
1 23

Finance and Stochastics
 
ISSN 0949-2984
Volume 18
Number 2
 
Finance Stoch (2014) 18:327-347
DOI 10.1007/s00780-014-0227-x

Robust hedging with proportional
transaction costs

Yan Dolinsky & H. Mete Soner



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag Berlin Heidelberg. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



Finance Stoch (2014) 18:327–347
DOI 10.1007/s00780-014-0227-x

Robust hedging with proportional transaction costs

Yan Dolinsky · H. Mete Soner

Received: 4 February 2013 / Accepted: 20 September 2013 / Published online: 4 March 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract A duality for robust hedging with proportional transaction costs of path-
dependent European options is obtained in a discrete-time financial market with one
risky asset. The investor’s portfolio consists of a dynamically traded stock and a static
position in vanilla options, which can be exercised at maturity. Trading of both op-
tions and stock is subject to proportional transaction costs. The main theorem is a
duality between hedging and a Monge–Kantorovich-type optimization problem. In
this dual transport problem, the optimization is over all probability measures that
satisfy an approximate martingale condition related to consistent price systems, in
addition to an approximate marginal constraint.
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1 Introduction

As is well known, superreplication in markets with transaction costs is quite costly
[16, 19]. Naturally, the same is even more true for the model-free case in which
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one does not place any probabilistic assumptions on the behavior of the risky asset.
However, one may reduce the hedging cost by including liquid derivatives in the su-
perreplicating portfolio. In particular, one may use all call options (written on the
underlying asset) with a price that is known to the investor initially. This leads us
to the semistatic hedging introduced in the classical paper of Hobson [13] in mar-
kets without transaction costs. So, following [13], we assume that all call options are
traded assets and can be initially bought or sold for a known price. In addition to
these static option positions, the stock is also traded dynamically. These trades, how-
ever, are subject to transaction costs. Each option has its own cost, and their general
structure is outlined in the next section.

In this market, we consider the problem of robust hedging of a given path-
dependent European option. Robust hedging refers to superreplication of an option
for all possible stock price processes. This approach has been actively researched
over the past decade since the seminal paper of Hobson [13]. In particular, the opti-
mal portfolio is explicitly constructed for special cases of European options in con-
tinuous time: barrier options in [4, 6, 7], lookback options in [11–13], and volatility
options in [8]. The main technique that is employed in these papers is the Skorokhod
embedding. For more information, we refer the reader to the surveys of Hobson [14],
Obłój [17], and the references therein.

Recently, an alternative approach has been developed, which uses the connec-
tion to optimal transport. Duality results in different types of generality or modelling
have been proved in [2, 3, 9, 11] in frictionless markets. In particular, [9] studies
continuous-time models, [11] provides a connection to stochastic optimal control
and proposes a general solution methodology, [3] proves a general duality in dis-
crete time, and [2] studies the question of a fundamental theorem of asset pricing in
this context.

Although much has been established, the effect of frictions—in particular the im-
pact of transaction costs—in this context is not fully studied. The classical probabilis-
tic models with transaction costs, however, are well studied. In the classical model,
a stock price model is assumed, hedging is done only through the stock, and no static
position in the options is used. Then the dual is given as the supremum of “approx-
imate” martingale measures that are equivalent to the market probability measure;
see [15, 18] and the references therein. In this paper, we extend this result to the
robust case. Namely, we prove that the superreplication price can be represented as
the value of a martingale optimal transport problem. The dual control problem is to
find the supremum of the expectation of the option over all approximate martingale
measures that also satisfy an approximate marginal condition at maturity. This result
is stated in Theorem 2.6 below, and the definition of an approximate martingale is
given in Definition 2.5. Indeed, approximate martingales are very closely related to
consistent price systems, which play a central role in the duality theory for markets
with proportional transaction costs.

Recently, Acciaio et al. [2] proved a fundamental theorem of asset pricing
(FTAP) in discrete-time markets without transaction costs in the robust setting. Also,
Bouchard and Nutz [5] study the FTAP again in discrete time, but in the quasi-sure
setting. Our main duality result has implications toward these results as well. These
corollaries are discussed in Sect. 2.5.
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As in our previous paper [9] on robust hedging, our proof relies on a discretiza-
tion of the problem. We first show that the original robust hedging problem can be
obtained as a limit of hedging problems that are defined on finite spaces. We exploit
the finiteness of these approximate problems and directly apply an elementary Kuhn–
Tucker duality theory. We then prove that any sequence of probability measures that
are asymptotically maximizers of these finite problems is tight. The final step is then
to directly use weak convergence and pass to the limit.

The paper is organized as follows. The main results are formulated in the next
section and proved in Sect. 3. The final section is devoted to the proof of an auxiliary
result that is used in the proof of the main results. This auxiliary result deals with
superreplication under constraints and may be of independent interest.

2 Preliminaries and main results

The financial market consists of a savings account B and a risky asset S, and trad-
ing is restricted to finitely many time points. Hence, the stock price process is Sk ,
k = 0,1, . . . ,N , where N < ∞ is the maturity date or total number of allowed trades.
By discounting we normalize to B ≡ 1. Furthermore, we normalize the initial stock
price s := S0 > 0 to 1 as well. Then the set Ω of all possible price processes is simply
the set of all vectors (ω0, . . . ,ωN) ∈ R

N+1+ that satisfy ω0 = 1 and ω1, . . . ,ωN ≥ 0.
We let S be the canonical process given by Sk(ω) := ωk for k = 0, . . . ,N . We write ω

or S for the elements of Ω , depending on the context; ω is used for a function on the
space, and S for the stock price process. Let us emphasize that we make no other as-
sumptions on our financial market. In particular, we do not assume any probabilistic
structure.

2.1 An assumption on the European claim

We consider general path-dependent options. Hence, the payoff is X = G(S) with any
function G : Ω → R. Our approach requires us to make the following regularity and
growth assumption. Let ‖ω‖ := max0≤k≤n |ωk| for ω ∈ Ω . We impose the following:

Assumption 2.1 G is upper semi-continuous and bounded by a quadratic function,
i.e., there exists a constant L > 0 such that

|G(ω)| ≤ L(1 + ‖ω‖2) ∀ω ∈ Ω.

The above assumption is quite general and allows most of the standard claims such
as Asian, lookback, volatility, and barrier options. We use the quadratic growth for
specificity and also to include volatility options. However, any growth condition with
any exponent is sufficient for our results. In this paper, we choose not to include such
an extension to avoid more technicalities.
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330 Y. Dolinsky, H.M. Soner

2.2 Semi-static hedging with transaction costs

Let κ ≥ 0 be a given constant. Consider a model in which every purchase or sale of
the risky asset at any time is subject to a proportional transaction cost of rate κ . We as-
sume that κ < 1/4. Then a portfolio strategy is a pair π := (f, γ ), where f :R+ →R

is a continuous function, and

γ : {0,1, . . . ,N − 1} × Ω →R

is a progressively measurable map, i.e., γ (i,ω) = γ (i, ω̃) if ωj = ω̃j for all j ≤ i.
The function f represents the European option with payoff f (SN) that is bought at
time zero for the price of P(f ), and γ (k,S) represents the number of stocks that the
investor invests at time k given that the stock prices up to time k are S0,S1, . . . ,Sk .
Then the portfolio value at the maturity date is given by

Yπ
N (S) := f (SN)+

N−1∑

i=0

γ (i,S)(Si+1 −Si )−κ

N−1∑

i=0

Si |γ (i,S) − γ (i − 1,S)| , (2.1)

where we set γ (−1, ·) ≡ 0. The initial cost of any portfolio (f, γ ) is the price of the
option P(f ). Properties of this price operator P are given in the next subsection.

Definition 2.2 A portfolio π is called perfect (or perfectly dominating) if it super-
replicates the option, i.e.,

Yπ
N (S) ≥ G(S) ∀S ∈ Ω.

The minimal superreplication cost is given by

V (G) = inf {P(f ) | π := (f, γ ) is a perfect portfolio} . (2.2)

2.3 European options and their prices

We postulate a general pricing operator P(f ) for the initial price of the option f (SN).
We assume that it has the following properties.

Assumption 2.3 There exists p > 2 such that for the power function x 
→ xp , we
have P(xp) < ∞. Consider the vector space

H := {f : R+ → R continuous | ∃C > 0 such that |f (x)| ≤ C(1 + xp) ∀x ∈R+}.
We assume that P : H →R is a convex function and that for every constant a ∈R,

P(a) = a.

We also assume that P is positively homogeneous of degree one, i.e.,

P(λf ) = λP(f ), f ∈H, λ > 0. (2.3)
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Furthermore, for every sequence {fn}∞n=1 ⊂ H converging pointwise to f ∈ H,

P(f ) ≥ lim sup
n→∞

P(fn). (2.4)

In (2.2) we assume that the function f belongs to H. We set P(f ) = ∞ for any
f /∈ H. Hence, in (2.2) we consider only functions that belong to H.

We conclude this section with an elementary result.

Lemma 2.4 The minimal superreplication cost V is subadditive and positively ho-
mogeneous of degree one, i.e.,

V (λG) = λV (G), λ > 0,

and

V (G + H) ≤ V (G) + V (H).

Furthermore, if G ≥ 0 and V (G) < 0, then V (G) = −∞.

Proof From the convexity and positive homogeneity of P , it follows that P is
subadditive, i.e., P(f + g) ≤ P(f ) + P(g). Thus, the first two properties fol-
low immediately from (2.2). Finally, let G ≥ 0 be a nonnegative claim and as-
sume that V (G) < 0. Then there exists a perfect portfolio (f, γ ) with P(f ) < 0.
Clearly, for any λ > 1, (λf,λγ ) is also a perfect portfolio. Thus, from (2.3) we get
V (G) ≤ limλ→∞ P(λf ) = −∞, as claimed. �

2.4 The main result

To state the main result of the paper, we need to introduce some probabilistic structure
as well. Recall the space Ω and the canonical process S. Let F = (Fk)

N
k=0 be the

canonical filtration generated by the process S, i.e., Fk = σ(S0, . . . ,Sk).

Definition 2.5 A probability measure Q on (Ω,FN) is called a κ-approximate mar-
tingale law if S0 = 1 Q-a.s. and if the pair (Q, S̃) with

S̃k := EQ [SN | Fk] , k = 1, . . . ,N,

is a consistent price system in the sense of [15, 18], i.e., for any k < N ,

(1 − κ)Sk ≤ S̃k ≤ (1 + κ)Sk Q-a.s. (2.5)

We denote by Mκ,P the set of all κ-approximate martingale laws Q such that

EQ[f (SN)] ≤ P(f ) ∀f ∈H. (2.6)

The following theorem is the main result of the paper. We use the standard con-
vention that the supremum over an empty set is equal to minus infinity.
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Theorem 2.6 Suppose that G satisfies Assumption 2.1 and P satisfies Assump-
tion 2.3. Then

V (G) = sup
Q∈Mκ,P

EQ [G(S)] .

In particular, when the set of measures Mκ,P is empty, V (G) = −∞ for every G

satisfying Assumption 2.1.

Proof In view of (2.1) and the convention γ (−1, ·) ≡ 0, for any portfolio π = (f, γ ),

Yπ
N (S) = f (SN) +

N−1∑

i=0

i∑

j=0

(
γ (j,S) − γ (j − 1,S)

)
(Si+1 − Si )

− κ

N−1∑

i=0

Si |γ (i,S) − γ (i − 1,S)|

= f (SN) +
N−1∑

j=0

(
γ (j,S) − γ (j − 1,S)

)(N−1∑

i=j

(Si+1 − Si )

)

− κ

N−1∑

i=0

Si |γ (i,S) − γ (i − 1,S)|

= f (SN) +
N−1∑

j=0

(
γ (j,S) − γ (j − 1,S)

)
(SN − Sj )

− κ

N−1∑

i=0

Si |γ (i,S) − γ (i − 1,S)| .

Suppose that Mκ,P is nonempty. Let Q ∈ Mκ,P , and let π = (f, γ ) be a perfect
portfolio. Then (2.5) and (2.6) yield that

EQ[G(S)] ≤ EQ

[
Yπ

N (S)
]

≤ P(f ) +
N−1∑

i=0

EQ

[(
γ (i,S) − γ (i − 1,S)

)
(S̃i − Si )

]

− κ

N−1∑

i=0

EQ[Si |γ (i,S) − γ (i − 1,S)|]

≤ P(f ).

So we have proved that

sup
Q∈Mκ,P

EQ [G(S)] ≤ V (G). (2.7)
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Hence, to complete the proof of the theorem, it suffices to show that

V (G) ≤ sup
Q∈Mκ,P

EQ [G(S)] . (2.8)

The proof of (2.8) is given in the next section. �

Remark 2.7 Consider the following more general problem. Assume that for 0<k ≤N

and a set of times 0 < i1 < i2 < · · · < ik = N , one can initially buy vanilla options
with a payoff fj (Sij ) with maturity date ij for the price Pj (fj ), where P1, . . . ,Pk

satisfy assumptions similar to Assumption 2.3. Then, by using the same approach in
a recursive manner, we may extend Theorem 2.6 to prove that the superreplication
cost in this context is equal to

sup
Q∈Mκ,P1,...,Pk

EQ [G(S)] ,

where Mκ,P1,...,Pk
is the set of all κ-approximate probability laws Q such that for

any time j = 1, . . . , k and f ∈H, we have

EQ[f (Sij )] ≤ Pj (f ).

Furthermore, if the set Mκ,P1,...,Pk
is empty, then V (G) ≡ −∞. For simplicity, we

deal in this paper only with the case k = 1.

2.5 Fundamental theorem of asset pricing

Theorem 2.6 also implies results that can be seen as a fundamental theorem of asset
pricing (FTAP) for this market. Indeed, when the set Mκ,P of measures is empty, we
conclude by Theorem 2.6 that the minimal superreplication cost of any G (satisfy-
ing Assumption 2.1) is equal to minus infinity. This is a clear indication of arbitrage.
However, to make a precise statement, we need to define the notion of arbitrage. Since
we do not assume a probabilistic structure, there are at least two possible approaches.
Indeed, in frictionless markets, an FTAP is proved under different assumptions and
definitions in [2] and in [5]. Our result essentially implies an FTAP under both defi-
nitions under Assumption 2.3.

Definition 2.8 We say that the model admits

– no model-independent arbitrage (NAmi) if for every G ≥ 0 satisfying Assump-
tion 2.1, we have V (G) ≥ 0.

– no local arbitrage (NAlocal) if for every continuous, bounded G ≥ 0,G ≡ 0, we
have V (G) > 0.

In the above definition, NAmi is similar to the notion used in [2]. Also, a closely re-
lated definition is given by Cox and Obłój [6]. On the other hand, NAlocal is analogous
to the one used in [5]. One may also consider other versions of NAlocal by requiring
different notions of regularity of G. In the probabilistic setting, this is related to the

Author's personal copy
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choice of the polar sets. There one requires the set {G > 0} to be nonpolar (cf. [5]).
Clearly, other possible regularity choices in NAlocal would yield different equivalent
conditions than the one proved in the second part of the following corollary. They can
be proved similarly. We do not elaborate on different choices.

Corollary 2.9 Suppose that P satisfies Assumption 2.3.

1. There is no model-independent arbitrage if and only if Mκ,P is nonempty. In par-
ticular, NAmi holds if and only if there is at least one G satisfying Assumption 2.1
with V (G) > −∞.

2. There is no local arbitrage if and only if for every open subset O ⊂ Ω , there is
Q ∈Mκ,P with Q[O] > 0.

Proof The first statement follows immediately from Theorem 2.6. So we only prove
the second one. First, assume that NAlocal holds. Let O ⊂ Ω be an arbitrary open set.
Set

GO(ω) := min{1,dist (ω,Ω \ O)}.
Since GO is bounded and continuous, by NAlocal, V (GO) > 0. Since 0 ≤ GO ≤ 1
and GO = 0 outside of O , by Theorem 2.6,

0 < V (GO) = sup
Q∈Mκ,P

EQ [GO(S)] ≤ sup
Q∈Mκ,P

Q[O].

Hence, there must exist a measure Q ∈Mκ,P with Q[O] > 0.
To prove the opposite implication, consider a continuous, bounded option G ≥ 0,

G ≡ 0. Set

OG := {ω ∈ Ω : G(ω) > 0}.
By the continuity of G, OG is a nonempty, open set. By hypothesis, there exists
QG ∈Mκ,P with QG[OG] > 0. We estimate using Theorem 2.6 to arrive at

V (G) = sup
Q∈Mκ,P

EQ [G(S)] ≥ EQG
[G(S)] > 0.

�

3 Proof of the main result

In this section, we prove (2.8).

3.1 Reduction to bounded uniformly continuous claims

We first use the elegant pathwise approach of [1] to martingale inequalities to show
that the superreplication costs of certain options are asymptotically small. Indeed, for
M > 0, consider the option

αM(S) := ‖S‖2χ{‖S‖≥M}.
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Let S∗ be the running maximum, i.e.,

S
∗
k := max

0≤i≤k
Si .

Since Sk ≥ 0 for each k, ‖S‖ = S
∗
N .

Lemma 3.1

lim
M→∞ sup

Q∈Mκ,P

EQ [αM(S)] ≤ lim
M→∞V (αM) ≤ 0.

Proof Let p > 2 be the exponent in Assumption 2.3. Since κ < 1/4, there exists
r ∈ (2,p) such that λ := κrcr < 1, with

cr := r

r − 1
.

We now use Proposition 2.1 in [1] with the portfolio π̂ = (f̂ , γ̂ ) given by

f̂ (SN) := (crSN)r − cr , γ̂ (i,S) = −rcr (S
∗
k)

r−1, k < N.

We use (2.1) and Proposition 2.1 in [1] to arrive at

Y π̂
N (S) ≥ ‖S‖r − κ

N−1∑

i=0

Si |γ̂ (i,S) − γ̂ (i − 1,S)|

≥ ‖S‖r − κ‖S‖
N−1∑

i=0

(
γ̂ (i − 1,S) − γ̂ (i,S)

) = ‖S‖r (1 − λ).

Hence,

V
(
(1 − λ)‖S‖r

) ≤ P(f̂ ).

Clearly, αM(S) ≤ ‖S‖r/Mr−2. Hence, by Lemma 2.4,

V (αM) ≤ V

( ‖S‖r

Mr−2

)
= 1

(1 − λ)Mr−2
V

(
(1 − λ)‖S‖r

) ≤ 1

(1 − λ)Mr−2
P(f̂ ).

Since f̂ ∈H, P(f̂ ) is finite. Therefore,

lim
M→∞V (αM) ≤ 0.

To complete the proof, we recall the proof of (2.7) to restate that for every M ,

sup
Q∈Mκ,P

EQ [αM(S)] ≤ V (αM).
�

The preceding result allows us to consider bounded claims. We also use a com-
pactness argument to obtain the following equivalence.
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336 Y. Dolinsky, H.M. Soner

Theorem 3.2 It suffices to prove (2.8) for nonnegative bounded uniformly continuous
claims.

Since the proof of this result is almost orthogonal to the rest of the paper, we
relegate it to the Appendix.

In view of Theorem 3.2, we assume in the sequel that the claim G is nonnegative,
bounded, and uniformly continuous. So we assume that there exist a constant K > 0
and a modulus of continuity, i.e., a continuous function m : R+ →R+ with m(0) = 0,
satisfying

0 ≤ G(ω) ≤ K, |G(ω) − G(ω̃)| ≤ m(‖ω − ω̃‖) ∀ω, ω̃ ∈ Ω. (3.1)

If V (G) = −∞, then (2.8) is clear. Thus, in view of Lemma 2.4, we can assume
without loss of generality that

V (G) ≥ 0. (3.2)

3.2 Discretization of the space

Next, we introduce a modification of the original superreplication problem. Fix n ∈N

and set h = 1/n and Un = {kh, k = 0,1, . . .}. Denote

Hn := {f : Un → R | ∃C > 0 such that |f (x)| ≤ C(1 + xp)∀x}.
For any g : Un →R, define the function L(n)(g) :R+ →R by

L(n)(g)(x) := (1 − α)g (�nx�h) + αg
(
(�nx� + 1)h

)
, α = nx − �nx�, (3.3)

where for a real number y, �y� is the largest integer less than or equal to y. Observe
that

L(n) : Hn → H

is a bounded linear map.
Set Ωn = (Un)

N . Clearly, Ωn ⊂ Ω , and we consider a financial market where the
set of possible stock price processes is the set Ωn. Then this restriction lowers the
minimal superreplication cost. However, we restrict the admissible portfolios as well.
Indeed, for a constant M > 0, we define the set of admissible portfolio strategies as
follows.

Definition 3.3 For any M > 1, we say that π := (g, γ ) is an (M-)admissible portfo-
lio if g ∈Hn and γ : {0,1, . . . ,N − 1} × Ωn → R is a progressively measurable map
satisfying

|γ (i,S) − γ (i − 1,S)| ≤ M ∀i = 1, . . . ,N,S ∈ Ωn.

We denote by An
M the set of all admissible portfolios. A portfolio π ∈ An

M is called
perfect (or perfectly superreplicating) if

Yπ
N (S) ≥ G(S) ∀S ∈ Ωn,

where Yπ
N is given by (2.1).
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The minimal superreplication cost is given by

V n,M(G) := inf{P(n)(g) | π := (g, γ ) ∈An
M is a perfect portfolio}, (3.4)

where we choose the price function as

P(n)(g) := P
(
L(n)(g)

)
. (3.5)

The following result provides the crucial connection between the original and the
discretized problems. Recall that h = 1/n.

Proposition 3.4 Assume that G satisfies (3.1) with a modulus function m. Then, for
any M > 0 and n ∈ N,

V (G) ≤ V n,M(G) + (N + 2κ)MNh + m(h).

Proof Assume that we have a perfect hedge π = (g, γ ) ∈An
M in the sense of Defini-

tion 3.3. We continue by lifting this portfolio to a portfolio π̃ = (f, γ̃ ) that is defined
on Ω .

Let f = L(n)(g) be as in (3.3) and define γ̃ by

γ̃ (k,ω) := γ (k,ω0, �nω1�h, . . . , �nωN�h) ∀k < N,ω = (ω0, . . . ,ωN) ∈ Ω,

where as before h = 1/n. Clearly, γ̃ : {0,1, . . . ,N − 1} × Ω → R is progressively
measurable, and |γ̃ (i,S) − γ̃ (i − 1,S)| ≤ M for any i = 1, . . . ,N and S ∈ Ω .

For S ∈ Ω , define S
(1),S(2) by

S
(1)
k := �nSk�h, S

(2)
k := S

(1)
k + hδkN for all k ≤ N,

where δkN is equal to one when k = N and zero otherwise. Then there exists λ ∈ [0,1]
such that SN = λS

(1)
N + (1 − λ)S

(2)
N . Also, both ‖S(1) − S‖ and ‖S(2) − S‖ are less

than h = 1/n. Moreover, γ (k,S(1)) = γ (k,S(2)) = γ̃ (k,S) for every k < N . We use
these together with (2.1), (3.3), and the fact that γ ∈ [−MN,MN ]. The result is

Y π̃
N (S) ≥ λYπ

N (S(1)) + (1 − λ)Yπ
N (S(2)) − (N + 2κ)MNh

≥ λG(S(1)) + (1 − λ)G(S(2)) − (N + 2κ)MNh

≥ G(S) − m(h) − (N + 2κ)MNh,

where the last inequality follows from (3.1). Thus, (f + m(h) + (N + 2κ)MNh, γ̃ )

is a perfect portfolio in the sense of Definition 2.2. This, together with the equality
Pn(g) = P(f ), completes the proof. �

3.3 Analysis of V n,
√

n(G)

Fix n > 0. From Proposition 3.4 and from (3.2) it follows that for sufficiently large n,

V n,
√

n(G) ≥ −1. (3.6)
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Fix n ∈ N sufficiently large such that (3.6) holds. We introduce three auxiliary sets.
Let Wn be the set of all functions g ∈Hn that satisfy the growth condition

‖g‖∗ := sup
x∈Un

|g(x)|
(1 + x)p

≤ n. (3.7)

Let Qn be the set of all probability measures Q on Ωn that satisfy

EQ[‖S‖p] < ∞.

Finally, let Q̂n be the set of all probability measures Q ∈ Qn that satisfy

EQ[g(SN)] ≤ P(n)(g) + K + 1

n
‖g‖∗ ∀g ∈ Wn, (3.8)

where

K := sup
S∈Ω

G(S).

We show in the proof below that in view of (3.6), the set of measures Q̂n is nonempty
for all sufficiently large n.

The following provides an upper bound for the superreplication cost V n,
√

n de-
fined by (3.4).

Lemma 3.5 Suppose that G satisfies (3.1) and (3.2). Then, for all sufficiently large n,

V n,
√

n(G) ≤ sup
Q∈Q̂n

EQ

[
G(S) − √

n

N−1∑

k=0

(|EQ[SN |Fk] − Sk| − κSk)
+
]
.

Proof Define H :Wn ×Qn → R by

H(g,Q) := EQ

[
G(S) − g(SN) − √

n

N−1∑

k=0

(|EQ[SN |Fk] − Sk| − κSk)
+
]

+P(n)(g).

Since P(n) is finite on Wn, in view of the definitions of Wn and Qn, H is well defined.
We now use Theorem 4.1 (which will be stated and proved in the next section) with
F(S) := G(S) − g(SN) for an arbitrary g ∈ Wn. This yields that

V n,
√

n(G) ≤ sup
Q∈Qn

H(g,Q) ∀g ∈Wn. (3.9)

Hence,

V n,
√

n(G) ≤ inf
g∈Wn

sup
Q∈Qn

H(g,Q). (3.10)

Since the functions in Wn are restricted to satisfy the growth condition (3.7), the
above is possibly an inequality and not an equality.
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Next, we continue by interchanging the order of the above infimum and supre-
mum. For that purpose, consider the vector space R

Un of all functions g : Un → R

with the topology of pointwise convergence. This space is locally convex, and since
Un is countable, Wn ⊂ R

Un is compact. (Indeed, the notion of convergence is point-
wise. So for any sequence fk ∈ Wn and at each x ∈ Un, one can find a convergent
subsequence fnk

(x). Then a diagonal argument yields a subsequence mk such that
fmk

(x) is convergent at each point x.) Also, the set Qn can be naturally considered
as a convex subspace of the vector space R

Ωn . In order to apply a minimax theorem,
we need to show the continuity and concavity of H . In view of Assumption 2.3, H is
convex in the first variable and therefore continuous due to the dominated conver-
gence theorem. We also claim that H is concave in the second variable. For this, it is
sufficient to show that for any k < N , the functional EQ[(|EQ[SN |Fk]−Sk|−κSk)

+]
is convex in Q. Indeed, this follows from the representation

EQ

[
(|EQ[SN |Fk] − Sk| − κSk)

+]

=
∑

(z1,...,zk)∈Uk
n

(∣∣∣∣
∑

zN∈Un

zNQ[A] − zkQ[B]
∣∣∣∣ − κzkQ[B]

)+
,

where

A = A(z1, . . . , zk, zN) := {S1 = z1, . . . ,Sk = zk,SN = zN } ,

B = B(z1, . . . , zk) := {S1 = z1, . . . ,Sk = zk} .

We now apply Theorem 45.8 in [20] to the function H . The result is

inf
g∈Wn

sup
Q∈Qn

H(g,Q) = sup
Q∈Qn

inf
g∈Wn

H(g,Q).

We combine this with (3.9) (and (3.10)) to obtain

V n,
√

n(G) ≤ sup
Q∈Qn

inf
g∈Wn

H(g,Q). (3.11)

Now suppose that Q is in Qn but not in Q̂n. Then there is g∗ ∈Wn such that

EQ[g∗(SN)] > P(n)(g∗) + K + 1

n
‖g∗‖∗.

By the positive homogeneity of P we may assume that ‖g∗‖∗ = n. Then we get

EQ[g∗(SN)] > P(n)(g∗) + K + 1

and recall that K = supΩ G. The definition of H yields that

H(g∗,Q) ≤ EQ [G(S)] −EQ[g∗(SN)] +P(n)(g∗) < EQ [G(S)] − K − 1 ≤ −1.

In view of (3.6), we conclude that there must exist measures in Q̂n. Additionally, we
may restrict the maximization in (3.11) over the probability measures Q ∈ Q̂n. We
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use this restricted version of (3.11) to arrive at

V n,
√

n(G) ≤ sup
Q∈Q̂n

inf
g∈Wn

H(g,Q) ≤ sup
Q∈Q̂n

H(0,Q).

Since P(0) = 0, the above is exactly the statement of the lemma. �

3.4 Last step of the proof

We combine Proposition 3.4 and Lemma 3.5 to conclude that

V (G) ≤ lim inf
n→∞ βn, (3.12)

where

βn := sup
Q∈Q̂n

EQ

[
G(S) − √

n

N−1∑

k=0

(|EQ[SN |Fk] − Sk| − κSk)
+
]
.

Thus, in order to complete the proof of inequality (2.8), it is sufficient to establish the
following:

Lemma 3.6 Suppose that G satisfies (3.1) and (3.2). Then,

lim inf
n→∞ βn ≤ sup

Q∈Mκ,P

EQ[G(S)].

Proof From (3.2) and (3.12) it follows that βn ≥ −1 for sufficiently large n. There-
fore, for all sufficiently large n ∈N, there exists Qn ∈ Q̂n such that

E
(n)

[N−1∑

k=0

(|E(n)[SN |Fk] − Sk| − κSk)
+
]

≤ K + 1√
n

(3.13)

and

βn ≤ 1

n
+E

(n)

[
G(S) − √

n

N−1∑

k=0

(|E(n)[SN |Fk] − Sk| − κSk)
+
]
, (3.14)

where E
(n) denotes the expectation with respect to Qn. From (3.5) and (3.8), we get

E
(n)[Sp

N ] ≤ P(n)(xp) + K + 1

n
‖xp‖∗ ≤ P(2 + 2xp) + K + 1 < ∞.

Hence,

sup
n∈N

E
(n)[Sp

N ] < ∞. (3.15)
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We claim that the probability measures Qn, n ∈N, are tight. Indeed, in view of the
uniform moment estimate (3.15), tightness will follow from uniform integrability,
which states that for any A > 0,

lim
A→∞ sup

n∈N
E

(n)
[
Skχ{Sk>A}

] = 0 ∀k = 1, . . . ,N − 1.

Since Sk is Qn-integrable, the above will follow from

lim
M→∞ lim

A→∞ sup
n≥M

E
(n)

[
Skχ{Sk>A}

] = 0 ∀k = 1, . . . ,N − 1. (3.16)

So we continue by proving (3.16). We first fix positive integers k < N , n and set

X := (1 − κ)Sk, Y := E
(n)[SN |Fk].

In view of (3.13), E(n)[(X−Y)+] ≤ (K +1)/
√

n. Therefore, by the Cauchy–Schwarz
and Markov inequalities, we obtain that for any A > 0,

E
(n)

[
Xχ{X>A}

] ≤ E
(n)

[(
(X − Y)+ + Y

)
χ{X>A}

]

≤ E
(n)

[
(X − Y)+

] +E
(n)

[
Yχ{X>A}

]

≤ K + 1√
n

+E
(n)

[
Yχ{X>A}

]

≤ K + 1√
n

+
√
E(n)[Y 2]√Qn[X > A]

≤ K + 1√
n

+
√
E(n)[S2

N ]
√
E(n)[X] 1√

A

≤ K + 1√
n

+ 1√
A

√
E(n)[S2

N ]
√

K + 1√
n

+E(n)[Y ]

≤ K + 1√
n

+ 1√
A

√
E(n)[S2

N ]
√

K + 1√
n

+E(n)[SN ].

This together with (3.15) yields (3.16) and hence the uniform integrability of the
sequence Qn, n ∈N.

In view of Prokhorov’s theorem, there now exists a subsequence Qn
,  ∈ N, that

converges weakly to a probability measure Q̃. Then, (3.14) implies that

Ẽ[G(S)] = lim
→∞E

(n)[G(S)]

≥ lim inf
n→∞ sup

Q∈Q̂n

EQ

[
G(S) − √

n

N−1∑

k=0

(|EQ[SN |Fk] − Sk| − κSk)
+
]
,

where Ẽ denotes the expectation with respect to Q̃. Then, Proposition 3.4 and
Lemma 3.5 imply (2.8), provided that Q̃ ∈ Mκ,P . Thus, in order to complete the
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proof of this lemma, it suffices to show that the limit probability measure Q̃ is
in Mκ,P .

Fix k and let h : Rk → R+ be a continuous bounded function. Denote by ‖ · ‖ the
usual sup-norm on functions. By (3.13), it follows that

E
(n)[SNh(S1, . . . ,Sk)] = E

(n)
[
E

(n)[SN |Fk]h(S1, . . . ,Sk)
]

≤ E
(n)[(1 + κ)Skh(S1, . . . ,Sk)] + (K + 1)‖h‖√

n
.

Similarly, we conclude that

E
(n)[SNh(S1, . . . ,Sk)] = E

(n)
[
E

(n)[SN |Fk]h(S1, . . . ,Sk)
]

≥ E
(n)[(1 − κ)Skh(S1, . . . ,Sk)] − (K + 1)‖h‖√

n
.

We next take the limit n → ∞ and use (3.15) and (3.16). The result is

(1 − κ)Ẽ[Skh(S1, . . . ,Sk)] ≤ Ẽ[SNh(S1, . . . ,Sk)] ≤ (1 + κ)Ẽ[Skh(S1, . . . ,Sk)].
The above holds for any nonnegative continuous bounded function h. Then by a
standard density argument, we arrive at

(1 − κ)Sk ≤ Ẽ[SN |Fk] ≤ (1 + κ)Sk, k = 0, . . . ,N − 1.

Hence, Q̃ is a κ-approximate martingale law.
We continue by showing that Q̃ satisfies (2.6). From (3.15) it follows that

Ẽ[Sp
N ] < ∞.

Let g ∈ H, and let C > 0 be such that g(x) ≤ C(1 + x)p for all x ≥ 0. Set fn := g|Un

and hn = Ln(fn), n ∈ N. Observe that for sufficiently large n, fn ∈ Wn. Since g is
continuous, g(x) = limn→∞ fn(xn) for any x ≥ 0 and any sequence xn ≥ 0, n ∈ N,
that converges to x. Furthermore, the sequence hn, n ∈ N, converges pointwise to g.
We use the Skorokhod representation theorem, (2.4) and (3.5) to conclude that

Ẽ[g(SN)] = lim
n→∞E

(n)[fn(SN)] ≤ lim inf
n→∞ P(n)(fn) = lim inf

n→∞ P(hn) ≤ P(g),

as desired. �

4 Hedging with constraints and transaction costs

This section is devoted to the proof of an auxiliary result that is used in Lemma 3.5.
Fix n ∈ N and recall that Ωn = {kh | k = 0,1, . . .}N with h = 1/n as defined in

Sect. 3.2. In this section, we do not allow one to buy vanilla options, but only to trade
the stock with proportional transaction costs. Furthermore, the number of stocks that
the investor is allowed to buy should lie in the interval [−M,M]. Therefore, in this
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section, a portfolio strategy is a pair π̃ = (x, γ ), where x ∈ R is the initial capital,
and γ : {0,1, . . . ,N − 1} × Ωn → R is a progressively measurable map that satisfies
|γ (i,S) − γ (i − 1,S)| ≤ M for all i,S. The portfolio value for any S ∈ Ωn is

Ỹ π̃
N (S) = x +

N−1∑

i=0

γ (i,S)(Si+1 − Si ) − κ

N−1∑

i=0

Si |γ (i,S) − γ (i − 1,S)| ,

where as before, we set γ (−1,S) ≡ 0.
Consider a European option with payoff X̂ = F(S), where F : Ωn → R. We do

not make any assumptions on the function F . The superreplication price is defined
by

Ṽ (F ) = inf{x | ∃π̃ = (x, γ ) such that Ỹ π̃
N (S) ≥ F(S)∀S ∈ Ωn}.

Theorem 4.1 For any F : Ωn → R,

Ṽ (F ) = sup
Q∈Q̃n

EQ

[
F(S) − M

N−1∑

k=0

(|EQ[SN |Fk] − Sk| − κSk)
+
]
,

where Q̃n is the set of all probability measures on Ωn that are supported on a finite
set.

Proof We start by establishing the inequality

Ṽ (F ) ≤ sup
Q∈Q̃n

EQ

[
F(S) − M

N−1∑

k=0

(|EQ[SN |Fk] − Sk| − κSk)
+
]
. (4.1)

In fact, in Lemma 3.5 we used only the above inequality. Without loss of generality,
we assume that the right-hand side of (4.1) is finite.

For a positive integer J ∈ N, consider the finite set Ω
(J)
n := {0, h,2h, . . . , Jh}N

with h = 1/n as before. Define the minimal superreplication cost

Ṽ J (F ) = inf{x | ∃π̃ = (x, γ ) such that Ỹ π̃
N (S) ≥ F(S)∀S ∈ ΩJ

n }.

The cost Ṽ J (F ) is in fact equal to the minimal superreplication cost in the multi-
nomial model that is supported on the set ΩJ

n . Thus, we are in a position to apply
Theorem 3.1 in [10] with the penalty function

g(s̃, ν) =
{
κs̃|ν| if |ν| ≤ M,

+∞ otherwise.

The function g is convex in the second variable. Moreover, the convex dual of g is
given by

Ĝ(s̃, y) = sup
ν∈R

(
νy − g(s̃, ν)

) = M(|y| − κs)+.
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Therefore, Theorem 3.1 in [10] implies that

Ṽ J (F ) = sup
Q∈QJ

n

EQ

[
F(S) − M

N−1∑

k=0

(|EQ[SN |Fk] − Sk| − κSk)
+
]

≤ sup
Q∈Q̃n

EQ

[
F(S) − M

N−1∑

k=0

(|EQ[SN |Fk] − Sk| − κSk)
+
]
, (4.2)

where QJ
n is the set of all probability measures on ΩJ

n .
For every J ∈ N, there exists a superreplicating portfolio π̃J = (Ṽ J (F ) + 1/J, γJ )

for the multinomial model supported on ΩJ
n . Namely, take a progressively measur-

able map γJ : {0,1, . . . ,N − 1} × Ωn → R such that |γJ (i,S) − γJ (i − 1,S)| ≤ M

for any i,S and Ỹ
π̃J

N (S) ≥ F(S) for every S ∈ ΩJ
n . By using a standard a diagonal pro-

cedure we construct a subsequence {γJi
}∞i=1 such that for any j = 0,1, . . . ,N − 1 and

S ∈ Ωn, limi→∞ γJi
(j,S) exists. We denote this limit by γ (j,S). Let

x = lim infi→∞ Ṽ Ji (F ). Then clearly γ {0,1, . . . ,N − 1} × Ωn → R is a progres-
sively measurable map and the portfolio which is given by π̃ = (x, γ ) satisfies
|γ (i,S) − γ (i − 1,S)| ≤ M for any i,S. Moreover, Ỹ π̃

N (S) ≥ F(S) for every S ∈ Ωn.
This together with (4.2) yields that

Ṽ (F ) ≤ x ≤ sup
Q∈Q̃n

EQ

[
F(S) − M

N−1∑

k=0

(|EQ[SN |Fk] − Sk| − κSk)
+
]
,

and (4.1) follows.
Finally, by using arguments similar to those on p. 10 in [10], we prove the inequal-

ity

Ṽ (F ) ≥ sup
Q∈Q̃n

EQ

[
F(S) − M

N−1∑

k=0

(|EQ[SN |Fk] − Sk| − κSk)
+
]

and complete the proof. �
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Appendix

In this appendix, we prove Theorem 3.2. We proceed in several lemmas. We first use
Lemma 3.1 to reduce the problem to bounded claims. Then, using a compactness
argument as in [3], we further reduce it to bounded and continuous claims.

Lemma 5.1 Suppose that (2.8) holds for all bounded upper semicontinuous func-
tions. Then it also holds for all G satisfying Assumption 2.1.
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Proof Suppose that G satisfies Assumption 2.1. Let ϕ be any smooth function satis-
fying

0 ≤ ϕ ≤ 1, ϕ(S) = 1 ∀‖S‖ ≤ 1, ϕ(S) = 0 ∀‖S‖ ≥ 2.

For a constant M > 1, set

ϕM(S) := ϕ(S/M), GM := GϕM.

GM is bounded and upper semicontinuous. Then, by the hypothesis, inequality (2.8)
and the duality formula stated in Theorem 2.6 hold for GM . In view of Assump-
tion 2.1,

|G(S) − GM(S)| ≤ L(1 + ‖S‖2)χ{‖S‖≥M}.

Let αM be as in Lemma 3.1. Then, for all sufficiently large M ,

|G(S) − GM(S)| ≤ 2LαM(S).

Since GM satisfies (2.8),

V (GM) ≤ sup
Q∈Mκ,P

EQ [GM(S)] ≤ sup
Q∈Mκ,P

EQ [G(S)] + 2L sup
Q∈Mκ,P

EQ [αM(S)] .

By the subadditivity of the minimal superreplication cost V ,

V (G) ≤ V (GM) + 2LV (αM).

Combining the above inequalities and Lemma 3.1, we arrive at

V (G) ≤ lim inf
M→∞

(
V (GM) + 2LV (αM)

)

≤ sup
Q∈Mκ,P

EQ [G(S)] + 2L lim inf
M→∞

(
V (αM) + sup

Q∈Mκ,P

EQ [αM(S)]
)

≤ sup
Q∈Mκ,P

EQ [G(S)] .
�

The above proof also yields the following equivalence.

Lemma 5.2 Suppose that (2.8) holds for all nonnegative, bounded, uniformly con-
tinuous functions. Then it also holds for all G that are bounded and continuous.

Proof Let G be a bounded continuous function. By adding to G an appropriate con-
stant, we may assume that it is nonnegative as well. Given an integer N , define GN

as before. Since GN is compactly supported and continuous, it is also uniformly con-
tinuous. We then proceed exactly as in the previous lemma to conclude the proof. �

We need the following elementary result.
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Lemma 5.3 Let G be bounded and upper semicontinuous. Then there exists a uni-
formly bounded sequence of continuous functions Gn : Rd+ →R with Gn ≥ G and

lim sup
n→∞

Gn(xn) ≤ G(x) (5.1)

for every x ∈ R
d+ and every sequence {xn}∞n=1 ⊂ R

d+ with limn→∞ xn = x.

Proof For n ∈ N, consider the grid On = {( k1
n

, . . . ,
kd

n
), k1, . . . , kd ∈ Z+}. Define the

function Gn : On → R+ by

Gn(x) = sup
u∈Rd+,‖u−x‖≤ 2

n

G(u), x ∈ On.

Next, we extend Gn to the domain R
d+.

For any k1, . . . , kd ∈ Z+ and a permutation σ : {1, . . . , d} → {1, . . . , d}, consider
the d-simplex

Uσ
k1,...,kd

=
{
(x1, . . . , xd)

∣∣∣
ki

n
≤ xi ≤ ki + 1

n
and xσ(i) ≤ xσ(j),1 ≤ i < j ≤ d

}
.

Fix a simplex Uσ
k1,...,kd

. Any u ∈ Uσ
k1,...,kd

can be represented uniquely as a convex
combination of the simplex vertices u1, . . . , ud+1 (which belong to On). Thus, define
the continuous function G

n,σ
k1,...,kd

: Uσ
k1,...,kd

→ R by G
n,σ
k1,...,kd

(u) = ∑d+1
i=1 λiGn(ui),

where λ1, . . . , λd+1 ∈ [0,1] with
∑d+1

i=1 λi = 1, and
∑d+1

i=1 λiui = u are uniquely de-
termined.

Any element u ∈ R
d+ belongs to at least one simplex of the above form. More-

over, observe that if u belongs to two simplexes, say Uσ
k1,...,kd

and Uσ ′
k′

1,...,k
′
d

, then

G
n,σ
k1,...,kd

(u) = G
n,σ ′
k′

1,...,k
′
d

(u). Thus, we can extend the function Gn : On → R to a

function Gn : Rd+ → R by setting Gn(u) = G
n,σ
k1,...,kd

(u) for u ∈ Uσ
k1,...,kd

, where
k1, . . . , kd ∈ Z+, and σ : {1, . . . , d} → {1, . . . , d} is a permutation.

This sequence has the desired properties. �

The following result completes the proof of Theorem 3.2.

Lemma 5.4 Suppose that (2.8) holds for all bounded continuous functions. Then it
also holds for all bounded upper semicontinuous G.

Proof Let G be bounded and upper semicontinuous. Let Gn be the sequence of
bounded continuous functions constructed in Lemma 5.3. Hence, (2.8) and Theo-
rem 2.6 hold for Gn.

Using Theorem 2.6, we choose a sequence of probability measures Qn ∈ Mκ,P
satisfying

E
(n)[Gn(S)] > V (Gn) − 1

n
. (5.2)
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Using similar compactness arguments as in Lemma 3.6, we construct a subsequence
Qn

,  ∈ N, that converges weakly to a probability measure Q̃ ∈ Mκ,P . Recall that
the Gn are uniformly bounded. Thus, by (5.1) and the Skorokhod representation the-
orem,

lim sup
→∞

E
(n)[Gn

(S)] ≤ Ẽ[G(S)].

This together with (5.2) yields that

V (G) ≤ lim inf
n→∞ V (Gn) ≤ lim inf

n→∞ E
(n)[Gn(S)] ≤ Ẽ[G(S)] ≤ sup

Q∈Mκ,P

EQ [G(S)] .

This completes the proof. �
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