes. It came
consequently as a great surprise to us when we discovered that the “Hamiltonian test”
is impotent in this case and that the facelift appears virtually generically. Moreover,
there is no need for pathology at all. As we explain in our illustrative Sect. 2, in what
one can quite confidently call the “simplest nontrivial incomplete utility maximiza-
tion problem with nonreplicable random endowment,” the facelift invariably appears.
Moreover, in many setups, every time it appears, one can show that the corresponding
dual problem does not admit a minimizer in the class of countably additive measures.
This fact is not only of theoretical value; it has important implications for the nu-
merical treatment of the problem. Indeed, the lack of countable additivity of the dual
optimizer points to a particularly unwieldy type of unboundedness—or, worse, the
nonexistence—of the optimal dual control.

After the aforementioned illustrative example in Sect. 2, we turn to a general semi-
martingale model of a financial market in Sect. 3 and analyze the asymptotic behavior
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of the value function of the dual utility maximization problem with random endow-
ment as the time horizon shrinks to 0. While keeping the same underlying market
structure, we let the random endowment vary with the horizon in a rather general
fashion. We show here that the limiting value of the value function exists under min-
imal conditions on the inputs, compute its value explicitly, and argue that it often
differs from the limiting value of the objective, that is, that a facelift exists.

The choice of the shrinking time horizon—as opposed to the one of Sect. 2, where
the current time gets closer and closer to the horizon—is made here for mathemat-
ical convenience. Whereas it may be of interest in it own right when one wants to
study utility maximization on very short horizons, our main concern is to understand
how the value function of the (dual) utility maximization problem behaves close to
maturity. In Markovian models, as described in Sect. 3.6, the two views can be rec-
onciled by observing that various control problems corresponding to the same value
of the state variable, but varying values of the time parameter, can be coupled on the
same probability space. In this way, the study of the “forward” convergence of value
functions can be aided by the natural RCLL properties of trajectories of canonical
Markov processes and the abstract results of Sect. 3.

In Sect. 4, we take up a related problem and show that under mild conditions
on the random endowment, the objective function in the dual utility maximization
problem can be replaced by a smaller function without changing its value. We use
this to show that if the random endowment is nonreplicable and its negative admits
a unique minimal (smallest) replicable majorant, then the dual utility maximization
problem cannot have a solution among the countably additive measures.

Section 5 is devoted to an in-depth study of the only nonstandard assumption made
in our main theorem in Sect. 3, namely the existence of the so-called germ price.
Therein, two general sufficient conditions are given, and concrete examples where
they hold are described.

2 An illustrative example

Before we develop a theory in a general semimartingale market model, the purpose
of this section is to show that a facelift—together with all of its repercussions such
as nonattainment in the class of countably additive martingale measures—already
appears in the simplest of models and is not a “cooked-up” consequence of a patho-
logical choice of the modeling framework.

2.1 The market model

For a given time horizon T > 0, we let (Bt )t∈[0,T ] and (Wt )t∈[0,T ] be two independent
Brownian motions on (Ω,F ,P), and F = (Ft )t∈[0,T ] the standard augmentation of
their natural filtration F

B,W . The financial market model consists of a money-market
account (S

(0)
t )t∈[0,T ] and a risky security (St )t∈[0,T ]. For simplicity, we assume a zero

interest rate, that is, S(0) ≡ 1, and we model S by the geometric Brownian motion

dSt = St (μdt + σ dBt ), S0 := 1. (2.1)
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Assuming throughout that σ > 0 and μ �= 0, we set λ = μ/σ and interpret λ as the
market price of risk. Except for W ’s presence in the filtration, this model follows the
usual Black–Scholes–Samuelson paradigm; the Brownian motion W will play a role
in the dynamics of the random endowment that we describe below.

2.2 Trading and admissibility

The investor’s initial wealth is denoted by x; at time t ∈ [0, T ], he/she holds πt shares
of the stock S. The usual self-financing condition dictates that the agent’s total wealth
admits the dynamics

X
x,π
t = x +

∫ t

0
Suπu(μdu + σ dBu), t ∈ [0, T ]. (2.2)

To ensure that the integral is well defined, we require that
∫ T

0 π2
u du < ∞ a.s. When

additionally, there exists a constant a such that X
x,π
t ≥ −a for all t ∈ [0, T ], P-a.s.,

we call π admissible and write π ∈A.

2.3 Preferences and random endowment

For the purposes of this example, we model the agent’s preferences by a utility func-
tion of the “power” type but also note that all statements in this section remain true
for a much larger class:

U(x) := 1

p
xp for p ∈ (−∞,1) \ {0} or U(x) := logx for p = 0.

For definiteness, we set U(x) = −∞ for x < 0 (and at x = 0 for p ≤ 0).
In addition to the investment opportunities provided by the financial market given

by (S(0), S), the investor receives a lump-sum payment (a random endowment,
stochastic income, etc.) at time T of the form ϕ(ηT ), where ϕ : R → R is a bounded
continuous function, and ηt := η0 + Wt for t ∈ [0, T ]. We note that the endowment
ϕ(ηT ) cannot be replicated by trading in (S(0), S) as soon as ϕ is not a constant func-
tion. On the other hand, more and more information about its value is gathered by the
agent as t goes to T , so it cannot be treated as an independent random variable either.

2.4 The primal problem

Keeping track of the time horizon T > 0, the initial wealth x ∈ R, and the initial
value η0 ∈ R of the process η, we pose the following optimization problem faced by
a rational agent with the characteristics described above:

u(T ,η0, x) := sup
π∈A

E
[
U

(
X

x,π
T + ϕ(ηT )

)]
.

Let xc = xc(T , η0) ∈ R be such that we have u(T ,η0, x) = −∞ for x < xc and
u(T ,η0, x) > −∞ for x > xc. In [5], it is shown that −xc coincides with the su-
perreplication cost of −ϕ(ηT ). In our case, thanks to the fact that ηt = η0 + Wt , we
have xc = − infϕ, independently of η0 and T > 0.



104 K. Larsen et al.

2.5 The dual problem

Let M denote the set of all P-equivalent probability measures Q on FT for which S

defined by (2.1) is a Q-martingale. In our simple model, the structure of M is well
known and completely described. Indeed, a probability measure Q is in M if and
only if its Radon–Nikodým derivative on FT is given by dQ

dP
= ZT , where Z is an

exponential martingale of the (differential) form

dZν
t = −Zν

t (λdBt + νt dWt), Z0 = 1, (2.3)

for some progressively measurable process ν with
∫ T

0 ν2
u du < ∞ a.s.

With the dual utility function given by V (z) := supx>0(U(x) − xz) for z > 0, we
define the value function of the dual problem by

v(T ,η0, z) := inf
Q∈M

(
E

[
V

(
z
dQ

dP

)]
+ zEQ

[
ϕ(ηT )

])
(2.4)

for z > 0, η0 ∈ R, and T > 0.

Remark 2.1 To ensure the existence of a minimizer, the authors in [5] identify
M with a subset of L

1+(P) and embed it naturally into the bidual
ba(P) := L

∞(P)∗ ⊇ L
1(P). With the weak∗-closure of M in ba(P) denoted by MT

and the dual pairing between L
∞(P) and ba(P) by 〈·, ·〉, the (relaxed) dual value

function is then defined by

ṽ(T , η0, z) := inf
Q∈MT

(
E

[
V

(
z
dQr

dP

)]
+ z〈Q, ϕ(ηT )〉

)
, (2.5)

where Q
r ∈ L

1(P) denotes the regular part in the Yosida–Hewitt decomposition
Q= Q

r +Q
s of Q ∈ ba+(P). It is shown in [5] that the dual minimizer Q̂ = Q̂

T ,η,z

is always attained in MT .
Theorem 2.10 in [14] states that v = ṽ, that is, that the finitely additive relaxation

is unnecessary if one is interested in the value function alone. This allows us to work
with random variables dQ

dP
∈ L

1+(P) in the sequel, instead of finitely additive measures
and their regular parts as needed in (2.5).

2.6 A naive approach via HJB

If we were to approach the utility maximization problem via the formal dynamic pro-
gramming principle, then we should start by embedding it into a family of problems
starting at t ∈ [0, T ], with the terminal time T , and depending additionally on the
states x and η. Thanks to the Markovian structure and without loss of generality, in-
stead of varying the initial time t , we use the “time-to-go” variable T − t . Moreover,
we abuse the notation and denote this variable simply by T , giving it an alternative
interpretation of the (varying) time horizon. In this way, all the effects in the regime
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t ∼ T show up at T ∼ 0. The formal HJB equation is now given by
⎧⎨
⎩

uT = sup
π∈R

Lπu,

u(0, η, x) = U
(
x + ϕ(η)

)
.

(2.6)

Here uT := ∂
∂T

u, and Lπ is the (controlled) formal infinitesimal generator of the
process (Xx,π , η). With Xx,π defined by (2.2) and η

η0
t := η0 + Wt , this generator

becomes

Lπu := μπux + 1

2
σ 2π2uxx + 1

2
uηη.

Similarly, the HJB equation for the dual value function formally reads as
⎧⎨
⎩

vT = inf
ν∈RN

νv,

v(0, η, z) = V (z) + zϕ(η),

where the dynamics (2.3) for Zν produces the generator

N νv = 1

2
z2(λ2 + ν2)vzz + 1

2
vηη − zνvzη.

The seemingly natural choice for the primal domain Du and the interpretation of the
initial condition in (2.6) are

(1′) Du = {(T , η, x) ∈ [0,∞) ×R×R : x + ϕ(η) > 0}, and
(2′) limT ↓0 u(T ,η, x) = U(x + ϕ(η)).

Similarly, the dual domain Dv and the initial condition for the dual problem are ex-
pected to be

(3′) Dv = {(T , η, z) ∈ [0,∞) ×R×R : z > 0}, and
(4′) limT ↓0 v(T ,η, z) = V (z) + zϕ(η).

It turns out, however, that . . .

2.7 . . . the naive approach is not always the right one

In the remainder of the paper, we show in much greater generality that the prescrip-
tions (1′)–(4′) do not fully correspond to reality. Even in the simple Black–Scholes-
type model (2.1) with utilities of power type, the value functions behave quite differ-
ently. If we set

domu := int{(T , η, x) ∈ [0,∞) ×R×R : u(T ,η, x) ∈ (−∞,∞)}
and

domv := int{(T , η, z) ∈ [0,∞) ×R× (0,∞) : v(T ,η, z) ∈ (−∞,∞)},
then we have the following result (a special case of Theorem 3.5 below).
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Proposition 2.2 In the setting of the current section, we have

1. domu = {(T , η, x) ∈ (0,∞) ×R×R : x > − infϕ}.
2. limT ↓0 u(T ,η, x) =

{
U(x + ϕ(η)), x ≥ − infϕ,

−∞, x < − infϕ.

3. domv = {(T , η, z) ∈ (0,∞) ×R×R : z > 0}.
4. limT ↓0 v(T ,η, z) = V (η, z), where

V (η, z) :=
{

V (z) + zϕ(η), z < zc,

V (zc) + zcϕ(η) + (z − zc) infϕ, z ≥ zc,

and zc(η) := U ′(ϕ(η) − infϕ) ∈ (0,∞], so that V ′(zc(η)) + ϕ(η) = infϕ.

Remark 2.3 Proposition 2.2 states that both the primal and the dual value functions
exhibit a facelift phenomenon:

1. In the primal case, the facelift “cuts off” a part of the domain and leads to an
effective initial condition for which the Inada conditions fail. Indeed, we have
U ′(x + ϕ(η)) �→ ∞ as x → − infϕ, for all η, unless ϕ is constant. On the other
hand, as soon as T > 0, we have ∂

∂x
u(T , x, η) → ∞ as x → − infϕ, for all η.

2. The situation with the dual problem appears even more severe. Even though the
effective domain turns out to be exactly as expected, the limiting value V of v

differs from (4′) in the previous section. Indeed, unless ϕ is constant, we have
V (z, η) < V (z) + zϕ(η) for z > zc(η).

3. If one tries to apply the usual “Hamiltonian” test (as in, e.g., [15, Sect. 4.3.2]), no
facelift—as in Proposition 2.2, (4)—will be detected. Indeed, the dual Hamilto-
nian acts on a G : (0,∞) ×R →R as

inf
ν∈RN

νG(z, η) = 1

2
z2λ2Gzz + 1

2
Gηη − 1

2

G2
zη

Gzz

.

Because Vzz > 0 (assuming that ϕ is smooth enough), this infimum is finite for
G(z,η) = V (z)+ zϕ(η). The case of a general ϕ leads to the same conclusion but
requires a viscosity interpretation; so we do not go into details here.

One important consequence of the facelift is the following (the proof is a combi-
nation of Remark 4.1, Corollary 4.3, Proposition 4.4).

Proposition 2.4 In the setting of the current section, let (T , η0) ∈ (0,∞) × R, and
let a nonconstant, bounded, and continuous function ϕ : R → R be given. Then for
all large-enough z > 0, the problem (2.4) does not admit a minimizer in M.

If additionally E[zc(η0 + WT )] < ∞, then the previous statement holds for all
z > 0.

Proposition 2.4 shows that even in the simplest of incomplete continuous-time
financial models, the set of countably additive martingale measures M is not big
enough to host the dual optimizer, as soon as the random endowment is unspanned



Facelifting in utility maximization 107

(nonreplicable). A suitable relaxation (e.g., to the set of finitely additive martingale
measures) is therefore truly needed.

From [5] we know that the problem (2.4) always admits a minimizer Q̂ in the
weak∗-closure of M in ba(P). When Q̂ /∈M, both components in the Yosida–Hewitt
decomposition Q̂ = Q̂

r +Q̂
s are nontrivial. To see this, we recall that Theorem 3.2(ii)

in [5] produces the first-order condition

U ′(Xx,π̂
T + ϕ(ηT )

) = y
dQ̂r

dP
,

where y = y(x) > 0 is the corresponding Lagrange multiplier. Since U ′(·) > 0, we

necessarily have dQ̂r

dP
> 0 P-almost surely. However, closed-form expressions for Q̂r

and Q̂
s in the setting of Proposition 2.4 remain unavailable.

3 A general market model

We start by describing a general semimartingale financial model that serves as setting
for our (abstract) result. It is built on a filtered probability space (Ω,F , (Ft )t∈[0,1],P)

that satisfies the usual conditions of right-continuity and completeness; we assume
in addition that F0 is P-trivial. The choice of the constant 1 as the time horizon is
arbitrary; it simply indicates that only the values of the ingredients in a neighborhood
of 0 are of interest.

3.1 The asset price model

Let (St )t∈[0,1] be an (Ft )t∈[0,1]-adapted, RCLL semimartingale that satisfies the fol-
lowing assumption (see [6] for the definition and an in-depth discussion of the con-
cept of σ -martingale):

(A1) The set of σ -martingale measures

Me
σ := {Q ∼ P : S is a σ - martingale under Q}

is nonempty.

As shown in [6, Theorem 1.1], Assumption (A1) is equivalent to the no-arbitrage
condition NFLVR (see [6] for the details).

In the context of utility maximization, it is easier to use a mild modification M
of the set Me

σ , which is defined as follows. Let the admissible set A consist of all
F-predictable S-integrable processes π such that

∫ ·
0 πu dSu is a.s. uniformly bounded

from below. We also define the set of gains processes X by

X :=
{∫ ·

0
πu dSu : π ∈ A

}
.

Thanks to a result of Ansel and Stricker (see [1, Corollaire 3.5])—or the σ -martingale
property—each X ∈ X is a Q-local martingale (and therefore a supermartingale) for
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any Q ∈Me
σ . Therefore, the set

M := {Q ∼ P : X is a Q-supermartingale for each X ∈X }
includes Me

σ . The difference is often not very significant since Proposition 4.7 in [6]
states that Me

σ is dense in M in the total-variation norm.

3.2 The utility function and its dual

Let U be a reasonably elastic utility function, that is, a function U : (0,∞) → R with
the following properties:

(A2)

⎧⎨
⎩

(1) U is strictly concave,C1, and strictly increasing on (0,∞).

(2) limx↘0 U ′(x) = +∞ and limx→∞ U ′(x) = 0.

(3) limx→∞ xU ′(x)
U(x)

< 1 if supx>0 U(x) > 0.

We extend U to (−∞,0] by U(x) := −∞ for x < 0 and U(0) := limx↘0 U(x). The
conjugate (dual utility function) V : (0,∞) → (−∞,∞) of U is defined by

V (z) := sup
x∈R

(
U(x) − xz

)
for z > 0.

3.3 Value functions

Given a bounded adapted and RCLL process (ϕt )t∈[0,1], for x ∈ R and T ∈ [0,1], we
set

u(T , x) := sup
π∈A

E

[
U

(
x +

∫ T

0
πu dSu + ϕT

)]
(3.1)

with the usual convention that E [ξ ] = −∞ as soon as E[ξ−] = ∞. We call u the
(primal) value function and note that u(0, x) = U(x + ϕ0) for all x ∈ R.

Remark 3.1 As in Sect. 2, we use the (slightly nonstandard) notation T for the time
variable to stress the fact that in our principal interpretation, it plays the role of the
time-to-go. This is also done to avoid the possible confusion with the usual inter-
pretation of the parameter t as the current time with the time-to-go being given by
T − t . We continue using the variable t as the generic “dummy” time parameter for
stochastic processes.

For Q ∈ M, we let the density process (Z
Q
t )t∈[0,T ] be an RCLL version of

Z
Q
t := E

[
dQ

dP

∣∣∣∣Ft

]
, t ∈ [0,1].

We also introduce Z := {ZQ : Q ∈ M} and define the dual value function
v : [0,1] × (0,∞) → (−∞,∞] by

v(T , z) := inf
Z∈Z

E[V (zZT ) + zZT ϕT ]. (3.2)
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Remark 3.2 [5] show that the conjugate to the primal value function (3.1) equals the
expression on the right-hand side of (3.2), but with Z replaced (in a suitable manner,
see Remark 2.1) by its weak∗-closure in ba(P). Theorem 2.10 in [14] shows that
such a relaxation is not necessary and that infimizing over Z yields the same value
function.

In order to have a nontrivial dual problem, we also ask for finiteness of its value
function on its entire domain:

(A3) For all T ≤ 1 and z > 0, we have v(T , z) < ∞.

Remark 3.3 Thanks to the convexity of V and the reasonable asymptotic elasticity
condition (3) in Assumption (A2) (see [11, Lemma 6.3] for details), Assumption (A3)
is equivalent to the existence of Q ∈ M such that V +(zZ

Q
1 ) ∈ L

1 for some z > 0. In

that case, moreover, we have V (zZ
Q
1 ) ∈ L

1 for all z > 0.

Remark 3.3 and the convexity of V guarantee that the set

ZV (z) := {Z ∈ Z : E[V +(zZ
Q
1 )] < ∞} =:ZV

is independent of z > 0, nonempty, and enjoys the property that

v(T , z) = inf
Z∈ZV

E [V (zZT ) + zZT ϕT ] for all T ∈ (0,1] and z > 0.

The set of all corresponding Q ∈M is denoted by MV , and its elements are referred
to as V -finite.

3.4 The lower hedging germ price

With ST denoting the set of all [0, T ]-valued stopping times, we define the lower
American germ price of (ϕt )t∈[0,1] by

ΦA := lim
T ↘0

ΦA
T , where ΦA

T := inf
Z∈Z,τ∈ST

E[Zτϕτ ].

The European counterpart is defined as

ΦE := lim sup
T ↘0

ΦE
T , where ΦE

T := inf
Z∈Z

E[ZT ϕT ].

We assume that the two limits are equal:

(A4) ΦA = ΦE ,

and we denote the common value by Φ and call it the (lower hedging) germ price.

Remark 3.4 (1) Even though Assumption (A4) is not as standard as, for example,
(A2) or (A3), it is in fact quite mild and is satisfied in a wide variety of cases. Section 5
is devoted to sufficient conditions and examples related to Assumption (A4). We
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observe right away, however, that the following three properties follow directly from
it:

Φ ≤ ϕ0, ΦA
T ↗ Φ, and ΦE

T → Φ a.s. as T ↘ 0.

(2) By the density of Me
σ in M, referred to in Sect. 3.1, the infima in the def-

initions of ΦA and ΦE can be taken over the smaller set of densities Z of all σ -
martingale measures Me

σ .
(3) Kabanov and Stricker have shown (see [9, Corollary 1.3]) that the infima in the

definitions of lower hedging prices can be taken over the set of all V -finite measures
as long as V satisfies a mild growth condition. Such a condition is satisfied in our
case thanks to the assumption of reasonable asymptotic elasticity in (A2), part (3)
and Lemma 6.3 in [11]; so

ΦE
T = inf

Z∈ZV
E[ZT ϕT ] for all T > 0. (3.3)

This will be useful in the proof of Lemma 3.7 below.

3.5 The form of the facelift and the main theorem

Given two nonnegative constants ϕ,ψ , let z �→ V (z;ϕ,ψ) denote the largest convex
function below z �→ V (z) + ϕz such that V (z;ϕ,ψ) − zψ is nonincreasing. This
function is given by

V (z;ϕ,ψ) = sup
x>−ψ

(
U(x + ϕ) − xz

)

or, equivalently, by

V (z;ϕ,ψ) =
{

V (z) + ϕz, z ≤ zc,

V (zc) + ϕzc + ψ(z − zc), z > zc.

Here zc is the (unique) solution to V ′(zc) + ϕ = ψ when it exists, and zc = +∞
otherwise. The special case where ϕ = ϕ0 and ψ = Φ appears in our main theorem
below, so we give it its own notation as

V (z) := V (z;ϕ0,Φ).

We are now ready to state and prove the central result of this section; it identifies
explicitly the shape of the facelift in both the primal and the dual problem. The proof
is given in Sect. 3.7 below.

Theorem 3.5 Under Assumptions (A1)–(A4), we have

lim
T ↘0

u(T , x) =
{

U(x + ϕ0), x > −Φ,

−∞, x < −Φ,

lim
T ↘0

v(T , z) = V (z) for all z > 0.

(3.4)
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3.6 The true home of Theorem 3.5

One can argue that the natural home for our facelifting result of Theorem 3.5 lies in
a class of interconnected optimization problems in a Markovian setting. Indeed, we
should not like to adopt the somewhat unnatural interpretation of its result in the sense
of the asymptotic behavior of the dual value function as the time horizon shrinks to 0
(with the random endowment somehow depending on it). Rather, we should like to
think of the time as getting closer to the maturity and the function v as a section of
the entire time-dependent value function, in the spirit of the dynamic programming
principle. The way to pass from one framework to the other is rather simple: when
the dynamics of the underlying state process is homogeneous, one can couple the
problems corresponding to the same value of the state, but with varying times, on the
same probability space as follows.

Let F be a nonempty Hausdorff LCCB (locally compact with a countable base) and
therefore a Polish topological space (Euclidean or discrete). For a nonempty Gδ (in
particular, open or closed) subset S of Rd for some d ∈ N, the product E = S× F

is Hausdorff LCCB and Polish. We work exclusively on the canonical path space
Ω = DE[0,∞) consisting of all E-valued RCLL (right-continuous with left limits)
paths on [0,∞), with the σ -algebra F generated by all coordinate maps.

The coordinate process is denoted by η, and its components by

1. S = (S1, . . . , Sd) that is S-valued (modeling a risky actively traded asset), and
2. F that is F-valued (modeling a nontraded factor).

The “physical” dynamics of η will be described via a strong Markov family (Pη)η∈E

of probability measures on DE . Let F0 be the (raw) filtration on DE , generated by
the coordinate maps, and let Fη

t be the Pη-completion of F0
t . Thanks to Blumenthal’s

0–1 law, (Fη
t )t≥0 is right-continuous and satisfies the (Pη)η∈E-usual conditions (see

[18, Chap. 3, § 3] for details).
To be able to use Theorem 3.5 under each P

η, we impose (A1)–(A4) on each
probability space (Ω, (Fη

t )t∈[0,1],F ,Pη); the sets Mη and Zη are simply the η-para-
meterized versions of the eponymous objects defined earlier in this section. Similarly,
the admissible set depends on η ∈ E, and the family is denoted by (Aη)η∈E . We work
with the utility function (and its dual) that satisfy the conditions of Assumption (A2).
Given a time horizon T ∈ (0,1] and t ∈ [0, T ], we define the primal value function

u(t, η, x) := sup
π∈Aη

E
η

[
U

(
x +

∫ T −t

0
πu dSu + ϕ(ηT −t )

)]
,

where ϕ is a bounded and continuous function on E. Similarly, the dual value func-
tion is given by

v(t, η, z) := inf
Z∈Zη

E
η[V (zZT −t ) + zZT −t ϕ(ηT −t )].

Under mild additional conditions on S (it will, e.g., suffice that it is either bounded
from below or that its jumps are bounded from below), we have the following version
of the dynamic programming principle (see Theorem 3.17 in [23]):

v(t, η, z) = inf
Z∈Zη

E
η
[
v(τ, ητ , zZτ )

]
, v(T , η, z) = V (z) + zϕ(η), (3.5)
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for any random time τ of the form τ = t + σ , where σ with values in [0, T − t] is an
F

η-stopping time. It is also shown in [23] that the function v is (jointly) universally
measurable, so that the expectation on the right-hand side of (3.5) is well defined. As
shown in the last paragraph of Sect. 3.4 in [23], the idea of the proof of Lemma 3.6
below can be used to establish the dynamic programming principle for the primal
problem as well.

Equation (3.5) often serves as an analytic description of the value function. In con-
tinuous time, it is usually infinitesimalized into a PDE and studied, together with its
terminal condition, as a nonlinear Cauchy problem. As already mentioned in Sect. 2,
in our case a facelift (boundary-layer) phenomenon appears, and this terminal condi-
tion comes in a nonstandard form. Indeed, Theorem 3.5 in the present setting becomes

v(t, η, z) −→ V
(
z;ϕ(η),Φ(η)

)
, (3.6)

where Φ(η) is as in Sect. 3.4, with the dependence on η emphasized. We conjecture
that (3.5) and (3.6) suffice to characterize the value function v in a wide class of
models (possibly via a PDE approach) but do not pursue this interesting question in
the present paper.

3.7 A proof of Theorem 3.5

We split the proof of our main Theorem 3.5 into lemmas and start from a statement
that allows us to focus completely on the dual problem.

Lemma 3.6 Under Assumptions (A1)–(A4), the first equality in (3.4) follows from
the second one.

Proof Suppose that limT ↘0 v(T , z) = V (z) for all z > 0. The conjugate relationship
between the primal and the dual value functions

u(T , x) = inf
z>0

(
v(T , z) + xz

)
for x ∈R, T ∈ (0,1],

established in [5] and further extended in [14], allows us to apply the tools of clas-
sical convex analysis. Indeed, the assumed pointwise convergence of the function
v transfers directly to the convex conjugate in the interior of its effective domain
(see Theorem 11.34 in [17]). One only needs to check that the limiting function for
the primal value function in (3.4) and the function V are convex conjugates of each
other. �

We focus now exclusively on the dual problem and examine the asymptotic be-
havior of the function v in the large-z regime.

Lemma 3.7 Under the Assumptions (A1)–(A3), for all T ∈ (0,1], the function
z → v(T , z) is convex, and

lim
z→∞

1

z
v(T , z) = ΦE

T .
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Proof Convexity of v(T , ·) follows from convexity of V (T , ·) and Z . For the second
statement, we fix T ∈ (0,1], pick an arbitrary ε > 0, and note that for all Z ∈Z ,

1

z
E[V (zZT ) + zZT ϕT ] ≥ 1

z
U(ε) +E[ZT (ϕT − ε)].

Passing to the infimum over all Z ∈ ZV and using the result in (3.3), we get

1

z
v(T , z) ≥ 1

z
U(ε) + ΦE

T − ε, and so lim inf
z→∞

1

z
v(T , z) ≥ ΦE

T .

On the other hand, by the monotone convergence theorem we have

lim
z→∞

1

z
E [V (zZT )] = 0 for Z ∈ZV .

Therefore, for Z ∈ Z , we have

lim sup
z→∞

1

z
v(T , z) ≤ lim sup

z→∞
1

z
E [V (zZT )] +E [ZT ϕT ] = E[ZT ϕT ].

To complete the proof, it suffices to infimize over all Z ∈ ZV . �

We define v(0+, z) := lim infT ↘0 v(T , z) and v(0+, z) := lim supT ↘0 v(T , z).

Lemma 3.8 Under Assumptions (A1)–(A4), v(0+, z) ≤ V (z) for all z > 0.

Proof By Lemma 3.7 the function z �→ v(T , z) − zΦE
T is convex and nonincreas-

ing for all T ∈ (0,1]. Therefore, so is the function z �→ v(0+, z) − zΦ . Indeed,
Φ = limT ↘0 ΦE

T , and both convexity and the nonincreasing property are preserved
by the limit superior operator. On the other hand, for z > 0 and Z ∈ ZV , the process

t �→ V (zZt ), t ∈ [0,1],

is a uniformly integrable RCLL submartingale. Therefore, E[V (zZT )] → V (z) as
T → 0. Thus,

v(0+, z) ≤ lim sup
T ↘0

E[V (zZT ) + zZT ϕT ] = V (z) + zϕ0.

It remains to use the definition of V . �

Lemma 3.9 Under Assumptions (A1)–(A4), v(0+, z) ≥ V (z) for all z > 0.

Proof For T ∈ (0,1] and t ∈ [0,1], we set

Xt = esssupZ∈Z,τ∈[t,T ] E
[

− ZT

Zt

ϕτ

∣∣∣∣Ft

]
for t ≤ T and Xt = XT for t > T .
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By Proposition 4.3 in [10], (Xt )t∈[0,1] admits an RCLL version, and the process
(ZtXt )t∈[0,1] is a supermartingale for each Z ∈ Z . Also, we have Xt + ϕt ≥ 0 for
all t ≤ T and X0 = −ΦA

T . For x > 0, Fenchel’s inequality produces

V (zZt ) + zZtϕt ≥ U(x + Xt + ϕt ) − zZt (x + Xt) a.s., Z ∈Z.

By taking expectations we find

E[V (zZt ) + zZtϕt ] ≥ E[U(x + Xt + ϕt )] − zx − zE[ZtXt ]
≥ E[U(x + Xt + ϕt )] − zx − zX0

= E[U(x + Xt + ϕt )] − zx + zΦA
t ,

where the second inequality follows from the supermartingale property of ZX. Since
x > 0, we can use Fatou’s lemma to see that

v(0+, z) ≥ lim inf
t↘0

E[U(x + Xt + ϕt )] − z(x − Φ)

≥ E

[
U

(
x + lim inf

t↘0
(Xt + ϕt )

)]
− z(x − Φ)

= U(x + ϕ0 − ΦA
T ) − z(x − Φ),

where the last equality follows from the right-continuity of X and ϕ. It remains to let
T ↘ 0 and then maximize over all x > 0. �

4 A modified objective

Our next result states that the seemingly local effect of a facelift is sometimes felt far
away from it as well. We adopt the setting of Sect. 3, with Assumptions (A1)–(A3)
in place, but do not assume (A4). Since the results in this section are not asymptotic
in nature, we chose and fix a time horizon T > 0 and replace the time set [0,1] from
Sect. 3 by the generic [0, T ].

As a preparation for our result on the modified objective, we define the set

C :=
{
x +

∫ T

0
πu dSu : x ∈R,π ∈A

}
.

The following property for the variable ϕT will be crucial in the sequel:

(B1) There exists a random variable ϕ
T

∈ C such that X + ϕ
T

≥ 0 a.s. whenever
X ∈ C and X + ϕT ≥ 0 a.s.

Remark 4.1 One can construct one-period examples on a three-element probability
space where (B1) fails. Nevertheless, there are plenty of cases when it always holds.
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For example, in [2], (B1) is shown to hold in a related problem. In particular, in the
setting of Sect. 2, we have

x +
∫ t

0
πudSu ≥ E

Q

[
x +

∫ T

0
πudSu

∣∣∣∣Ft

]
≥ −E

Q[ϕ(η0 + WT )|Ft ].

By optimizing over Q ∈ M we then find

x +
∫ t

0
πudSu ≥ − infϕ.

Consequently, in the setting of Sect. 2, we have ϕ
T

= infϕ.

Theorem 4.2 Suppose Assumptions (A1)–(A3) and (B1) hold. Then for all
z ∈ (0,∞) and T ∈ (0,1], we have the representation

v(T , z) = inf
Z∈Z

E[V (zZT ;ϕT ,ϕ
T
)]. (4.1)

Proof Let (T , z) �→ v(T , z) denote the function defined by the right-hand side
of (4.1). Since V (z;ϕT ,ϕ

T
) ≤ V (z) + zϕT for all z > 0 a.s., we clearly have

v ≤ v. To prove the converse inequality, we pick x ∈ R and π ∈ A satisfying
E[U(x + ∫ T

0 πu dSu + ϕT )] > −∞. That implies

x +
∫ T

0
πu dSu + ϕT ≥ 0 a.s.

Therefore, there exists ϕ
T

∈ C such that

x +
∫ T

0
πu dSu + ϕ

T
≥ 0.

This produces

E

[
U

(
x +

∫ T

0
πu dSu + ϕT

)]
= E

[
U

(
x +

∫ T

0
πu dSu + ϕT ;ϕ

T

)]
,

where we have introduced

U(x;ϕ) :=
{

U(x), x > −ϕ,

−∞ otherwise.

We have

sup
x∈R

(
U(x + ϕ) − xz

) = sup
x>−ϕ

(
U(x + ϕ) − xz

) = V (z;ϕ,ϕ),

which, together with the supermartingale property of Zt(x + ∫ t

0 πudSu) for each
Z ∈ Z , produces

E

[
U

(
x +

∫ T

0
πu dSu + ϕT

)]
− xz ≤ E[V (zZT ;ϕT ,ϕ

T
)]
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for all z > 0. This in turn implies that

u(T , x) − xz ≤ v(T , z).

The claim now follows by using the conjugacy of the primal and dual value functions,
as established in [5] and extended in [14] (see Remark 2.1 for details). �

The result of Theorem 4.2 has an interesting consequence:

Corollary 4.3 Suppose that the conditions of Theorem 4.2 hold and P[ϕ
T

�= ϕT ] > 0.
Then the dual problem (3.2) does not admit a minimizer Z ∈ Z for all z > 0 large
enough.

Proof Since ϕ
T

�= ϕT with positive probability, there exists a constant z0 ∈ (0,∞)

such that

P[V (z) + zϕT > V (z;ϕT ,ϕ
T
)] > 0 for z ≥ z0. (4.2)

Additionally, we have the trivial inequality V (z) + zϕT ≥ V (z;ϕT ,ϕ
T
) a.s. for all

z ∈ (0,∞). Suppose now that Ẑ = Ẑ(z) is the dual minimizer, that is, the minimizer
in (3.2), corresponding to z ≥ z0. By Theorem 4.2, it must also be a minimizer for
the right-hand side of (4.1), and it must have the property that

V (zZT ) + zẐT ϕT = V (zẐT ;ϕT ,ϕ
T
) a.s.

The inequality in (4.2), however, implies that

P[zẐT < z0] = 1,

which is in contradiction with z ≥ z0 and E[ẐT ] = 1. �

In the model of Sect. 2, one can improve Corollary 4.3 and show nonattainment
for any z > 0, provided that ϕ does not stay “too close” to its minimum:

Proposition 4.4 In the setting of Sect. 2, assume that

E
[
U ′(ϕ(η0 + WT ) − infϕ

)]
< ∞. (4.3)

Then the dual problem (2.4) at (T , η0) does not admit a minimizer in Z for any z > 0.

Proof Given (4.3), we assume that there exist z > 0 and Ẑ ∈ Z that attain the infi-
mum in (3.2). As in the proof of Corollary 4.3, this implies that zẐT ≤ Y a.s., where
Y := U ′(ϕ(η0 + WT ) − infϕ). Thanks to the special structure of the set Z in the
model of Sect. 2, there exists a predictable and W -integrable process (ν̂t )t∈[0,T ] such
that

ẐT = E(−λ · B)T ĤT , Ĥt := E(ν̂ · W)t .
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We define the filtration (Gt )t∈[0,T ] as the usual augmentation of

Graw
t := σ(Bu,Ws;u ≤ T , s ≤ t), t ∈ [0, T ].

The process W is a G-Brownian motion, and ν̂ is G-predictable; so Ĥ is a G-local
martingale, and in particular, we have E[ĤT |G0] ≤ 1. Therefore,

eλBT − 1
2 λ2T ≥ eλBT − 1

2 λ2T
E[ĤT |G0] = E[ẐT |G0],

where the inequality is in fact an a.s. equality since both sides have expectation one.
Using the fact that Y is independent of G0, we conclude that

eλBT − 1
2 λ2T ≤ 1

z
E[Y ] < ∞ a.s.,

which is a contradiction with the fact (derived from the assumption that μ �= 0) that
the distribution of the left-hand side has support (0,∞). �

5 Sufficient conditions for (A4)

Condition (A4) in Sect. 3 plays a major role in the proof of Theorem 3.5 and guar-
antees that the process (ϕt )t∈[0,1] does not oscillate too much as t ↘ 0. Clearly, it
(or a version of it) must be imposed; indeed, the very form of the facelift depends
on the value (and existence) of the limiting germ price Φ . We present here two suf-
ficient conditions for its validity, which apply to a wide variety of situations often
encountered in mathematical finance.

5.1 Complete markets

In the case of a complete market, we have the following:

Proposition 5.1 If M = {Q} for some Q∼ P, then (A4) holds with

ΦE = ΦA = ϕ0.

Proof It suffices to note that by the dominated convergence theorem and the RCLL
assumption we have

E
Q
[

inf
t∈[0,T ]ϕt

]
−→ ϕ0 and E

Q[ϕT ] −→ ϕ0 as T ↘ 0. �

5.2 Sufficient controllability

Our second sufficient condition assumes that there exists a process (ηt )t∈[0,1] with
values in some topological space E such that ϕt = ϕ(ηt ), t ∈ [0,1], for some contin-
uous and bounded function ϕ : E →R.
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We start with a general condition, phrased as a lemma, which heuristically says
that (A4) holds if (ηt )t∈[0,1] can be well controlled toward any point in E, within
any positive amount of time. To state it, for each T ∈ (0,1], we define the set dT of
Q-distributions of ηt as Q ranges through M and t ∈ (0, T ].
Lemma 5.2 Suppose that ϕ is a bounded and continuous function and that for each
η ∈ E and each T > 0, there exists a sequence (μn)n∈N in dT such that μn ⇒ δη

weakly. Then (A4) holds with

ΦE = ΦA = infϕ. (5.1)

Proof Since ϕ is continuous and bounded, the assumptions imply that

inf
μ∈dT

∫
ϕ(η)dμ(η) = infϕ.

Therefore, ΦE
T = infϕ for T ∈ (0,1]. Recalling that infϕ ≤ ΦA

T ≤ ΦE
T for all

T ∈ (0,1] by construction, we conclude that (5.1) holds. �

Next, we describe a large class of models with E := R
d to which Lemma 5.2

applies. We start by fixing a filtered probability space with a filtration F satisfying
the usual conditions. Let Sg denote the set of all Rd -valued semimartingales R with
R0 = 0 for which there exist

1. a semimartingale decomposition R = M +F into a local martingale M and a finite
variation process F , and

2. a (deterministic) function gR : [0,1] → [0,∞) with limT ↘0 gR(T ) = 0,

such that with |F | denoting the total variation process of F and [M,M] the quadratic
variation process of M , we have

|F |T + [M,M]T ≤ gR(T ) a.s. for all T ∈ [0,1].
We note that a posteriori membership in Sg immediately makes any semimartingale
special and we can (and do) talk about its unique canonical decomposition without
ambiguity.

Remark 5.3 An example of an element in the class Sg is a process of the form

Rt =
∫ t

0
αu du +

∫ t

0
βu dBu +

∫ t

0
γu dNu, t ∈ [0,1],

where α, β , and γ are uniformly bounded predictable processes valued in, respec-
tively, R

d , R
d×d , and R

d ; B is a d-dimensional Brownian motion, and N is a
d-dimensional Poisson process.

The class Sg is important in our setting because it admits moment estimates uni-
formly over all equivalent measure changes that preserve the semimartingale decom-
position. The next result follows directly from the Burkholder–Davis–Gundy inequal-
ities (see Theorem 48 in [16]), and we skip the proof.
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Lemma 5.4 For each R ∈ Sg with canonical decomposition R = M +F , there exists
a function hR : [0,1] → (0,∞) with hR(t) → 0 as t ↘ 0 such that

E
Q[|Rt |] ≤ hR(t) for all t ∈ [0,1],

for any Q ∼ P such that M is a Q-local martingale.

Theorem 5.5 Suppose that the R
m-valued process S and the R

d -valued factor pro-
cess η are semimartingales that satisfy the following assumptions:

(1) There exists a P-equivalent measure Q
0 such that S is a local martingale.

(2) The process (ηt )t∈[0,1] is of the form

ηt = η0 +
∫ t

0
βu dWu + Rt, t ∈ [0,1],

where W is a Brownian motion strongly orthogonal to S and to Z0 (the density
process of Q0 with respect to P), β is a bounded predictable process whose abso-
lute value is bounded away from 0, and R is in Sg with canonical decomposition
R = M + F , where M is strongly orthogonal to W . Then condition (A4) holds, and
ΦE = ΦA = infϕ.

Proof We start by constructing a large enough subfamily of the family of local mar-
tingale measures. For a bounded predictable process (νt )t∈[0,1], we define the pro-
cesses

Hν
t := E(ν · W)t , Zν

t := Z0
t H

ν
t , t ∈ [0,1].

The strong orthogonality between W and Z0 and the continuity of W ensure that
[W,Z0] ≡ 0; hence, Zν is a local martingale. To see that it is a martingale, we note
that

E[Zν
T ] = E[Z0

T Hν
T ] = E

Q0[Hν
T ].

Since W remains a Brownian motion under Q0 and since ν is bounded, we can use
Novikov’s condition to get EQ0 [Hν

T ] = 1, from which the martingale property fol-

lows. We can then define dQν

dP
:= Zν

T .
We fix a constant η ∈ R. For n ∈ N, we define the bounded process

νn
t :=

{
n(η−η0)

βt
, t ≤ 1/n,

0 otherwise.

Then η0 + ∫ t

0 βuν
n
u du = η for t ≥ 1/n, and

η1/n = η0 + R1/n +
∫ 1/n

0
βu dWu = η + R1/n +

∫ 1/n

0
βu dWn

u ,
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where Wn
t := Wt − ∫ t

0 νn
u du. Thanks to the orthogonality assumption, the local mar-

tingale part M of R is a Qνn
-local martingale, and so Q

νn and R satisfy the conditions
of Lemma 5.4. Moreover, Wn is a Q

νn -Brownian motion; so

E
Qνn [|η1/n − η|] ≤ C

(
E
Qνn [|R1/n|] +E

Qνn
[∣∣∣∣

∫ 1/n

0
βu dW̃u

∣∣∣∣
])

for some constant C. The right-hand side is bounded from above by a linear combi-
nation of hR(1/n) and 1/n; so it converges to 0 as n → ∞. Therefore, we have

∫
Rd

|x − η|μn(dx) −→ 0 as n → ∞,

where μn denotes the distribution of η1/n under Qνn
. Consequently, μn ⇒ δη , and

Lemma 5.2 can be applied. �

Remark 5.6 A family of examples of models that satisfy Assumption (1) of Theo-
rem 5.5 is furnished by processes of the form

dSt := μt dt + σt dBt + dJt , S0 ∈R,

where B is an F-Brownian motion independent of W , J is an F-local martin-
gale (possibly with jumps) that is strongly orthogonal to B , and μ and σ are
predictable processes. To apply Theorem 5.5, it suffices to note that the process
Z0 := E(−(μ/σ) · B) is a strictly positive martingale whenever μ/σ is sufficiently
integrable.

Acknowledgements The authors would like to thank Mihai Sîrbu, Kim Weston, and the two anonymous
referees for their many constructive comments.

References

1. Ansel, J.-P., Stricker, C.: Couverture des actifs contingents et prix maximum. Ann. Inst. Henri
Poincaré Probab. Stat. 30, 303–315 (1994)
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