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Abstract The duality between the robust (or equivalently, model independent) hedg-
ing of path dependent European options and a martingale optimal transport problem
is proved. The financial market is modeled through a risky asset whose price is only
assumed to be a continuous function of time. The hedging problem is to construct a
minimal super-hedging portfolio that consists of dynamically trading the underlying
risky asset and a static position of vanilla options which can be exercised at the given,
fixed maturity. The dual is a Monge–Kantorovich type martingale transport problem of
maximizing the expected value of the option over all martingale measures that have a
given marginal at maturity. In addition to duality, a family of simple, piecewise constant
super-replication portfolios that asymptotically achieve the minimal super-replication
cost is constructed.
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1 Introduction

The original transport problem proposed by Monge [33] is to optimally move a pile
of soil to an excavation. Mathematically, given two measures  and µ of equal mass,
we look for an optimal bijection of Rd which moves  to µ, i.e., look for a map S so
that



Rd

'(S(x))d(x) =


Rd

'(x)dµ(x),

for all continuous functions '. Then, with a given cost function c, the objective is to
minimize



Rd

c(x, S(x)) d(x)

over all bijections S.
In his classical papers [29,30], Kantorovich relaxed this problem by considering

a probability measure on Rd  Rd , whose marginals agree with  and µ, instead of
a bijection. This generalization linearizes the problem. Hence it allows for an easy
existence result and enables one to identify its convex dual. Indeed, the dual elements
are real-valued continuous maps (g, h) of Rd satisfying the constraint

g(x) + h(y)  c(x, y). (1.1)

The dual objective is to maximize



Rd

g(x) d(x) +


Rd

h(y) dµ(y)

overall (g, h) satisfying the constraint 1.1. In the last decades an impressive theory
has been developed and we refer the reader to [1,40,41] and to the references therein.

In robust hedging problems, we are also given two measures. Namely, the initial and
the final distributions of a stock process. We then construct an optimal connection. In
general, however, the cost functional depends on the whole path of this connection and
not simply on the final value. Hence, one needs to consider processes instead of simply
the maps S. The probability distribution of this process has prescribed marginals at
final and initial times. Thus, it is in direct analogy with the Kantorovich measure.
But, financial considerations restrict the process to be a martingale (see Definition
2.4). Interestingly, the dual also has a financial interpretation as a robust hedging
(super-replication) problem. Indeed, the replication constraint is similar to (1.1). The
formal connection between the original Monge–Kantorovich problem and the financial
problem is further discussed in Remark 2.9 and also in the papers [6,21].

We continue by describing the robust hedging problem. Consider a financial market
consisting of one risky asset with a continuous price process. As in the classical paper
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of Hobson [22], all call options are liquid assets and can be traded for a “reasonable”
price that is known initially. Hence, the portfolio of an investor consists of static
positions in the call options in addition to the usual dynamically updated risky asset.
This leads us to a similar structure to that in [22] and in other papers [7,9,11,12,15,
16,21,24–28,32] which consider model-independent pricing. This approach is very
closely related to path-wise proofs of well-known probabilistic inequalities [2,10].
Apart from the continuity of the price process no other model assumptions are placed
on the dynamics of the price process.

In this market, we prove the Kantorovich duality, Theorem 2.7, and an approx-
imation result, Theorem 2.10, for a general class of path-dependent options. The
classical duality theorem, for a market with a risky asset whose price process is a
semi–martingale, states that the minimal super-replication cost of a contingent claim
is equal to the supremum of its expected value over all martingale measures that are
equivalent to a given measure. We refer the reader to Delbaen and Schachermayer [17]
(Theorem 5.7) for the case of general semi-martingale processes and to El-Karoui and
Quenez [20] for its dynamic version in the diffusion case. Theorem 2.7 below, also
provides a dual representation of the minimal super-replication cost but for model
independent markets. The dual is given as the supremum of the expectations of the
contingent claim over all martingale measures with a given marginal at the maturity
but with no dominating measure. Since no probabilistic model is pre-assumed for the
price process, the class of all martingale measures is quite large. Moreover, martin-
gale measures are typically orthogonal to each other. These facts render the problem
difficult.

In the literature, there are two earlier results in this direction. In a purely dis-
crete setup, a similar result was recently proved by Beiglböck, Henry-Labordère and
Penkner [6]. In their model, the investor is allowed to buy all call options at finitely
many given maturities and the stock is traded only at these possible maturities. In this
paper, however, the stock is traded in continuous time together with a static position
in the calls with one maturity. In [6] the dual is recognized as a Monge–Kantorovich
type optimal transport for martingale measures and the main tool in [6] is a duality
result from optimal transport (see Theorem 2.14 in [31]).

In continuous time, Galichon, Henry-Labordère and Touzi [21] prove a different
duality and then use the dual to convert the problem to an optimal control problem.
There are two main differences between our result and the one proved in [21]. The
duality result, Proposition 2.1 in [21], states that the minimal super-replication cost
is given as the infimum over Lagrange multipliers and supremum over martingale
measures without the final time constraint and the Lagrange multipliers are related to
the constraint. Also the problem formulation is different. The model in [21] assumes
a large class of possible martingale measures for the price process. The duality is
then proved by extending an earlier unconstrained result proved in [38]. As in the
unconstrained model of [14,38,39], the super replication is defined not path-wise but
rather probabilistically through quasi-sure inequalities. Namely, the super-replication
cost is the minimal initial wealth from which one can super-replicate the option almost
surely with respect to all measures in a given class. In general, these measures are not
dominated by one measure. As already mentioned this is the main difficulty and sets
the current problem apart from the classical duality discussed earlier. However, our
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duality result together with the results of [21] implies that these two approaches—
namely, robust hedging through the path-wise definition of this paper and the quasi-
sure definition of [14,38,39] yield the same value. This is proved in Sect. 3 below.

Our second result provides a class of portfolios which are managed on a finite
number of random times and asymptotically achieve the minimal super-replication
cost. This result may have practical implications allowing us to numerically investigate
the corresponding discrete hedges, but we relegate this to a future study.

Robust hedging has been an active research area over the past decade. The initial
paper of Hobson [22] studies the case of the lookback option. The connection to
the Skorokhod embedding is also made in this paper and an explicit solution for the
minimal super-replication cost is obtained. This approach is further developed by
Brown, Hobson and Rogers [7], Cox and Obój [11,13] and in several other papers,
[23–28]. We refer the reader to the excellent survey of Hobson [23] for robust hedging
and to Obój [34] for the Skorokhod embedding problem. In particular, the recent
paper by Cox and Wang [13] provides a discussion of various constructions of Root’s
solution of the Skorokhod embedding.

A similar modeling approach is applied to volatility options by Carr and Lee [9]. In
a recent paper, Davis, Obój and Raval [16] considers the variance swaps in a market
with finitely many put options. In particular, in [16] the class of admissible portfolios is
enlarged and numerical evidence is obtained by analyzing the S&P500 index options
data. Furthermore, [16] contains a duality result in a simpler setting, using the classical
Karlin–Isii duality in semi-infinite linear programming.

As already mentioned above, the dual approach is used by Galichon, Henry-
Labordère and Touzi [21] and Henry-Labordère and Touzi [32] as well. In these papers,
the duality provides a connection to stochastic optimal control which can then be used
to compute the solution in a more systematic manner.

The proof of the main results is done in four steps. The first step is to reduce the
problem to bounded claims. The second step is to represent the original robust hedging
problem as a limit of robust hedging problems which live on a sequence of countable
spaces. For these type of problems, robust hedging is the same as classical hedging,
under the right choice of a probability measure. Thus we can apply the classical duality
results for super-hedging of European options on a given probability space. The third
step is to use the discrete structure and apply a standard min–max theorem (similar
to the one used in [6]). The last step is to analyze the limit of the obtained prices in
the discrete time markets. We combine methods from arbitrage-free pricing and limit
theorems for stochastic processes.

The paper is organized as follows. The main results are formulated in the next
section. In Sect. 3, the connection between the quasi sure approach and ours is proved.
The two sections that follow are devoted to the proof of one inequality which implies
the main results. The final section discusses a possible extension.

2 Preliminaries and main results

The financial market consists of a savings account which is normalized to unity Bt  1
by discounting and of a risky asset St , t 2 [0, T ], where T < 1 is the maturity date.
Let s := S0 > 0 be the initial stock price and without loss of generality, we set s = 1.

123



Martingale optimal transport and robust hedging in continuous time

Denote by C+[0, T ] the set of all strictly positive functions f : [0, T ] ! R+ which
satisfy f0 = 1. We assume that St is a continuous process. Then, any element of
C+[0, T ] can be a possible path for the stock price process S. Let us emphasize that
this the only assumption that we make on our financial market.

Denote by D[0, T ] the space of all measurable functions  : [0, T ] ! R with the
norm |||| = sup0tT |t |. Let G : D[0, T ] ! R be a given deterministic map. We
then consider a path dependent European option with the payoff

X = G(S), (2.1)

where S is viewed as an element in D[0, T ].

2.1 An assumption on the claim

Since our proof is through an approximation argument, we need the regularity of
the pay-off functional G. Indeed, we first approximate the stock price process by
piece-wise constant functions taking values in a finite set. We also discretize the jump
times to obtain a countable set of possible price processes. This process necessitates a
continuity assumption with respect to a Skorokhod type topology. Further discussion
of this assumption is given in Remark 2.2. In particular, Asian and lookback type
options satisfy the below condition. A possible generalization of our result to more
general class of pay-offs is discussed in the final Sect. 6.

Let DN [0, T ] be the subset of D[0, T ] that are piece-wise constant functions with
N possible jumps i.e., v 2 DN [0, T ] if and only if there exists a partition t0 = 0 <

t1 < t2 < · · · < tN < T such that

vt =
N

i=1

vi[ti1,ti )(t) + vN+1[tN ,T ](t), where vi := vti1 ,

and we set A be the characteristic function of the set A. We make the following
standing assumption on G.

Assumption 2.1 There exists a constant L > 0 so that

|G(!)  G(!̃)|  Lk!  !̃k, !, !̃ 2 D[0, T ],

where as before, || · || is the sup norm.
Moreover, let , ̃ 2 DN [0, T ] be such that i = ̃i for all i = 1, . . . , N . Then,

|G()  G(̃)|  Lkk
N

k=1

|1tk 1t̃k |,

where as usual 1tk := tk  tk1 and 1t̃k := t̃k  t̃k1.
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Remark 2.2 In our setup, the process S represents the discounted stock price and G(S)

represents the discounted reward. Let r > 0 be the constant interest rate. Then, the
payoff

G(S) := erT H



erT ST , min
0tT

ert St , max
0tT

ert St ,

T

0

ert St dt



 ,

with a Lipschitz continuous function H : R4 ! R satisfies the above assumption.
The above condition on G is, in fact, a Lipschitz assumption with respect to a metric

very similar to the Skorokhod one. However, it is weaker than to assume Lipschitz
continuity with respect to the Skorokhod metric. Recall that this classical metric is
given by

d( f, g) := inf


sup
0tT

max (| f (t)  g((t))|, |(t)  t |),

where the infimum is taken over all time changes. A time change is a strictly increasing
continuous function which satisfy (0) = 0 and (T ) = T . We refer the reader to
Chapter 3 in [5] for more information. In particular, while

 T
0 St dt is continuous with

respect to the Skorokhod metric inD[0, T ], it is not Lipschitz continuous with respect
to this metric. Thus the above assumption is needed in order to include Asian options.

Moreover, from our proof of the main results it can be shown that Theorems 2.7
and 2.10 can be extended to payoffs of the form

erT H



ert1 St1 , . . . , ertk Stk , min
0tT

ert St , max
0tT

ert St ,

T

0

ert St dt





where H is Lipschitz and 0 < t1 < · · · < tk  T . ut

2.2 European calls

We assume that, at time zero, the investor is able to buy any call option with strike
K  0, for the price

C(K ) :=


(x  K )+ dµ(x), (2.2)

where µ is a given probability measure on R+. The measure µ is assumed to be
derived from observed call prices that are liquidly traded in the market. One may also
think of µ as describing the probabilistic belief (in the market) about the stock price
distribution at time T . Then, an approximation argument implies that the price of a
derivative security with the payoff g(ST ) with a bounded, measurable g must be given
by


gdµ. We then assume that this formula also holds for all g 2 L1(R+, µ).

In particular, C(0) = 
xdµ(x). On the other hand the pay-off C(0) is one stock.

Hence, the value of C(0) must be equal to the initial stock price S0 which is normalized
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to one. Therefore, although the probability measure µ is quite general, in view of our
assumption (2.2) and arbitrage considerations, it should satisfy

C(0) =


xdµ(x) = S0 = 1. (2.3)

For technical reasons, we also assume that there exists p > 1 such that


x pdµ(x) < 1. (2.4)

2.3 Admissible portfolios

We continue by describing the continuous time trading in the underlying asset S.
Since we do not assume any semi-martingale structure of the risky asset, this question
is nontrivial. We adopt the path-wise approach and require that the trading strategy (in
the risky asset) is of finite variation. Then, for any function h : [0, T ] ! R of finite
variation and continuous function S 2 C[0, T ], we use integration by parts to define

t

0

hud Su := ht St  h0S0 
t

0

Sudhu,

where the last term in the above right hand side is the standard Stieltjes integral.
We are now ready to give the definition of semi-static portfolios and super-hedging.

Recall the exponent p in (2.4).

Definition 2.3 1. We say that a map

 : A  D[0, T ] ! D[0, T ]

is progressively measurable, if for any v, ṽ 2 A,

vu = ṽu, 8u 2 [0, t] ) (v)t = (ṽ)t . (2.5)

2. A semi-static portfolio is a pair  := (g,  ), where g 2 L1(R+, µ) and

 : C+[0, T ] ! D[0, T ]

is a progressively measurable map of bounded variation.
3. The corresponding discounted portfolio value is given by,

Zt (S) = g(ST ){t=T } +
t

0

u(S)d Su, t 2 [0, T ],
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where A is the indicator of the set A. A semi-static portfolio is admissible, if
there exists M > 0 such that

Zt (S)  M



1 + sup
0ut

S p
u



, 8 t 2 [0, T ], S 2 C+[0, T ]. (2.6)

4. An admissible semi-static portfolio is called super-replicating, if

ZT (S)  G(S), 8S 2 C+[0, T ].

Namely, we require that for any possible value of the stock process, the portfolio
value at maturity will be no less that the reward of the European claim.

5. The (minimal) super-hedging cost of G is defined by,

V (G) := inf


gdµ : 9 such that  := (g,  ) is super-replicating


.

Notice that the set of admissible portfolios depends on the exponent p which appears
in the assumption (2.4). We suppress this possible dependence to simplify the exposi-
tion.

2.4 Martingale optimal transport

Since the dual formula refers to a probabilistic structure, we need to introduce that
structure as well. Set  := C+[0, T ] and let S = (St )0tT be the canonical process
given by St (!) := !t , for all ! 2 . Let F t :=  (Ss, 0  s  t) be the canonical
filtration (which is not right continuous).

The following class of probability measures are central to our results. Recall that we
have normalized the stock prices to have initial value one. Therefore, the probability
measures introduced below need to satisfy this condition as well.

Definition 2.4 A probability measure Q on the space (,F ) is a martingale measure,
if the canonical process (St )

T
t=0 is a local martingale with respect to Q and S0 = 1

Q-a.s.
For a probability measure µ on R+, Mµ is the set of all martingale measures Q

such that the probability distribution of ST under Q is equal to µ.

Note that if µ satisfies (2.3), then the canonical process (St )
T
t=0 is a martingale (not

only a local martingale) under any measure Q 2 Mµ. Indeed, a strict local martingale
satisfies

1 = S0 > EQ[ST ] =


xdµ(x),

and it would be in contradiction with (2.3). We use EQ to denote the expectation with
respect to Q.
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Remark 2.5 Observe that (2.3) yields that the set Mµ is not empty. Indeed, consider a
complete probability space (W ,F W , PW ) together with a standard one-dimensional
Brownian motion (Wt )

1
t=0, and the natural filtration F W

t which is the completion of
 {Ws |s  t}. Then, there exists a function f : R ! R+ such that the probability
distribution of f (WT ) is equal to µ. Define the martingale Mt := EW ( f (WT )|F W

t ),
t 2 [0, T ]. In view of (2.3), M0 = 1. Since M is a Brownian martingale, it is continu-
ous. Moreover, since µ has support on the positive real line, f  0 and consequently,
M  0. Then, the distribution of M on the space  is an element in Mµ. This con-
struction underpins Bass solution to the Skorokhod embedding problem (see [4]).

Remark 2.6 Clearly the duality is very closely related to fundamental theorem of asset
pricing, which states the existence of a measure Q 2 Mµ. Since, as shown in the above
remark such measures exist under our set of assumptions, the market considered in this
paper is arbitrage-free. Then, a natural question that arises is whether our assumptions
on the option prices and the measure µ can be replaced by the assumption of no-
arbitrage. We do not address this very interesting question in this paper. However,
several recent papers [3,8] study this question in discrete time.

The following is the main result of the paper. An outline of its proof is given in
Sect. 2.6, below.

Theorem 2.7 Assume that the European claim G satisfies the Assumption 2.1 and the
probability measure µ satisfies (2.3) and (2.4). Then, the minimal super-hedging cost
is given by

V (G) = sup
Q2Mµ

EQ [G(S)].

Remark 2.8 The above theorem provides a duality result for the robust semi-static
hedging of a general pay-off. Many specific examples have been considered in the
literature. Indeed, the initial paper of Hobson [22] explicitly provides the hedge for a
lookback option. Similarly, using the random time change and Skorokhod embedding
method [7,9,11], and several other papers analyze barrier options, lookback options
and volatility options. Also, the path-wise proof of the Doob’s maximal inequality
given in [2] constructs an explicit portfolio which robustly hedges the power of the
running maximum. We use this hedge in the proof of Lemma 4.1 as well.

Remark 2.9 One may consider the maximizer, if exists, of the expression

sup
Q2Mµ

EQ [G(S)],

as the optimal transport of the initial probability measure  = {1} to the final dis-
tribution µ. However, an additional constraint that the connection is a martingale is
imposed. This in turn places a restriction on the measures, namely (2.3). The penalty
function c is replaced by a more general functional G. In this context, one may also
consider general initial distributions  rather than Dirac measures. Then, the martin-
gale measures with given marginals corresponds to the Kantorovich generalization of
the mass transport problem.
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The super-replication problem is also analogous to the Kantorovich dual. However,
the dual elements reflect the fact that the cost functional depends on the whole path
of the connection.

The reader may also consult [6] for a very clear discussion of the connection between
robust hedging and optimal transport.

2.5 A discrete time approximation

Next we construct a special class of simple strategies which achieve asymptotically
the super-hedging cost V .

For a positive integer N and any S 2 C+[0, T ], set  (N )
0 (S) = 0. Then, recursively

define


(N )
k (S) = inf


t > 

(N )
k1(S) : |St  S


(N )
k1(S)

| = 1
N


^ T, (2.7)

where we set  (N )
k (S) = T , when the above set is empty. Also, define

H (N )(S) = min{k 2 N :  (N )
k (S) = T }. (2.8)

Observe that for any S 2 C+[0, T ], H (N )(S) < 1.
Denote by A N the set of all portfolios for which the trading in the stock occurs

only at the moments 0 = 
(N )
0 (S) < 

(N )
1 (S) < · · · < 

(N )

H (N )(S)
(S) = T . Formally,

 := (g,  ) 2 A N , if it is progressively measurable in the sense of (2.5) and it is of
the form

t (S) =
H (N )(S)1

k=0

k(S)
(

(N )
k (S),

(N )
k+1(S)](t),

for some k(S)’s. Note that, k(S) can depend on S only through its values up to time


(N )
k (S), so that t is progressively measurable. Set

VN (G) := inf


gdµ : 9 such that  := (g,  ) 2 A N is super-replicating


.

It is clear that for any integer N  1, VN (G)  V (G). The following result proves
the convergence to V (G). This approximation result is the second main result of this
paper. Also, it is the key analytical step in the proof of duality.

Theorem 2.10 Under the assumptions of Theorem 2.7,

lim
N!1 VN (G) = V (G).
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2.6 Proofs of Theorems 2.7 and 2.10

Since VN  V , Theorems 2.7 and 2.10 would follow from the following two inequal-
ities,

lim sup
N!1

VN (G)  sup
Q2Mµ

EQ [G(S)] (2.9)

and

V (G)  sup
Q2Mµ

EQ [G(S)]. (2.10)

The first inequality is the difficult one and it will be proved in Sects. 4 and 5. The
second inequality is simpler and we provide its proof here.

Let Q 2 Mµ and let  = (g,  ) be super-replicating. Since  is progressively
measurable in the sense of (2.5), the stochastic integral

t

0

u(S)dSu

is defined with respect to Q. Also Q is a martingale measure. Hence, the above sto-
chastic integral is a Q local- martingale. Moreover, from (2.6) we have,

t

0

u(S)dSu  M



1 + sup
0ut

|St |p



, t 2 [0, T ].

Also in view of (2.4) and the Doob–Kolmogorov inequality for the martingale St ,

EQ sup
0tT

|St |p  C pEQ|ST |p = C p


|x |pdµ < 1.

Therefore, EQ
 T

0 u(S)dSu  0. Since  is super-replicating, we conclude that

EQ [G(S)]  EQ




T

0

u(S)dSu + g(ST )



  EQ [g(ST )] =


gdµ,

where in the last equality we again used the fact that the distribution of ST under Q is
equal to µ. This completes the proof of the lower bound. Together with (2.9), which
will be proved later, it also completes the proofs of the theorems. ut
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3 Quasi sure approach and full duality

An alternate approach to define robust hedging is to use the notion of quasi sure
super-hedging as was done in [21,38]. Let us briefly recall this notion. Let Q be
the set of all martingale measures Q on the canonical space C+[0, T ] under which
the canonical process S satisfies S0 = 1, Q-a.s., has quadratic variation and satisfies
EQ sup0tT St < 1. In this market, an admissible hedging strategy (or a portfolio)
is defined as a pair  = (g,  ), where g 2 L1(R+, µ) and  is a progressively
measurable process such that the stochastic integral

t

0

udSu, t 2 [0, T ]

exists for any probability measure Q 2 Q and satisfies (2.6) Q-a.s. We refer the reader
to [38] for a complete characterization of this class. In particular, one does not restrict
the trading strategies to be of bounded variation. A portfolio  = (g,  ) is called an
(admissible) quasi-sure super-hedge, provided that

g(ST ) +
T

0

udSu  G(S), Q a.s.,

for all Q 2 Q. Then, the minimal super-hedging cost is given by

Vqs(G) := inf


gdµ : 9 such that  := (g,  ) is a quasi-sure super-hedge


.

Clearly,

V (G)  Vqs(G).

From simple arbitrage arguments it follows that

Vqs(G)  inf
2L1(R+,µ)

sup
Q2Q

EQ


G(S)  (ST ) +


dµ



where we set EQ  1, if EQ = 1. Since inf sup  sup inf, the above two
inequalities yield,

V (G)  Vqs(G)

 inf
2L1(R+,µ)

sup
Q2Q

EQ


G(S)  (ST ) +


dµ



 sup
Q2Q

inf
2L1(R+,µ)

EQ


G(S)  (ST ) +


dµ


.
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Now if Q 2 Mµ, then the two terms involving  are equal. So we first restrict the
measures to the set Mµ and then use Theorem 2.7. The result is

V (G)  Vqs(G)  inf
2L1(R+,µ)

sup
Q2Q

EQ


G(S)  (ST ) +


dµ



 sup
Q2Q

inf
2L1(R+,µ)

EQ


G(S)  (ST ) +


dµ



 sup
Q2Mµ

EQ [G(S)] = V (G).

Hence, all terms in the above are equal. We summarize this in the following which
can be seen as the full duality.

Proposition 3.1 Assume that the European claim G satisfies Assumption 2.1 and the
probability measure µ satisfies (2.3), (2.4). Then,

V (G) = Vqs(G) = sup
Q2Mµ

EQ [G(S)]

= inf
2L1(R+,µ)

sup
Q2Q

EQ


G(S)  (ST ) +


dµ



= sup
Q2Q

inf
2L1(R+,µ)

EQ


G(S)  (ST ) +


dµ


.

4 Proof of the main results

The rest of the paper is devoted to the proof of (2.9).

4.1 Reduction to bounded claims

The following result will be used in two places in the paper. The first place is Lemma
4.2 where we reduce the problem to claims that are bounded from above. The other
place is Lemma 4.8.

Consider a claim with pay-off

K (S) := kSk {kSkK } + kSk
K

.

Recall that VN (K ) is defined in Sect. 2.5.

Lemma 4.1

lim sup
K!1

lim sup
N!1

VN (K ) = 0.
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Proof In this proof, we always assume that N > K > 1. Let k = 
(N )
k (S) and

n = H (N )(S) be as in (2.7), (2.8), respectively, and set

 := 
(K )
N (S) = min{k : Sk  K  1} ^ n.

Set cp := p/(p1) where p as in (2.4). We define a portfolio (g(N ,K ),  (N ,K )) 2 A N
as follows. For t 2 (k, k+1] and k = 0, 1, . . . , n  1, let


(N ,K )
t (S)= (N ,K )

k
(S)= p2

K (p1)


max

0ik
S p1
i


 p2

(p1)
{k}


max
ik

S p1
i


,

g(N ,K )(x) = 1
K

(1 + ((cpx)p  cp)
+) + ((cpx)p  (cp(K  1))p)+ + 2

N
.

We use Proposition 2.1 in [2] and the inequality x < 1 + x p, x 2 R+, to conclude
that for any t 2 [0, T ]

g(N ,K )(St ) +
t

0

 (N ,K )
u d Su  S̄t

K
+ S̄t {S̄t K },

where

S̄t := max
0ut

Su .

Therefore,  (N ,K ) := (gN ,K ),  (N ,K )) satisfies (2.6) and super-replicates K .
Hence,

VN (K ) 


g(N ,K )dµ.

Also, in view of (2.4),

lim sup
K!1

lim sup
N!1


g(N ,K )dµ = 0.

These two inequalities complete the proof of the lemma. ut
A corollary of the above estimate is the following reduction to claims that are

bounded from above.

Lemma 4.2 If suffices to prove (2.9) for claims G that are non-negative, bounded
from above and satisfying Assumption 2.1.
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Proof We proceed in two steps. First suppose that (2.9) holds for nonnegative claims
that are bounded from above. Then, the conclusions of Theorems 2.7 and 2.10 also
hold for such claims.

Now let G be a non-negative claim satisfying Assumption 2.1. For K > 0, set

G K := G ^ K .

Then, G K is bounded and (2.9) holds for G K . Therefore,

lim sup
N!1

VN (G K )  sup
Q2Mµ

EQ [G K (S)]  sup
Q2Mµ

EQ [G(S)].

In view of Assumption 2.1,

G(S)  G(0) + LkSk.

Hence, the set {G(S)  K } is included in the set {LkSk + G(0)  K } and

G  G K + (LkSk + G(0)  K ){LkSk+G(0)K }.

By the linearity of the market, this inequality implies that

VN (G)  VN (G K ) + VN ((LkSk + G(0)  K ){LkSk+G(0)K }).

Moreover, in view of the previous lemma,

lim sup
K!1

lim sup
N!1

VN ((LkSk + G(0)  K ){LkSk+G(0)K }) = 0.

Using these, we conclude that

lim sup
N!1

VN (G)  sup
Q2Mµ

EQ [G(S)].

Hence, (2.9) holds for all functions that are non-negative and satisfy Assumption
2.1. By adding an appropriate constant this results extends to all claims that are bounded
from below and satisfying Assumption 2.1.

Now suppose that G is a general function that satisfies Assumption 2.1. For c > 0,
set

Ǧc := G _ (c).

Then, Ǧ is bounded from below and (2.9), Theorems 2.7 and 2.10 holds, i.e.,

lim sup
N!1

VN (G)  lim sup
N!1

VN (Ǧc) = sup
Q2Mµ

EQ[Ǧc(S)].
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By Assumption 2.1, Ǧc(S)  G(S) + ěc(S) where the error function is

ěc(S) := (LkSk  G(0)  c){LkSkG(0)c0}.

Since ěc  0 and it satisfies the Assumption 2.1,

sup
Q2Mµ

EQ[ěc(S)] = V (ěc) = lim
N!1 VN (êc).

In view of Lemma 4.1,

lim sup
c!1

sup
Q2Mµ

EQ[ěc(S)] = lim sup
c!1

lim sup
N!1

VN (ěc) = 0.

We combine the above inequalities to conclude that

lim sup
N!1

VN (G)  lim sup
c!1

sup
Q2Mµ

EQ[Ǧc(S)]

 sup
Q2Mµ

EQ[G(S)] + lim sup
c!1

sup
Q2Mµ

EQ[ěc(S)]

= sup
Q2Mµ

EQ[G(S)].

This exactly (2.9). ut

4.2 A countable class of piecewise constant functions

In this section, we provide a piece-wise constant approximation of any continuous
function S. Fix a positive integer N . For any S 2 C+[0, T ], let  (N )

k (S) and H (N )(S)

be the times defined in (2.7) and (2.8), respectively. To simplify the notation, we
suppress their dependence on S and N and also set

n = H (N )(S). (4.1)

We first define the obvious piecewise constant approximation Ŝ = Ŝ(N )(S) using these
times. Indeed, set

Ŝt :=
n1

k=0

Sk[k ,k+1)(t) +


Sn1 + 1
N

sign(ST  Sn1)


{T }(t). (4.2)

The function, that takes S to Ŝ is a map of C+[0, T ] into the set of all functions
with values in the target set

A(N ) = {i/N : i = 0, 1, 2, . . . , }.
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Indeed, Ŝ is behind the definition of the approximating costs VN . However, this set of
functions is not countable as the jump times are not restricted to a countable set. So,
we provide yet another approximation by restricting the jump times as well.

Let ̂ := D[0, T ] be the space of all right continuous functions f : [0, T ] ! R+
with left–hand limits (càdlàg functions). For integers N , k, let

U (N )
k := {i/(2k N ) : i = 1, 2, . . . , } [ {1/(i2k N ) : i = 1, 2, . . . , },

be the sets of possible differences between two consecutive jump times. Next, we
define subsets D(N ) of D[0, T ].

Definition 4.3 A function f 2 D[0, T ] belongs to D(N ), if it satisfies the followings,

1. f (0) 2 {1  1/N , 1 + 1/N },
2. f is piecewise constant with jumps at times t1, . . . , tn , where

t0 = 0 < t1 < t2 < · · · < tn < T,

3. for any k = 1, . . . , n, | f (tk)  f (tk1)| = 1/N ,
4. for any k = 1, . . . , n, tk  tk1 2 U (N )

k .

We emphasize, in the fourth condition, the dependence of the set U (N )
k on k. So as

k gets larger, jump times take values in a finer grid. Also, for technical reasons we will
need that the functions value at 0 will be equal to 1 ± 1/N but not 1.

We continue by defining an approximation of a generic stock price process S,

F (N ) : C+[0, T ] ! D(N ),

as follow. Recall k = 
(N )
k (S), n = H (N )(S) from above and also from (2.7), (2.8).

Set ̂0 := 0, ̂n = T and for k = 1, . . . , n  1, define

̂k :=
k

i=1

1̂i ,

1̂i = max{1t 2 U (N )
i : 1t < 1i = i  i1}, i = 1, . . . , n  1.

Clearly, 0 = ̂0 < ̂1 < · · · < ̂n1 < ̂n = T and ̂k < k for all k = 1, . . . , n  1.
We are now ready to define F (N )(S). For n = 1, set

F (N )(S)  1 + 1
N

sign(ST  1),

and for n > 1, define
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F (N )
t (S) =

n1

k=1

Sk[̂k1,̂k )(t)

+


Sn1 + 1
N

sign(ST  Sn1)


[̂n1,T ](t). (4.3)

Observe that the value of the kth jump of the process F (N )(S) equals to the value of
the (k +1)-th jump of the discretization Ŝ of the original process S. Indeed, for n > 2,

F (N )
̂m

 F (N )
̂m1

= Sm+1  Sm , 8 m = 1, . . . , n  2, (4.4)

and for n  2,

F (N )
̂n1

 F (N )
̂n2

= 1
N

sign

ST  Sn1


.

This shift is essential in order to deal with some delicate questions of adaptedness and
predictability. We also recall that the jump times of Ŝ are the random times k’s while
the jump times of F (N )(S) are ̂k’s and that all these times depend both on N and S.
Moreover, by construction, F (N )(S) 2 D(N ). But, it may not be progressively measur-
able as defined in (2.5). However, we use F (N ) only to lift progressively measurable
maps defined on D(N ) to the initial space  = C+[0, T ] and this yields progressively
measurable maps on . This procedure is defined and the measurability is proved in
Lemma 4.7, below.

The following lemma shows that F (N ) is close to S in the sense of Assumption 2.1.
Let us emphasize that the following result is a consequence of the particular structure
of D(N ) and in particular U (N )

k ’s.

Lemma 4.4 Let F (N ) be the map defined in (4.3). For any G satisfying the Assumption
2.1 with the constant L,

|G(S)  G(F (N )(S))|  4LkSk
N

, 8 S 2 C+[0, T ].

Proof Set

F̂ := F̂ (N )
t (S) :=

n1

k=0

Sk[̂k ,̂k+1)(t) +


Sn1 + 1
N

sign(ST  Sn1)


{T }(t).

Observe that Ŝ of (4.2) and F̂ are like the functions  and ̃ in that Assumption 2.1.
Hence,

|G(Ŝ)  G(F̂)|  LkSk
n

k=1

|1k 1̂k |.

For k < n,
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1̂k = max{1t 2 U (N )
k : 1t < 1k }.

The definition of U (N )
k implies that

0  1k 1̂k  1
2k N

, k = 1, . . . , n  1.

Therefore,

n1

k=1

|1k 1̂k | 
1

k=1

1
2k N

= 1
N

. (4.5)

Combining the above inequalities, we arrive at

|G(Ŝ)  G(F̂)|  LkSk
N

.

Set F = F (N )(S) and directly estimate that

|G(S)  G(F)|  |G(S)  G(Ŝ)| + |G(Ŝ)  G(F̂)| + |G(F̂)  G(F)|
 LkS  Ŝk + LkSk

N
+ |G(F̂)  G(F)|

= 3LkSk
N

+ |G(F̂)  G(F)|.

Finally, we observe that by construction,

kF̂  Fk  1
N

, ) |G(F)  G(F̂)|  L
N

.

The above inequalities completes the proof of the lemma. ut

Remark 4.5 The proof of the above Lemma provides one of the reasons behind the
particular structure of U (N )

k . Indeed, (4.5) is a key estimate which provides a uniform
upper bound for the sum of the differences over k. Since there is no upper bound on
k, the approximating set U (N )

k for the k-th difference must depend on k. Moreover, it
should have a summable structure over k. That explains the terms 2k .

On the other hand, the reason for the part {1/(i2k N ) : i = 1, 2, . . . } in the definition
of U (N )

k is to make sure that 1̂k > 0. For probabilistic reasons (i.e. adaptability),
we want ̂k < k . This forces us to approximate 1k by 1̂k from below. This and
1̂k > 0 would be possible only if U (N )

k has a subsequence converging to zero.
Hence, different sets of U (N )

k ’s are also possible provided that they have these two
properties. ut
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4.3 A countable probabilistic structure

An essential step in the proof of (2.9) is a duality result for probabilistic problems. We
first introduce this structure and then relate it to the problem VN .

As before, let ̂ := D[0, T ] be the space of all right continuous functions f :
[0, T ] ! R+ with left–hand limits (càdlàg functions). Denote by Ŝ = (Ŝt )0tT the
canonical process on the space ̂.

The set D(N ) defined in Definition 4.3 is a countable subset of ̂. We choose any
probability measure P̂(N ) on ̂ which satisfies P̂(N )(D(N )) = 1 and P̂(N )({ f }) > 0
for all f 2 D(N ). Let F̂ (N )

t , t 2 [0, T ] be the filtration generated by the process Ŝ
and contains P̂(N ) null sets. Under the measure P̂(N ), the canonical map Ŝ has finitely
many jumps. Let

0 = ̂0(Ŝ) < ̂1(Ŝ) < · · · < ̂Ĥ(Ŝ)
(Ŝ) < T,

be the jump times of Ŝ. Note that in Definition 4.3, the final jump time is always strictly
less than T .

A trading strategy on the filtered probability space (̂, F̂ (N ), (F̂ (N )
t )T

t=0, P̂(N )) is a
predictable stochastic process (̂t )

T
t=0. Thus, it is a function ̂ : D[0, T ] ! D[0, T ].

Let a 2 D[0, T ] be such that a /2 ̂ (D(N )). Define a map  : D[0, T ] ! D[0, T ],
by (!) = ̂ (!) if ! 2 D(N ), and equal to a otherwise. Clearly, P̂(N ) almost surely,
̂ = (Ŝ). Also, since P̂(N ) is non-zero on every point in D(N ), the definition of
the predictable sigma algebra implies that  is a predictable map. Namely, for any
v, ṽ 2 D[0, T ] and t 2 [0, T ]

vu = ṽu 8u 2 [0, t) ) (v)t = (ṽ)t .

Indeed, arguing by contraposition, if there were t 2 [0, T ] and v, ṽ 2 D(N ) such
that vu = ṽu for all u 2 [0, t) and (v)t 6= (ṽ)t . Then, we would conclude that
the event {̂t = (v)t } 62 F̂ (N )

t . However, this would be in contradiction with the
predictability of the process ̂ . (Recall that F (N )

t is the smallest –algebra which
contains F (N )

s for any s < t). Hence, any predictable process ̂ has a version  that is
progressively measurable in the sense of Definition 2.3. In what follows, we always
use this progressively measurable version of any predictable process. In particular, the
following can be seen as the probabilistic counterpart of the Definition 2.3.

Definition 4.6 1. A (probabilistic) semi-static portfolio is a pair (h, ̂ ) such that
̂ : D[0, T ] ! D[0, T ] is predictable and the stochastic integral

 ·
0 ̂udŜu exists

(with respect to the measure P(N )), and h : A(N ) ! R.
2. A semi-static portfolio is P̂(N )-admissible, if h is bounded and there exists M > 0

such that

t

0

̂udŜu  M, P̂(N )  a.s., t 2 [0, T ]. (4.6)
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3. An admissible semi-static portfolio is P̂(N )-super-replicating G, if

h(ŜT ) +
T

0

̂udŜu  G(Ŝ), P̂(N )  a.s. (4.7)

4.4 Approximating µ

Recall the set A N of portfolios used in the definition of VN in Sect. 2.5.
Next we provide a connection between the probabilistic super-replication and the

discrete robust problem. However, the option h in the Definition 4.6 above is defined
only on A(N ) while the static part of the hedges in A N are functions defined on R+.
So for a given h : A(N ) ! R, we define the following operator

g(N ) := L (N )(h) : R+ ! R

by

g(N )(x) := (1 + bN xc  N x)h(bN xc/N ) + (N x  bN xc)h((1 + bN xc)/N ),

where for a real number r , brc is the largest integer that is not larger than r .
Next, define a measure µ(N ) on the set A(N ) by

µ(N )({0}) :=


[0,1/N )

(1  N x) dµ(x)

and for any positive integer k,

µ(N )({k/N }) :=


[(k1)/N ,k/N )

(N x + 1  k) dµ(x) +


[k/N ,(k+1)/N )

(1 + k  N x) dµ(x).

This construction has the following important property. For any bounded function
h : A(N ) ! R, let g(N ) = L (N )(h) be as above. Then,


hdµ(N ) =


g(N )dµ. (4.8)

In particular, by taking h  1, we conclude that µ(N ) is a probability measure. Also,
since for continuous h, g(N ) converges pointwise to h, one may directly show (by
Lebesgue’s dominated convergence theorem) that µ(N ) converges weakly to µ.
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4.5 Probabilistic super-replication

Recall the probabilistic super-replication problem introduced in Definition 4.6. Let
G be a European claim as before and N be a positive integer. Then, the probabilistic
super-replication problem is given by,

V̂N (G) = inf


hdµ(N ) : 9 ̂ s.t. (h, ̂ ) is a P̂(N ) admissible super hedge of G


.

We continue by establishing a connection between the probabilistic super hedging
V̂N and the discrete robust problem VN . Suppose that we are given a probabilistic
semi-static portfolio ̂ = (h, ̂ ) in the sense of Definition 4.6. We lift this portfolio
to a semi-static portfolio  (N ) = (g(N ),  (N )) 2 A N . Indeed, let g(N ) = L (N )(h) be
as in Sect. 4.4 and define  (N ) : C+[0, T ] ! D[0, T ] by


(N )
t (S) =

n1

k=1

̂̂k (F (N )(S))(k ,k+1](t),

where k = 
(N )
k (S) are as in (2.7), n is as in (4.1) and F (N )(S), ̂k := ̂k(S) are as in

(4.3). Note that the random integer n is the number of crossings of magnitude of no
less than 1/N . Moreover, by construction it is exactly one more than the number of
jumps of F (N ). Also notice that


(N )
t (S) = 0, 8 t 2 [0, 1].

Lemma 4.7 For any probabilistic semi-static portfolio (h, ̂ ),  (N ) defined above is
progressively measurable in the sense of (2.5).

Proof Let S, S̃ 2 C+[0, T ] and t 2 [0, T ] be such that Su = S̃u for all u  t . We
need to show that


(N )
t (S) = 

(N )
t (S̃).

Since the above clearly holds for t = 0 and t = T , we may assume that t 2 (0, T ).
Set

kt (S) := k(N )
t (S) := min{i  1, :  (N )

i  t }  1,

so that 0  kt (S) < n and

t 2 (
(N )
kt (S), 

(N )
kt (S)+1].

It is clear that kt (S) = kt (S̃). If kt (S) = kt (S̃) = 0, then  (N )
t (S) = 

(N )
t (S̃) = 0. So

we assume that kt (S) > 0 and use the definition of ̂k to conclude that

 := ̂kt (S) = ̂kt (S̃)(S̃).
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Since 0 < kt (S) < n, we have n > 1 and F (N )
t is given by (4.3), i.e.,

F (N )
t (S) =

n1

k=1

Sk[̂k1,̂k )(t) +


Sn1 + 1
N

sign(ST  Sn1)


[̂n1,T ](t).

Now, for any u <  = ̂kt (S) = ̂kt (S̃)(S̃), the above definition implies that

F (N )
u (S) = Sk , F (N )

u (S̃) = S̃k , for some k  kt (S) = kt (S̃).

Since by definition kt (S)(S) < t , we conclude that

F (N )
u (S) = F (N )

u (S̃), 8 u 2 [0, ).

Therefore, by the predictability of ̂ we have  (N )
t (S) = 

(N )
t (S̃). ut

The following lemma provides a natural and a crucial connection between the
probabilistic super-replication and the discrete robust problem.

Recall the set A N of portfolios used in the definition of VN in Sect. 2.5.

Lemma 4.8 Suppose G is bounded from above and satisfies the Assumption 2.1. Then,

lim sup
N!1

VN (G)  lim sup
N!1

V̂N (G).

Proof Set

G(N )(S) := G(S)  5LkSk
N

.

We first show that

VN (G(N ))  V̂N (G).

To prove the above inequality, suppose that a portfolio (h, ̂ ) is a P̂(N )-admissible
super hedge of G. Then it suffices to construct a map  (N ) : C+[0, T ] ! D[0, T ] and
g(N ) : R+ ! R such that the semi-static portfolio (N ) := (g(N ),  (N )) is admissible,
belongs to A N and super-replicates G(N ) in the sense of Definition 2.3.

Let g(N ) = L (N )(h) be as in Sect. 4.4 and  (N ) be the probabilistic portfolio
considered in Lemma 4.7. We claim that  (N ) is the desired portfolio. In view of
Lemma 4.7, we need to show that  (N ) is in A N and super-replicates the G(N ) in the
sense of Definition 2.3.

To simplify the notation, we set F := F (N )(S).

Admissibility of  (N ) By construction trading is only at the random times k’s. There-
fore,  (N ) 2 A N provided that it satisfies the lower bound (2.6) for every t 2 [0, T ].
We first claim that for any S 2 C+[0, T ] and for every k  n  1,
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k

0

 (N )
u (S)d Su =



[0,̂k1]
̂u(F)d Fu .

Since  (N )  0 on [0, 1], the above trivially holds for k = 1. So we assume that
1 < k  n 1. In particular, n > 2. Then, we use (4.4) and the definitions to compute
that



[0,̂k1]
̂u(F)d Fu =

k1

m=1

̂̂m (F)(F̂m  F̂m1) =
k1

m=1

̂̂m (F)(Sm+1  Sm )

=
k

m=1

 (N )
m+1

(F)(Sm+1  Sm ) =
k

1

 (N )
u (S)d Su

=
k

0

 (N )
u (S)d Su .

The last identity follows from the fact that  (N ) is zero on the interval [0, 1].
Now, for a given t 2 [0, T ) and S 2 C+[0, T ], let k n  1 be the largest integer

so that k  t . Construct a function F̃ 2 D(N ) by,

F̃[0,̂k ) = F[0,̂k ), (i.e., F̃u = Fu, 8 u 2 [0, ̂k),)

and

F̃u = 2F̂k1  F̂k , u  ̂k .

Note that the constructed function F̃ depends on S and N , since both F and the
stopping times k depend on them. But we suppress these dependences. Since

F̃̂k  F̃̂k1 = [F̂k  F̂k1] = ±1/N ,

and since

|St  Sk |  1/N ,

there exists  2 [0, 1] (depending on t, N , S) such that

St  Sk = (F̂k  F̂k1) + (1  )(F̃̂k  F̃̂k1).

Since F and F̃ agree on [0, ̂k) and ̂ is predictable, ̂u(F) = ̂u(F̃) for all u  ̂k .
Also, for u 2 (k, t)  (k, k+1), 

(N )
u (S) = ̂̂k (F) and
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t

0

 (N )
u (S)d Su =

k

0

 (N )
u (S)d Su +

t

k

 (N )
u (S)d Su

=


[0,̂k1]
̂u(F)d Fu + ̂̂k (F)[St  Sk ].

Since F is piece-wise constant with jumps only at the stopping times ̂i ’s,


[0,̂k ]
̂u(F)d Fu =



[0,̂k1]
̂u(F)d Fu +



(̂k1,̂k ]
̂u(F)d Fu

=


[0,̂k1]
̂u(F)d Fu + ̂̂k (F)[F̂k  F̂k1 ].

We calculate the same integral for F̃ using the fact that F = F̃ on [0, k). The result
is



[0,̂k ]
̂u(F̃)d F̃u =



[0,̂k1]
̂u(F)d Fu + ̂̂k (F)[F̃̂k  F̃̂k1].

Therefore,

t

0

 (N )
u (S)d Su = 



[0,̂k ]
̂u(F)d Fu + (1  )



[0,̂k ]
̂u(F̃)d F̃u .

Since F, F̃ 2 D(N ) and P̂(N )(F), P̂(N )(F̃) > 0, (4.6) imply that


[0,̂k ]
̂u(F)d Fu  M, and



[0,̂k ]
̂u(F̃)d F̃u  M.

Hence,  (N ) satisfies (2.6) and  (N ) 2 A N .

Super-replication We need to show that

g(N )(ST ) +
T

0

 (N )
u (S)d Su  G(N )(S).

We proceed almost exactly as in the proof of admissibility. Again we define a modi-
fication F̄ 2 D(N ) by F̄[0,̂n2) = F[0,̂n2) and F̄u = F̄̂n2 for u  ̂n2. Set

̂ := N |ST  Sn1 |.
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Then ̂ 2 [0, 1] and by the construction of g(N ),

g(N )(ST ) = ̂h(FT ) + (1  ̂)h(F̄T ).

Hence,

g(N )(ST ) +
T

0

 (N )
u (S)d Su

= ̂



h(FT ) +
T

0

̂u(F)d Fu



 + (1  ̂)



h(F̄T ) +
T

0

̂u(F̄)d F̄u





 ̂G(F) + (1  ̂)G(F̄).

Since kF  F̄k  1/N , Assumption 2.1 and Lemma 4.4 imply that

G(S)  G(F̄)
  |G(S)  G(F)| + G(F)  G(F̄)

  5LkSk
N

.

Consequently,

̂G(F) + (1  ̂)G(F̄)  G(N )(S)

and we conclude that  (N ) is super-replication G(N ).

Completion of the proof We have shown that

VN (G  5LkSk/N )  V̂N (G).

Moreover, the linearity of the market yields that the super-replication cost is sub-
additive. Hence,

VN (G)  VN (5LkSk/N ) + VN (G  5LkSk/N ).

Therefore,

VN (G)  VN (5LkSk/N ) + V̂N (G).

Finally, by Lemma 4.1,

lim sup
N!1

VN (5LkSk/N ) = 0.

We use the above inequalities to complete the proof of the lemma. ut
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4.6 First duality

Recall the countable set D(N )  ̂ and its probabilistic structure that were introduced
in Sect. 4.3. We consider two classes of measures on this set.

Definition 4.9 1. We say that a probability measure Q on the space (̂, F̂ ) is a
martingale measure if the canonical process (Ŝt )

T
t=0 is a local martingale with

respect to Q.
2. MN is the set of all martingale measures that are supported on D(N ).
3. For a given K > 0, M(K )

N is the set of all measures Q 2 MN that satisfy

1

k=0

|Q(ŜT = k/N )  µ(N )({k/N })| <
K
N

. (4.9)

ut
The following follows from known duality results. We will combine it with Lemma

4.8 and Proposition 5.1, which will be proved in the next section to complete the proof
of the inequality (2.9).

Lemma 4.10 Suppose that G  0 is bounded from above by K and satisfies the
Assumption 2.1. Then, for any positive integer N,

V̂N (G) 


 sup
Q2M(K )

N

EQ[G(Ŝ)]



+

,

where the right hand side of the above inequality is zero when the set M(K )
N = ; is

empty.

Proof Fix N and define the set

Z = Z (N ) := {h : A(N ) ! R : |h(z)|  N , 8z}.

Set

V := inf
h2Z

sup
Q2MN


EQ(G(Ŝ)  h(ŜT )) +


hdµ(N )


.

Clearly, for any  > 0, there exists h 2 Z such that

sup
Q2MN

EQ(G(Ŝ)  h(ŜT )) +


hdµ(N )  V + .

By construction, the support of the measure P̂(N ) is D(N ). Also all elements of D(N )

are piece-wise constant. Therefore, under P̂(N ) the canonical process Ŝ is trivially a
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semi-martingale and we may use the results of the seminal paper [17]. In particular,
by Theorem 5.7 in [17], for

x = sup
Q2MN

EQ(G(Ŝ)  h(ŜT )) + ,

there exists an admissible portfolio strategy ̂ such that

x +
T

0

̂udŜu  G(Ŝ)  h(ŜT ), P̂(N ) a.s.

Therefore, (h + x, ̂ ) satisfies (4.6)–(4.7), consequently

V̂N (G)  x +


hdµ(N )  sup
Q2MN

EQ(G(Ŝ)  h(ŜT )) +


hdµ(N ) +   V + 2.

We now let  to zero to conclude that

V̂N (G)  inf
h2Z

sup
Q2MN


EQ(G(Ŝ)  h(ŜT )) +


hdµ(N )


. (4.10)

The next step is to interchange the order of the above infimum and supremum.
Consider the vector space RA(N )

of all functions f : A(N ) ! R equipped with the
topology of point-wise convergence. Clearly, this space is locally convex. Also, since
A(N ) is countable, Z is a compact subset of RA(N )

. The set MN can be naturally
considered as a convex subspace of the vector space RD(N)

.
Now, define the function G : Z  MN ! R, by

G(h, Q) = EQ(G(Ŝ)  h(ŜT )) +


hdµ(N ).

Notice thatGis affine in each of the variables. From the bounded convergence theorem,
it follows thatGis continuous in the first variable. Next, we apply the min-max theorem,
Theorem 45.8 in [37] to G. The result is,

inf
h2Z

sup
Q2MN

G(h, Q) = sup
Q2MN

inf
h2Z

G(h, Q).

This together with (4.10) yields,

V̂N (G)  sup
Q2MN

inf
h2Z


EQ(G(Ŝ)  h(ŜT )) +


hdµ(N )


. (4.11)

Finally, for any measure Q 2 MN , define hQ 2 Z by

hQ(k/N ) = Nsign(Q(ŜT = k/N )  µ(N )({k/N })), k = 0, 1, . . . .
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In view of (4.11),

V̂N (G)  sup
Q2MN


EQ(G(Ŝ)) +


hQdµ(N )  EQhQ(ŜT )



= sup
Q2MN



EQ(G(Ŝ))  N
1

k=0

|Q(ŜT = k/N )  µ(N ) ({k/N }) |


Suppose that Q 62 M(K )
N . Then,

N
1

k=0

|Q(ŜT = k/N )  µ(N )({k/N })|  K .

Since G is bounded by K , this implies that

EQ(G(Ŝ))  N
1

k=0

|Q(ŜT = k/N )  µ(N ) ({k/N }) |  0.

Hence,

V̂N (G) 


 sup
Q2M(K )

N



EQ(G(Ŝ))  N
1

k=0

|Q(ŜT = k/N )  µ(N ) ({k/N }) |



+




 sup
Q2M(K )

N

EQ(G(Ŝ))




+

.

ut

5 Approximation of Martingale measures

In this final section, we prove the asymptotic connection between the approximating
martingale measures M(K )

N defined in Definition 4.9 and the continuous martingale
measures Mµ satisfying the marginal constraint at the final time, defined in Definition
2.4.

The following proposition completes the proof of the inequality (2.9) and conse-
quently the proofs of the main theorems when the claim G  0 is bounded from above.
The general case then follows from Lemma 4.2.

Proposition 5.1 Suppose that G  0 is bounded from above by K and satisfies the
Assumption 2.1. Assume that µ satisfies (2.3)–(2.4). Then

lim sup
N!1



 sup
Q2M(K )

N

EQ[G(Ŝ)]



+

 sup
Q2Mµ

EQ [G(S)].
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We prove the above proposition not through a compactness argument as one
may expect. Instead, we show that any given measure Q 2 M(K )

N has a lifted ver-
sion in Mµ that is close to Q in some sense. The set Mµ 6= ; is not empty, thus
supQ2Mµ

EQ [G(S)]  0. Therefore, without loss of generality, we can assume that

for sufficiently large N the set M(K )
N is not empty, otherwise the proposition is trivially

satisfied. Hence, the above proposition is a direct consequence of the below lemma.
Recall the Lipschitz constant L in Assumption 2.1.

Lemma 5.2 Under the hypothesis of Proposition 5.1, there exists a function fK (, N )

satisfying,

lim
#0

lim
N!1 fK (, N ) = 0

so that for any Q̂ 2 M(K )
N and  > 0,

EQ̂[G(Ŝ)]  fK (, N ) + sup
Q2Mµ

EQ [G(S)].

Proof Fix  2 (0, 1), a positive integer N and Q̂ 2 M(K )
N . Recall that G is bounded

from above by K .

Shift of the initial value Denote by D(N )
1 the set of all functions f 2 D[0, T ] which

satisfy f (0) = 1 and the conditions 2–4 in Definition 4.3. Define a map H : D(N ) !
D(N )

1 by H( f ) = f + 1  f (0). Consider the measure Q1 = H  Q̂, clearly Q1 is a
martingale measure.

Jump times Since the probability measure Q̂ is supported on the set D(N ), the canonical
process Ŝ is a purely jump process under Q1, with a finite number of jumps. Introduce
the jump times by setting 0 = 0 and for k > 0,

k = inf{t > k1 : Ŝt 6= Ŝt-} ^ T .

Next we introduce the largest random time

N̂ := min{k : k = T }.

Then, N̂ < 1 almost surely and consequently, there exists a deterministic positive
integer m (depending on ) such that

Q1(N̂ > m) < . (5.1)

By the definition of the set D(N ), there is a decreasing sequence of strictly positive
numbers tk # 0, with t1 = T , such that for i = 1, . . . , m,

i  i1 2 {tk}1k=1 [ {0}, Q1  a.s.
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Wiener space Let (W ,F W , PW ) be a complete probability space together with a

standard m+2–dimensional Brownian motion


Wt =


W (1)
t , W (2))

t , . . . , W (m+2)
t

1
t=0

,

and the natural filtration F W
t =  {Ws |s  t}. The next step is to construct a martin-

gale Z on the Brownian probability space (W ,F W , PW ) together with a sequence
of stopping times (with respect to the Brownian filtration) 1  2  · · ·  m
such that the distribution (under the Wiener measure PW ) of the random vec-
tor (1, . . . , m, Z1 , . . . , Zm ) is equal to the distribution of the random vector
(1, . . . , m, Ŝ1 , . . . , Ŝm ) under the measure Q1. Namely,

((1, . . . , m, Z1 , . . . , Zm ), PW ) = ((1, . . . , m, Ŝ1 , . . . , Ŝm ), Q1). (5.2)

The construction is done by induction, at each step k we construct the stopping time k
and Zk such that the conditional probability is the same as in the case of the canonical
process Ŝ under the measure Q1.

Construction of  0s and Z For an integer n and given x1, . . . , xn , introduce the notation

Exn := (x1, . . . , xn).

Also set

T := {tk}1k=1.

For k = 1, . . . , m, define the functions 9k,8k : Tk  {1, 1}k1 ! [0, 1] by

9k(Ek; Ek1) := Q1(k  k1  k
 A), (5.3)

where

A := {i  i1 = i , Ŝi  Ŝi1 = i/N , i  k  1},

and

8k(Ek; Ek1) = Q1(Ŝk  Ŝk1 = 1/N
 B), (5.4)

where

B = {k < T,  j   j1 =  j , Ŝi  Ŝi1 = i/N , j  k, i  k  1}.

As usual we set Q1(·|;)  0. Next, for k  m, we define the maps 0k,2k : Tk 
{1, 1}k1 ! [1,1], as the unique solutions of the following equations,

PW (W (1)
k

< 0k(Ek; Ek1)) = 8k(Ek; Ek1), (5.5)

and
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PW (W (1)
tl  W (1)

tl+1
< 2k(Ek; Ek1)) = 9k(Ek1, tl; Ek1)

9k(Ek1, tl+1; Ek1)
, (5.6)

where l 2 N is given by k = tl 2 T. From the definitions it follows that
9k(Ek1, tl; Ek1)  9k(Ek1, tl+1; Ek1). Thus if 9k(Ek1, tl+1; Ek1) = 0 for
some l, then also 9k(Ek1, tl; Ek1) = 0. We set 0/0  0.

Set 0  0 and define the random variables 1, . . . , m, Y1, . . . , Ym by the follow-
ing recursive relations

1 =
1

k=1

tk{W (1)
tk

W (1)
tk+1

>21(tk)}
1

j=k+1

{W (1)
t j

W (1)
t j+1

<21(t j )},

Y1 = 2{W (2)
{1

>01(1)}  1,

(5.7)

and for i > 1

i = i1 +1i

Yi = {i <T }


2{W (i+1)
i W (i+1)

i1 >0i ( E1 i , EYi1)}  1


,

where1i = tk on the set Ai \ Bi,k \ Ci,k and zero otherwise. These sets are given by,

Ai := {|Yi1| > 0},
Bi,k := {W (1)

tk+i1
 W (1)

tk+1+i1
> 2i (Ei1, tk; EYi1)},

Ci,k :=
1

j=k+1

{W (1)
t j +i1

 W (1)
t j+1+i1

< 2i ( E1 i1, t j ; EYi1)}.

Since tk is decreasing with t1 = T , 1  2  · · ·  m and they are stopping times
with respect to the Brownian filtration. Let k  m and (Ek; Ek1) 2 Tk  {1, 1}k1.
There exists m 2 N such that k = tm 2 T. From (5.7) to (5.8), the strong Markov
property and the independency of the Brownian motion increments it follows that

PW (k  k1  k
( E1 k1; EYk1) = (Ek1; Ek1))

= PW




1

j=m

(W (1)
t j +k1

 W (1)
t j+1+k1

< 2k(Ek1, t j ; Ek1))





=
1

j=m

PW (W (1)
t j +k1

 W (1)
t j+1+k1

< 2k(Ek1, t j ; EYk1))

= 9k(Ek, Ek1), (5.8)

where the last equality follows from (5.6) and the fact that

lim
l!19k(1, . . . ,k1, tl ,1, . . . ,k1) = 1.
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Similarly, from (5.5) and (5.8), we have

PW (Yk = 1
k < T, E1 k = Ek, EYk1 = Ek1)

= PW


W (k+1)k
i=1 i

 W (k+1)k1
i=1 i

< 0k(Ek; Ek1)



= 8k(Ek; Ek1). (5.9)

Using (5.3)–(5.4) and (5.8)–(5.9), we conclude that


Em; 1

N
EYm


, PW


= ((Em; E

1Ŝm), Q1)

where 1Ŝk = Ŝk  Ŝk1 , k  m.

Continuous martingale Set

Zt = 1 + 1
N

EW


m

i=1

Yi |F W
t



, t 2 [0, T ]. (5.10)

Since all Brownian martingales are continuous, so is Z . Moreover, Brownian motion
increments are independent and therefore,

Zk = 1 + 1
N

k

i=1

Yi , PW a.s., k  m. (5.11)

By the construction of Y and  ’s, we conclude that (5.2) holds with the process Z .

Measure in Mµ The next step in the proof is to modify the martingale Z in such way
that the distribution of the modified martingale is an element of Mµ. For any two
probability measures 1, 2 on R, Prokhorov’s metric is defined by

d(1, 2) = inf{ > 0 : 1(A)  2(A) +  and

2(A)  1(A) + , 8A 2 B(R)},

where B(R) is the set of all Borel sets A  R and A := 
x2A(x  , x + ) is

the –neighborhood of A. It is well known that convergence in the Prokhorov metric
is equivalent to weak convergence, (for more details on Prokhorov’s metric see [35],
Chapter 3, Section 7).

Let 1 and 2, be the distributions of Ŝm and ŜT respectively, under the measure
Q1. Let 3 be the be the distributions of ŜT under the measure Q̂. In view of (5.1),
d(1, 2) < . From the definition of the measure Q1 it follows that d(2, 3) < 2

N .
Moreover, (4.9) implies that d(3, µ

(N )) < K
N and µ(N ) converges to µ weakly. Hence,

the preceding inequalities, together with this convergence yield that for all sufficiently
large N , d(1, µ) < 2. Finally, we observe that in view of (5.2), (ZT , PW ) = 1.
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We now use Theorem 4 on page 358 in [35] and Theorem 1 in [36] to construct a mea-
surable function  : R2 ! R such that the random variable 3 :=  (ZT , W (m+2)

T )

satisfies

(3, PW ) = µ and PW (|3 ZT | > 2|) < 2. (5.12)

We define a martingale by,

0t = EW (3|F W
t ), t 2 [0, T ].

In view of (5.12), the distribution of the martingale 0 is an element in Mµ. Hence,

sup
Q2Mµ

EQ[G(S)]  EW (G(0)). (5.13)

We continue with the estimate that connects the distribution of 0 to Q 2 M(K )
N .

Observe that EW3 = EW ZT = 1. This together with (5.12), positivity of Z + 1
N and

3, and the Holder inequality yields

EW |3 ZT | = 2EW (3 ZT )+  EW (3 ZT )

= 2EW (3 ZT )+

 4 + 2
N

+ 2EW (3{|3ZT |>2})

 4 + 2
N

+ 2


x pdµ(x)

1/p

(2)1/q , (5.14)

where p > 1 is as (2.4) and q = p/(p  1). From (5.14) and the Doob inequality for
the martingale 0t  Zt , t 2 [0, 1] we obtain

EW ({k0Zk>1/2q })  EW |3 ZT |
1/2q  4 + 2

N + 2


x pdµ(x)
1/p

(2)1/q

1/2q .

(5.15)

We now introduce a stochastic process (Ẑt )
T
t=0, on the Brownian probability space,

by, Ẑt = Zk for t 2 [k, k+1), k < m and for t 2 [m, T ], we set Ẑt = Zm . On
the space (̂, Q1) let S̃t = Ŝt^m , t 2 [0, T ]. Recall that G is bounded by K . We now
use the Assumption (2.1) together with (5.1) and (5.11) to arrive at

EQ1(G(Ŝ))  EQ1(G(S̃))  K 

|EW (G(Z))  EW (G(Ẑ))|  L EW kZ  Ẑk  L
N

.
(5.16)

Recall that by (5.2), (Ẑ , PW ) = (S̃, Q1). Thus, EW (G(Ẑ)) = EQ1(G(S̃)). This
together with Assumption 2.1 and (5.16) yields
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EQ̂(G(Ŝ))  L
N

+ EQ1(G(Ŝ))  2L
N

+ K  + EW (G(Z)). (5.17)

From Assumption 2.1, (5.13)–(5.15) and (5.17) we obtain

sup
Q2Mµ

EQ [G(S)]  EW (G(0))

 EW (G(Z))  L1/2q  K EW ({k0Zk>1/2q })

 EQ̂(G(Ŝ))  fK (, N ),

where

fK (, N ) = 2L
N

+ K  + L1/2q + K
4 + 2

N + 
x pdµ(x)

1/p
(2)1/q

1/2q .

ut

6 Possible extensions

In this paper, we prove a Kantorovich type duality for a super-replication problem in
financial market with no prior probability structure. The dual is a martingale optimal
problem.

The main theorem holds for nonlinear path-dependent options satisfying Assump-
tion 2.1. Although this condition is satisfied by most of the examples, it is an interesting
question to characterize the class of functions for which the duality holds. A possible
procedure for extending the proof is the following. Assumption 2.1 is used in the
proofs of Lemmas 4.2, 4.4 and 4.8. In Lemma 4.2, only the linear growth implied by
the assumption is used and one may replace this assumption by an appropriate growth
condition on the function G. In particular, if G is bounded no assumption would be
required.

Since the inequality (2.10) holds for any measurable function G, we need to extend
the proof of the inequality (2.9). We may achieve this by modifying the right hand side
of formula (4.7) in Definition 4.6 and use a sequence of functions Gn(Ŝ) satisfying
the Assumption 2.1 and Gn # G as n approaches to 1. Under this structure, we skip
Lemma 4.4, and prove Lemma 4.8 directly. The final step would be a modification of
Proposition 5.1 to the following claim

lim sup
N!1

sup
Q2M(K )

N

EQ[G N (Ŝ)]  sup
Q2Mµ

EQ [G(S)].

This extension technique also applies to Barrier options. In this case, we use the
approximating sequence as the payoffs Gn of Barrier options with a larger (than the
original payoff G) corridor. The main concern here is to discretize the process in a
way adapted to the barriers.
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Two other important extensions are to the case of many stocks and the inclusion
of the possibility of jumps into the stock price process. We believe that for the multi-
dimensional case, a discretization based proof would be possible. The main difficulty
here is to appropriately define the crossing times and use them to obtain a piece-wise
constant approximation of a generic stock price process.

Finally, the discretization technique developed in this paper also applies to markets
with frictions. Indeed, recently, the authors proved the duality in a finite time model
with proportional transactions costs [19] using an earlier result of [18].
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