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This article is concerned with Markov chains on [~'~ constructed by randomly 
choosing an affine map at each stage, and then making the transition from the 
current point to its image under this map. The distribution of the random affine 
map can depend on the current point (i.e., state of the chain). Sufficient 
conditions are given under which this chain is ergodic. 
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1. I N T R O D U C T I O N  

Let G be a set of affine maps from ~m into itself. To each x ~ ~ "  associate a 
probability measure #x on G. Construct a Markov chain {X,} on ~m 
according to the recursion X n + l = g ~ + l X , ,  n~>0, where gn+~eG is 
distributed according to /~x,,, independent of Xo,..., X,, ~. This chain has 
transition probabilities P(x, A) = I~x(gx ~ A). The larger chain { (g , ,  X,) } 
on G x ~ "  is referred to as the embedded chain. 

The article in Ref. 2 was concerned with properties of its invariant 
distribution, when the chain {Xn} is ergodic. Here conditions involving 
logarithmic rather than pth moments are given, under which the chain is 
ergodic. More significant in contrast to Ref. 2 is the introduction here of 
Khas'minskii's construction of an invariant measureJ 5'6) This construction 
is based on the sampled chain {X~k) at its return times rk to some compact 
subset of ~" .  As long as there is average contractivity under the 
probabilities Ftx these return times have finite mean, and the invariant 
measure can be normalized to an invariant probability. 

A discussion of the random matrix setting, where G is a set of inver- 
tible m • m matrices, appears in Furstenberg and KiferJ 4) More generally if 
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the affine maps here in G have a common invariant compact set, then 
Furstenberg and Kifer's setting of a random walk on a compact metric 
space applies. For  the scalar case m = 1 this article is a continuation along 
the lines of Brandt (3) and Vervaat. (7) These authors consider the stochastic 
difference equation 

Xn+l=an+lXn+bn+~,  n>>,O 

In Ref. 7 the sequence of pairs {(an, bn)} is taken to be i.i.d., and in Ref. 3 it 
is taken to be stationary ergodic. Brandt and Vervaat give conditions for 
the existence and uniqueness of stationary solutions {Xn}. Some of the 
present work is ased on Barnsley et al., (~) who consider the case where G is 
a finite set of maps. In this connection the first author would like to 
acknowledge the helpful conversation and correspondence he had with 
J. Elton. 

Notation. The standard notation Px, ~:x, Var~ is used to indicate 
probability and statistics with respect to the probability measure #x. The 
one-step transition operator T defined o n  Cb(~ m) is given by T f ( x ) =  
~-xf(X~). For g e G write g: x ~ ax + b, letting a generically denote the 
linear part and b the shift part of the map. In this way #x also induces 
measures on the sets of m x m matrices and m vectors. 

2. ERGODICITY 

The assumptions of the probabilities #x necessary for the arguments 
below as follows: 

(A 1) Strong continuity o f  measures. For any h ~ Cb(G) and e N" 

I~-xh - ~-yhl <~ ~o([x - yl) Ilhll 

where ~o: ~ + - - ~ +  is a continous function and 

lim ~o(t) log 2 _1 = 0 
t~o t 

(A2) Uniform Average Contractivity. There exist 0 < eo < 1, 0 such 
that 

sup ~x[log [ayl [[ayl >>- Co] ~< - ~  
x, lYl 

where, as above, a denotes a linear part of g. 
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(A3) Uniform positivity of contraction probability. For every e > 0 
there exist 0 < s < 1 such that 

inf tgx-g'x'l~slx-x'J):=fl>O 
I x -  x'l >~ 

where g and g' are independently distributed according to /x~ and /x~,, 
respectively. 

(A4) [ntegrability. There exist 0 < 6 ~ 1, K >  0 such that 

sup Ex(log + [ayi)2+a<~K 
x, l Y] 

sup ~x(log + Ibl)l+a~<K 
x 

where, as above, b denotes the shift part of g. 

Theorem. Under assumptions (A1)-(A4) {X,} is ergodic, and has a 
unique stationary asymptotic distribution. 

The proof of this result relies on the following lemmas. 

Lemma 1. Under assumptions (A2), (A4) for any r>max(e0, e - ' )  
there exists R > 1 such that 

sup Ex log+(layl + Ibl)~< log(r lYl) (2.1) 
x 

whenever lY[ ~ R. 

Proof Define a: ~'~ --+ N*" by 

a(y) := ~ay 
Leo Y 

if layl > eo l yl 
(2.2) 

if layl <eo lYt 

Observe that although it is not necessarily a linear map, 8 is homogeneous 
of degree one. Moreover, for any y ~ ~m 

la(y)l ~ max(layl, to lYl) (2.3) 

An analogue of assumption (A2) holds for a; namely, 

sup ~:xlog [a(y) ,~<--min(~,log I )  : = - ~ < 0  
x, l y l = l  

(2.4) 
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Since r>max(e0,  e ~) is follows that log r > -8 .  Choose e~ > 0  and 
R > 1 in succession so that 

log r + 
log(1 + el) = 2 (2.5) 

( (/~1~/) K1/(1+6)12 log(1 "~-1/~l)'q-K1/(I +6))11/6 } 
log(eoelR)>~max log , log r +  

(2.6) 

Let x, y e ~m with l Yl ~> R. Then 

f log + (l~(y)l + Ibl)~(dg) ~(y)l ~< (1/et)lbl 

<~ Ia(y)l<~(,/~)lbl lOg+ I(l +~) 'b'l l~x(dg) 

~< E~/(I +6)Ilog (1 + 1 )  ]1+(5 
+l~ P~/(l+6)(Ib[>~go~lR ) 

+6)1 K 6/~1+6) r +8 

The second inequality above follows from H61der's inequality and (2.3). 
The third inequality follows from the triangle and Chebyshev inequalities; 
and finally the fourth inequality uses (2.6). 

One can also estimate the other integral 

fl log + [l~i(y)l + Ibl ] #x(dg) ~(y)l > (l/~l)Ib[ 

~< f log + [(1 + ~,)la(Y)l ] #x(dg) I,~(Y)I > (1/~l)lbl 

<~ fr + ~,)laty)l > 1 log[(1 + el)I~(Y)I ] ~ ( d g )  = ~x log[(1 + e~) la(Y)l ] 

<~ - ~  + log lYl + log(1 + e l ) = l o g  ]Y]-~ - -  
log r - 

The first equality above follows from (2.3) and (2.6). The third inequality 
follows from (2.4) since ~ is homogeneous of degree one, and the second 
equality follows from (2.5). Combining these last two estimates and using 
(2.3) now leads to (2.1). [] 
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Remark. The proof of Lemma 1 only uses the second part of 
assumption (A4), involving b. The first part of this assumption (alone), 
involving a, is used in the proof of the next lemma. 

Lemma 2. Under assumptions (A1), (A2), (A4) for any f eCo(Nm) ,  
{ T"f:  n >>. 0} is an equicontinuous sequence of functions. 

Proof Let ~ be defined again 'as in (2.2) above. Along with (2.4) an 
analogue of assumption (A4) holds for ~ as well, namely, 

1 
sup ~_xllogl~(y)[[2+~<<.K+2!og2+~--:=K (2.7) 

x, lY] = l 80 

Define 

1 
: = 7  "l"t" ,ogt  / A 1, 

On account of assumption (A1) 

lim q~(t) = 0  
,+o $(t) - ~p(e-~t) 

t > 0  

where ~ = min(c~, log(i/co)) was defined above in (2.4). Thus for 

C : = ( 8  + 2 2 + ~ ) R  

it also holds that 

(2.8) 

lim ~(t) - 0 
,+o ~9(t) - tp(e-~t( - C~2 +6(t) 

since this extra term is of lower order o(l/log 2 t). Furthermore for t > 0  
sufficiently small 

~(t) > O(e-~t) + CO2 +6(t) 

Thus it follows from the continuity of q0 that for 0 < t o < e  -2 sufficiently 
small 

q) ( t )<~9( t ) -~ (e -~ t ) -C~Z+6( t ) ,  0 < t ~ t o  (2.9) 

Observe that ~(t)>~ t, 0 < t < e -I. Suppose that f e  Co(~ m) is in fact 
Lipschitz continuous. Then by scaling f if necessary it may be assumed 
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that IIf[I ~<0(to)/2, and that I f ( x ) - f ( y ) [  ~<lP([x-yl)  for all x, y E N ' .  
From this it follows by induction (as demonstrated below) that 

l Tkf(x)  - T k f ( y ) l  <~ qJ(lx - Y l )  (2.10) 

for all k~>0 and all x, y e  R '~. To argue this suppose that (2.10) holds for 
k = n - 1  and all x, yE~m.  Then by assumption (A1) using the fact that 
IITnfll ~< O(t0)/2 < 1; for x, y e R  m 

ITnf(x) - Tnf(y)l <~ E~ I[Tn-l  f ( g x )  - T"- ' f (gy) l  

+ [Y_xTn-'f(gy)--~-yT n ~f(gy)[ 

~< Exq41a(x-  y)l) + q~(Ix- y[) (2.11) 

Fix z e  R m, 0 < Izl ~ to. Since tz[ ~<e -2 it follows that 

~(r) :=tp(e') = -1/r, - o c  < < r  ~<llog [el 

Then one checks that 

8 
m r 2 ~(r)-ilog 3 iz l [  

is concave, --oe < r ~<�89 I zl. This is used now 
~I~(~), ~< ,zl 1/2 0(la(z)[) #x(dg). First introduce the notation 

s := { [a(z)l ~< Iz[ 1/2}, Y : =  log la(z)[ 

to estimate 

Then by Jensen's inequality 

f O(la(z)l) ~x(dg)= Px(S) ExEq4[~(z)l) ] s] 
a(z)t  ~< Izl t/2 

= Px(S) E~[t}(g)[ S] 

~< px(S) {~(Ex[ YI s]) -~ 8 VarxEYiS]} 
l log 21zll 

(2.12) 

Since fi is homogeneous of degree one, the term 
Varx[loglfi(z)[ IS]  depends only on the direction of z, 
magnetitude. Thus if ~ := z/[z], then 

VarxE YI s ]  = 
b u t  n o t  o n  i ts 

Varx[ Y[ S] = VarxElog la(~)[ [ S]  ~< 
Ex log 2 la(~)l R 

~< - -  ( 2 . 1 3 )  
p~(s) pAs) 
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using (2.7) in this last step. To estimate the term Ex[ Y[ S] observe that by 
(2.4) 

fs YP~(dg) = log Izl Px(S)+  fs log [6(5)] #~(dg) 

~< --~ + log Izl ff~x(S)-I~(2)l > !~!-~/2 log I~(:?)[ kt~(dg) 

positive 

~< - ~  + log Jz] P~(S) 

Thus 

E~[Y] S] ~< -)px(S------: + log Izl ~< - ~  + log  izl (2.14) 

Plugging (2.13) and (2.14) into (2.12), using the fact that ~ is increasing, 
leads to 

I O([a(z)l)px(dg)~(e_~lzl)+8kq?(iz] ) 
e~(z)l ~< tzll/2 

(Z15) 

The estimate of Sl~(~)l>lzll/~ ~([ci(z)[)lzx(dg ) is straightforward, by use 
of Chebyshev's inequality: 

fl~(z)l > izl t~a 
~(l~(z)l) px(ag)<. ~( l a (~ ) l  > Izl ~/~-) 

22 + 6~x l l~ J8(s I : +~ ~< 2 2 + e R ~ 2  + e( jz l )  

J log rzr[ 
(2.16) 

using the fact that ilr = 1 in the first step and (2.7) in the last step. Com- 
bining the two estimates (2.15) and (2.16), and using O3(tz[)~<~p2+6(Iz[) 
and (2.3) along with the fact that ~ is increasing, leads to the upper bound 

~-xO(lazl) <~ O(e -~ Iz[) + C~ 2 +6(fz]) 

for 0 < [z[ ~< to, where C was defined above in (2.8). Thus, going back to 
(2.11) now, with z = x -  y, we have 

I T " f  (x)  - T ' f  ( y)J <~ ~p( [z[ ) + O(e-a ]zt) + C~b 2 + 6(izl ) <~ ~(  ]zl ) 

for 0 < [z[ ~< to, using (2.9) in this last step. 
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This establishes (2.10) for k = n  in the case I x - y [  ~< to. On the other 
hand if I x -  Yl >i to then (2.10) is obvious, since I] Tkf[[ <<. O(to)/2 and tp is 
increasing. Therefore this lemma is proved for the case where f is Lipschitz 
continuous. Since Lipschitz continuous functions are dense in Co(~m), it 
follows that { T"f: n >~ 0 } is equicontinuous for any fixed f ~  Co(N~). [] 

Lemma 3. Let { Y~: n ~> 0} be a real-valued non-negative stochastic 
process adapted relative to the filtration of a-algebras { ~ : n/> 0 }. Fix e > 0 
and define r := inf{n ~> 0: Y, ~<e}. Assume the following: 

(B1) 

(g2) 

There exists 0 < s < 1, fl > 0 such that 

P ( Y ~ s Y n  11~_1)  ~/3I{y,_,>~}, Vn~>l 

lim P(Y~<<.M i .o.)= 1 
MTco 

Then r < oo a.s. 

Proof Given any 6 > 0 it follows from (B2) that one can choose M 
so that P(Yn<~M i.o.)>~ 1 - 8 .  For  this choice then choose N such that 
sNM<~ e. Define stopping times 7o := 0, 

7k:=inf{n>~yk_l +N: Yn<~M}, k>~l 

and set A = {Tk = co for some k}. On account of the way M was chosen, 
P(A)~<a. 

Next set B =  {z = co }\A. If P ( B ) = 0  then the desired conclusion of 
this lemma follows, since then P(z = co)~< P ( A ) ~  6, and 6 was arbitrary. 
So the remainder of this proof is devoted to establishing that P ( B ) =  0. 

Denote ~'k,L := 7k /X L and set 

Bk, z := {Yk, L < L, z > Yk 1,L + N}, k >~ l 

Observe that by assumption (B1) 

P(z ~< 7k, L + NI ~ k , )  >1 flNI{~k,L<Z, * >~,L} (2.17) 

This is intuitively clear since sUM < e, and Y~k,L ~< M whenever 7~,L < L; but 
to give a formal prof one needs to introduce some notation. Denote 

Ci:={Y~,~,L+i<sY~,j,,L+i--l}, D~:={Z>Yk.L+ i} 

Ei:={Y.ek, L+i>e}, F:={~k,L<L},  fq/ := ~ , L +  i 
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Assumption (B(1) implies that 

P ( C i l  ~t'-- 1) ) fllEi_l (2 .18)  

and since sUM < g 

N 
C i c ~ g c D  u (2.19) 

i= !  

(the tilde denotes set complement). Thus by (2.19) 

P('/~N I%)/> P(DN-  ] [ C~o) + p Ci ~ DN- 1 ~ f l  go 
i 

Furthermore using (2.18) 

P CsmDN_ImFI~o  ----~-[P(CNI(ff N I)Io~'-llGC~DN_,mFt~O] 
i 1 

/N-- I  ) 

This can be continued now as follows: 

i 

) ] />P(DN-IIcS~ P i~1 Ci(~ON 2~F[qff~ --P(DN-2\DN-11(~~ 

>/P(DN_II~O)--[3P(DN_2\DN_II~o)+fl2P CinDN_2mF[~o 
i 1 

~> P(/~N- ,  I c'~0) -- fl P(DN_ 2\DN i [c~) _ fl2p(DN 3\DN_ 2 [ ~ 0 )  . . . .  

fiN- ~P(Do\D, tc5o) + fiNp(D o n Fj ~o) 

Since fl ~< 1 

fl P(Dw_ 2\DN_,  '~o) + fl2p(DN-3\DN-2 ]~o) 

+ ... + ~ - I p ( D o \ D ,  I~0) < P(b~_~ I~o) 

and so (2.17) follows. 
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On account of (2.17) 

P(Bk, L( ~< P(Tk- 1,C < L, z > 7~- 1,c + N) 

=~[P('C>~k_I,L+NIff w LL) I{~k-~,L<L}] 

(1 - -  fiN) P(72 > Vk-- 1,L, ))k 1,L < L )  ~ (1 - fiN) p(Bk ,,L) 

One can let L T oe here and obtain 

P(Bk)<~(l--fl N) P(Bk 1) 

where 

B k := Bk, oo = {7k< 0% Z < ;:k_ x + N }  

P ( B ) = P ( ( ~  B k ) =  lim P ( B k ) = 0  
k = l  k ~ o o  

Thus 

[] 

Lemma 4. Under assumptions (A2), (A4), one can choose R > 1 so 
that 

F_xzl<~D(l+log+lx[) , VxE~ m (2.20) 

for some D > 0. 

Proof Choose e ~< r < 1, where ~ was defined above in (2.4), and 
pick R > 1 so that )2.1) holds whenever l yl>~ R. Lemma 1 assures that this 
can be done. Let ~ denote the a algebra generated by X 0 and gi, 1 <~ i <~ n. 
The event {z~> n + 1 } belongs to o~. Thus by the Markov property and 
(2.1) we have 

I. log + IX.+,i #x(dg)=I~ Ex[log + [X.+l[ [ o~l ll~(dg) 
l~>n+l l~>n+l  

= ;~ Ex. log + laXn + bl lix(dg) <~ ;~ log IrX.] #x(dg) 
l~>n+l  l>~n+l  

~<log rPx(z~ >~n + 1)+f~ log+lX,,L#x(dg) 
l>~n 

v~ :=0,  rk+l:=inf{n>~vk+l:lX, l<~R}, k>~O 

Let {X,} be the Markov chain described above in Section 1. Fix R > 1 
and define a sequence of stopping times {zk: k>~ 0} as follows: 
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The next-to-last inequality here makes use of the fact that {z ~ ~> n + 1 } is 
contained in the event {[X~] > R } ,  so that (2.1) applies. By iterating the 
above inequality on n one arrices at 

~ ipx(zi >~k)~<lExlog+ IXli 
k = 2 log(l/r)  

To estimate Exlog + IX, I observe that 

Ex log + I X~I ~< ~x log(laxl + I bi + 1 ) ~< ~x log(lax[ + 1) + Ex log(Ibl + ! ) 

~<21og2+ f log(21axl)lxx(dg)+ f log(21bt)txx(dg) 
axl/> 1 Ib[ ~> 1 

~< 4 log 2 + 2 K +  log + ]xt 

using assumption (A4) in this last step. Since 1 oo ~xZ = Z k = l  Px( ~ ~>k) this 
establishes (2.20) for the choice 

4 l o g  2 + 2K 
D = I +  [] 

log(l/r)  

Now cnsider the sampled Markov chain {X~k: k~>0}. Since its state 
space BR= {[xI--.<R} is compact it must have at least one stationary 
measure, say gs  J{(BR). Then 

fBRf(x ) q(dx) = f8" Exf(X~,) 9(dx), Yf~ C(Bs~) (2.21) 

For S a Borel subset of ~2 '~ let N,(S) be the number of times Xk~ S, 
0 ~ < k ~ z  ~ -  1. Define a Borel measure v, on ~m by 

u,(S)= E N,(S) 

Observe that for any f e  Cb(~ m) w e  have 

Lemma 5 (Khas'minskii). v,  is a stationary measure for the chain 
(x.}. 
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Proof Let f e  Q(Rm). Then by (2.22) and the Markov property 

I ~-1F_xkf(X1) 1 f(dx) f~m [Exf(X1) v,(dx)= fBR~X t_~=o 

using (2.21) and (2.22) in this very last step. [] 

If R is chosen as in Lemma 4 then 

v,(R m) = I:~z ~ ~<D(1 + log R) < oQ 

since ~ is supported on BR. Thus v, can be normalized to a stationary 
probability 

v, (2.23) 

Proof of the Theorem. It suffices to show that for any f e  C0(R'), 
xGR m 

lim ~-xf(X,) -- lira T"f(x) = ~ f(x) v(dx) (2.24) 
i'1~ o0 n ~ oo ,l sm 

where v is the stationary probability constructed above in (2.23). Fix 
x~ R m. Let {X,} be the chain with initial distribution v, and let {X,~} be 
another chain independent of {Xn} with X~=x. Then for the embedded 
chains {(gn, Xn)} and {(g'~,X' ~)}, gn and g'n are independent. Set 
Y. := [X~-X'l .  

Let e > 0 be arbitrary. It is first shown that assumptions (B1) and (B2) 
of Lemma3 hold for {Y,} and the filtration of a algebras {~} ,  where 
~=a(Xo, gi, g;: l<~i<~n). On account of the Markov property and 
assumption (A3) there exists 0 < s  < 1 such that 

P ( Y n ~ s Y n  l[O~n--1) 
= P ( I g ,  X, 1-g, ,-ll<~slXn-,-x'-ll]X,-~, X" ~)>~BI{r._~>~} 

This establishes (B1). 
On account of Lemma5 the process {X,} is stationary. Let 

{zk: k >~0} be the return times of {I"} to the ball BR, as in the discussion 
above. Since rk is independent of {X,} 

P([X'.ck [ > M - -  R )  ~- " v ( ~ m \ B M  - R )  



R a n d o m  Affioe M a p s  251 

for any M > R ,  k~> 1. Thus for M > R ,  since IX'k[ ~<R, Vk~> 1, it follows 
that 

P(I Y,I ~< Mi.o.)>~ P(IX~k[ ~< M -  R i.o.) 

i> 1 - l i r a  inf P(IX~,I > M - R )  
k ~ c o  

= 1 - v ( ~ " \ B M _ ~ )  = v ( B ~ _ R )  

This establishes (B2). Thus the conclusion of Lemma 3 holds. 
Fix f e Co(R') and let e ' > 0  be arbitrary. According to Lemma 2 

{ T"f: n/> 0 } is equicontinuous; so choose e > 0 such that 
IT"f (x) - T"f(y)J <~ e', Vn >~ O, whenever Ix - Yl 4 e. Corresponding to this 
choice of e set r := inf{n/> 0: Y, ~< ~}. Then by the Markov property 

Tnf(x)-f~,,of(x) v(dx)= Ex [ f (X ,~) -  f ( X , )  ] 

n 

Thus 

I T ' f (x)  - J~ f ( x )  e ' +  2 [Ifll > 
t "  

v ( d x )  ~< P(z n )  

Since r < oo a.s. by Lemma 3 and e' > 0 was arbitrary, this leads to (2.24) 
and completes the proof. [] 

3. DISCUSSION OF ASSUMPTIONS (AI)--(A4) 

Assumption (A2) clearly follows from the 
hypothesis: 

(A2)' There exist 0 < e o < 1, ~ > 0 such that 

following stronger 

sup I log lay[ #x(dg)<~ -~  
x, ly[ = 1 aY[>~O 

It is shown now that assumptions (A2)' and (A4) follow from the following 
stronger hypotheses: 

(A2) " There exists ~ > 0 such that 

sup ~xlog taYl ~ -~  
x, [yl = I 
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(A4) ' There exist 0 < 6 ~< 1, K > 0 such that 

sup ~x [log[ay[ [2+6~<K 
x, lYl=l 

sup ~ ( log  + [b[)~+~<K 
x 

Clearly (A4) follows from (A4)'. Furthermore if (A4)' holds then (A2)' 
and (A2)" are equivalent. Indeed for any 0 < e < 1 and y ~ Nm with [y[ = 1 

N: log lay[ <~ f log lay[ I~x(dg) = ~ log lay[ - fl log layl ~(dg) 
lay[ >>- e a y l  < 

~< - ~  + E:/(~ +~) Ilog layl I '  +~" P:/"  +'~(layl < e) 

F K ]6/(1 +fi) K 
<. -c~+Kl/(l+~ j = - e  + log~(1/~ ) 

using H61der's and Chebyshev's inequalities and assumption (A4)' in the 
last two inequalities. If eo = e is chosen small enough then this last term will 
be negative. 

Assumption (A3) follows from the following stronger hypothesis: 

(A3)' There exists 0 < s < 1 such that for any e > 0 

inf P([gx-  g'x'[ <<.six- x'] + e ) > O  
x,x' 

where g and g' are independently distributed according to #x and Px, 
respectively. 

Finally the example presented below shows that the strong continuity 
in assumption (A 1) cannot be relaxed to weak continuity, if the chain {X, } 
is to be ergodic. 

Example. Take m = 1 and let/~x be the atomic measure with 

c~ = 1/2 with prob 1 

b = S [ - - l ( x  A 1 )+(2x  A 1)] v 0  with prob 3/4 

0 with prob 1/4 

Then under #x, for 0 ~< x ~< 1, 

 x { XAlx with prob 3/4 
with prob 1/4 
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Clearly these measures satisfy (A2)", (A3)', and (A4)'. For  (A3)' observe 
that 

P ( [ g x -  g'x'l ~lx-x'l)>~6 

They are also weakly continuous, but there exist at least two stationary 
probabilities here: 

~1 =(50 

v2 = 2 ~ 3-~a2-~ 
k=O 

It is clear that the deficiency is that b in this example contains part of 
the linear term that should be in a; and had this linear term been in a, the 
contractive assumption (A2) would have then failed to hold. One way to 
overcome this is to write the random map g as 

g(~): x~--~ a(x, ~)x + b(x, ~) 

where ~ is a random variable on some probability space taking values in 
some measurable space. Then it could be assumed that a(x, ~) and b(x, ~) 
are of order zero in x. 

In general one can consider Markov chains on R '~ which evolve 
according to 

x .+  , = g(Xn, ~.+ ,) 

where {~i} is an i.i.d, sequence of random variables ~i: 
(O, ~ ,  P) ~ (O', ~ ' ) ,  and g: Nm X g2' -* Nm is joint measurable. The setup 
above corresponds to the special case 

g(x, 4) = a(x, ~)x + b(x, 4) 

where a(x, 4) is an m x m matrix and the following hold: 

(C1) For any h eCb(G), G being the space of affine 
x ~ ax + b, and for any x, y e Nm 

IIE[h(a(x, ~), b(x, ~)) -h (a (y ,  ~), b(y, ~))][ ~< ~o(Ix- Y[)Ithlt 

maps 

where q~: N + N+ is a continuous function and 

lim ~0(t) log 21 = 0 
t~o t 
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(C2) There  exist 0 < eo < 1, c~ > 0 such tha t  

sup  WElogla(x, ~)yl lLa(x,  ( )Yl  >~e0]~< - e  
x, l y l = l  

(C3) F o r  a n y  ~ > 0 there  exists 0 < s < 1 such tha t  

inf  P ( l g ( x ,  ~ l ) - g ( x ' ,  ~2)1 <<,slx-x'l)  : = 3 > 0  
Ix-x'l>e 

(C4) There  exist 0 < ~ ~< 1, K >  0 such tha t  

sup  E[ log  + la(x, ~)yl-12+a~<K 
x ,  l y l : l  

sup  ~ [ l o g  + Ib(x, {) l - I~+a~<K 
x 
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