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Abstract An investor with constant relative risk aversion trades a safe and several
risky assets with constant investment opportunities. For a small fixed transaction cost,
levied on each trade regardless of its size, we explicitly determine the leading-order
corrections to the frictionless value function and optimal policy.
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1 Introduction

Market frictions play a key role in portfolio choice, “drastically reducing the fre-
quency and volume of trade” [9]. These imperfections manifest themselves in various
forms. Trading costs proportional to the traded volume affect all investors in the form
of bid–ask spreads. In addition, fixed costs, levied on each trade regardless of its size,
also play a key role for small investors.

Proportional transaction costs have received most of the attention in the literature.
On the one hand, this is due to their central importance for investors of all sizes.
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On the other hand, this stems from their relative analytical tractability: by their very
definition, proportional costs are “scale invariant” in that their effect scales with the
number of shares traded. With constant relative or absolute risk aversion and a con-
stant investment opportunity set, this leads to a no-trade region of constant width
around the frictionless target position [32, 9, 11, 12, 42]. Investors remain inactive
while their holdings lie inside this region, and engage in the minimal amount of trad-
ing to return to its boundaries once these are breached. The trading boundaries can
be determined numerically by solving a free-boundary problem [11]. In the limit for
small costs, the no-trade region and the corresponding utility loss can be determined
explicitly at the leading order; cf. Shreve and Soner [42], Whalley and Wilmott [44],
Janeček and Shreve [22], and many more recent studies [6, 18, 43, 38, 7]. Exten-
sions to more general preferences and stochastic opportunity sets have been studied
numerically by Balduzzi, Lynch, and Tan [30, 3, 31]. Corresponding formal asymp-
totics have been determined by Goodman and Ostrov [19], Martin [33], Kallsen and
Muhle-Karbe [25, 24], and Soner and Touzi [43]. The last study [43], also contains
a rigorous convergence proof for general utilities, which is extended to several risky
assets by Possamaï, Soner, and Touzi [38].

Proportional costs lead to infinitely many small transactions. In contrast, fixed
costs only allow a finite number of trades over finite time intervals. However, the op-
timal policy again corresponds to a no-trade region. In this setting, trades of all sizes
are penalized equally; therefore, rebalancing takes place by a bulk trade to the opti-
mal frictionless target inside the no-trade region [13]. These “simple” policies involv-
ing only finitely many trades are appealing from a practical point of view. However,
fixed costs destroy the favorable scaling properties that usually allow one to reduce
the dimensionality of the problem for utilities with constant relative or absolute risk
aversion. In particular, the boundaries of the no-trade region are no longer constant,
even in the simplest settings with constant investment opportunities and constant ab-
solute or relative risk aversion. Accordingly, the literature analyzing the impact of
fixed trading costs is much more limited than for proportional costs: on the one hand,
there are a number of numerical studies [41, 28] that iteratively solve the dynamic
programming equations. On the other hand, Korn [27] and Lo, Mamaysky, and Wang
[29] have obtained formal asymptotic results for investors with constant absolute risk
aversion. For small costs, these authors find that constant trading boundaries are op-
timal at the leading order. Thus, these models are tractable but do not allow us to
study how the impact of fixed trading costs depends on the size of the investor under
consideration. The same applies to the “quasi-fixed” costs proposed by Morton and
Pliska [34] and analyzed in the small-cost limit by Atkinson and Wilmott [2]. In their
model, each trade—regardless of its size—incurs a cost proportional to the investors’
current wealth, leading to a scale-invariant model where investors of all sizes are
affected by the “quasi-fixed” costs to the same extent. Similarly, the asymptotically
efficient discretization rules developed by Fukasawa [16, 17] and Rosenbaum and
Tankov [40] also do not take into account that the effect of fixed trading costs should
depend on the “size” of the investor under consideration.1

1Indeed, these schemes asymptotically correspond to constant absolute risk version; see [17] for more
details.
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Fig. 1 Trading boundaries (top
panel) and equivalent
proportional costs (bottom
panel) for a $1 fixed transaction
cost as functions of the
investor’s wealth. Parameters are
γ = 6, μ − r = 8 %, and
σ = 16 %, so that the Merton
proportion is πm = 52 %

The present study helps to overcome these limitations by providing rigorous
asymptotic expansions for investors with constant relative risk aversion.2 In the stan-
dard infinite-horizon consumption model with constant investment opportunities, we
obtain explicit formulas for the leading-order welfare effect of small fixed costs and a
corresponding almost optimal trading policy. These shed new light on the differences
and similarities compared to proportional transaction costs.

A universal theme is that as for proportional transaction costs [22, 33, 25, 24], the
crucial statistic of the optimal frictionless policy turns out to be its “portfolio gamma,”
which trades off the local variabilities of the strategy and the market (see (2.6)). The
latter is also crucial in the asymptotic analysis of finely discretized trading strategies
[45, 5, 21, 16, 17, 40]. Therefore, it appears to be an appealingly robust proxy for the
sensitivity of trading strategies to small frictions.

A fundamental departure from the corresponding results for proportional transac-
tion costs is that the effect of small fixed costs is inversely proportional to investors’
wealth. That is, doubling the fixed cost has the same effect on investors’ welfare and
trading boundaries as halving their wealth.3 This quantifies the extent to which fixed
costs can be neglected by large institutional entities or, contrarily, need to be taken
into account by small private investors. For example, for typical market parameters
(see Fig. 1), a fixed transaction cost of $1 per trade leads to trading boundaries of
45 % and 59 % around the frictionless Merton proportion of 52 % if the investor’s

2For our formal derivations, we consider general utilities like in recent independent work of Alcala and
Fahim [1].
3Here, both quantities are measured in relative terms, as is customary for investors with constant relative
risk aversion. That is, trading boundaries are parameterized by the fractions of wealth held in the risky
asset, and the welfare effect is described by the relative certainty equivalent loss, that is, the fraction of the
initial endowment the investor would be willing to give up to trade without frictions.
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wealth is $5000. If wealth increases to $100,000, however, the trading boundaries
narrow to 49 % and 55 %, respectively. Our results also show that asymptotically
for small costs, fixed transaction costs are equivalent—both in terms of the no-trade
region and the corresponding welfare loss—to a suitable “equivalent proportional
cost.” Since the effect of the fixed costs varies with investors’ wealth, this equivalent
proportional cost is not constant, but decreases with the investors’ wealth level. For
example, with typical market parameters (see Fig. 1), a $1 fixed cost corresponds to
a proportional cost of 2.3 % if the investor’s wealth is $5000, but to only 0.24 % if
wealth is $100,000. In a similar spirit, our results are also formally linked to those of
Atkinson and Wilmott [2]: their trading costs, taken to be a constant fraction of the
investors’ current wealth, formally lead to the same results as substituting a stochastic
fixed cost proportional to current wealth into our formulas.

A second novelty is that our results readily extend to a multivariate setting with
several risky assets. This is in contrast to the models with proportional transaction
costs, where optimal no-trade regions for several risky assets can only be determined
numerically by solving a multidimensional nonlinear free-boundary problem, even in
the limit for small costs [38]. With small fixed costs, the optimal no-trade region with
several risky assets turns out to be an ellipsoid centered around the frictionless target,
whose precise shape is easily determined even in high dimensions by the solution
of a matrix-valued algebraic Riccati equation. This is again in line with the quasi-
fixed costs studied by Atkinson and Wilmott [2], up to rescaling the transaction cost
by current wealth. Qualitatively, the shape of our ellipsoid resembles the one for the
parallelogram-like regions computed numerically for proportional transaction costs
by Muthuraman and Kumar [35] and Possamaï, Soner, and Touzi [38]. On a quanti-
tative level, however, we find that the shape of the ellipsoid is much more robust with
respect to correlation among the risky assets.

Finally, the present study provides the first rigorous proofs for asymptotics with
small fixed costs, complementing earlier partially heuristic results [27, 29, 1], rigor-
ous analyses of the related problem of optimal discretization [16, 17, 40], and rigor-
ous asymptotics with proportional costs (see [42, 22, 6, 18, 43, 38, 7]). As for pro-
portional costs [43], our approach is based on the theories of viscosity solutions and
homogenization, in particular, the weak-limits technique of Barles and Perthame [4]
and Evans [14]. However, substantial new difficulties have to be overcome because
i) the value function is not concave, ii) the usual dimensionality reduction techniques
fail even in the simplest models, iii) the set of controls is not scale-invariant, and
iv) the dynamic programming equation involves a nonlocal operator here. In order
not to drown these new features in further technicalities, we leave for future research
the extension to more general preferences and asset price and cost dynamics as in
[43, 25, 24] for proportional costs, and also the analysis of the joint impact of pro-
portional and fixed costs.4

The remainder of the article is organized as follows. The model, the main results,
and their implications are presented in Sect. 2. Subsequently, we derive the results
in an informal manner. This is done in some detail to explain the general proce-
dure that is likely to be applicable for a number of related problems. In particular,

4See [27, 1] for corresponding formal asymptotics.
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we explain how to come up with the scaling in powers of λ1/4 by heuristic argu-
ments as in [22, 39] and discuss how to use homogenization techniques to derive the
corrector equations describing the first-order approximations of the exact solution.
Sections 4–8 then make these formal arguments rigorous by providing a convergence
proof. Some technical estimates are deferred to Appendix A. Finally, Appendix B
presents a self-contained proof of the weak dynamic programming principle in the
spirit of Bouchard and Touzi [8], which in turn leads to the viscosity solution prop-
erty of the value function for the problem at hand.

Throughout, we denote by x� the transpose of a vector or matrix x; we also set
1d := (1, . . . ,1)� ∈ R

d and write Id for the identity matrix on R
d . For a vector

x ∈R
d , the diagonal matrix with diagonal elements x1, . . . , xd is denoted by diag[x].

We also use the notation Dp and D2
p for the gradient and Hessian with respect to a

variable p. Finally, x · y denotes the standard inner product of two Euclidean vectors,
and we write x ⊗ y = xiyj for the matrix with entries xiyj .

2 Model and main results

2.1 Market, trading strategies, and wealth dynamics

Consider a financial market consisting of a safe asset earning a constant interest rate
r > 0 and of d risky assets with expected excess returns μi − r > 0 and invertible
infinitesimal covariance matrix σσ�, that is,

dS0
t = S0

t r dt, dSt = Stμdt + Stσ dWt ,

for a d-dimensional standard Brownian motion (Wt)t≥0 defined on a filtered prob-
ability space (Ω,F , (Ft )t≥0,P), where (Ft )t≥0 denotes the augmentation of the
filtration generated by (Wt )t≥0. Each trade incurs a fixed transaction cost λ > 0, re-
gardless of its size or the number of assets involved. As a result, portfolios can only
be rebalanced finitely many times over finite time intervals, and trading strategies can
be described by pairs (τ,m), where the trading times τ = (τ1, τ2, . . .) are a sequence
of stopping times increasing toward infinity, and the Fτi

-measurable, Rd -valued ran-
dom variables collected in m = (m1,m2, . . .) describe the transfers at each trading
time. More specifically, m

j
i represents the monetary amount transferred from the safe

to the j th risky asset at time τi . Each trade is assumed to be self-financing, and the
fixed costs are deducted from the safe asset account. Thus, the safe and risky positions
evolve as

(x, y) = (x, y1, . . . , yd) �→
(

x −
d∑

j=1

m
j
i − λ,y1 + m1

i , . . . , y
d + md

i

)

for each trade mi at time τi . The investor also consumes from the safe account at
some rate (ct )t≥0. Starting from an initial position (X0−, Y0−) = (x, y) ∈R×R

d , the
wealth dynamics corresponding to a consumption–investment strategy ν = (c, τ,m)
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are therefore given by

Xt = x +
∫ t

0
(rXs − cs) ds −

∞∑
k=1

(
λ +

d∑
j=1

m
j
k

)
1{τk≤t},

Y i
t = yi +

∫ t

0
Y i

s

dSi
s

Si
s

+
∞∑

k=1

mi
k1{τk≤t}.

We write (X,Y )ν,x,y for the solution of this equation. The solvency region

Kλ :=
{
(x, y) ∈ R

d+1 : max
{
x + y · 1d − λ, min

i=1,...,d
{x, yi}} ≥ 0

}

is the set of positions with nonnegative liquidation value. A strategy ν = (c, τ,m)

starting from the initial position (x, y) is called admissible if it remains solvent at all
times, that is, (Xν,x

t , Y
ν,y
t ) ∈ Kλ for all t ≥ 0 P-a.s. The set of all admissible strategies

is denoted by Θλ(x, y).

2.2 Preferences

In the above market with constant investment opportunities (r,μ,σ ) and fixed trans-
action costs λ, an investor with constant relative risk aversion γ > 0, that is, with
utility function Uγ : (0,∞) → R of either logarithmic or power type,

Uγ (c) =
{

c1−γ /(1 − γ ), 0 < γ 
= 1,

log c, γ = 1,

and impatience rate β > 0 trades to maximize the expected utility from consumption
over an infinite horizon, starting from an initial endowment of X0− = x in the safe
and Y0− = y in the risky assets, respectively.5 So we consider

vλ(x, y) = sup
(c,τ,m)∈Θλ(x,y)

E

[∫ ∞

0
e−βtUγ (ct ) dt

]
. (2.1)

Theorem 2.1 The value function vλ of the problem with fixed costs λ > 0 is a (pos-
sibly) discontinuous viscosity solution of the dynamic programming equation (3.7) in
the domain

Oλ = {(x, y) ∈ Kλ : x + y · 1d > 2λ}.

For our asymptotic results, it suffices to obtain this result for Oλ rather than for
the full solvency region Kλ. This is because any fixed initial allocation (x, y) ∈R

d+1

with x + y · 1d > 0 will satisfy (x, y) ∈Oλ for sufficiently small λ.
For the definition of a discontinuous viscosity solution, we refer the reader to

[10, 15, 23, 37]. Øksendal and Sulem [37] study the existence and uniqueness for

5By convention, the value of the integral is set to minus infinity if its negative part is infinite.
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one risky asset and power utility with risk aversion γ ∈ (0,1) under the additional
assumption β > (1 − γ )μ, a sufficient condition for the finiteness of the frictionless
value function. The proof of Theorem 2.1 is given in Appendix B by establishing a
weak dynamic programming principle in the spirit of Bouchard and Touzi [8]. We be-
lieve that in analogy to corresponding results for proportional costs [42], Theorem 2.1
and a comparison result hold in the entire solvency region for all utility functions
whenever the transaction cost value function vλ is finite. However, this extension is
not needed here.

2.3 Main results

Let us first collect the necessary inputs from the frictionless version of the problem
(see, e.g., [15]). Denote by

πm = (σσ�)−1(μ − r1d)/γ

the optimal frictionless target weights, that is, the Merton proportions, in the risky
assets. Write

cm(γ ) = 1

γ
β +

(
1 − 1

γ

)(
r + (μ − r1d)�(σσ�)−1(μ − r1d)

2γ

)

for the frictionless optimal consumption rate and let

v(z) =
⎧⎨
⎩

z1−γ

1−γ
c
−γ
m , γ 
= 1,

1
β

log(βz) + 1
β2 (r + (μ−r1d )�(σσ�)−1(μ−r1d )

2 − β), γ = 1,
(2.2)

be the value function for the frictionless counterpart of (2.1) with initial wealth
z = x + y · 1d . The latter is finite, provided that cm > 0, which we assume through-
out. Moreover, we also suppose that the following matrix is invertible:

α = (Id − πm1�
d )diag[πm]σ. (2.3)

Remark 2.2 Assuming (2.3) to be invertible ensures that the asymptotically optimal
no-trade region in Theorem 2.4 below is nondegenerate. This is tantamount to a non-
trivial investment in each of the d + 1 assets.

Our main results are the leading-order corrections for small fixed transaction
costs λ; their interpretation and connections to the literature are discussed in Sect. 2.4.

Theorem 2.3 (Expansion of the value function) For all solvent initial endowments
(x, y) ∈ R

d+1 with z = x + y · 1d > 0, we have

vλ(x, y) = v(z) − λ1/2u(z) + o(λ1/2),

that is,

uλ(x, y) := v(z) − vλ(x, y)

λ1/2
−→ u(x + y),
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locally uniformly as λ → 0. Here,

u(z) = u0z
1/2−γ

for a constant u0 > 0 determined by the corrector equations from Definition 3.1. For
a single risky asset (d = 1), we have

u0 = σ 2
(γ

3
π2

m(1 − πm)2
)1/2 cm(γ )−γ

cm(2γ )
;

see Sect. 3.6 for the multivariate case.
This determines the leading-order relative certainty equivalent loss, that is, the

fraction of her initial endowment the investor would give up to trade the risky asset
without transaction costs, as follows:

vλ(x, y) = v

(
z
(

1 − u0cm(γ )γ
λ1/2

z1/2

))
+ o(λ1/2). (2.4)

The leading-order optimal performance from Theorem 2.3 is achieved by the fol-
lowing “almost optimal policy”:

Theorem 2.4 (Almost optimal policy) Fix a solvent initial portfolio allocation. De-
fine the no-trade region

NTλ =
{
(x, y) ∈ R

d+1 : y

x + y · 1d

∈ πm + λ1/4

(x + y · 1d)1/4
J

}

for the ellipsoid J = {ρ ∈ R
d : ρ�Mρ < 1} from Sect. 3.6. Consider the strategy

that consumes at the frictionless Merton rate, does not trade while the current posi-
tion lies in the above no-trade region, and jumps to the frictionless Merton proportion
once its boundaries are breached. Then, for any δ > 0, the utility obtained from fol-
lowing this strategy until wealth falls to level δ and then switching to a leading-order
optimal strategy for (2.1) is optimal at the leading order λ1/2 (see Sect. 8.2 for more
details).

For a single risky asset, the above no-trade region simplifies to the following in-
terval around the frictionless Merton proportion:

NTλ =
{
(x, y) ∈R

2 :
∣∣∣∣ y

x + y
− πm

∣∣∣∣ ≤
(

12

γ
π2

m(1 − πm)2 λ

x + y

)1/4 }
. (2.5)

Remark 2.5 Unlike for proportional transaction costs, trading only after leaving the
above asymptotic no-trade region is not admissible for any given fixed cost λ > 0.
This is because wealth can fall below the level λ needed to perform a final liquidating
trade. Hence, this region is only “locally” optimal in that one needs to switch to the
unknown optimal policy after wealth falls below a given threshold.



Asymptotics for fixed transaction costs 371

2.4 Interpretations and implications

In this section, we discuss a number of interpretations and implications of our main
results. We first focus on the simplest case of one safe and one risky asset, before
turning to several correlated securities.

2.4.1 Small frictions and portfolio gammas

The transactions of the optimal policies for proportional and fixed costs are radically
different. For proportional costs, there is an infinite number of small trades of “local-
time type,” whereas fixed costs lead to finitely many bulk trades over finite time
intervals. Nevertheless, the respective no-trade regions—that indicate when trading is
initiated—turn out to be determined by exactly the statistics summarizing the market
and preference parameters.

Indeed, just as for proportional transaction costs [22], the width of the leading-
order optimal no-trade region in (2.5) is determined by a power of π2

m(1 − πm)2

rescaled by the investor’s risk tolerance 1/γ . This term quantifies the sensitivity
of the current risky weight with respect to changes in the price of the risky asset;
cf. [22, Remark 4]. Compared to the corresponding formula for proportional transac-
tion costs in [22], it enters through its quartic rather than cubic root and is multiplied
by a different constant. Nevertheless, most qualitative features remain the same: the
leading-order no-trade region vanishes if a full safe or risky investment is optimal in
the absence of frictions (πm = 0 or πm = 1, respectively), and the effect on optimal
strategies increases significantly in the presence of leverage (πm > 1, cf. [18]).

As in [33, 25, 24] for proportional costs, the no-trade region can also be interpreted
in terms of the activities of the frictionless optimizer and the market as follows. Let
ϕm(t) = πmZt/St be the frictionless optimal strategy for current wealth Zt , expressed
in terms of the number of shares held in the risky asset. Then the frictionless wealth
dynamics dZt = Ztπm dSt/St − ct dt and Itô’s formula yield

d〈ϕm〉t
dt

= π2
m(1 − πm)2σ 2Z2

t

S2
t

.

As a result, the maximal deviations (2.5) from the frictionless target can be rewritten
in numbers of risky shares as

±
(

12

γ

d〈ϕm〉t
d〈S〉t

λ

Zt

)1/4

.

Our formal results from Sect. 3.5 suggest that an analogous result remains valid also
for more general preferences. Then, the frictionless target ϕm(t) = θ(Zt )/St (see
Sect. 3.1) no longer corresponds to a constant target weight, and Itô’s formula yields

d〈ϕm〉t
dt

= σ 2θ2(Zt )(1 − θ2
z (Zt ))

2

S2
t

,



372 A. Altarovici et al.

so that the maximal deviations (3.19) from the frictionless target ϕm(t) can be written
as

±
(

12

−vzz(z)/vz(z)

d〈ϕm〉t
d〈S〉t λ

)1/4

, (2.6)

in terms of numbers of risky shares. Up to changing the power and the constant, this
is the same formula as for proportional transaction costs [25, 33, 24]: the width of the
no-trade region is determined by the transaction cost, times the (squared) portfolio
gamma d〈ϕm〉t /d〈S〉t , times the risk tolerance of the indirect utility function of the
frictionless problem. The portfolio gamma also is the key driver in the analysis of
finely discretized trading strategies [45, 5, 21, 16, 17, 40]. Hence, it appears to be an
appealingly robust measure for the sensitivity of trading strategies to small frictions.

2.4.2 Wealth dependence and equivalent proportional costs

A fundamental departure from the corresponding results for proportional transaction
costs is that the impact of fixed costs depends on investors’ wealth. Indeed, the fixed
cost λ is normalized by the investors’ current wealth, both in the asymptotically opti-
mal trading boundaries (2.5) and in the leading-order relative welfare loss (2.4); see
Fig. 1 for an illustration. This makes precise to what extent fixed costs can indeed be
neglected for large institutional traders, but play a key role for small private investors:
ceteris paribus, doubling the investors’ wealth reduces the impact of fixed trading
costs in exactly the same way as halving the costs themselves. As a result, a con-
stant fixed cost leads to a no-trade region that fluctuates with the investors’ wealth. In
contrast, for proportional transaction costs, this only happens if these evolve stochas-
tically. The formal results of Kallsen and Muhle-Karbe [24] shed more light on this
connection. It turns out that a constant fixed cost λ is equivalent—both in terms of
the associated no-trade region and the corresponding welfare loss—to a random and
time-varying proportional cost given by

λ
equiv
t =

(
1024γ

3π2
m(1 − πm)2

)1/4 (
λ

Zt

)3/4

for current total wealth Zt .6 Note that this formula is independent of the impatience
parameter β and only depends on the market parameters (μ,σ, r) through the Merton
proportion πm = (μ − r)/γ σ 2. This relation clearly shows that a fixed cost corre-
sponds to a larger proportional cost if rebalancing trades are small because i) the
investors’ wealth Zt is small or ii) the no-trade region is narrow because the friction-
less optimal position πm is close to a full safe or risky position (πm = 0 or πm = 1).
In contrast, for large investors and a frictionless position sufficiently far away from
full risky or safe investment, the effect of fixed costs becomes negligible (see Fig. 1
for an illustration). For sufficiently high risk aversion γ , the equivalent proportional
cost is increasing in risk aversion (as higher risk aversion leads to smaller trades),

6To see this, formally let the time horizon tend to infinity in [24, Sects. 4.1 and 4.2] and insert the explicit
formulas for the optimal consumption rate and risky weight. This immediately yields that the leading-order
no-trade regions coincide; for the corresponding welfare effects, this follows after integrating.
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Fig. 2 No-trade ellipsoid for
two identical risky assets with
excess returns 5 %, correlation 0
(solid) resp. 44 % (dashed) and
corresponding volatilities 40 %
resp. 33 % chosen so that the
Merton proportion remains
constant at (5/32,5/32). Risk
aversion is γ = 2, wealth is
$50,000, and the fixed cost is
$3.41

in line with the numerical findings of Liu [28] for exponential utility. Here, however,
one can additionally assess the impact of changing wealth over time endogenously,
rather than by having to vary the investors’ risk aversion.

Our asymptotic formulas for fixed costs also allow us to relate these to the
fixed fraction of current wealth charged per transaction in the model of Morton and
Pliska [34]. Their “quasi-fixed” costs are scale-invariant in that they lead to constant
trading boundaries around the Merton proportion πm, whose asymptotics have been
derived by Atkinson and Wilmott [2]. Formally, these trading boundaries coincide
with ours if the ratio of their time-varying trading cost and our fixed fee is given by
the investors’ current wealth.

2.4.3 Multiple stocks

For multiple stocks, Theorem 2.4 shows that it is approximately optimal to keep the
portfolio weight in an ellipsoid around the frictionless Merton position πm. Whereas
nonlinear free-boundary problems have to be solved to determine the optimal no-
trade region for proportional costs even if these are small [38], the asymptotically
optimal no-trade ellipsoid with fixed costs is determined by a matrix-valued alge-
braic Riccati equation, which is readily evaluated numerically even in high dimen-
sions (see Sect. 3.6 for more details). Qualitatively, this is again in analogy to the
asymptotic results of Atkinson and Wilmott [2] for the Merton and Pliska model [2],
but—as for a single risky asset—the trading boundary varies with investors’ wealth
for the fixed costs considered here.

To shed some light on the quantitative features of the solution, Fig. 2 depicts the
no-trade ellipsoid for two identical risky assets with varying degrees of correlation.7

Qualitatively, correlation deforms the shape of the no-trade region similarly as in
Muthuraman and Kumar [35, Fig. 6.8] for proportional costs: in the space of risky

7To facilitate comparison, we use the same market parameters μ,σ, r and risk aversion γ as in Muthura-
man and Kumar [35]. The fixed cost and the current wealth are chosen so that the one-dimensional no-trade
region for each asset corresponds to the one for their 1 % proportional cost.
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Fig. 3 Maximal deviations
(in percentages of wealth held in
the risky assets) from the
frictionless Merton proportion
for two identical risky assets
with excess returns 5 %,
correlation 0, volatilities 40 %,
and risk aversions 2 (solid) and
6 (dashed). Wealth is $50,000,
and the fixed cost is $3.41

asset weights, the no-trade region shrinks in the (1,1) direction but widens in the
(1,−1)-direction because investors use the positively correlated assets as partial sub-
stitutes for each other.

On a quantitative level, however, the impact of correlation turns out to be consid-
erably less pronounced for fixed costs. This is because whenever any trade happens,
all stocks can be traded with no extra cost, weakening the incentive to use substitutes
for hedging. Also notice that the no-trade region is not rotationally symmetric even
for two identical uncorrelated stocks. This is in contrast to the results for exponen-
tial utilities, for which the investor’s maximization problem factorizes into a number
of independent subproblems [28]. Note, however, that as risk aversion increases, the
optimal no-trade region for uncorrelated identical stocks quickly becomes more and
more symmetric, in line with the high risk aversion asymptotics linking power utili-
ties to their exponential counterparts.8 This is illustrated in Fig. 3.

3 Heuristic derivation of the solution

In this section, we explain how to use the homogenization approach to determine the
small-cost asymptotics on an informal level. The derivations are similar to the ones
for proportional costs [43].

Since this entails few additional difficulties on a formal level, we consider general
utilities U defined on the positive half-line in this section. For the rigorous conver-
gence proofs in Sect. 4, we focus on utilities Uγ with constant relative risk aversion
in order not to drown the arguments in technicalities.

8Compare Nutz [36] for a general frictionless setting and Guasoni and Muhle-Karbe [20] for a model with
proportional transaction costs. A similar result for fixed costs is more difficult to formulate because the
investor’s wealth does not factor out of the trading policy in this case.
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3.1 The frictionless problem

The starting point for the present asymptotic analysis is the solution of the friction-
less version of the problem at hand. Since trades are costless in that setting, the corre-
sponding value function does not depend separately on the positions x, y in the safe
and the risky assets, but only on total wealth z = x + y · 1d . As is well known (see
e.g. [15, Chapter X]), the frictionless value function solves the dynamic programming
equation

0 = Ũ
(
vz(z)

) − βv(z) + L0v(z), (3.1)

where

L0v(z) = vz(z)zr + vz(z)(μ − r1d)T θ(z) + 1

2
vzz(z)|σ�θ(z)|2, (3.2)

and the corresponding optimal consumption rate and risky positions are given by

κ(z) := (U ′)−1(vz(z)
)

(3.3)

and

θ(z) := − vz(z)

vzz(z)
(σσ�)−1(μ − r1d). (3.4)

For power or logarithmic utilities Uγ (z), which have constant relative risk aversion
−zU ′′

γ (z)/U ′
γ (z) = γ , this leads to the explicit formulas from Sect. 2.3 because the

value function is homothetic in this case: we have v(z) = z1−γ v(1) (if γ 
= 1) resp.
v(z) = 1

β
log z + v(1) (if γ = 1).

3.2 The frictional dynamic programming equation

For the convenience of the reader, we now recall how to heuristically derive the dy-
namic programming equation with fixed trading costs. We start from the ansatz that
the value function vλ(x, y) for our infinite-horizon problem with constant model pa-
rameters should only depend on the positions in each of the assets. Evaluated along
the positions Xt,Yt corresponding to any admissible policy ν = (c, τ,m), Itô’s for-
mula in turn yields

dvλ(Xt , Yt ) (3.5)

=
(
vλ
x (Xt , Yt )(rXt − ct ) + μ · Dyv

λ(Xt , Yt ) + 1

2
Tr[σσ�Dyyv

λ(Xt , Yt )]
)

dt

+ Dyv
λ(Xt , Yt )

�σ dWt +
∑
τi≤t

(
vλ(Xτi

− mi · 1d − λ,Yτi
+ mi) − vλ(Xτi

, Yτi
)
)
,

where

Di
y = yi ∂

∂yi

, Dij
yy = yiyj ∂2

∂yi∂yj
, i, j = 1, . . . , d.
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By the martingale optimality principle of stochastic control, the utility
∫ t

0
e−βsU(cs) ds + e−βtvλ(Xt , Yt )

obtained by applying an arbitrary policy ν until some intermediate time t and then
trading optimally should always lead to a supermartingale and to a martingale if the
optimizer is used all along. Between trades—in the policy’s “no-trade region”—this
means that the absolutely continuous drift should be nonpositive and zero for the
optimizer. After taking into account (3.5), using integration by parts and cancelling
the common factor e−βt , this leads to

0 = sup
c>0

(
− βvλ(x, y) + U(c) + (rx − c)vλ

x (x, y) (3.6)

+ μ · Dyv
λ(x, y) + 1

2
Tr[σσ�Dyy]vλ(x, y)

)
.

By definition, the value function can only be decreased by admissible bulk trades at
any time; so

0 ≥ sup
m∈Rd

(
vλ(x − m · 1d − λ,y + m) − vλ(x, y)

)
,

and this inequality should become an equality for the optimal transaction once the
boundaries of the no-trade region are breached. Combining this with (3.6) and switch-
ing the sign yields the dynamic programming equation

0 = min
(
βvλ − Ũ (vλ

x ) − L vλ, vλ − Mvλ
)
, (3.7)

where Ũ(c̃) = supc>0(U(c) − cc̃) is the convex dual of the utility function U , the
differential operator L is defined as

L = rx
∂

∂x
+ μ · Dy + 1

2
Tr[σσ�Dyy],

and M denotes the nonlocal intervention operator

Mψ(x, y) = sup
m∈Rd

{ψ(x′, y′) : (x′, y′) = (x − m · 1d − λ,y + m) ∈ Kλ}. (3.8)

3.3 Identifying the correct scalings

The next step is to determine heuristically how the optimal no-trade region around
the frictionless solution and the corresponding utility loss should scale with a small
transaction cost λ. This can be done by adapting the heuristic argument in [22, 39].
Indeed, the welfare effect of any trading cost is composed of two parts, namely the
direct costs incurred due to actual trades, and the displacement loss due to having to
deviate from the frictionless optimum. Since the frictionless value function is locally
quadratic around its maximum, Taylor’s theorem suggests that the displacement ef-
fect should be of order x2 for any small cost that only causes a small displacement x.
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Where the various cost structures differ is in the losses due to actual trades. Pro-
portional transaction costs lead to trading of local-time type, which scales with the
inverse of the width of the no-trade region [22, Sect. 3]. This leads to a total welfare
loss proportional to

Cx2 + λ/x

for some constant C > 0. Minimizing this expression leads to a no-trade region with
width of order λ1/3 and a corresponding welfare loss of order λ2/3. In contrast, trades
of all sizes are penalized alike by fixed costs. This leads to a bulk trade to the optimal
frictionless position, and therefore a transaction cost of λ, whenever the boundaries
of the no-trade region are reached. On the short time interval before leaving a narrow
no-trade region, any diffusion resembles a Brownian motion at the leading order.
Hence, the first exit time can be approximated by the one of a Brownian motion
from the interval [−x, x], which scales with x2. After the subsequent jump to the
midpoint of the no-trade region, this procedure is repeated, so that the number of
trades approximately scales with 1/x2. As a result, the total welfare loss due to small
fixed costs λ is proportional to

Cx2 + λ/x2

for some constant C > 0. Minimizing this expression in x then leads to an optimal
no-trade region of order λ1/4 and a corresponding welfare loss of order λ1/2.

3.4 Derivation of the corrector equations

In view of the previous considerations, we expect the leading-order utility loss due to
small transaction costs λ to be of order λ1/2, whereas the deviations of the optimal
policy from its frictionless counterpart should be of order λ1/4. This motivates for the
asymptotic expansion of the transaction cost value function the ansatz

vλ(x, y) = v(z) − λ1/2u(z) − λw(z, ξ) + o(λ3/4). (3.9)

Here, v is the frictionless value function from Sect. 3.1, the functions u and w are to
be calculated, and we change variables from the safe and risky positions x, y to the
total wealth

z := x + y · 1d

and the deviations

ξ := (
y − θ(x + y)

)
/λ1/4

of the risky positions from their frictionless targets, normalized to be of order O(1)

as λ ↓ 0. The function λw is included, even though it only contributes at the higher
order λ itself because its second derivatives with respect to the y-variables are of
order λ1/2.

To determine u and w, insert the postulated expansion (3.9) into the dynamic
programming equation (3.7). This leads to two separate equations in the no-trade and
trade regions, respectively.
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3.4.1 No-trade region

To ease notation, we illustrate the calculations for the case of a single risky asset
(d = 1) and merely state the multidimensional results at the end.9 In the no-trade
region, we have to expand the elliptic operator from (3.7) in powers of λ. To this end,
Taylor expansion (3.3), and Ũ ′ = −(U ′)−1 yield

Ũ
(
vλ
x (x, y)

) = Ũ
(
vz(z)

) + λ1/2κ(z)uz(z) + o(λ3/4).

Moreover, also taking into account that y = θ(z) + λ1/4ξ , it follows that

βvλ(x, y) − Ũ
(
vλ
x (x, y)

) − L vλ(x, y)

=βv(z) − Ũ
(
vz(z)

) − L0v(z)

− λ1/4ξ
(
μvz(z) + σ 2θ(z)vzz(z)

)

− λ1/2
(
βu(z) − L0u(z) + κ(z)uz(z) + σ 2

2
ξ2vzz(z)

− σ 2

2
θ(z)2(1 − θz(z)

)2
wξξ (z, ξ)

)

+ o(λ1/2)

for the differential operator L0 from (3.2). The O(λ1/4)-terms in this expression
vanish by definition (3.4) of the frictionless optimal weight; the same holds for the
O(1)-terms by the frictionless dynamic programming equation (3.1). Satisfying the
elliptic part of (3.7) between bulk trades—at the leading order O(λ1/2)—is therefore
tantamount to

0 = βu(z) − L0u(z) + κ(z)uz(z)

+ σ 2

2
ξ2vzz(z) − σ 2

2
θ(z)2(1 − θz(z)

)2
wξξ (z, ξ). (3.10)

3.4.2 Trade region

Now, turn to the second part of the frictional dynamic programming equation (3.7),
which should vanish when a bulk trade becomes optimal outside the no-trade region.
Suppose that (x, y) ∈ Kλ and vλ(x, y) = Mvλ(x, y). Then, inserting the expansion
for vλ yields

v(z) − λ1/2u(z) − λw(z, ξ) = v(z − λ) − λ1/2u(z − λ) − λ · inf
ξ̂

w(z − λ, ξ̂ ),

9The full multidimensional derivation can be found in [43]. In the no-trade region, the calculations are
identical.
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where the infimum is over deviations ξ̂ attainable from the current position (z, ξ) by
a single trade. Taylor expansion yields

0 = λ
(
vz(z) − w(z, ξ) + inf

ξ̂

w(z − λ, ξ̂ )
) + o(λ).

If w(z, ξ) = w(z − λ, ξ) + o(λ), where o(λ) only depends on z,10 this simplifies to

0 = λ
(
vz(z) − w(z, ξ) + inf

ξ̂

w(z, ξ̂ )
) + o(λ).

In the ansatz (3.9), the function w is multiplied by a higher-order λ-term. Therefore,
its value at a particular point is irrelevant at the leading order λ1/2, and we may
assume that w(z,0) = 0. As a result, we expect that

inf
ξ̂

w(z, ξ̂ ) = w(z,0) = 0

because a zero deviation ξ = 0 from the frictionless position should lead to the small-
est utility loss. Consequently, the leading-order dynamic programming equation out-
side the no-trade region reads as

0 = vz(z) − w(z, ξ). (3.11)

Note that this derivation remains valid for several risky assets.

3.4.3 Corrector equations

Together with (3.10), (3.11) shows that—at the leading order λ1/2—the dynamic pro-
gramming equation (3.7) can be written as

max
(
A u(z) + σ 2

2
ξ2vzz(z) − σ 2

2
θ2(z)

(
1 − θz(z)

)2
wξξ (z, ξ),w(z, ξ) − vz(z)

)

= 0, (3.12)

where we set

A u(z) := βu(z) − L0u(z) + κ(z)uz(z). (3.13)

To solve (3.12), we first treat the z-variable as constant and solve (3.12) as a function
of ξ only to get

0 = max
(σ 2

2
ξ2vzz(z) − σ 2

2
θ2(z)

(
1 − θz(z)

)2
wξξ (z, ξ) + a(z),w(z, ξ) − vz(z)

)

for some a(z) that only depends on z but not on ξ . Then, take a(z) as given and solve
for the function u of z to get

A u(z) = a(z).

10This will turn out to be consistent with the results of our calculations below; see Sects. 3.5 and 3.6.
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If both of these “corrector equations” are satisfied, then (3.12) evidently holds as well.
For several risky assets, the corresponding analogues read as follows.

Definition 3.1 (Corrector equations) For a given z > 0, the first corrector equation
for the unknown pair (a(z),w(z, ·)) ∈ R+ × C2(R+) is

max
(

− |σ�ξ |2
2

( − vzz(z)
) − 1

2
Tr[α(z)α(z)�wξξ ] + a(z), w(z, ξ) − vz(z)

)

= 0, ∀ξ ∈R
d, (3.14)

together with the normalization w(z,0) = 0, where

α(z) := (
Id − θz(z)1�

d

)
diag[θ(z)]σ.

The second corrector equation uses the function a(z) from the first corrector equation
and is a simple linear equation for the function u : R+ →R; it reads

Au(z) = a(z) ∀ z ∈R+, (3.15)

where A, defined in (3.13) and (3.2), is the infinitesimal generator of the optimal
wealth process for the frictionless problem.

Remark 3.2 As for proportional costs [43, Remark 3.3], the first corrector equation
is the dynamic programming equation of an ergodic control problem. Indeed, for
fixed z and for an increasing sequence of stopping times τ = (τk)k∈N and impulses
m = (mk)k∈N ∈R

d , we define the cost functional by

J (z,m, τ) := vz(z) lim sup
T →∞

1

T
E

[∫ T

0

(−vzz(z))

2vz(z)
|σ�ξs |2 ds +

∞∑
k=1

1{τk≤T }
]
,

where the state process ξ is given by

ξ i
t = ξ i

0 +
d∑

j=1

αi,j (z)B
j
t +

∞∑
k=1

mk1{τk≤t}, t ≥ 0, i = 1, . . . , d,

with a d-dimensional standard Brownian motion B .
The structure of this problem implies that the optimal strategy is determined by

a region C enclosing the origin. The optimal stopping times are the hitting times
of ξ to the boundary of C. When ξ hits ∂C, it is optimal to move it to the origin.
Hence, the optimal stopping times (τk) are the hitting times of ξ to the boundary of
C and mk = −ξτk−, so that ξτk

= 0 for each k = 1,2, . . . . Put differently, the region
C provides the asymptotic shape of the no-trade region. In the power and log utility
case, it is an ellipsoid as in Fig. 2.

The function a is the optimal value,

a(z) := inf
(τ,m)

J (z,m, τ).
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Then, the Feynman–Kac formula for the linear equation A u = a for u implies

u(z) = E

[∫ ∞

0
e−βt a(Z

m,z
t ) dt

]
,

where Zm,z is the optimal wealth process for the frictionless Merton problem with
initial value Z

m,z
0 = z.

3.5 Solution in one dimension

If there is only a single risky asset (d = 1), the asymptotically optimal no-trade region
is the interval {z : |ξ | ≤ ξ0(z)}. The first corrector equation can then be readily solved
explicitly by imposing smooth pasting at the boundaries, similarly as for proportional
transaction costs [43]. Matching values and first derivatives across the trading bound-
aries ±ξ0(z) leads to two conditions for a symmetric function w(z, ·), in addition to
the actual optimality equation in the interior of the no-trade region. Thus, the lowest-
order polynomials in ξ capable of fulfilling these requirements are of order four.
Since we have imposed w(z,0) = 0, this motivates the ansatz

w(z, ξ) =
{

A(z)ξ2 − B(z)ξ4, |ξ | ≤ ξ0(z),

vz(z), |ξ | ≥ ξ0(z).

Inside the no-trade region, inserting this ansatz into the first corrector equation (3.14)
gives

0 = a(z) + σ 2

2
ξ2vzz(z) − α2(z)A(z) + 6α2(z)B(z)ξ2,

where α(z) := σθ(z)(1 − θz(z)) as in Definition 3.1. Since this equation should be
satisfied for any value of ξ , comparison of coefficients yields

B(z) = −σ 2vzz(z)

12α2(z)
, A(z) = a(z)

α2(z)
. (3.16)

Next, the smooth pasting condition 0 = wξ(z, ξ0(z)) = 2A(z)ξ0(z) − 4B(z)ξ3
0 (z) at

the trading boundary ξ = ξ0(z) implies

ξ2
0 (z) = A(z)

2B(z)
. (3.17)

Finally, the value matching conditions vz(z) = A(z)ξ2
0 (z) − B(z)ξ4

0 (z) evaluated at
ξ = ξ0(z) give

vz(z) = A2(z)

4B(z)
= − 3a2(z)

α2(z)σ 2vzz(z)
,

and in turn

a(z) = vz(z)α(z)σ

√
− vzz(z)

3vz(z)
. (3.18)
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In view of (3.17) and (3.16), the optimal trading boundaries are therefore determined
as

ξ0(z) =
(

12

−vzz(z)/vz(z)
θ(z)2(1 − θz(z)

)2
)1/4

. (3.19)

For utilities with constant relative risk aversion γ > 0, the optimal frictionless risky
position is θ(z) = πmz, so that the corresponding trading boundaries are given by

ξ0(z) =
(

12

γ
π2

m(1 − πm)2z3
)1/4

.

For the maximal deviations of the risky weight from the frictionless target, this yields
the formulas from Theorem 2.4, namely

π0(z) = λ1/4ξ0(z)

z
=

(
12

γ
π2

m(1 − πm)2 λ

z

)1/4

.

With constant relative risk aversion, the homotheticity of the value function (2.2) and
(3.18) imply that the second corrector equation A u(z) = a(z) simplifies to

βu(z) − rzuz − (μ − r)2

γ σ 2
zuz(z) − (μ − r)2

2γ 2σ 2
z2uzz(z) + cmzuz

=
√

γ

3
c
−γ
m σ 2πm(1 − πm)z1/2−γ ,

which is solved by

u(z) = u0z
1/2−γ with u0 = σ 2

(γ

3
π2

m(1 − πm)2
)1/2 cm(γ )−γ

cm(2γ )
.

This is the formula from Theorem 2.3.

3.6 Solution in higher dimensions

Let us now turn to the solution of the corrector equations for multiple risky assets.
To ease the already heavy notation, we restrict ourselves to utilities Uγ with constant
relative risk aversion γ > 0 here. Then we can rescale the corrector equation to obtain
a version that is independent of the wealth variable z. Indeed, let

ρ = z−3/4ξ,

so that setting

v0 = c
−γ
m ,

we obtain

w(z, ξ) = vz(z)W(z−3/4ξ) = v0z
−γ W(ρ), a(z) = a0z

1/2−γ > 0
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for some constant a0 > 0 and a function W(ρ) to be determined. We also introduce
the matrices

A := z−2α(z)α(z)�, Σ := σσ�.

Then a direct computation shows

|σ�ξ |2vzz(z) = (−Σρ · ρ)
v0z

1/2−γ

γ
,

Tr[α(z)α(z)�wξξ (z, ξ)] = Tr[AWρρ(ρ)](v0z
1/2−γ ).

The resulting rescaled equation for the pair (W(·), a0), with independent variable
ρ ∈ R

d , is

max
(

− 1

2
Σρ · ρ − 1

2
Tr[AWρρ(ρ)] + a0,−1 + W(ρ)

)
= 0, (3.20)

together with the normalization W(0) = 0. Following Atkinson and Wilmott [2], we
postulate a solution of the form

W ∗(ρ) = 1 − (Mρ · ρ − 1)2

for a symmetric matrix M to be computed. Then,

W ∗
ρρ(ρ) = −4(Mρ · ρ − 1)M − 8Mρ ⊗ Mρ.

Hence,

−1

2
Tr[AW ∗

ρρ(ρ)] = 2(Mρ · ρ − 1)Tr[AM] + 4MAMρ · ρ
= (2M Tr[AM] + 4MAM)ρ · ρ − 2 Tr[AM]
= 1

2
Σρ · ρ − a0,

provided that a0 = 2 Tr[AM] and M solves the algebraic Riccati equation

4M Tr[AM] + 8MAM = Σ. (3.21)

Remarkably, this is exactly Eq. (3.7) obtained by Atkinson and Wilmott [2] in their
asymptotic analysis of the Morton and Pliska model [34] with trading costs equal to
a constant fraction of the investors’ current wealth. Atkinson and Wilmott [2] argue
that one may take A to be the identity without any loss of generality by transforming
to a coordinate system in which the second-order operator is the Laplacian. For the
convenience of the reader, we provide this transformation here: since A is symmetric
positive definite by Assumption (2.3), there is a unitary matrix O ∈ R

d×d for which

OAO� = diag[ζi],



384 A. Altarovici et al.

where ζ1, ζ2, . . . , ζd denote the eigenvalues of A. Setting

M̃ := diag[ζ 1/2
i ]OMO� diag[ζ 1/2

i ],
Σ̃ := diag[ζ 1/2

i ]OΣO� diag[ζ 1/2
i ],

(3.21) becomes

4M̃ Tr[M̃] + 8M̃2 = Σ̃.

Using that M̃ and Σ̃ have the same eigenvectors, Atkinson and Wilmott (see
(3.8)–(3.11) in [2]) obtain simple algebraic equations for the eigenvalues of M̃ , thus
determining M up to the above coordinate transformation. In summary, given A,Σ

positive definite, there exists a positive definite solution M of (3.21). Then, a solution
to the corrector equation (3.14) is given by the function

W(ρ) :=
{

1 − (ρ�Mρ − 1)2 for ρ ∈ J ,

1 for ρ /∈ J ,

where J is the ellipsoid around zero given by

J := {ρ ∈ R
d : ρ�Mρ < 1}.

Reverting to the original variables, it follows that the asymptotically optimal no-trade
region should be given by

NTλ =
{
(x, y) ∈ R

d+1 : y

x + y · 1d

∈ πm + λ1/4

(x + y · 1d)1/4
J

}
,

in accordance with Theorem 2.4.

Remark 3.3 The following notation will be useful. Given a wealth z > 0, define

NT(z) := {ξ ∈ R
d : ξ ∈ z3/4J }.

That is, for any (z, ξ) = (x + y · 1d,
y−πm(x+y·1d )

λ
) corresponding to (x, y) ∈ Kλ, we

have (x, y) ∈ NTλ if and only if ξ ∈ NT(z).

4 Existence of the relaxed semi-limits

In the sequel, we turn the previous heuristics into rigorous proofs of our main re-
sults, Theorems 2.3 and 2.4, using the general methodology developed by Barles and
Perthame [4] and Evans [14] in the context of viscosity solutions. To ease notation by
avoiding fractional powers, we write

λ = ε4

and, with a slight abuse of notation, use a sub- or superscript ε to refer to objects
pertaining to the transaction cost problem. For instance, vε refers to vλ, Kε to Kλ,
and so on.
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To establish the expansion of the value function asserted in Theorem 2.3, we need
to show that

uε(x, y) = v(z) − vε(x, y)

ε2

is locally uniformly bounded from above as ε → 0. To this end, define the relaxed
semi-limits

u∗(x0, y0) = lim inf
(ε,x,y)→(0,x0,y0)

(x,y)∈Kε

uε(x, y), u∗(x0, y0) = lim sup
(ε,x,y)→(0,x0,y0)

(x,y)∈Kε

uε(x, y). (4.1)

Their existence is guaranteed by the straightforward lower bound uε ≥ 0 and the lo-
cally uniform upper bound provided further in Theorem 4.1. Establishing the latter
involves an explicit construction of a particular trading strategy and is addressed first.
We then show in Sects. 5 and 6 that the relaxed semi-limits u∗, u∗ are viscosity sub-
and supersolutions, respectively, of the second corrector equation (3.15). Combined
with the comparison result in Theorem 7.2 for the second corrector equation provided
in Sect. 7, this in turn yields that u∗ ≤ u∗. Since the opposite inequality is satisfied
by definition, it follows that u = u∗ = u∗ is the unique solution of the second cor-
rector equation (3.15). As a consequence, uε → u locally uniformly, verifying the
asymptotic expansion of the value function. With the latter at hand, we can in turn
verify that the policy from Theorem 2.4 is indeed almost optimal for small costs (see
Sect. 8).

4.1 Locally uniform upper bound of uε

In this section, we show that uε(x, y) = ε−2(v(z) − vε(x, y)) is locally uniformly
bounded from above as ε → 0.

Theorem 4.1 Given any x0, y0 with x0 + y0 · 1d > 0, there exist ε0 > 0 and
r0 = r0(x0, y0) > 0 such that

sup{uε(x, y) : (x, y) ∈ Br0(x0, y0), ε ∈ (0, ε0]} < ∞. (4.2)

Theorem 4.1 is an immediate corollary of Lemma 4.6. To prove the latter, we
construct an investment–consumption policy that gives rise to a suitable upper bound.
The construction necessitates some technical estimates. The reader can simply read
the definition of the strategy and proceed directly to the proof of Lemma 4.6 in order
to view the thread of the argument.

4.1.1 Strategy up to a stopping time θ

Given an initial portfolio allocation (X0−, Y0−) ∈ Kε , use the trading strategy from
Theorem 2.4, corresponding to the no-trade region NTε , from time 0 until a stopping
time θ to be defined further.
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More specifically, let (τ1, τ2, . . . ;m1,m2, . . .), where τi is the ith time the portfo-
lio process hits the boundary ∂NTε of the no-trade region. The corresponding reallo-
cations m1,m2, . . . are chosen so that after taking into account transaction costs, the
portfolio process is at the frictionless Merton proportions, that is,

Y ε
τi

Xε
τi

+ Y ε
τi

· 1d

= πm.

Until θ , the investor consumes the optimal frictionless proportion of her current
wealth,

ct = cmZε
t ∀t ≤ θ,

so that her wealth process is governed until time θ by the stochastic differential equa-
tions

Xε
t = X0− +

∫ t

0
(rXε

s − cs) ds −
∞∑

k=1

(
ε4 +

d∑
j=1

m
j
k

)
1{τk≤t},

Y ε
t = Y0− +

∫ t

0
Y ε

s

dSs

Ss

+
∞∑

k=1

mk1{τk≤t}. (4.3)

The stopping time θ must be chosen so that the investor’s position remains solvent at
all times, that is, (Xε

t , Y
ε
t ) ∈ Kε ∀t ≤ θ P -almost surely. Therefore, we use the first

time the investor’s wealth falls below some threshold, which needs to be large enough
to permit the execution of a final liquidating bulk trade.

4.1.2 At time θ and beyond

Define θ = θη,ε to be the exit time of the portfolio process from the set

Kη,ε := {
(z, ξ) ∈R+ ×R

d : either z > (η + 1)ε4 and ξ ∈ R
d

or z ∈ (
ηε4, (η + 1)ε4] and ξ ∈ NT(z)

}
.

Within Kη,ε , the above policy is used, and the portfolio process follows (4.3). At
time θ , the investor liquidates all risky assets, leading to a safe position of at least
(η−1)ε4. Afterward, she consumes at half the interest rate, thereby remaining solvent
forever. The resulting portfolio process satisfies a deterministic integral equation with
stochastic initial data, namely

Xε
θ+t = Xε

θ +
∫ t

0

r

2
Xε

θ+s ds, Y ε
θ+t = 0, t ≥ 0. (4.4)

Let (X
η,ε
t , Y

η,ε
t ), t ≥ 0, be the portfolio produced by concatenating the controlled

stochastic process (4.3) and the deterministic process (4.4) at time θ .
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Remark 4.2 For any η > 1, the optimal value vε(ηε4, ξ) must be greater than or equal
to the utility obtained from the immediate liquidation of all risky assets and then
running the deterministic policy (4.4). Since the latter can be computed explicitly,
this provides a crude lower bound for vε(ηε4, ξ).

To see this, suppose the investor’s wealth after the liquidating trade at time θ is
given by Xε

θ ≥ (η−1)ε4. Then Xε
θ+t ≥ (η−1)ε4e

r
2 t . For power utilities (0 < γ 
= 1),

this yields the lower bound

vε(ηε4, ξ) ≥
∫ ∞

0
e−βt (η − 1)1−γ ε4−4γ e

r
2 (1−γ )t

1 − γ
dt

= (η − 1)1−γ

(1 − γ )(β − r
2 (1 − γ ))

ε4−4γ .

The corresponding result for logarithmic utility (γ = 1) is

vε(ηε4, ξ) ≥
∫ ∞

0
e−βt log

(
(η − 1)ε4ert/2)dt = log((η − 1)ε4)

β
+ r

2β2
. (4.5)

4.1.3 Constructing a candidate lower bound

For given ε, δ,C > 0, define the function

V
ε,δ
C (z, ξ) = v(z) − ε2Cu(z) − ε4(1 + δ)w(z, ξ).

We now establish a series of technical lemmas. These will be used in the proof of
Lemma 4.6 to verify that, asymptotically, V

ε,δ
C is dominated by the value function vε

in the no-trade region for an appropriate choice of the parameters C and δ.

Lemma 4.3 Let η > 1 be given. There exists Cη > 0, independent of ε, such that for
all z̄ ∈ [ηε4, (η + 1)ε4], we have

vε(z̄, ξ) ≥ V
ε,δ
Cη

(z̄, ξ) for all ξ ∈ R.

Proof We only consider power utilities (γ 
= 1); the case of logarithmic utility can be
treated similarly. First, notice that since the term −ε4(1 + δ)w(z̄, ξ) is always nega-
tive, it can be ignored. Write z̄ = (η + λ̄)ε4 for some λ̄ ∈ [0,1]. Using the estimates
from Remark 4.2, the goal is to find a sufficiently large Cη so that

(η − 1 + λ̄)1−γ

(1 − γ )(β − r
2 (1 − γ ))

ε4−4γ ≥ v(z̄) − Cηε
2u(z̄)

= (η + λ̄)1−γ

(
v0

1 − γ
− Cη(η + λ̄)−1/2u0

)
ε4−4γ

for all λ̄ ∈ [0,1]. This follows by observing that we can take

Cη := const · √η (4.6)
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for a large enough positive constant that only depends on the model and preference
parameters (μ, r, σ, γ,β) but is independent of ε and η. �

Lemma 4.4 There exists δ > 0 with the property that for all η sufficiently large, there
is ε0 = ε0(η, γ ) > 0 such that

V
ε,δ
Cη

(z − ε4,0) − V
ε,δ
Cη

(z, ξ̄ ) ≥ 0, ∀ε ∈ (0, ε0], z ≥ ηε4, ξ̄ ∈ ∂NT(z).

Proof Recall that by definition the corrector w satisfies w(·,0) = 0 and
w(z, ξ̄ ) = vz(z) for ξ̄ ∈ ∂NT(z).

First, consider the case of power utility. Taylor expansion and evaluation at
z = ηε4 yield

V
ε,δ
Cη

(z − ε4,0) − V
ε,δ
Cη

(z, ξ̄ )

= v(z − ε4) − v(z) − ε2Cη

(
u(z − ε4) − u(z)

) + ε4(1 + δ)vz(z)

= δε4vz(z) + ε6Cηu
′(z) − ε8vzz(z̃1) + ε10Cηu

′′(z̃2)

= ε4−4γ
(
v0(δη

−γ + γ η̃
−1−γ

1 )

+ Cηu0(1/2 − γ )
(
η−1/2−γ + (1/2 + γ )η̃

−3/2−γ

2

))
, (4.7)

where the points z̃1, z̃2 ∈ [z − ε4, z] are determined by the Taylor remainders of v

and u, respectively, and η̃1, η̃2 ∈ [η − 1, η] satisfy z̃i = η̃iε
4. Considering (4.7) as a

function of η, the dominant term is of order O(η−γ ). Since Cη = C
√

η, where C only
depends on the model parameters (μ, r, σ, γ,β), the term Cηη

−1/2−γ also contributes
at the order O(η−γ ). Consequently, choosing

δ >
Cu0|1/2 − γ |

v0
(4.8)

ensures that the leading-order coefficient is positive, independently of η. For suffi-
ciently large η, the assertion follows.

In the case of logarithmic utility (γ = 1), the argument is the same because the
expressions involved are all power-type functions. The same choice (4.8) of δ works
as well. �

Lemma 4.5 For sufficiently large η, there exists ε0 = ε0(η, γ ) > 0 such that

βV
ε,δ
Cη

(z, ξ) − L V
ε,δ
Cη

(z, ξ) ≤ U(cmz), ∀ε ∈ (0, ε0], z ≥ ηε4, ξ ∈ NT(z),

where δ is given by (4.8).

Proof We consider only the power utility case since the argument also works mu-
tatis mutandis for logarithmic utility. To ease notation, we write V ε instead of V

ε,δ
Cη

.
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Throughout the proof, (x, y) ∈ Kε satisfies z = x + y · 1d = ηε4. Decompose

βV ε(x, y) − L V ε(x, y) = (
βv(z) − L v(z)

) − ε2Cη

(
βu(z) − L u(z)

)
− ε4(1 + δ)

(
βw(z, ξ) − L w(z, ξ)

)
=: I1(z) − I2(z) − I3(z, ξ).

We analyze the asymptotic properties in η of each of the terms I1, I2, and I3. First,

I1(z) = −1

2
ε2|σ�ξ |2vzz(z) + Ũ

(
vz(z)

)

= −1

2
ε2|σ�ξ |2vzz(z) + U(cmz) − cmzvz(z)

≤ −1

2
ε2|σ�ξ |2vzz(z) + U(cmz) − ε2Cηcmzuz(z)

≤ ε4−4γ O(η1/2−γ ) + U(cmz) − ε2Cηcmzuz(z).

Here, we used that vz(z) ≥ ε2Cηuz(z) if η is sufficiently large. The estimates in Re-
mark A.2 and the fact that Cη is of order O(

√
η) (see (4.6)) give

I2(z) + ε2Cηcmzuz(z) = Cη

(
ε2Au(z) − ε3ξ · (μ − r1d)uz(z)

− ε3
(1

2
ε|σ�ξ |2 − σ�ξ · σ�πmz

)
uzz(z)

)

≥ Cη

(
ε2a0z

1/2−γ − K(ε3z1/4−γ + ε4z−γ )
)

= ε4−4γ O(η1−γ ),

where a0 = a(z)/z1/2−γ . Hence, this term is positive for sufficiently large η. Finally,
by Remark A.2 we have

|I3(z, ξ)| ≤ (1 + δ)K(ε2z1/2−γ + ε3z1/4−γ + ε4z−γ + ε5z−1/4−γ + ε6z−1/2−γ )

= ε4−4γ O(η1/2−γ ),

again for all sufficiently large η. In summary,

βV ε(x, y) − L V ε(x, y) = I1(z) − I2(z) − I3(z, ξ)

≤ U(cmz) + ε4−4γ
(
O(η1/2−γ ) − O(η1−γ )

)
≤ U(cmz)

for sufficiently large η. Equivalently, there exists some η > 1 such that for all z ≥ ηε4

and ξ ∈ NT(z),

βV ε(z, ξ) − L V ε(z, ξ) ≤ U(cmz) ∀ε ∈ (0, ε0].
This completes the proof. �
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4.1.4 Proof of Theorem 4.1

We now have all the ingredients to prove the main result of this section in the next
lemma, which in turn yields Theorem 4.1 as a corollary.

Lemma 4.6 There are constants C,δ, ε0 > 0 such that for all ε ∈ (0, ε0],
v(z) − ε2Cu(z) − ε4(1 + δ)w(z, ξ) ≤ vε(z, ξ) ∀(z, ξ) ∈ Kε. (4.9)

In particular,

uε(z, ξ) ≤ Cu(z) + o(ε) ∀(z, ξ) ∈ Kε, (4.10)

so that (4.2) is satisfied.

Proof Let (x, y) ∈ Kε be given, and let η > 1 be large enough so that all the previous
lemmas are applicable. Without loss of generality, we may assume that x + y > ηε4

since we are proving an asymptotic result.
Step 1: Let (Xt , Yt ) := (X

η,ε,x
t , Y

η,ε,y
t ) be the controlled portfolio process with

dynamics (4.3), (4.4) that starts from the initial allocation (x, y) and switches to de-
terministic consumption at half the interest rate at the first time θ := θη the total
wealth Zt := Xt + Yt falls to level z = ηε4. As before, write

V ε(z, ξ) := V
ε,δη

Cη
(z, ξ).

Recall that Cη and δη are given by (4.6) and (4.8), respectively. Itô’s formula yields

e−βθV ε(Xθ ,Yθ ) = V ε(x, y) −
∫ θ

0
e−βs

(
βV ε(Xs,Ys) − L V ε(Xs,Ys)

)
ds

+
∫ θ

0
e−βsDyV

ε(Xs,Ys)
�σ dWs

+
∑
t≤θ

e−βt
(
V ε(Zt , ξt ) − V ε(Zt−, ξt−)

)
.

Observe that the summation is at most countable and that in view of Lemma 4.4, each
summand satisfies

V ε(Zt , ξt ) − V ε(Zt−, ξt−) ≥ 0.

Together with Lemma 4.5, this yields

e−βθV ε(Xθ ,Yθ ) (4.11)

≥ V ε(x, y) −
∫ θ

0
e−βsU(cmZs) ds +

∫ θ

0
e−βsDyV

ε(Xs,Ys)
�σ dWs.

Step 2: For any (x′, y′) ∈ Kε with 0 < x′ + y′ · 1d ≤ ηε4, let ν(x′,y′) ∈ Θε(x
′, y′)

be the strategy of (4.4), that is, liquidation of all risky assets and then deterministic
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consumption at half the risk-free rate forever. According to Remark 4.2 and the proof
of Lemma 4.3,

vε(Xθ ,Yθ ) ≥ J (ν(Xθ ,Yθ )) ≥ V ε(Xθ ,Yθ ) on {θ < ∞},

where

J (ν) := E

[∫ ∞

0
e−βtU(ct ) dt

]
for any ν = (c, τ,m).

Let (τn)n≥0 be a localizing sequence of stopping times for the local martingale
term in (4.11) and set θn := θ ∧ τn. Let us assume for the moment that the family
(e−βθnV ε(Xθn, Yθn))n≥0 is uniformly integrable, and therefore it converges in expec-
tation to its pointwise limit. Then the same applies to the integral of the dt-term in
(4.11) by dominated convergence. Taking expectations in (4.11), sending n → ∞,
and using these observations together with Lemmas 4.3 and 4.5 it follows that

V ε(x, y) ≤ E

[∫ θ

0
e−βsU(cmZs) ds + e−βθV ε(Xθ ,Yθ )

]

≤ E

[∫ θ

0
e−βsU(cmZs) ds + e−βθ

∫ ∞

0
e−βtU(Zθe

rt/2) dt

]

≤ vε(x, y) ∀ε ∈ (0, ε0].

Since x, y were arbitrary, assertion (4.9) follows.
Step 3: All that remains to show is that (e−βθnV ε(Xθn, Yθn))n≥0 is uniformly in-

tegrable. Since the functions and domains are explicit, we can check that there is a
constant M > 0, independent of ε,n, such that

|e−βθnV ε(Xθn, Yθn)| ≤ M|e−βθnv(Zθn)|.

Hence, it is sufficient to show that (e−βθnv(Zθn))n≥0 is uniformly integrable. This
will follow, for instance, if it is uniformly bounded in L1+q(P) for some q > 0. The
interesting case is 0 < γ ≤ 1; otherwise, v(z) is bounded on the domain under con-
sideration because the wealth process is bounded away from zero and the Merton
value function is negative. We just show the power utility case; a similar argument
applies for logarithmic utility.

Let Z̃t := Z̃
η,ε,x+y
t denote the same controlled wealth process as in Step 1, but

obtained by not deducting transaction costs or consumption. Evidently, Z1−γ
τ ≤ Z̃

1−γ
τ

almost surely for any stopping time τ . Moreover, for any a, b > 0, we have

d(e−aβθn(Z̃θn)
b)

e−aβθnZ̃b
θn

=
(

− aβ + b
(
r + πt · (μ − r1d) + b − 1

2
|σ�πt |2

))
dt + bπt · σ dWt,
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where πt := Yt/Zt . When a = 1 and b = 1 − γ , the drift term is maximized at the
Merton proportion, πt ≡ πm, and moreover, by the finiteness criterion for the fric-
tionless value function, we have

−β + (1 − γ )
(
r + πm · (μ − r1d) − 1

2
|σ�πm|2

)
< 0.

Taking b = (1−γ )(1+q) and a = (1+q) for sufficiently small q > 0, the drift term
is maximized at a vector πa,b arbitrarily close to πm, for which

A := −aβ + b
(
r + πa,b · (μ − r1d) − 1

2
|σ�πa,b|2

)
< 0.

As a consequence,

d(e−aβθn(Z̃θn)
b)

e−aβθnZ̃b
θn

≤
(

− aβ + b
(
r + πa,b · (μ − r1d) + b − 1

2
|σ�πa,b|2

))
dt + bπt · σ dWt .

Taking expectations, passing to the limit over a localizing sequence of stopping times
for the local martingale term, and applying Fatou’s lemma, we obtain

∥∥e−βθn(Z̃θn)
1−γ

∥∥1+q

L1+q (P)
= E[e−aβθn(Z̃θn)

b] ≤ Z̃b
0E[exp(Aθn)] ≤ zb ∀n ∈ N.

Hence, the family is uniformly bounded in L1+q(P) and thus uniformly integrable. �

4.1.5 Relaxed limits are functions of wealth only

We conclude this section by establishing that the relaxed semi-limits u∗, u∗ only de-
pend on total wealth and can be realized by restricting to limits taken on the Merton
line.

Lemma 4.7 For any x0 + y0 · 1d > 0, we have

u∗(x0, y0) = lim inf
(ε,x,y)→(0,x0,y0)

(x,y)∈Kε

uε(z − πm · 1dz,πmz),

u∗(x0, y0) = lim sup
(ε,x,y)→(0,x0,y0)

(x,y)∈Kε

uε(z − πm · 1dz,πmz).

Proof Given (x, y) ∈ Kε , where z = x + y · 1d > ε4 without loss of generality, we
observe that

inf
x′+y′·1d=z+ε4

vε(x′, y′) ≥ vε(x, y) ≥ sup
x′+y′·1d=z−ε4

vε(x′, y′). (4.12)



Asymptotics for fixed transaction costs 393

Therefore,

v(z) − vε(x, y)

ε2
≤ ε−2

(
v(z − ε4) − sup

x′+y′·1d=z−ε4
vε(x′, y′)

)
+ ε2vz(z − ε4)

= inf
x′+y′·1d=z−ε4

uε(x′, y′) + ε2vz(z − ε4)

and

inf
x′+y′·1d=z−ε4

uε(x′, y′) + ε2vz(z − ε4) ≥ uε(x, y) (4.13)

≥ sup
x′+y′·1d=z+ε4

uε(x′, y′) − ε2vz(z + ε4).

Let (εn, xn, yn) → (0, x0, y0) be chosen such that uεn(xn, yn) → u∗(x0, y0). Setting
z′
n = xn + yn · 1d + ε4 and using the previous observations, it follows that

uεn(xn, yn) ≥ uεn(z′
n − πm · 1dz′

n,πmz′
n) − O(ε2).

Taking lim inf as n → ∞ on both sides yields

u∗(x0, y0) = u∗(z0 − πm · 1dz0,πmz0),

where z0 = x0 + y0 · 1d . The proof for u∗ is similar. �

Remark 4.8 For later use, observe that

u∗(x0, y0) = lim inf
(ε,x,y)→(0,x0,y0)

(x,y)∈Kε

uε(x, y), u∗(x0, y0) = lim sup
(ε,x,y)→(0,x0,y0)

(x,y)∈Kε

uε(x, y),

where uε,uε are the lower- and upper-semicontinuous envelopes of uε , respectively.
Moreover, (4.13) extends to the envelopes in the form

uε(x, y) ≤ inf
x′+y′·1d=z−ε4

uε(x′, y′) + ε2vz(z − ε4), (4.14)

uε(x, y) ≥ sup
x′+y′·1d=z+ε4

uε(x′, y′) − ε2vz(z + ε4).

5 Viscosity subsolution property of u∗

Theorem 5.1 The function u∗ is a viscosity subsolution of the second corrector equa-
tion (3.15).

Proof Let (z0, ϕ) ∈ (0,∞) × C2(R+) with

0 = (u∗ − ϕ)(z0) > (u∗ − ϕ)(z) ∀z > 0, z 
= z0.
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To prove the assertion, we have to show that

Aϕ(z0) ≤ a(z0).

Step 1: By Lemma 4.6 there exist ε0, r > 0 depending on (x0, y0) such that

b∗ := sup
(x,y)∈Br ,ε∈(0,ε0]

uε(x, y) < ∞, Br := Br(x0, y0).

The radius r can be taken small enough so that Br does not intersect the line z = 0.
By Lemma 4.7, u∗(z0) can be achieved along a sequence (zε,0) on the Merton line,
that is,

zε → z0 and uε(zε,0) → u∗(z0) as ε → 0.

Observe that

�∗
ε := uε(zε) − ϕ(zε) → 0

and

(xε, yε) := (zε − πm · 1dzε,πmzε) → (x0, y0) := (z0 − πm · 1dz0,πmz0).

Due to the strict maximality of u∗ − ϕ at z0, each zε can be taken to be a maximizer
of uε(·,0) − ϕ(·) on [z0 − r, z0 + r]. For ε ∈ (0, ε0] and δ > 0, set

ψε,δ(z, ξ) := v(z) − ε2(ϕ(z) + �∗
ε + C(z − zε)4) − ε4(1 + δ)w(z, ξ)

with C > 0 to be chosen later.
Step 2: Now we use the function ψε,δ to touch vε from below near (x0, y0). Set

I ε,δ(z, ξ) := (vε − ψε,δ)(z, ξ).

Consider any point (z, ξ) corresponding to (x, y) ∈ Br . We have

ε−2I ε(z, ξ) = −uε(z, ξ) + ϕ(z) + �∗
ε + C(z − zε)4 + ε2(1 + δ)w(z, ξ)

≥ −b∗ + ϕ(z) + �∗
ε + C(z − zε)4. (5.1)

Thus, C > 0 can be chosen large enough to ensure that (5.1) is positive for all suffi-
ciently small ε > 0 when r > |z − z0| > r/2.

Next, we show that I ε,δ(z, ξ) > 0 when |z − z0| < r and ξ /∈ NT(z). To this end,
observe that by Taylor expansion, (4.14), and the maximizer property of zε we have

ε−2I ε,δ(z, ξ) = −uε(z, ξ) + ϕ(z) + �∗
ε + C(z − zε)4 + ε2(1 + δ)vz(z)

≥ −uε(z − ε4,0) + ϕ(z − ε4) + �∗
ε − ε2vz(z − ε4) + ε2(1 + δ)vz(z)

+ O(ε4)

≥ δε2vz(z) + O(ε4)

> 0
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for all sufficiently small ε > 0. Using I ε,δ(zε,0) = 0, we deduce that I ε,δ attains a
local minimum at some point (z̃ε, ξ̃ ε) with |z0 − z̃ε | < r and ξ̃ ε ∈ NT(z̃ε) for all
ε > 0 sufficiently small.

Step 3: Now we derive some limiting identities. Since according to the previ-
ous argument, |ξ̃ ε | is uniformly bounded in ε, there is a convergent subsequence
(z̃εn , ξ̃ εn) → (ẑ, ξ̂ ), where ẑ > 0 and ξ̂ ∈ R. Then,

0 ≥ lim inf
n→∞ ε−2

n I εn,δ(z̃εn , ξ̃ εn) = − lim sup
n→∞

uε(z̃εn , ξ̃ εn) + ϕ(ẑ) + C(ẑ − z0)
4

by construction. Moreover,

− lim sup
n→∞

uε(z̃εn , ξ̃ εn) + ϕ(ẑ) + C(ẑ − z0)
4 ≥ −u∗(ẑ) + ϕ(ẑ) + C(ẑ − z0)

4 ≥ 0.

So in fact, the inequalities must all be equalities. The strict maximality property of
u∗ − ϕ at z0 in turn gives ẑ = z0 and ξ̂ ∈ NT(z0). Having chosen a particular subse-
quence, we may without loss of generality write ε instead of εn. Using that vε is a
supersolution of the dynamic programming equation (3.7), we obtain

0 ≤ ε−2(βvε − L ψε,δ − Ũ (ψε,δ
x )

)
(z̃ε, ξ̃ ε)

≤ ε−2(βψε,δ − L ψε,δ − Ũ (ψε,δ
x )

)
(z̃ε, ξ̃ ε)

= (βv − L v − Ũ (vx))(z̃
ε, ξ̃ ε)

ε2
+ Ũ (vx) − Ũ (ψ

ε,δ
x )

ε2

− (β − L )
(
ϕ(z̃ε) + �∗

ε + C(z̃ε − zε)4)
− ε2(1 + δ)

(
βw(z̃ε, ξ̃ ε) − L w(z̃ε, ξ̃ ε)

)
=: I ε

1 + I ε
2 − I ε

3 − I ε
4 .

As ε → 0, we have

I ε
1 −→ − 1

2 |σ�ξ̂ |2vzz(z0); I ε
2 −→ Ũ ′(vz(z0)

)
ϕz(z0) = −cmz0ϕz(z0);

I ε
3 −→Aϕ(z0) − cmz0ϕz(z0); I ε

4 −→ − 1
2 (1 + δ)Tr[α(z0)α(z0)

�wξξ (z0, ξ̂ )].

Step 4: Combining these limits with ξ̂ ∈ NT(z0) yields the inequality

0 ≤ −1

2
|σ�ξ̂ |2vzz(z0) −Aϕ(z0) + 1

2
(1 + δ)Tr[α(z0)α(z0)

�wξξ (z0, ξ̂ )]

= a(z0) −Aϕ(z0) + δ

2
Tr[α(z0)α(z0)

�wξξ (z0, ξ̂ )].

Finally, letting δ → 0 and using the local boundedness of wξξ (see Proposition A.3)
produce the desired inequality, namely

Aϕ(z0) ≤ a(z0). �
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6 Viscosity supersolution property of u∗

Theorem 6.1 u∗ is a viscosity supersolution of the second corrector equation (3.15).

Proof Let (z0, ϕ) ∈ (0,∞) × C2(R) be such that

0 = (u∗ − ϕ)(z0) < (u∗ − ϕ)(z) ∀z > 0, z 
= z0.

To prove the assertion, we have to show that

Aϕ(z0) ≥ a(z0).

Step 1: As before, we start by constructing the test function. Recall that

uε(z, ξ) = v(z) − vε(z, ξ)

ε2
,

where vε denotes the upper-semicontinuous envelope of the transaction cost value
function vε . By the definition of the relaxed semilimit u∗ and Lemma 4.7 there exists
a sequence (zε,0) on the Merton line such that

zε → z0 and uε(zε,0) → u∗(z0) as ε → 0.

Set

�∗
ε := uε(zε) − ϕ(zε) → 0

and

(xε, yε) := (zε − πm · 1dzε,πmzε) → (x0, y0) := (z0 − πm · 1dz0,πmz0).

We localize by choosing r > 0 such that Br := Br(x0, y0) does not intersect the line
z = 0. Define

ψε,δ(z, ξ) = v(z) − ε2(ϕ(z) + �∗
ε − C(z − zε)4) − ε4(1 − δ)w(z, ξ),

where C > 0 is chosen so large that

I ε,δ(z, ξ) := vε(z, ξ) − ψε,δ(z, ξ) < 0, where |z − z0| ≥ r/2, ε ∈ (0, ε0].

Then for all ε ∈ (0, ε0], we have

sup
|z−z0|<r/2

ξ∈Rd

I ε,δ(z, ξ) < ∞, (6.1)

and by construction,

I ε,δ(zε,0) = 0.
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Step 2: A priori, there is no reason that the supremum in (6.1) should be achieved
at any particular point, let alone that a maximizing sequence should converge as we
send ε to zero. As a way out, we perturb the original test function to complete the
localization. To this end, fix ε, δ and let (zn, ξn) be a maximizing sequence of I ε,δ .
(Keep in mind that this sequence depends on ε, δ.) Set

αn := 3

2

(
sup

|z−z0|<r/2
ξ∈Rd

I ε,δ(z, ξ) − I ε,δ(zn, ξn)

)

and

hn(ξ) = h(ξ − ξn),

where

h(ξ) =
{

exp(1 − 1
1−|ξ |2 ) if |ξ | < 1,

0 if |ξ | ≥ 1.

Notice that αn → 0 as ε → 0. The modified test function is taken to be

ψε,δ,n(z, ξ) = ψε,δ(z, ξ) − αnhn(ξ),

so that

I ε,δ,n(z, ξ) := (vε,δ − ψε,δ,n)(z, ξ) = I ε,δ(z, ξ) + αnhn(ξ).

By construction each I ε,δ,n has a maximizer, say (ẑε
n, ξ̂

ε
n ) ∈ [z0 − r, z0 + r] × R

d .
Observe that the rate of decay of αn with respect to ε can be taken to be as fast as we
wish by choosing n large enough. We find it convenient to take αnε ≤ 1

nε
exp(−ε−1),

which can always be accomplished by relabeling if necessary.
For any selection ε �→ ẑε

nε
, it turns out that z0 is the unique subsequential limit

of (ẑε
nε

)ε as ε → 0. Indeed, note that since (ẑε
nε

)ε ⊂ [z0 − r, z0 + r], it contains a
convergent subsequence. If ẑ is the limit of such a subsequence, then

0 ≤ ε−2
k I εk,δ,nk (zεk

nk
, ξ εk

nk
),

which implies that

0 ≤ −u∗(ẑ) + ϕ(ẑ) − C(ẑ − z0)
4.

By the strict minimality of u∗ − ϕ at z0 we must have ẑ = z0.
Step 3: Next, we show that any sequence of maximizers (ẑ

εk
nk

, ξ̂
εk
nk

) of I εk,δ,nk where
εk → 0 as k → ∞, satisfying αnk

≤ 1
k

exp(−ε−1
k ), is asymptotically contained in the

no-trade region, that is,

(ψεk,δ,nk − Mψεk,δ,nk )(ẑεk
nk

, ξ̂ εk
nk

) > 0

for all sufficiently large k. We proceed to show this by contradiction. First, note that
by Lemma B.1, ψεk,δ,nk − Mψεk,δ,nk is already lower-semicontinuous. Therefore,
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suppose that

0 ≥ ψεk,δ,nk (ẑεk
n , ξ̂ εk

n ) − Mψεk,δ,nk (ẑεk
n , ξ̂ εk

n )

= ψεk,δ,nk (ẑεk
n , ξ̂ εk

n ) − ψεk,δ,nk (ẑεk
n − ε4, ξ̃ εk

n )
(6.2)

for some ξ̃
εk
n . Such a point exists by the construction of ψεk,δ,nk . Therefore, we de-

duce that

0 ≥ ψεk,δ,nk (ẑεk
n , ξ̂ εk

n ) − ψεk,δ,nk (ẑεk
n − ε4, ξ̃ εk

n )

= ε4
k vz(ẑ

εk
n ) + O(ε6

k ) − ε4
k (1 − δ)

(
w(ẑεk

n , ξ̂ εk
n ) − w(ẑεk

n − ε4
k , ξ̃ εk

n )
)

− ε2
kαnk

(
hnk

(ξ̃ εk
n ) − hnk

(ξ̂ εk
n )

)

≥ δε4
k vz(ẑ

εk
n ) + O(ε6

k ) − 2

k
ε2
k exp(−ε−1

k )

> 0

for all sufficiently large k because δ > 0. This contradicts (6.2).
By the subsolution property of vεk at (ẑ

εk
nk

, ξ̂
εk
nk

), for which we now write (ẑεk , ξ̂ εk ),
we obtain the differential inequality

0 ≥ (
βvεk − L ψεk,δ,nk − Ũ (ψεk,δ,nk

x )
)
(ẑεk , ξ̂ εk )

≥ (
βψεk,δ,nk − L ψεk,δ,nk − Ũ(ψεk,δ,nk

x )
)
(ẑεk , ξ̂ εk ).

Step 4: We claim that |ξ̂ ε | is uniformly bounded in ε ∈ (0, ε0]. Expanding the
above differential inequality into powers of εk leads to

0 ≥ ε−2
k

(
βψεk,δ,nk − L ψεk,δ,nk − Ũ (ψεk,δ,nk

x )
)
(ẑεk , ξ̂ εk )

= −1

2
|σ�ξ̂ εk |2vzz(ẑ

εk ) − αnk

(
βhnk

(ξ̂ εk ) − L hnk
(ξ̂ εk )

)

−
(
β
(
ϕ(ẑεk ) + �∗

εk
− C(ẑεk − zεk )4) − L

(
ϕ(ẑεk ) + �∗

εk
− C(ẑεk − zεk )4))

− ε2
k (1 − δ)

(
βw(ẑεk , ξ̂ εk ) − L w(ẑεk , ξ̂ εk )

) − Ũ (ψ
εk,δ,nk
x ) − Ũ (vx)

ε2
k

.

We proceed to estimate each term. To this end, let K = K(β,μ,σ, r, γ ) > 0 denote a
sufficiently large generic constant. By Proposition A.3, we have

ε2
k (1 − δ)

(
βw(ẑεk , ξ̂ εk ) − L w(ẑεk , ξ̂ εk )

)

= −(1 − δ)
1

2
Tr[α(ẑεk )α(ẑεk )�wξξ (ẑ

εk , ξ̂ εk )] + (1 − δ)εRw(ẑεk , ξ̂ εk )

≤ −(1 − δ)
1

2
Tr[α(ẑεk )α(ẑεk )�wξξ (ẑ

εk , ξ̂ εk )] + K(1 + εk|ξ̂ εk | + ε2
k |ξ̂ εk |2),
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and

αnk
|βhnk

(ξ̂ εk ) − L hnk
(ξ̂ εk )| ≤ K

k
exp(−ε−1

k )(ε−2
k + ε−1

k |ξ̂ εk | + |ξ̂ εk |2).

Moreover,
∣∣(β − L )

(
ϕ(ẑεk ) + �∗

εk
− C(ẑεk − zε)4)∣∣ ≤ (1 + εk|ξ̂ εk | + ε2

k |ξ̂ εk |2).
Finally,

ε−2
k |Ũ (ψεk,δ,nk

x ) − Ũ (vx)| ≤ K.

We therefore conclude that

0 ≥ −1

2
|σ�ξ̂ εk |2vzz(ẑ

εk ) − K(1 + εk|ξ̂ εk | + ε2
k |ξ̂ εk |2).

Recalling that vzz < 0, it follows that the dominant term − 1
2 |σ�ξ̂ εk |2vzz(ẑ

εk ) is non-

negative, and therefore |ξ̂ εk | must be uniformly bounded in εk . Hence, along some
subsequence, we have ξ̂ εk → ξ̂ and ẑεk → z0. Sending εk → 0 gives

0 ≥ −1

2
|σ�ξ̂ |2vzz(z0) −Aϕ(z0) + 1

2
(1 − δ)Tr[α(z0)α(z0)

�wξξ (z0, ξ̂ )]

= a(z0) −Aϕ(z0) − δ

2
Tr[α(z0)α(z0)

�wξξ (z0, ξ̂ )].

Finally, let δ → 0. Together with the C2-estimates on w (see Proposition A.3), it fol-
lows that the trace term disappears from the inequality. This yields

Aϕ(z0) ≥ a(z0),

thereby completing the proof. �

7 Comparison for the second corrector equation (3.15)

A straightforward computation shows that Azp = νpzp for some constant
νp ∈ R. If the Merton value function is finite, that is, cm > 0, we readily ver-
ify that ν1/2−γ > 0. Moreover, since the matrix α from (2.3) is assumed to
be invertible, the diffusion coefficient A in (3.20) is positive definite, so that
a(z) = a0z

1/2−γ = 2 Tr[AM]z1/2−γ > 0. As a consequence,

u(z)z−1/2+γ = u0 = a0

ν1/2−γ

> 0.

Remark 7.1 Similarly, if δ ∈ R and |δ| � 1, then

A
(
zδu(z)

)
> 0, ∀z > 0. (7.1)

This observation is used in the proof of the comparison result in Theorem 7.2.
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In view of the explicit locally uniform upper bound (4.10) for uε from Lemma 4.6,
the relaxed semi-limits u∗, u∗ satisfy the growth constraint

0 ≤ u∗(z), u∗(z) ≤ C|z|1/2−γ . (7.2)

We therefore prove that the second corrector equation satisfies a comparison theorem
in the class of nonnegative functions satisfying this growth condition.

Theorem 7.2 Let v1, v2 : (0,∞) → R be nonnegative functions that satisfy the
growth constraint (7.2). If

Av1 ≤ a ≤ Av2

is satisfied in the viscosity sense, then

v1 ≤ u ≤ v2,

where u(z) = u0z
1/2−γ .

Proof We just prove that the subsolution is dominated by u; the supersolution part
of the assertion follows along the same lines. Let v1 be a subsolution to Av1 ≤ a

satisfying the growth condition (7.2). We proceed by contradiction. Suppose that
v1(z̃) > u(z̃) for some z̃ > 0. We need to distinguish two cases:

Case 1: Suppose that γ 
= 1/2 and define Iδ(z) := v1(z) − φδ(z), where we set
φδ(z) := δu(z)1+δ + u(z). Then for sufficiently small δ > 0, we have Iδ(z̃) > 0. The
growth conditions imply that Iδ achieves a global maximum at some zδ ∈ R+ and
Iδ(zδ) > 0. Invoking the subsolution property of v1 at zδ yields Aφδ(zδ) ≤ a(zδ).
However, by construction of φδ and (7.1), Aφδ(zδ) > a(zδ), which gives a contradic-
tion.

Case 2: If γ = 1/2, then use φδ(z) := δ(z−δ + zδ) + u(z). The proof then follows
as in the first case. �

8 Proof of the main results

We now conclude by proving the main results of the paper.

8.1 Expansion of the value function vλ

Proof of Theorem 2.3 We have shown in Theorem 4.1 that the relaxed semi-limits u∗
and u∗ of (4.1) exist, are functions of wealth only by Lemma 4.7, and by Lemma 4.6
satisfy the growth condition

0 ≤ u∗(z), u∗(z) ≤ C|z|1/2−γ .

In view of Theorems 5.1 and 6.1, Au∗ ≤ a ≤ Au∗ in the viscosity sense. As a result,
Theorem 7.2 gives u∗ ≤ u∗. The opposite inequality evidently holds by definition;
therefore,

u∗ = u∗ = u.
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The locally uniform convergence claimed in Theorem 2.3 then follows directly from
this and from the definitions of u∗, u∗. �

8.2 Almost optimal policy

With the asymptotic expansion from Theorem 2.3 at hand, we can now show that
the policy from Theorem 2.4 is almost optimal for small costs. To this end, fix an
initial allocation (x, y) ∈ Kε and a threshold 0 < δ < x + y · 1d . Consider the policy
νε = (cε, τ ε,mε) ∈ Θε(x, y) from Theorem 2.4. If wealth falls below the threshold,
then another strategy is pursued (see Remark 2.5). More precisely, we choose con-
trols ν∗ = (c∗, τ ∗,m∗) ∈ Θε(X

νε,x
θ , Y

νε,y
θ ) such that i) νε1[0,θ) +ν∗1[θ,0) ∈ Θε(x, y),

where θ = θνε
is the first time the wealth process Zt = Xt + Yt · 1d falls below the

level δ, and ii) ν∗ is o(ε2)-optimal on �θ,∞� for each realization of (X
νε,x
θ , Y

νε,y
θ ).

The main technical concern is whether this can be done measurably, but this will
follow from a construction similar to the one performed in the proof of the weak
dynamic programming principle (B.2).

Let J ε,δ(x, y) be the corresponding expected discounted utility from consumption,

J ε,δ(x, y) := J (ν) = E

[∫ θ

0
e−βsU(cmZε

s ) ds + e−βθ

∫ ∞

0
e−βsU(c∗

s ) ds

]
.

Then we have the following:

Theorem 8.1 There exists εδ > 0 such that for all 0 < ε ≤ εδ ,

J ε,δ(x, y) ≥ v(z) − ε2u(z) + o(ε2) ∀z = x + y · 1d ≥ δ.

That is, the policy from Theorem 2.4 is optimal at the leading order ε2.

Proof Step 1: Set

V ε(z, ξ) = v(z) − ε2u(z) − ε4(1 + Cε2)w(z, ξ)

for some sufficiently large C > 0 to be chosen later. Itô’s formula yields

e−βθV ε(Xθ ,Yθ ) = V ε(x, y) +
∫ θ

0
−e−βs

(
βV ε(Xs,Ys) − L V ε(Xs,Ys)

)
ds

+
∫ θ

0
e−βsDyV

ε(Xs,Ys)
�σ dWs

+
∑
t≤θ

e−βt
(
V ε(Zt , ξt ) − V ε(Zt−, ξt−)

)
.

Step 2: We show that there are a sufficiently large C > 0 and a sufficiently small
εδ > 0 such that, for all ε ≤ εδ ,

∑
t≤θ

(
V ε(Zt , ξt ) − V ε(Zt−, ξt−)

) ≥ 0.
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Expanding a typical summand, where z ≥ δ and ξ̂ ∈ ∂NT(z), we find that

V ε(z − ε4,0) − V ε(z, ξ̂ )

= v(z − ε4) − v(z) − ε2(u(z − ε4) − u(z)
)

− ε4(1 + Cε2)
(
w(z − ε4,0) − w(z, ξ̂ )

)
= −ε4vz(z) − ε8vzz(z̃1) + ε6u′(z) + ε10u′′(z̃2) + ε4vz(z) + Cε6vz(z)

≥ Cε6vz(z) − ε8vzz(z̃1) + ε6u′(z) + ε10u′′(z̃2)

≥ Cε6vz(z) − Kε6(z−1/2−γ + ε2z̃1
−1−γ − ε4z̃2

−3/2−γ )

> 0

can be achieved for sufficiently small ε > 0, uniformly in z ≥ δ, provided that C

is chosen large enough. (Here, the points z̃1, z̃2 ∈ [z − ε4, z] come from the Taylor
remainders of v and u, respectively.)

Step 3: Next, establish that for a suitable k∗ > 0, we have

βV ε(z, ξ) − L V ε(z, ξ) ≤ U(cmz)(1 + ε3k∗)

for all ε < εδ and for all z ≥ δ. Expanding the elliptic operator applied to V ε , we
obtain

βV ε(z, ξ) − L V ε(z, ξ)

≤ −1

2
ε2|σ�ξ |2vzz(z) + U(cmz) − ε2Au(z) + 1

2
ε2|Ru(z, ξ)|

+ (1 + Cε2)
(
ε2 1

2
Tr[α(z)α(z)�wξξ (z, ξ)] + ε3|Rw(z, ξ)|

)

≤ (1 + ε3k∗)U(cmz)

for sufficiently large |k∗|, where k∗ is positive for γ < 1 and negative for γ > 1,
thanks to the pointwise estimates on the remainder terms (see Remark A.2) and the
fact that U(cmz) is proportional to z1−γ . The argument for logarithmic utility is sim-
ilar. The inequality therefore holds for all sufficiently small ε and for all z ≥ δ.

Step 4: We now choose an appropriate control to use after time θ . Define the set

Ξε = {(x′, y′) ∈ Kε : δ − 2ε4 ≤ x′ + y′ · 1d ≤ δ + ε4}.
We also define for each (x′, y′) ∈ Ξε the neighborhoods

R(x′, y′) = {(x̃, ỹ) ∈ Ξε : x̃ > x′, ỹ > y′ with V ε(x̃, ỹ) < V ε(x′, y′) + ε3}.
Since V ε is smooth, each R(x′, y′) is open. By construction we have

⋃
(x′,y′)∈Ξε

R(x′, y′) ⊃ NTε ∩ {(x̃, ỹ) ∈ Kε : δ − ε4 ≤ x̃ + ỹ · 1d ≤ δ},
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and by compactness, there exists a finite subcover, say (R(ζn))
N
n=1, for some points

ζ1, . . . , ζN ∈ Ξε .
Now define a mapping I : Ξε → {1, . . . ,N} that assigns to each point one of the

neighborhoods in the subcover to which it belongs by

I(x′, y′) := min{n : (x′, y′) ∈ R(ζn)}
and set

ζ(x′, y′) := ζI(x′,y′).

At each ζn, we select a control νn ∈ Θε(ζn) such that

vε(ζn) ≤ E

[∫ ∞

0
e−βtU(cνn

t ) dt

]
+ ε3.

Note that νn ∈ Θε(x
′, y′) for all (x′, y′) ∈ R(ζn). Finally, define ν∗ ∈ Θε(x, y) by

ν∗(ω
θ⊕ ω′, t) :=

{
νε(ω, t) if t ∈ [0, θ(ω)],
νN (ω)(ω′, t − θ(ω)) if t > θ(ω),

with

N (ω) = I
(
X

νε,x
θ(ω), Y

νε,y

θ(ω)

)
.

Step 5: Piecing together the above estimates and proceeding as in the proof of
Lemma 4.6 to get rid of the local martingale term, we obtain

V ε(x, y)

≤ E

[
e−βθV ε(X

νε,x
θ , Y

νε,y
θ ) +

∫ θ

0
e−βs(βV ε − L V ε)(Xνε,x

s , Y
νε,y
s ) ds

]

≤ E

[
e−βθV ε

(
ζ(X

νε,x
θ , Y

νε,y
θ )

) +
∫ θ

0
e−βs(1 + ε3k∗)U(cmZνε,z

s ) ds

]

+ ε3

≤ E

[
e−βθ

∫ ∞

0
e−βsU(cνN

s ) ds +
∫ θ

0
e−βs(1 + ε3k∗)U(cmZνε,z

s ) ds

]

+ Mε + 2ε3

≤ J ε,δ(x, y) + Mε + ε3k∗v(z) + 2ε3,

where in the last step we have used that k∗U is positive for γ 
= 1,11 and where

Mε := sup
δ−ε4≤x′+y′≤δ

(x′,y′)∈NTε

|V ε(x′, y′) − vε(x′, y′)|.

11For logarithmic utility (γ = 1), this follows similarly by additionally exploiting the estimate (4.5).
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The convergence results from Theorem 2.3 imply that Mε/ε
2 → 0 as ε → 0. Since

J ε,δ ≥ V ε(x, y) − Mε − ε3(2 + k∗v(z)
) = vε(x, y) − o(ε2),

the proposed policy is indeed optimal at the leading order ε2. �
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Appendix A: Pointwise estimates

Proposition A.1 There exists K = K(β,μ, r, σ, γ ) > 0 such that for k = 0,1,2 and
j = 0,1,2,

|Dk
ξ ∂

j
z w(z, ξ)| ≤ Kz−j−3k/4−γ for all (z, ξ) ↔ (x, y) ∈ NTε.

Proof This follows from tedious but straightforward computations since all the func-
tions and domains involved are known explicitly (cf. [43, Sect. 4.2] for a similar
calculation). �

Remark A.2 Proposition A.1 yields the expansion

ε4(βw(z, ξ) − L w(z, ξ)
) = −ε2 1

2
Tr[α(z)α(z)�wξξ (z, ξ)] + ε3Rw(z, ξ),

where the remainder satisfies the bound

|Rw(z, ξ)| ≤ K

3∑
k=0

εkz(1−k)/4−γ for all (z, ξ) ↔ (x, y) ∈ NTε.

In particular, over the same region, we have

ε4|βw(z, ξ) − L w(z, ξ)| ≤ K

4∑
k=0

εk+2z(2−k)/4−γ .

We can also expand

ε2(βu(z) − L u(z)
) = ε2(a(z) − cmzu′(z)

) + ε2Ru(z, ξ),

with a bound on the remainder of

|Ru(z, ξ)| ≤ K(εz1/4−γ + ε2z−γ ) for all (z, ξ) ↔ (x, y) ∈ NTε .
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Proposition A.3 Let ε > 0 be given and consider S := [z0 − r0, z0 + r0] ×R
d ⊂ Kε

for some z0 > r0 > 0. Then, given any Ψ ∈ C2(S) for which DξΨ has a compact
support, there exists K > 0, independent of ε, such that

‖Ψ ‖C2(S) ≤ K

and

ε2|βΨ (z, ξ) − L Ψ (z, ξ)| ≤ K(1 + ε|ξ | + ε2|ξ |2) ∀(z, ξ) ∈ S.

Proof This again follows from a tedious but straightforward calculation. �

Appendix B: Proof of Theorem 2.1

In this section, we prove that for each fixed λ, the value function vλ is a viscosity
solution of the corresponding dynamic programming equation (3.7) on the domain

Oλ = {(x, y) ∈ Kλ : x + y · 1d > 2λ}.
As observed by Bouchard and Touzi [8], a “weak version” of the dynamic program-
ming principle is sufficient to derive the viscosity property. For the convenience of
the reader, we present a direct proof of the weak dynamic programming principle in
our specific setting using the techniques of [8]. Then we use it to prove that vλ is
indeed a viscosity solution of (3.7).

B.1 Weak dynamic programming principle for vλ

Fixing (x, y) ∈Oλ and δ > 0, let Bδ(x, y) ⊂ R
d+1 denote the ball of radius δ centered

at (x, y) and set

K(x,y; δ)λ := {(x′, y′) : x + y · 1d − δ − λ ≤ x′ + y′ · 1d ≤ x + y · 1d + δ}.
Take δ > 0 sufficiently small so that K(x,y;2δ)λ ⊂ Oλ. For any investment–
consumption policy ν and initial endowment (x′, y′) ∈ Bδ/2(x, y), define θ := θν

as the exit time of the state process (X,Y )ν,x′,y′
from Bδ/2(x, y). Following the stan-

dard convention, our notation does not explicitly show the dependence of θ on ν. It is
then clear that

(Xθ− , Yθ−) ∈ Bδ/2(x, y) and (Xθ ,Yθ ) ∈ K(x,y, δ)λ.

The following weak version of the DPP is introduced in [8]. Let ϕ be a smooth and
bounded function on K(x,y,2δ)λ satisfying

vλ ≤ ϕ on K(x,y,2δ)λ.

Then we have

vλ(x, y) ≤ sup
ν∈Θλ(x,y)

E

[∫ θ

0
e−βtU(ct ) dt + e−βθϕ

(
Xθ,Yθ

)]
. (B.1)
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(The restriction to bounded test functions ϕ is possible since by (4.12) vλ is bounded
on K(x,y;2δ)λ.) Conversely, let ϕ be a smooth function bounded on K(x,y,2δ)λ,
satisfying

vλ ≥ ϕ on K(x,y,2δ)λ.

Then we have

vλ(x, y) ≥ sup
ν∈Θλ(x,y)

E

[∫ θ

0
e−βtU(ct ) dt + e−βθϕ

(
Xθ,Yθ

)]
. (B.2)

For proving (B.1) and (B.2), without loss of generality, let Ω = C0([0,∞),Rd)

be the space of continuous functions starting at zero, equipped with the Wiener mea-
sure P, a standard Brownian motion W , and the completion (Ft )t≥0 of the filtration
generated by W . Given a control ν ∈ Θλ(x, y) and the exit time θ := θν from above,
fix ω ∈ Ω and define

νθ,ω(ω′, t) := ν
(
ω

θ⊕ ω′, t + θ(ω)
) ∀ω′ ∈ Ω, t ≥ 0,

where

(ω
θ⊕ ω′)t :=

{
ωt if t ∈ [0, θ(ω)),

ω′
t−θ(ω) + ωθ(ω) if t ≥ θ(ω).

We start with the proof of (B.1). By construction,

νθ,ω ∈ Θλ

(
X

ν,x
θ(ω), Y

ν,y

θ(ω)

)
;

in particular, νθ,ω is a well-defined impulse control. Moreover, note that

(X
ν,x
θ(ω), Y

ν,y

θ(ω)) ∈ K(x,y, δ)λ

lies in the set K(x,y,2δ)λ on which ϕ dominates vλ by definition. Therefore,

E

[∫ ∞

0
e−βtU(cν

t ) dt

∣∣∣∣Fθ

]
(ω)

=
∫ θ(ω)

0
e−βtU

(
cν
t (ω)

)
dt + e−βθ(ω)

∫
Ω

∫ ∞

0
e−βtU

(
cνθ,ω

t (ω′)
)
dt dP(ω′)

≤
∫ θ(ω)

0
e−βtU

(
cν
t (ω)

)
dt + e−βθ(ω)vλ

(
X

ν,x
θ(ω)

, Y
ν,y

θ(ω)

)

≤
∫ θ(ω)

0
e−βtU

(
cν
t (ω)

)
dt + e−βθ(ω)ϕ

(
X

ν,x
θ(ω), Y

ν,y

θ(ω)

)
.

As a result, for any ν ∈ Θλ(x, y),

E

[∫ ∞

0
e−βtU(cν

t ) dt

]
≤ E

[∫ θ

0
e−βtU(cν

t ) dt + e−βθϕ(X
ν,x
θ , Y

ν,y
θ )

]
.

By taking the supremum over all policies ν we arrive at (B.1).
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To prove (B.2), set V to be the right-hand side of (B.2), that is,

V := sup
ν∈Θλ(x,y)

E

[∫ θ

0
e−βtU(cν

t ) dt + e−βθϕ(X
ν,x
θ , Y

ν,y
θ )

]
.

For any η > 0, we can choose νη ∈ Θλ(x, y) satisfying

V ≤ η +E

[∫ θ

0
e−βtU(cνη

t ) dt + e−βθϕ
(
X

νη,x
θ , Y

νη,y
θ

)]
. (B.3)

We have already argued that (X
νη,x
θ , Y

νη,y
θ ) ∈ K(x,y, δ)λ. The next step is to

construct a countable open cover of K(x,y, δ)λ. For every point ζ = (x̃, ỹ) in
K(x,y,2δ)λ, set

R(ζ ) := Rη(x̃, ỹ)

= {(x′, y′) ∈ K(x,y,2δ)λ : x′ > x̃, y′ > ỹ, ϕ(x′, y′) < ϕ(x̃, ỹ) + η}.
By monotonicity of the value function,

vλ(ζ ) ≤ vλ(x′, y′) ∀ (x′, y′) ∈ R(ζ ).

Also, since ϕ is smooth, each R(ζ ) is open, and

K(x,y, δ)λ ⊂
⋃

ζ∈K(x,y,2δ)λ

R(ζ ).

Hence, by the Lindelöf covering lemma [26, Theorem 15], we can extract a countable
subcover

K(x,y, δ)λ ⊂
⋃
n∈N

R(ζn).

Now define a mapping I : K(x,y, δ)λ → N that assigns to each point one of the
neighborhoods in the subcover to which it belongs by

I(x′, y′) := min{n : (x′, y′) ∈ R(ζn)}
and set

ζ(x′, y′) := ζI(x′,y′).

By definition,these constructions imply

ϕ(x′, y′) ≤ ϕ
(
ζ(x′, y′)

) + η ∀ (x′, y′) ∈ K(x,y, δ)λ. (B.4)

As a final step, for each positive integer n, we choose a control νn ∈ Θλ(ζn) so that

vλ(ζn) ≤ E

[∫ ∞

0
e−βtU(cνn

t ) dt

]
+ η. (B.5)
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By monotonicity, νn ∈ Θλ(x
′, y′) for every (x′, y′) ∈ R(ζn). We now define a com-

posite strategy ν∗ that follows the policy η satisfying (B.3) until the corresponding
state process (X,Y )ν

η,x,y leaves Bδ/2(x, y) at time θ = θνη
. It then switches to the

policy νn corresponding to the index n that the state process is assigned to by the
mapping I , that is,

ν∗(ω
θ⊕ ω′, t) :=

{
νη(ω, t) if t ∈ [0, θ(ω)],
νN (ω)(ω′, t − θ(ω)) if t > θ(ω),

with N (ω) = I(X
νη,x
θ(ω), Y

νη,y

θ(ω) ). This construction ensures that we have ν∗ ∈ Θλ(x, y).
Hence, it follows from the definitions of the value function and ν∗, inequalities (B.5),
vλ ≥ ϕ (which holds on K(x,y,2δ)λ by the definition of ϕ), (B.4), and (B.3) that

vλ(x, y) ≥ E

[∫ ∞

0
e−βtU(cν∗

t ) dt

]

= E

[∫ θ

0
e−βtU(c

η
t ) dt + e−βθ

∫ ∞

0
e−βtU(cNt ) dt

]

≥ E

[∫ θ

0
e−βtU(c

η
t ) dt + e−βθ

(
ϕ
(
ζ
(
X

νη,x
θ , Y

νη,y
θ

)) − η

)]

≥ E

[∫ θ

0
e−βtU(c

η
t ) dt + e−βθ

(
ϕ
(
X

νη,x
θ , Y

νη,y
θ

) − 2η
)]

≥ V− 3η.

Since η was arbitrary, this establishes (B.2), thereby completing the proof.

B.2 vλ Is a viscosity solution of (3.7)

We first state and prove some facts about the intervention operator M from (3.8),
which are needed in the subsequent proofs. Similar observations appear in [37] for
the case of proportional and fixed transaction costs. The modifications below are
required to extend them to the case of pure fixed costs, for which the set of attainable
portfolios at a fixed wealth level is no longer compact.

Throughout, ψ and ψ will denote the lower- and upper-semicontinuous envelopes
of a locally bounded function ψ , respectively.

Lemma B.1 Suppose that ϕ : Kλ → R satisfies supz∈K ‖ϕ(z, ·)‖∞ < ∞ for every
nonempty compact set K ⊂ R+.

(i) If ϕ is lower-semicontinuous, then Mϕ is lower-semicontinuous. In particular, if
ϕ ≥ Mϕ, then ϕ ≥ Mϕ.

(ii) Let ϕ ∈ C1(Kλ). If (z, ξ) �→ Dξ ϕ(z, ξ) is compactly supported on C × R
d for

any compact set C ⊂ R+, then Mϕ is upper-semicontinuous.
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Proof (i) Assume to the contrary that there exist ζ0 = (z0, ξ0) ∈ Kλ, a constant η > 0,
and a sequence Kλ � ζn = (zn, ξn) → ζ0 for which

Mϕ(ζ0) > lim inf
n→∞ Mϕ(ζn) + 2η.

Choose ζ ∗
0 = (z0 − λ, ξ̂0) such that ϕ(ζ ∗

0 ) + η/2 ≥ Mϕ(ζ0) and ζ ∗
n = (zn − λ, ξ̂n)

with ϕ(ζ ∗
n ) + 1/n ≥ Mϕ(ζn). Then, up to choosing a subsequence,

ϕ(ζ ∗
0 ) ≥ lim

n→∞ϕ(ζ ∗
n ) + η.

By the lower-semicontinuity of ϕ, there exist an open neighborhood O of ξ∗
0 and an

integer N > 0 such that for all n ≥ N and all ζ ∈ O ,

ϕ(ζ ) ≥ ϕ(ζ ∗
n ) + η. (B.6)

Observe that since zn → z0 as n → ∞, we have

An := {zn − λ} ×R∩ O 
= ∅. (B.7)

Combining (B.7) and (B.6) yields

ϕ(ζ ∗
n ) + 1

n
≥ Mϕ(ζn) ≥ sup

ζ ′∈An

ϕ(ζ ′) ≥ ϕ(ζ ∗
n ) + η,

which is a contradiction for n large enough. Finally, observe that if ϕ is lower-
semicontinuous and ϕ ≥ Mϕ, then ϕ ≥ Mϕ = Mϕ by the previous discussion.

(ii) This follows similarly as in the proof of [37, Lemma 3.2(i)] because the re-
quirements we place on the gradient Dξ ϕ ensure the existence of optimizers and
accumulation points also in our setting. �

We are now ready to tackle the proof of Theorem 2.1, which we split into two
lemmas.

Lemma B.2 The value function vλ is a viscosity supersolution of the dynamic pro-
gramming equation (3.7) on Oλ.

Proof Let (x0, y0)∈Oλ, and let ϕ be a smooth and bounded function on K(x0, y0, δ)λ
satisfying

0 = (vλ − ϕ)(x0, y0) = min{(vλ − ϕ)(x′, y′) : (x′, y′) ∈ K(x0, y0, δ)λ}.
Using Lemma B.1 and the inequality vλ ≥ ϕ on K(x0, y0, δ)λ, we obtain

ϕ(x0, y0) = vλ(x0, y0) ≥ Mvλ(x0, y0) ≥ Mϕ(x0, y0).

Therefore, it remains to show that

(
βϕ − Ũ (ϕx) − L ϕ

)
(x0, y0) ≥ 0.
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Assume to the contrary that (βϕ −U(c∗)+ c∗ϕx −L ϕ)(x0, y0) < 0 for some c∗ > 0
and set φ(x, y) := ϕ(x, y) − ε(|x − x0|4 + ‖y − y0‖4). Then for ε > 0 and r > 0
small enough, continuity yields

(
βφ − U(c∗) + c∗φx − L φ

)
(x, y) < 0, ∀(x, y) ∈ Br(x0, y0) ⊂ K(x0, y0, δ)λ.

Select a convergent sequence of points (xn, yn, v
λ(xn, yn)) → (x0, y0, v

λ(x0, y0))

and denote by (Xn
t , Y n

t ) := (X
xn
t , Y

yn
t ) the portfolio process starting at (xn, yn) under

the consumption-only strategy ct ≡ c∗. Define

Hn := inf{t ≥ 0 : (Xn
t , Y n

t ) /∈ Br(x0, y0)}
and note that lim infn→∞ E[Hn] > 0. Hence, there exists δ > 0 with E[e−βHn] > δ

for all n sufficiently large. Itô’s formula gives

φ(xn, yn) = E

[
e−βHn

φ(Xn
Hn,Y

n
Hn) +

∫ Hn

0
e−βs(βφ + c∗φx − L φ)(Xn

s , Y n
s ) ds

]

≤ E

[
e−βHn

φ(Xn
Hn,Y

n
Hn) +

∫ Hn

0
e−βsU(c∗) ds

]
.

By construction of φ there exists η > 0 with ϕ ≥ φ + η on K(x0, y0, δ)\Br(x0, y0).
Hence,

φ(xn, yn) ≤ E

[
e−βHn

ϕ(Xn
Hn,Y

n
Hn) +

∫ Hn

0
e−βsU(c∗) ds

]
− δη.

Taking into account (vλ − φ)(xn, yn) → 0, we note that for n large enough,

vλ(xn, yn) ≤ E

[
e−βHn

ϕ(Xn
Hn,Y

n
Hn) +

∫ Hn

0
e−βsU(c∗) ds

]
− δη

2
.

This contradicts the weak dynamic programming principle (B.2) for vλ, thereby com-
pleting the proof. �

The image of an arbitrary smooth function under M is upper-semicontinuous only
under additional assumptions (cf. Lemma B.1(ii)). As is customary in the theory of
viscosity solutions (see, e.g., Sect. 9 of [10]), the viscosity subsolution property in
the following lemma is therefore formulated in terms of the lower-semicontinuous
envelope of the DPE.

Lemma B.3 The value function vλ is a viscosity subsolution of

min
(
βvλ − Ũ (vλ

x ) − L vλ, vλ − Mvλ
) = 0 on Oλ.

Proof Step 1. Throughout this proof, C > 0 denotes a generic constant that may vary
from line to line. We argue by contradiction. Let (x0, y0) ∈Oλ, and let ϕ be a smooth
and bounded function on K(x0, y0, δ)λ satisfying

0 = (vλ − ϕ)(x0, y0) = max{(vλ − ϕ)(x′, y′) : (x′, y′) ∈ K(x0, y0, δ)λ}.
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Suppose that for some η > 0, we have

min
(
βϕ − L ϕ − Ũ (ϕx),ϕ − Mϕ

)
(x0, y0) > η.

By continuity, there is a small rectangular neighborhood

N = N(x0, y0, ρ) :=
{
(x, y) ∈R×R

d : max
i=1,...,d

(|x − x0|, |yi − yi
0|

)
< ρ

}

such that

min
(
βϕ − L ϕ + cϕx − U(c),ϕ − Mϕ

)
(x, y) > η (B.8)

for all c > 0 and (x, y) ∈ N .
Step 2. Choose a sequence N � (xn, yn) → (x0, y0) for which vλ(xn, yn) con-

verges to vλ(x0, y0). At each of these points, choose a 1
n

-optimal control νn in
Θλ(xn, yn). We denote by (cn

t ) and τn the consumption process and first impulse

time of νn, respectively, and write (Xn
t , Y n

t ) := (X
νn,xn
t , Y

νn,yn
t ) for the correspond-

ing controlled process. Define the stopping times

Hn := inf{t ≥ 0 : (Xn
t , Y n

t ) /∈ N} ∧ 1 + ∞1{θn=τn}

and

θn := Hn ∧ τn.

We can further decompose Hn = Hn ∧ H
n ∧ 1, where

Hn := inf{t ≥ 0 : (Xn
t , Y n

t ) ∈ ∂N ∩ {x0 − ρ} ×R
d} + ∞1{θn=τn}

and

H
n := inf{t ≥ 0 : (Xn

t , Y n
t ) ∈ ∂N ∩ {x : x > x0 − ρ} ×R

d} + ∞1{θn=τn}.

Then there exists δ > 0 such that E[Hn] > δ for all n sufficiently large.
Step 3. Write

h(c, x, y) := I (c, x, y) − sup
ĉ>0

I (ĉ, x, y),

where

I (c, x, y) := −βϕ(x, y) + L ϕ(x, y) − cϕx(x, y) + U(c).

Note that I (c, x, y) < 0 for all c ∈ R+ and (x, y) ∈ N by (B.8). If we now set
c∗(x, y) = (U ′)−1(ϕx(x, y)), then it follows that

h(c, x, y) = I (c, x, y) − I
(
c∗(x, y), x, y

) ≤ 0.

By smoothness of ϕ and c∗ and compactness of N , there exists a constant Lρ > 0
with |I (c∗(x, y), x, y)| ≤ Lρ for all (x, y) ∈ N . On the other hand, there is α > 0
such that I (c, x, y) ≤ −αc for all c > 0. This leads to the upper bound

h(c, x, y) ≤ (−αc + Lρ) ∧ 0 for all c > 0, (x, y) ∈ N. (B.9)
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Since we only consider times t up to θn, we can assume without loss of generality
that cn

t = c∗(Xn
t , Y n

t ) for t ∈ (θn,Hn]. Together with (B.9), we obtain

E

[∫ θn

0
−e−βth(ct ,Xt , Yt ) dt

]
= E

[∫ Hn

0
−e−βth(ct ,Xt , Yt ) dt

]
(B.10)

≥ CαE

[∫ Hn

0
e−rt ct dt

]
− LρE[Hn].

≥ CαE

[∫ Hn∧1

0
e−rt ct1{θn=Hn} dt

]
− LρE[Hn],

where the first inequality uses (B.9) to change the discount factor.
Step 4. Set ζ n

t := (Xn
t , Y n

t ). Weak dynamic programming in (B.1) implies

vλ(xn, yn) ≤ 1

n
+E

[∫ θn

0
e−βtU(cn

t ) dt + e−βθn

ϕ(ζ n
t )

]

≤ 1

n
+ ϕ(xn, yn) +E

[∫ θn

0
e−βt I (cn

t , ζ n
t ) dt

]

+E
[
e−βθn(

ϕ(ζ n
θn) − ϕ(ζ n

θn−)
)
1{θn=τn}

]

≤ 1

n
+ ϕ(xn, yn) +E

[∫ θn

0
e−βt I

(
c∗
t (ζ

n
t ), ζ n

t

)
dt

]

+E

[∫ θn

0
e−βth(cn

t , ζ n
t ) dt

]
− CηP[θn = τn]

≤ 1

n
+ ϕ(xn, yn) − CLρηE[θn] − CηP[θn = τn]

+E

[∫ θn

0
e−βth(cn

t , ζ n
t ) dt

]
.

Since vλ(xn, yn) − ϕ(xn, yn) − 1
n

→ 0 as n → ∞ and since the other terms on the
right-hand side are negative, they must each vanish as n tends to infinity.

Step 5. We derive a contradiction using that

lim
n→∞ max

(
E[θn],P[θn = τn],E

[∫ θn

0
−e−βth(cn

t , ζ n
t ) dt

])
= 0. (B.11)

Observe that since the first two terms vanish, E[Hn] → 0 and P[Hn = θn] → 1.
Since E[Hn] > δ for all n sufficiently large, we must therefore have E[Hn] → 0 and
P[Hn = θn] → 1. As a consequence,

E

[∫ Hn

0
e−rt cn

t 1{θn=Hn} dt

]
→ ρ,

which follows from the simple observation that for any fixed n, the term inside the
expectation represents the amount of discounted consumption needed for cash in the



Asymptotics for fixed transaction costs 413

bank account to decrease from xn to x0 − ρ. However, by (B.11) and (B.10) we must
have

0 = lim
n→∞E

[∫ θn

0
−e−βth(ct ,Xt , Yt ) dt

]
≥ Cαρ − Lρ lim

n→∞E[Hn] = Cαρ > 0,

which is a contradiction. �
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