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Abstract

Several recent papers have studied the impact of macroeconomic shocks on the
financial policies of firms. However they only consider the case where these macroeco-
nomic shocks affect the profitability of firms but not the financial markets conditions.
We study the polar case where the profitability of firms is stationary, but interest rates
and issuance costs are governed by an exogenous Markov chain. We characterize the
optimal dividend policy and show that these two macroeconomic factors have opposing
effects: all things being equal, firms distribute more dividends when interest rates are
high and less when issuing costs are high.
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1 Introduction

Since Jeanblanc-Picqué & Shiryaev [8] and Radner & Shepp [10], a sizable literature has
investigated the optimal dividend policy problem for a company that is not allowed to issue
new securities or obtain a new loan from a bank. The default time is then defined as the
first time when the cash reserves of the company fall below zero. In that case, the optimal
dividend policy is simple and natural: distribute dividends whenever the level of cash
reserves exceeds a certain threshold that depends on the characteristics (drift, volatility) of
the cash flow process and the interest rate demanded by shareholders.

An interesting extension of this problem is to investigate how the optimal dividend
policy is modified when the profitability of the firm changes over time, due in particular to
business cycle fluctuations. As clearly shown by Gertler & Hubbard [5] and more recently
by Hackbart, Miao and Morellec [6], macroeconomic conditions have indeed a strong impact
on dividend policies through the changes in the profitability of individual firms that they
induce. For example, Cadenillas & Sotomayor [2] solve for the optimal dividend policy
when the drift and the volatility of the cash flow process are governed by a Markov chain
representing macroeconomic fluctuations. Bolton, Chen & Wang [1] study more generally
the impact of changing macroeconomic conditions on both the financial and investment
policies of the firms. However, Gertler & Hubbard [5] also show that macroeconomic
conditions directly influence payments to shareholders, even independently of each firm’s
specific earnings performance. Two natural channels for this influence are the fluctuations
in interest rates demanded by investors, and the conditions of the credit market.

The purpose of this paper is to examine how these macroeconomic fluctuations influence
the dividend policies of firms, even in the absence of fluctuations in their earning processes.
In other words, we study the polar case to the one considered in the literature: the drift and
volatility of the cash flow process are constant, but the interest rate demanded by investors
follows a Markov chain. In a recent paper, Jiang and Pistorius [9] consider a similar case
where both the profitability of the firm and the discount factor follow a Markov chain. Our
paper differs in two respects from Jiang and Pistorius [9]. First we adopt direct approach:
we solve the couple of ODEs that characterize the solution by using standard numerical
techniques. By contrast, Jiang and Pistorius [9] characterize the solution as the fixed point
of a functional operator and find this solution by an iterative algorithm. The second, and
more important, difference between our paper and Jiang and Pistorius [9] is that we allow
the firm to issue new securities. This possibility is not only realistic, but it also leads to two
non-trivial consequences: the ranking of optimal dividend thresholds across the two states
is not always the same; issuance may be optimal even when cash reserves are still positive.
This shows that introducing possibilities of new issuances is not just a trivial extension,
but gives rise to new, economically relevant, results.

Section 2 presents the model and the mathematical characterization of the optimal
dividend policy (Theorem 2.1). Section 3 establishes several important properties of the
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value function. In subsection 3.1, we show that the value function remains concave in the
level of cash holdings, even when interest rates are stochastic (Theorem 3.1). The concavity
of the value function allows us to prove that it is a smooth solution of the corresponding
dynamic programming equation (Proposition 3.1). In particular, it satisfies the smooth fit
condition which is crucial in the numerical resolution of these types of problems. These
mathematical results are necessary to establish an important economic result in subsection
3.3: the firm will distribute dividends more often when interest rates are high than when
they are low (Proposition 3.2). This result comes from the fact that the opportunity cost
of cash reserves is higher when the interest rates demanded by investors are high. However,
it does not fit well with the empirical evidence, given that firms actually tend to distribute
less dividends during recessions (when interest rates are high) than during booms (when
interest rates are low) even when the changes in firms’ individual profitability are corrected
for (Gertler & Hubbard [5]). This suggests that other macroeconomic factors, such as the
size of frictions on financial markets, must play a role. This is why section 4 introduces
the possibility for the firm to make new equity issuances. When the cost of these new
issues (a proxy for the size of financial frictions) is substantially higher during recessions
than during booms, the ranking of dividend thresholds is reversed, and firms now distribute
more dividends during booms than during recessions.

We also provide numerical evidence for the above conclusions. In particular, in subsec-
tion 3.4, the sensitivity analysis with respect to mean and volatility of the cash flow rate
and jump rates between two different interest rate regimes are presented. The mathemati-
cal results proved in Section 3 are also essential in constructing and verifying the numerical
algorithm. Section 4 gives several numerical illustrations of the case where new equity
issuance is possible.

2 Model and Characterization of the Solution

Uncertainty is described by (Ω,F,P), a filtered probability space satisfying the usual as-
sumptions1. Let Bt be a one-dimensional standard Brownian motion and {it}t≥0 be a
simple stationary Markov process taking values in {0, 1} with jump rates λ(0), λ(1) > 0.
The process {it}t≥0 is assumed to be independent from the Brownian motion. The state
i = 0 is the “good” economic state with a lower interest rate r` > 0 and i = 1 corresponds
to the “bad” state with interest rate rh > r` > 0. We also set λ` := λ(0) and λh := λ(1).

The cash holdings {Xt}t≥0 of the company follow a diffusion process. Positive dividend
payments of any size can be made at any time. However, the cash level is supposed to
remain nonnegative at all times. This constraint clearly places a restriction on the possible

1See [7] for details.
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dividend size. Mathematically,

dXt = µdt+ σdBt − dLt, (2.1)

where µ, σ > 0 are given constants and the cumulative dividend payments Lt is an adaptive,
nondecreasing, càdlàg process with L0− = 0. Given a dividend process L and an initial
condition x ∈ R, let Xx,L be the unique solution of (2.1), i.e.,

Xx,L
t = x+ µt+ σBt − Lt, t ≥ 0.

Let θ = θx,L be the first exit time of Xx,L from the positive real line. This variable θ
defines the time of bankruptcy. In what follows we will suppress the dependence on x, L
unless this dependence is important. We say that L is admissible at the initial level x, if
Xx,L
t ≥ 0, for all time t ∈ [0, θx,L] with probability one. We denote the set of all admissible

strategies by A(x). We note that the admissibility condition is relevant only at the exit
time. Indeed, we only require that the cash level process does not jump into negative real
line. In economic terms, this means that shareholders can never distribute themselves a
dividend that exceeds the cash holdings of the firm. Hence, Xx,L

θ = 0. Since the dividend
policy beyond the exit time is irrelevant, we simply set Lt = Lθ for all t ≥ θ. In particular,
Lθ − Lθ− = Xθ− .

The optimal dividend problem is to maximize

J(x, i, L) := E
[∫ θ

0
Λt dLt

∣∣∣ i0 = i,X0− = x

]
, Λt := exp

(
−
∫ t

0
r(iu)du

)
.

The value function is then defined by

v(x, i) := sup
A(x)

J(x, i, L), v`(x) := v(x, 0), vh(x) := v(x, 1). (2.2)

The case of a deterministic (and constant) interest rate (i.e., r` = rh) is exactly the
problem studied by Picqué-Jeanblanc & Shiryayev [8] and Radner & Shepp [10]. For future
reference, we record that the value function with constant interest rate r is given by

V (x, r) := sup
L∈A(x)

E
[∫ θ

0
e−rtdLt|X0− = x

]
. (2.3)

Then, it is clear that

0 ≤ V (x, rh) ≤ vh(x) ≤ v`(x) ≤ V (x, rl), ∀ x ∈ R+. (2.4)
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2.1 Characterization of the Solution

Our main mathematical result is the following characterization of the value function. The
existence part of this theorem will be proved in several steps in the subsequent sections.
The uniqueness follows from the classical verification argument (see for instance [4]). This
characterization of the value function and the properties of the thresholds are essential in
our numerical experiments. Indeed, the numerical algorithm is based on these properties.
Moreover, the uniqueness ensures that the computed functions are in fact equal to the value
function.

Theorem 2.1 The value function v = (v(·, 0), v(·, 1)) = (vh, v`) is the unique concave
function satisfying the following conditions:

• v`, vh ∈ C2([0,∞) and vl(0) = vh(0) = 0;

• v′(x, i) ≥ 1 for all x;

• For every x > 0 and i ∈ {0, 1}, r(i)v(x, i)− Lv(x, i) ≥ 0, where

Lv(x, i) := µv′(x, i) +
σ2

2
v′′(x, i) + λ(i)[v(x, i+ 1)− v(x, i)]; (2.5)

with the convention that i+ 1 denotes the other state than i.

• There are two positive thresholds 0 < xh := x(1) and x` := x(0) <∞ such that

v′(x, i) = 1, for x ≥ x(i), and r(i)v(x, i)− Lv(x, i) = 0, for x ≤ x(i).

The above characterization of the value function also provides the structure of the
optimal dividend policy. The optimal dividend policy is simple: only distribute dividends
when cash holdings exceed threshold x(i), which depends on the state i of the economy.
This is done exactly as in the deterministic interest rate case. Namely, if the initial cash
holdings x exceed x(i), then an initial dividend of x − x(i) is distributed. In later times,
dividends are paid only when the cash holdings reach x(i) again. When the state of the
economy changes from good to bad (equivalently when i jumps from zero to one), then
cash holdings may be larger than x(1) and a dividend payment of the difference is optimal.
Then, one proceeds as before.

The above theorem also proves that the value function is a classical solution of the
dynamic programming equation,

min
{
r(i)v(x, i)− Lv(x, i) , v′(x, i)− 1

}
= 0, x > 0, i = 1, 2, (2.6)

together with boundary condition v(0, i) = 0.
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2.2 Elementary Properties

In this subsection, we prove several simple properties.

Lemma 2.1 The value function v is Lipschitz continuous at the origin and

v(0, i) = 0, v(x+ y, i) ≥ v(x, i) + y, ∀ x, y ≥ 0, i = 0, 1.

Proof. Since σ is not null, the only admissible process at x = 0 is L = 0. This proves that
v(0, i) = 0. We also emphasize that at time zero, Ly has a jump of size at least y. Also,
for any given (x, y) and L ∈ A(x), we set Lyt := Lt + y for t ≥ 0 (with, as it is required
Ly

0− = 0).
Then, if one starts with cash holdings x + y at t = 0 and uses the dividend policy Ly,

cash holdings are characterized by {X̂t}t≥0 defined by

X̂t := Xx+y,Ly

t = x+ y + µt+ σWt − Lyt
= x+ µt+ σWt − Lt = Xx,L

t =: Xt,

for all t ≥ 0. In particular, the exit time θ̂ of X̂ from (0,∞) is the same as that of X.
Hence,

v(x+ y, i) ≥ J(x+ y, i, Ly) = E
[∫ θ

0
ΛtdL

y
t

]
= y + E

[∫ θ

0
ΛtdLt

]
.

Since L ∈ A(x) is arbitrary,

v(x+ y, i) ≥ y + v(x, i), ∀ (x, y) ∈ R+, i = 0, 1.

Recall the deterministic value function defined in (2.3) and the inequality (2.4). Hence for
any x ≥ 0 and i,

V (0, r`) = v(0, i) = 0 ≤ v(x, i) ≤ V (x, r`).

The function V is known explicitly (see [8]) and it is Lipschitz continuous. Hence, v is
Lipschitz continuous at the origin, i.e., there is a constant K such that

0 = v(0, i) ≤ v(x, i) ≤ Kx

for all x ≥ 0. tu

In this context, the standard dynamic programming principle states that for any initial
point (x, i) and any stopping time τ ≤ θ,

v(x, i) = sup
L∈A(x)

E
[∫ τ

0
ΛtdLt + Λτ v

(
Xx,L
τ , iτ

)]
. (2.7)

Our next result, is a step towards proving the concavity of the value function. Indeed,
the concavity is equivalent to the condition (2.8) below with c0 = 0.
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Lemma 2.2 There exists a constant c0 > 0 such that for all 0 ≤ x < y and i ∈ {0, 1},

v(x, i) + v(y, i)− 2v((x+ y)/2, i) ≤ c0. (2.8)

Proof. Recall the value function defined in (2.3) and the inequality (2.4). Then,

v(x, i) + v(y, i)− 2v((x+ y)/2, i) ≤ V (y, r`) + V (x, r`)− 2V ((x+ y)/2, rh).

The function V is known explicitly and such that there exists a constant c(r) > 0 so that

x ≤ V (x, r) ≤ c(r) + x, ∀ x, r > 0.

We now combine the two inequalities to obtain,

v(x, i) + v(y, i)− 2v((x+ y)/2, i) ≤ [c(r`) + x] + [c(r`) + y]− 2((x+ y)/2) ≤ 2c(r`).

tu

Indeed, the viscosity property is proved exactly as in Theorem 5.1, page 311 in [4].
Moreover, the uniqueness of this solution can be proved by the techniques developed in [4].
But this result is not needed in this paper.

Lemma 2.3 The value function is a continuous viscosity solution of the dynamic program-
ming equation (2.6).

3 Value Function

In this section, we establish several important properties of the value function.

3.1 Concavity

In this section, we prove that the value function is concave. We start by showing this is
true in an interval near the origin.

Lemma 3.1 There exists x0 > 0 such that for both i = 0, 1,

−v′′(·, i) ≥ 0, on (0, x0),

in the viscosity sense.

Proof. We first choose x0 > 0 so that

|r(i)v(x, i)− λ(i)[v(x, i+ 1)− v(x, i)]| ≤ µ, ∀ x ∈ [0, x0], i ∈ {0, 1}.
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This is possible as v is continuous at the origin with value zero.
We need to show that for ϕ(., i) ∈ C2(R) for each i, which depends on the state of the

economy i, if
(v − ϕ)(x∗, i) = localmin(v − ϕ)(·, i)

at some x∗ ∈ (0, x0), then ϕ′′(x∗) ≤ 0.
Indeed, let ϕ be as above. Then, by the viscosity supersolution property of v we have

r(i)v(x∗, i)− µϕ′(x∗)− σ2

2
ϕ′′(x∗)− λ(i)[v(x∗, i+ 1)− v(x∗, i)] ≥ 0,

and ϕ′(x∗) ≥ 1. Hence,

−ϕ′′(x∗) ≥ 1

σ2
(−r(i)v(x∗, i) + µ+ λ(i)[v(x∗, i+ 1)− v(x∗, i)]) .

By the choice of x0, the right hand side of the above inequality is non-negative. Therefore,
−ϕ′′ ≥ 0. tu

The following is an immediate corollary of the above Lemma.

Corollary 3.1 There exists x∗ > 0 such that v(·, i) is concave on [0, x∗] and

v′(x, i) ≥ v′(x∗, i) > 1, ∀ i ∈ {0, 1}, x ∈ [0, x∗].

Proof: The concavity of v near the origin follows from the previous results and the theory
of viscosity solutions. Also

v(h, i) = v(h, i)− v(0, i) ≥ V (h, rh) > (1 + δ)h,

for some δ > 0. Hence, v′(0, i) ≥ 1 + δ. Set

x∗ = sup{x : v(·, i) is concave on [0, x] and v′(x, i) ≥ 1 + δ/2}.

Then, it is clear that x∗ > 0. tu

The following is proved in the Appendix A.

Theorem 3.1 v(·, i) is concave for i ∈ {0, 1}.
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3.2 Smooth Fit

In this section, we use the concavity of the value function to show that it is twice con-
tinuously differentiable. This statement is equivalent to the smooth fit property at the
thresholds. The smoothness of the value function immediately implies that it is a classical
solution of the dynamic programming equation (2.6).

Proposition 3.1 (Smooth Fit) The value function is twice continuously differentiable in
the x variable.

Proof. Set
x(i) = inf{x : 1 ∈ ∂v(x, i)}, i = 0, 1 (3.1)

where ∂v(x, i) denotes the subdifferential of v(·, i) at x (we refer reader to [11] for the
definition and the properties of subdifferentials of convex functions). By Lemma 2.1 x(i) >
0. Also, since v′ ≥ 1 in the viscosity sense, concavity of v implies,

v′(x, i) = 1, ∀ x ≥ x(i), and v′(x, i) > 1, ∀ x ∈ [0, x(i)).

Then, since v satisfies the dynamic programming equation (2.6),

r(i)v(x, i)− Lv(x, i) = 0 ∀x ∈ (0, x(i)),

the elliptic regularity implies that

v(·, i) ∈ C∞((0, x(i))).

Step 1. First, we show that ∂v(x(i), i) = {1}.
Suppose to the contrary that

∂v(x(i), i) = [1, p]

for some p > 1. Then, for any ε > 0, it is straightforward to construct a smooth test
function ϕε so that

sup(v(·, i)− ϕε(·)) = v(x(i), i)− ϕε(x(i)) = 0,

ϕ′′ε(x(i)) = −1/ε and ϕ′ε(x(i)) ∈ (1, p). The viscosity property of v(·, i) implies that

r(i)v(x(i), i)− µϕ′ε(x(i))− σ2

2
ϕ′′ε(x(i))− λ(i)[v(x(i), i+ 1)− v(x(i), i)] ≤ 0.

For ε > 0 sufficiently small, this is a contradiction. Hence, ∂v(x(i), i) is a singleton {1} and
v ∈ C1([0,∞)).
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Step 2. We now show that v ∈ C2.
The only point at which v may not be twice differentiable is x(i) and

v′′(x, i) = 0, ∀x > x(i).

Set
γ = lim inf

x↑x(i)
v′′(x, i).

Then there exists xn < x(i) converging to x(i), so that v′′(xn, i) → γ. By the first step,
v′(xn, i)→ 1. Moreover, the elliptic equation holds at all xn’s. Hence,

r(i)v(x(i), i)− µ− σ2

2
γ − λ(i)[v(x(i), i+ 1)− v(x(i), i)]

= lim
n→∞

r(i)v(xn, i)− Lv(xn, i) = 0. (3.2)

The dynamic programming equation (2.6) implies that at any x > x(i),

0 ≤ r(i)v(x, i)− Lv(x, i) = r(i)v(x, i)− µ− λ(i)[v(x, i+ 1)− v(x, i)].

Hence as x ↓ x(i)

r(i)v(x(i), i)− µ− λ(i)[v(x(i), i+ 1)− v(x(i), i)] ≥ 0.

The above inequality, together with (3.2) imply that γ ≥ 0. However, by concavity, v′′ ≤ 0.
Hence, γ = 0 and

0 ≤ lim inf
x↑x(i)

v′′(x, i) ≤ lim sup
x↑x(i)

v′′(x, i) ≤ 0.

Therefore, v is twice differentiable at x(i). tu

3.3 Dividend Thresholds

In the previous sections, we have shown that v is a concave, twice continuously differentiable,
classical solution of (2.6). By concavity and Lemma 2.1, there are x(i) > 0, i = 0, 1 such
that

v′(x, i) = 1 for x ≥ x(i), and v′(x, i) > 1, r(i)v(x, i)− Lv(x, i) = 0, on [0, x(i)).

Indeed,
x(i) := inf{x : v′(x, i) = 1 }, and x` := x(0), xh := x(1).

The following is proved in Appendix A.

Proposition 3.2 Let x`, xh > 0 be as above. Then, x` ≥ xh.
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3.4 Sensitivity Analysis

In this section we give numerical illustrations of the value function and the sensitivities of
the dividend thresholds with respect to mean and volatility of the cash flow process and
the jump rate between low and high interest rate regimes. The value function is shown in
the figure below, for the parameter values

µ = 0.18, σ = 0.15, λ = 0.1, rl = 0.02, rh = 0.1, xh = 0.4386, xl = 0.5528. (3.3)

Figure 1: Value function with parameters in (3.3)

µ = 0.18, λ = 0.1, rl = 0.02, rh = 0.1. (3.4)

σ = 0.15, λ = 0.1, rl = 0.02, rh = 0.1. (3.5)
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Figure 2: Sensitivities of xh and xl wrt σ with parameters in (3.4)

µ = 0.18, σ = 0.15, rl = 0.02, rh = 0.1. (3.6)

4 Issuance

In this section, we enlarge the set of financial policies available to the firm, by allowing it
to issue new shares, in addition to distribute dividends. Using the previous notation, the
cash level process is now given by

Xt = x+ µt+ σBt − Lt + It, (4.1)

where It is the total amount of cash raised up to time t (cumulated issuance process, net
of issuance costs). We assume2 that I is piecewise constant and has the form

It =

∞∑
k=1

ξkχ{t≥τk}, (4.2)

where 0 ≤ τ1 < . . . < τk < τk+1 are stopping times at which equity issues are made and
ξk ≥ 0 are the issuance sizes. Then, the optimization problem that the firm faces is to
maximize3

J(x, i, L, I) := E

[∫ θ

0
ΛtdLt −

∞∑
k=1

Λτk (ξk + γ(iτk))
∣∣∣ i0 = i,X0− = x

]
, (4.3)

2Given the presence of a fixed issuance cost, such a policy is indeed optimal without loss of generality.
3See [3] for a discussion of the objective function.
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Figure 3: Sensitivities of xh and xl wrt µ with parameters in (3.5)

where γ(i) > 0 is the fixed cost of issuance when the economy is in state i. The interpre-
tation of functional J is straightforward. Since there is a fixed cost γ(i) of issuance (which
depends on the state i of the economy), new issues will be lumpy and occur at discrete
times τ1, τ2,... . Since there is no marginal cost of issuance, the total amount of cash raised
at date τk is just ξk + γ(iτk). Functional J represents expected present value of future
dividend payments, net of equity issuances, as in [3].

The value function
v(x, i) := sup

L,I∈A(x)
J(x, i, L, I)

is the unique viscosity solution of

min
{
r(i)v(x, i)− Lv(x, i) ; v′(x, i)− 1 ; (4.4)

v(x, i)− sup
ξ≥0

(v(x+ ξ, i)− ξ − γ(i))

}
= 0.

We distinguish the cases when the cost structure depends on the point process and
when not.

4.1 Constant Issuance Cost

The following lemma shows that when γ(i) ≡ γ, it is never optimal to issue new equity
before the cash reserves are zero. This is consistent with the results of [3] in the case where
interest rates are constant.
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Figure 4: Sensitivities of xh and xl wrt µ with parameters in (3.6)

Lemma 4.1 Suppose γ is independent of i. Then, it is never optimal to issue new equity
when the cash level is non zero. Hence, v is the unique solution of

min
{
r(i)v(x, i)− Lv(x, i) ; v′(x, i)− 1

}
= 0,

with boundary condition

v(0, i) = max{0 ; sup
ξ≥0

(v(ξ, i)− ξ − γ)}.

Moreover for any x > 0,

v(x, i) > sup
ξ≥0

(v(x+ ξ, i)− ξ − γ) .

Proof.
Fix x ≥ 0 and let (L, I) ∈ A(x) be any admissible dividend-issuance policy. Then, I is

as in (4.2). Suppose that Xτ1 > 0. Define Ĩ simply by removing the first issuance, i.e.,

Ĩt =

∞∑
k=2

ξkχ{t≥τk} = It − ξ1χ{t≥τ1}.

The new strategy (L, Ĩ) may not be admissible, but the corresponding cash flow process X̃
exists and is given by

X̃t = x+ µt+ σBt − Lt + Ĩt.

Set
τ := inf{t ≥ τ1 : X̃t ≤ 0},
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or infinity, if the above set is empty. Since we have assumed that Xτ1 > 0, τ > τ1.
We now define another issuance strategy Î by

Ît = Ĩt + ξ1χ{t≥τ}.

Then, it is clear that Ît = It for all t ≥ τ . Let X̂ be the corresponding cash level process,
i.e.,

X̃t = x+ µt+ σBt − Lt + Ît.

Then,

X̂t =

{
X̃t, for t ∈ [0, τ),
Xt, for t ≥ τ.

The above characterization of X̂ shows that X̂t ≥ 0 for all t ≥ 0. Hence, (L, Î) is indeed
admissible. Moreover,

J(x, i, L, Î) = J(x, i, L, I) + E [(Λτ1 − Λτ ) ξ1] > J(x, i, L, I),

where the final inequality follows from the fact that τ > τ1.
The above argument shows that it is enough to consider issuance strategies for which

Xτ1 = 0. By induction we can show that this result extends to all issuance times and we
need only to consider strategies with Xτk = 0 for every k. This is exactly the statement of
the Lemma. tu

4.2 Issuance with Random Costs

If the cost structure γ depends on i, then the above result no longer holds. This is illustrated
in the following numerical example where γ(1) is much larger than γ(0). We use the
following parameter values:

µ = 0.18, σ = 0.5, λ = 0.1, r(0) = 0.02, r(1) = 0.1.

For this set of parameter values the value function is twice continuously differentiable except
one point, xI , and has the following form. There are thresholds 0 < xI < x` < xh. Set

Region 1 := (0, xI), Region 2 := (xI , x`), Region 3 := (x`, xh).

In region 1, the firm issues new equity when the interest rate is low (but not when it is
high). The two other regions are associated with dividend thresholds xl and xh like before.
Thus, the value function satisfies

v(x, 0) = v(x`, 0)− (x` − x)− γ(0), x ∈ Region 1,

r(0)v(x, 0) = Lv(x, 0), x ∈ Region 2,

v′(x, 0) = 1, x ≥ x`,
r(1)v(x, 1) = Lv(x, 1), x ≤ xh,
v′(x, 1) = 1, x ≥ xh.
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Therefore the optimal strategy is given as follows. The fixed cost γ(1) is so high that it is
never optimal to issue new equity if the state i is equal to one (equivalently, if the interest
rate is high). The dividend threshold for r = rh is xh and when r = rl it is x`. Interestingly,
x` < xh while without issuance the opposite inequality always holds, c.f, Proposition 3.2.
For i = 0, if the cash level is sufficiently small, i.e., if in Region 1, then the firm issues new
equity. In Region 2, the firm does not take any action and pays dividends when x > x`.
The value function is shown in the figure below, for the parameter values

γ(0) = 0.48, r(0) = 0.02, r(1) = 0.1, λ = 0.1, σ = 0.5, µ = 0.18. (4.5)

Figure 5: Value function with parameters in (4.5)
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4.3 Different Cost but Same Interest Rate

In the example above, the possibility to issue new equity in the good state allows to reverse
the ranking of the thresholds. So, even if the opportunity cost of cash is lower (rl < rh) the
firm will issue dividends more often in the good state. In order to understand the impact of
issuing costs, we now study this particular case to understand the affect of the cost alone.
Indeed, let

r(i) = r > 0, i = 0, 1, γ(0) ≤ γ(1). (4.6)

It is clear that when both γ(0) and γ(1) are very large, then there will not be any issuance
and the problem is the same as the one studied in [3]. In fact, we have an easy quantification
of this statement. Let V (x, r) be the Jeanblanc-Picqué & Shiryaev value function defined
in (2.3). Let x∗(r) be the dividend payment threshold for this problem and set

γ∗(r) := V (x∗(r), r)− x∗(r).

Lemma 4.2 Assume (4.6). Then, new equity issues are never optimal and v(x, i) =
V (x, r), if and only if

γ(i) ≥ γ∗(r), i = 0, 1.

Proof. Since V is concave, we directly verify that for every x, ξ ≥ 0 and i = 0, 1,

V (x+ ξ, r)− V (x, r) ≤ V (ξ, r)− V (0, r) = V (ξ, r)

< ξ + γ∗ ≤ ξ + γ(i).

Using this it is straightforward to show that the value function V (x, r) solves the dynamic
programming equation (4.4). Hence by uniqueness v = V . In particular there are never
new equity issues.

To prove the converse, assume that there are never new equity issues. Then, v = V
where V solves the dynamic programming equation (4.4). In particular,

V (x, r) ≥ V (x+ ξ, r)− ξ − γ(i),

for all x, ξ ≥ 0 and i = 0, 1. We take ξ = x∗(r) and x = 0 to conclude. tu

Based on the above result, we computed the value functions for the following parameter
values

r(0) = r(1) = 0.05, λ = 0.3, σ = 0.25, µ = 0.18, (4.7)

with two different issuance costs:

γ(0) = 0.1489 < γ∗(r) = 2.60748 << γ(1),

γ(0) = 0.7756 < γ∗(r) = 2.60748 << γ(1).
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In both cases, we decreased γ(0) from γ∗. In all examples, there is issuance as proved in
Lemma 4.2. There are three critical thresholds:

0 ≤ z0 := issuance threshold,

i.e., it is optimal to make an issuance whenever the cash reserves are less than or equal to
z0 and when we are in state i = 0. Numerically we observed that of relatively high values
of γ(0) (i.e, values less than but close to γ∗), z0 = 0. However, z0 > 0 for sufficiently small
values of γ(0). Hence, there is a balance between the probability of going to a bad state in
which issuance is too costly and the probability of recovery.

The other common features of the numerical results is that the dividend payment thresh-
old x(i) is smaller in the “good” state of the economy, i.e., we always find:

x(0) < x(1).

In other words, dividend payment starts at lower cash reserves when the economy is in a
good state.

Below are the tables of these results and two representative graphs. In the first graph
z0 > 0 and the black curve is the issuance part. In the second z0 = 0. In both graphs red
parts correspond to the dividend payment region.

Figure 6: Value function with parameters in (4.7) and γ(0) = 0.1489
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Figure 7: Value function with parameters in (4.7) and γ(0) = 0.7756

Table 1: Optimal values for the set of parameters σ = 0.25, µ = 0.18, r = 0.05, λ = 0.3.

γ(0) z0 xl xh
0.0002 0.4990 0.6726 0.9226

0.0033 0.3958 0.7229 0.9229

0.1236 0.1153 0.8327 0.9327

0.1490 0.0954 0.8390 0.9340

0.2691 0.0286 0.8582 0.9382

0.7756 0 0.9003 0.9503

1.0087 0 0.9159 0.9559

1.6265 0 0.9504 0.9704

2.0527 0 0.9702 0.9802

5 Conclusion

This paper has studied the specific impact of macroeconomic variables on the dividend
policies of firms by considering the extreme case of a firm whose profitability is constant, but
evolves in a stochastic macroeconomic environment, where interest rates and/or issuance
costs are governed by an exogenous Markov chain.

Interestingly, we show that these two variables have opposed effects on the dividend
policies of firms. Specifically, firms tend to distribute more dividends when interest rates
are high and less dividends when issuing costs are high. We also find that stochastic issuing
costs allow to get rid of the unfortunate prediction of previous models to which firms wait
until the last moment (i.e. until they run out of cash) to issue new equity. Like Bolton,
Chen & Wang [1], we obtain a market timing effect: when issuing costs are very high during
recessions (so that shareholders refuse to recapitalize firms when they run out of cash) it
becomes optimal to issue new equity in the good state even if the firm still has cash reserves,
due to the fear that a recession might occur, leading to the forced closure of a profitable
company.
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Appendix A

In this Appendix, we prove the concavity of the value function. Firstly, in view of Lemma
3.1 and Corollary 3.1, there are constants c1, c2 > 0 such that

v(x, i) ≥ x+ c1 ∀ x ≥ x∗/2, i ∈ {0, 1} (5.1)

v(x, i) ≤ V (x, r`) ≤ x+ c2 ∀ x ≥ 0, i ∈ {0, 1}. (5.2)

The following technical result is needed in the proof of concavity. Let x∗ be as in the
previous result. Also recall that θx,L is the exit time of Xx,L from the interval (0,∞).

Lemma. There are T̂ ≥ 1 and Λ̂ < 1 such that

E[ΛT̂∧θx,L ] ≤ Λ̂,

for all x ≥ x∗/2, L ∈ A(x) satisfying

J(x, i;L) ≥ x+
c1

2
,

where c1 is as in (5.1).

Proof. Fix x and L as in the statement and set X = Xx,L. For T > 0 to be determined,
set θ = θx,L and τ := θ ∧ T . By dynamic programming,

J(x, i, L) ≤ E
[∫ τ

0
ΛtdLt + Λτv(Xτ , iτ )

]
.

Set X̃t = x+ µt+ σWt, so that Xt = X̃t − Lt. Since Λt ≤ 1, (5.2) implies

J(x, i, L) ≤ E
[∫ τ

0
dLt + χ{θ≥T}(X̃T − LT + c2)e−r`T

]
= E

[
Lτ
(
1− χ{θ≥T}e−r`T

)
+ χ{θ≥T}(X̃T + c2)e−r`T

]
.

On {θ < T}, Lθ = X̃θ and on {θ ≥ T}, we have τ = T and LT = X̃T −XT . Then, since
J(x, i;L) ≥ x+ c1/2,

x+
1

2
c1 ≤ J(x, i;L)

≤ E
[
X̃θ χ{θ<T} +

(
X̃T −XT + e−r`T (XT + c2)

)
χ{θ≥T}

]
= E

[
X̃τ +

(
−XT + e−r`T (XT + c2)

)
χ{θ≥T}

]
= E

[
X̃τ +

(
e−r`T c2 −XT (1− e−r`T )

)
χ{θ≥T}

]
≤ E

[
X̃τ + e−r`T c2 χ{θ≥T}

]
≤ (x+ µE[τ ]) + e−r`T c2.
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We now set T = T̂ where T̂ is so that e−r`T̂ c2 = c1
4 . Then,

x+
c1

2
≤ x+ µE(τ) +

c1

4
.

Hence,

E[θx,L ∧ T̂ ] = E[τ ] ≥ c1

4µ
.

Set f(t) = e−r`t so that Λt ≤ f(t). Since f is convex and f(0) = 1,

E[Λτ ] ≤ E[f(τ)] ≤ E
[
τ

T̂
f(T̂ ) + (1− τ

T̂
)f(0)

]
=

f(T̂ )

T̂
E[τ ] +

(
1− 1

T̂
E[τ ]

)
= 1− 1

T̂
(1− f(T̂ ))E[τ ]

≤ 1− 1

T̂
(1− f(T̂ ))

c1

4µ
=: Λ̂.

tu

We are now ready to prove the concavity of the value function.

Proof of Theorem 3.1. For x, y ≥ 0, i ∈ {0, 1}, set

I(x, y, i) := v(x, i) + v(y, i)− 2v

(
x+ y

2
, i

)
.

In view of Corollary 3.1, I(x, y, i) ≤ 0, for all x, y ∈ [0, x∗]. Set

α̂ := sup

{
I(x, y, i) :

x∗

2
≤ x ≤ y, i = 0, 1

}
.

By Lemma 2.2, α̂ <∞. Hence, for every ε > 0 there are xε, yε, iε ∈ {0, 1} such that

α̂ ≤ I(xε, yε, iε) + ε, and
x∗

2
≤ xε ≤ yε.

In view of Lemma 3.1, to prove the concavity of v, it suffices to show that α̂ ≤ 0.

Let Lx ∈ A(xε), L
y ∈ A(yε) be arbitrary dividend strategies satisfying

J(xε, i;L
x) ≥ xε +

c1

2
, J(yε, i;L

y) ≥ yε +
c1

2
. (5.3)
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In view of (5.1), such processes exist, and

v(xε, i) = sup{J(xε, i;L
x) | Lx ∈ A(xε) and Lx satisfies (5.3) }.

The same also holds at yε. Set

L̄ :=
Lx + Ly

2
, x̄ :=

xε + yε
2

.

Finally, let T̂ be as in the Lemma above. Set θx := θxε,L
x
. Without loss of generality

assume that

Xε
t := xε + µt+ σWt − Lxt ≤ Y ε

t := yε + µt+ σWt − Lyt , ∀ t ≤ θx.

Otherwise, one may simply redefine Lx and Ly so that Xε
t = Y ε

t after the first time they
are equal.

Set τ := θx ∧ T̂ . By the dynamic programming principle (2.7),

J(xε, i;L
x) + J(yε, i;L

y) ≤ 2E
[∫ τ

0
ΛtdL̄t

]
+ E [Λτ (v(Xε

τ , iτ ) + v(Y ε
τ , iτ ))]

= 2E
[∫ τ

0
ΛtdL̄t + Λτv(X x̄,L̄

τ , iτ )

]
+E

(
Λτ

[
v(Xε

τ , iτ ) + v(Y ε
τ , iτ )− 2v(X x̄,L̄

τ , iτ )
])

≤ 2v(x̄, i) + E[Λτ ]α̂.

By the Lemma above, E[Λτ ] ≤ Λ̂ < 1. Also,

v(xε, iε) + v(yε, iε) = sup{J(xε, iε;L
x) + J(yε, iε;L

y) | (Lx, Ly) satisfying (5.3)}.

Hence,
v(xε, iε) + v(yε, iε) ≤ 2v(x̄, iε) + Λ̂α̂.

By the choice of (xε, yε),

α̂ ≤ v(xε, iε) + v(yε, iε)− 2v(x̄, iε) + ε ≤ Λ̂α̂+ ε.

Hence α̂ ≤ ε/(1− Λ̂), for all ε > 0. Therefore, α̂ ≤ 0 and consequently v is concave.
tu
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Appendix B

Proof of Proposition 3.2. Towards a contradiction, suppose that x` < xh. Set

u(x) := v′`(x), w(x) := v′h(x), λ` := λ(0), λh := λ(1).

Differentiating the original system once and using the above definitions yield the following
coupled ordinary differential equations for u and w, on the interval (0, x`),

rhw(x) = µw′(x) + (1/2)σ2w′′(x)− λh[w(x)− u(x)], (5.4)

r`u(x) = µu′(x) + (1/2)σ2u′′(x) + λ`[w(x)− u(x)]. (5.5)

Since v`(0) = vh(0) = 0 and v`(x) ≥ vh(x) for all x ∈ [0,∞), we conclude that u(0) ≥ w(0).

Our goal is to show that u(x) ≥ w(x) for all x ∈ [0, x`]. Indeed, by our hypothesis
x` < xh, w(x`) > w(xh) = 1. So if we can prove that u ≥ w on [0, x`], then

1 = u(x`) ≥ w(x`) > 1

will provide the desired contradiction. Hence it suffices to prove that u ≥ w on [0, x`].

Set Φ(x) = (u− w)(x) and choose y ∈ [0, x`] so that

(u− w)(y) = min
x∈[0,x`]

(u− w)(x) =: α. (5.6)

Our goal is to show that α ≥ 0. We analyze three cases separately.

Case 1: y = 0. In this case, α = u(0)− w(0) = 0.

Case 2: y ∈ (0, A). Since y is a local minimum of Φ,

Φ′(y) = u′(y)− w′(y) = 0, Φ′′(y) = u′′(y)− w′′(y) ≥ 0.

We use these first in (5.4) and then in (5.5) at the point y. The result is the following,

r`u(y) = µu′(y) +
1

2
σ2u′′(y)− λ`α ≥ µw′(y) +

1

2
σ2w′′(y)− λ`α

= rhw(y)− [λh + λ`]α ≥ r`w(y)− [λh + λ`]α.

In the a last step we used the fact that w ≥ 0. Since α = u(y) − w(y), the above implies
that α ≥ 0.
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Case 3: y = A. By the smooth fit, we know that v′′(x`) = u′(x`) = 0. We directly conclude
that

Φ′(x`) = u′(x`)− w′(x`) = v′′` (x`)− v′′h(x`) = −v′′h(x`) ≥ 0.

Since y = x` is the minimum of Φ on the interval [0, x`], Φ′(x`) ≤ 0. Hence, Φ′′(x`) =
−v′h(x`) = 0.

Recall that we have assumed that xh > x`. Set f(x) := v′′h(x) and differentiate the
dynamic programming equation (2.6) for vh twice. The result is,

rhf(x) = µf ′(x) +
1

2
σ2f ′′(x)− λhf(x), x ∈ (x`, xh),

together with boundary conditions f(x`) = f(xh) = 0. However, the zero function is the
unique solution of this equation. Hence, f(x) = v′′h(x) = 0 for x ∈ [x`, xh]. So, v′h is
constant on [x`, xh] as well. Since v′h(x`) > 1, we conclude that xh = ∞. But this implies
that vh(x) > v`(x) for all sufficiently large x.

Hence, x` ≥ xh.
tu
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