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a b s t r a c t

We analyze numerically the superreplication problem and the associated hedging strategy
in an illiquid binomial market. We prove the existence of an optimal feedback strategy
for European and barrier options and compute it numerically by means of a dynamic
programming principle. We exhibit that the optimal strategy is not equal to the discrete-
delta strategy or to the strategy that minimizes the value function. The optimal strategy
shows less variability than the discrete-delta strategy or the strategy consisting of
minimizers of the value function due to the effect of liquidity. The performance of these
three strategies are assessed by comparing the corresponding wealth processes with the
payoff. It is shown that the discrete-delta strategy and the strategy that minimizes the
value functionmay perform poorly, thus showing the effectiveness of the optimal feedback
strategy.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

We study the superreplication and the hedging problem of European and barrier options in a binomial market with
friction due to illiquidity. Liquidity is modeled by incorporating the impact of the transaction size and time in the price
process of the underlying. Given the market observed price St at time t , the supply curve S(t, St , ν) specifies the amount
paid per share for an order of size ν.

These supply curve models were first introduced by [1]. We work with the binomial version of this setup following the
approach in [2,3]. Here the observed price process S has a binomial lattice structure. The main focus in [3] is to compute the
superreplicating cost of European claims in discrete-time and to characterize the resulting continuous-time value function.
In this article, we concentrate on studying the hedging strategy for European as well as barrier options. In particular, we
calculate numerically the optimal hedge in feedback form and compare to other standard strategies widely used in the
literature. It turns out that due to the effect of liquidity the optimal strategy is not always equal to the discrete-delta strategy
or the strategy that minimizes the value function. We illustrate this by exhibiting paths on the binomial tree, where the
discrete-delta strategy or the minimizer of the value function underperform, i.e. fail to dominate the payoff, whereas the
optimal hedging strategy always superreplicates the claim. Moreover, on some paths the difference between the final value
of the wealth process associated with the discrete-delta strategy or the minimizer of the value function and the payoff can
take large negative values. The underperformance of these two strategies is related to the large variability they exhibit on
certain paths. We numerically observe that the optimal hedge computed in the feedback form exhibits less variability. So,
liquidity has an effect on smoothing out the hedge. Therefore, in an illiquid market, optimal feedback policy, which depends
on the portfolio position in addition to the stock value, performs much better than the strategies that ignore it. However, to
achieve a ‘‘nice’’ hedge that performswell, we are required to pay a liquidity premium.We report on the amount of liquidity
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premium paid for a supply curve of the form S(t, s, ν) = s+Λν. We observe that for sufficiently small liquidity parameters
Λ, this liquidity premium is small. These numerical observations can be found in Section 6.

Computationally, one approach is to express the superreplicating cost as an optimization problem. However, with this
approach one has a non-recombitant tree due to the path-dependent structure of the portfolio process. Therefore, the
number of constraints grow exponentially with the time steps. Alternatively, as in [3] we use a dynamic programming
principle that enables us to calculate many time steps. Here the crucial observation is to add another state variable, the
initial position in the risky asset, into the value function. Without this extra state variable, it is not possible to write a
dynamic programming principle for the superreplicating cost. Also this additional variable provides an optimal strategy in
feedback form.

For European claims [3] study the continuous-time limit of the binomial setup for a supply curve of the form S(t, s, ν).
It turns out that the superreplicating cost converges locally uniformly to a partial differential equation characterized by [4].
The solution of this partial differential equation is strictly larger than the classical value of the claim for non-affine payoffs.
This shows the existence of liquidity premium, the difference between the superreplicating cost and the Black–Scholes
value of the claimwithout friction. Althoughwe pay considerable attention to barrier options to demonstrate our numerical
experiments, in this paper we do not study the continuous-time limit of the binomial model for barrier options, and
characterize the resulting liquidity premium. However, a convergence argument for path dependent payoffs and path
dependent supply curves based on probabilistic arguments was carried out recently by [5].

Another related problem to liquidity is the optimal execution problem. It concerns the allocation of trades to execute a
buy or sell order. It is formulated as an optimization problem first by [6]. For a detailed exposition of the optimal execution
problem we refer to [7] and the references therein.

A barrier option is continuously monitored, if the barrier can be breached at any time during the life of the option. On the
other hand, if the knock-out or knock-in of the barrier option can occur only at discrete times it is discretely-monitored. In
a Black–Scholes framework there are explicit closed-form expressions available for pricing continuously monitored barrier
options, however no easy closed-form formula is known for discretely-monitored barrier options. Broadie, Glasserman and
Kou [8,9] use the continuous-time exact formula to approximate the discrete barrier option value by shifting the barrier
to correct for discrete monitoring. Boyle and Lau [10] use the binomial approach to price barrier options. They consider
convergence of the binomial scheme to continuous-time setup and report on the irregularities that arise in the convergence.
They suggest to position the grid so that the barrier always lies on a horizontal layer of nodes to improve the convergence.
Rogers and Stapleton [11] introduce a random walk approximation to the logarithm of the stock price process which is
independent of the positioning of the grid points with respect to the barrier. In this article we do not aim to contribute to
the literature regarding the relation between the discrete and continuous-time prices of barrier options. Rather, our goal is
to understand the discrete-time hedge in the presence of illiquidity. Furthermore, we want to demonstrate the smoothing
out effect of illiquidity on the hedges. Another approach to price barrier options is static hedging followed in [12,13]. Since
their approaches are based on the assumptions of frictionless markets, they do not apply to our setting.

The organization of the paper is as follows. After discussing in Section 2 the model, we establish the dynamic
programming principle for barrier options in Section 3. In Section 4, we state the parameters we use in the rest of the
paper. Then in Section 5, we outline the algorithm for European as well as barrier options. In the last Section 6, we present
our numerical results.

2. Model

We suppose that our financial market consists of two assets, a risky asset and a risk-free asset. The risk-free asset is taken
to be a numeraire with interest rate r = 0. The price of the risky asset follows the supply curve model introduced by [1]
to model liquidity. In this framework, the size and time of the traded quantity of the risky asset creates a price impact, a
deviation from the market observed price St . The agent has to pay an amount

S(t, St , ν) (2.1)

per share, if she wants to trade ν number of shares at time t for a market observed price St . ν > 0 represents a buy and
ν < 0 a sell order. When no quantity is traded, one captures the market observed price, i.e. S(t, St , 0) = St . Intuitively, one
would expect to pay more per share if one trades larger quantities. Therefore, S(t, St , ν) is assumed to be monotone in ν.

The supply curve S(t, St , ν) is exogenously given so that traders have no influence on the shape of S(t, St , ν). Furthermore,
only the current trade ν has an impact on the price of the underlying. The trading history of the agent has no impact on
the supply curve, i.e. all investors are price takers. So the continuous-time supply curve is a temporary price impact model.
However, in discrete time the price impact lasts exactly one step. This is a fundamental difference between the discrete-time
and continuous-time supply curve models. On the other hand, in large trader models, [14–22], the agent owns substantial
amount of shares so that all her past trading decisions have a permanent influence on the price process. [23,24] also consider
a large trader model, but follow a different approach to model the price impact. In particular, instead of specifying the price
impact exogenously, the dependence of the price on the strategy is determined as a result of an equilibrium.

The financial market is assumed to have finite maturity T and the agents are allowed to trade at times t = nh for time
spacing h > 0 and for n ∈ {0, 1, . . . ,N}, where N :=

T
h is an integer. In the rest of the paper, we work under the probability
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space (Ω, F , P). Here the sample space Ω is given by

Ω = {(ωh, . . . , ωT ) : ωi ∈ {−1, +1}, ∀i = {h, 2h, . . . , T }}.

On the sample space Ω , we take the σ -algebra to be F = 2Ω and P to be any probability measure satisfying P(ω) > 0 for
all ω ∈ Ω . Denote by πt the projection on the tth coordinate

πt(ω) := ωt ∈ {−1, +1} ∀t ∈ {h, 2h, . . . , T }.

The dynamics of the marginal price process S = {St}t∈{0,h,...,T } is governed by the multiplicative binomial model. In this
setup, if the stock price at time t is St , then the stock price St+h at time t + h either goes up by a factor u to uSt or goes down
by a factor d to dSt with d < 1 < u. The dynamics of the stock price is expressed as

St+h(ω) = St(ω)


u


1 + πt+h(ω)

2


+ d


1 − πt+h(ω)

2


,

∀t ∈ {0, . . . , T − h}, ω ∈ Ω, S0(ω) = s. In particular, πt(ω) := ωt = 1 implies that the stock price went up and
πt(ω) := ωt = −1 means the stock price went down. The stock price S can be represented on a recombitant binomial tree,
where a node on the binomial tree corresponds to (t, St(ω)) for some t ∈ {0, . . . , T } and a realization ω ∈ Ω . One can
regard ω ∈ Ω as a path on this binomial tree.

We take the filtration F = {Ft}t∈{0,...,T } to be the σ -algebra generated by S, i.e. Ft = σ(S0, Sh, . . . , St) for t = {0, . . . , T }.
ThenF0 = {∅, Ω} andFt = σ(πh, . . . , πt) for t ∈ {h, . . . , T }. The portfolio process is denoted by Z = {Zt}t∈{0,h,...,T } and the
money invested in the risk-free asset by X = {Xt}t∈{0,h,...,T }. The portfolio process Z is adapted with respect to the filtration
F. All these processes are assumed to be constant on the intervals [nh, (n + 1)h) for all n ∈ {0, . . . ,N − 1}. This choice of
RCLL strategies differs from the convention in literature to use LCRL strategies. However, this change makes the dynamic
programming principle easier to state.

Although there are many possibilities to measure the value of a portfolio in this supply curve model, in this article we
use the marked to market value Y = {Yt}t∈{0,h,...,T }

Yt = Xt + ZtSt (2.2)

as our wealth process following the approach in [1,4,3]. The self-financing condition in this setup is given by

Xt+h = Xt − ∆Zt+hS (t + h, St+h, ∆Zt+h) , (2.3)

where ∆Zt+h = Zt+h − Zt . The change in money market account at time t + h is due to trading ∆Zt+h shares at a price
S (t + h, St+h, ∆Zt+h) per share. We note that ∆Zt+h is a random variable to be decided at time t + h and not known at time
t .

The above Eq. (2.3) implies the following dynamics for wealth process,

Yt+h = Yt + Zt (St+h − St) − ∆Zt+hθt+h (∆Zt+h) , (2.4)

where the loss function θ is given by

θt(ν) := [S (t, St , ν) − St ] . (2.5)

Note that for a perfect liquid market, i.e. S(t, St , ν) = St , we recover the usual wealth dynamics. By monotonicity of S in ν,
we see that liquidity is a positive penalty to the wealth process. An adapted portfolio process Z with an initial wealth y at
time t generates a wealth process Y t,s,y,Z

=


Y t,s,y,Z
u : u ∈ {t, . . . , T }


adapted to the filtration F.

Barrier options are characterized by a map g : [0, T ] × R+ → R and an open set O ⊂ R with the property

g(t, s) ≥ 0, ∀(t, s) ∈ [0, T ] × O.

Example 2.1 (Up-and-Out Call). An up-and-out call with strike K and barrier B is characterized by O = (−∞, B) and

g(t, s) = (s − K)+1{t=T ,s<B}.

Let τt,s be the stopping time

τt,s = inf

u ∈ [t, T ] : St,su ∉ O


∧ T

with the convention that inf∅ = ∞. Define the superreplicating cost φh(t, s) of the barrier option with payoff g at time t
and St = s by

φh(t, s) = inf

y : Y t,s,y,Z

τt,s
≥ g


τt,s, St,sτt,s


a.s. for some F-adapted Z


. (2.6)

The path dependent structure of the portfolio process Z makes it impossible to express a dynamic programming principle
for φh(t, s) on a recombitant binomial tree. For a nonrecombitant tree one can view (2.6) as an optimization problem, where
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the objective is to minimize y subject to the set of constraints Y t,s,y,Z
τt,s

≥ g

τt,s, St,sτt,s


. The values of the adapted portfolio

process Z on nodes of the tree are the decision variables. So the optimization problem is

φh(t, s) = inf
Z adapted

y

Y t,s,y,Z
τt,s(ω)(ω) ≥ g


τt,s(ω), St,sτt,s(ω)(ω)


∀ ω ∈ Ω.

This approach has the drawback that the constraints grow exponentially with the number of steps to maturity. Thus it is
quite hard to compute φh(t, s) for markets with many steps. Instead we introduce the dependence of the initial portfolio
position Zt = z into the minimal super-replication cost vh(t, s, z)

vh(t, s, z) = inf

y : Y t,y,Z

τt,s
≥ g


τt,s, St,sτt,s


a.s. for some F-adapted Z satisfying Zt = z


. (2.7)

We formulate a dynamic programming principle (DPP) for vh(t, s, z) on a recombitant binomial tree and develop an efficient
algorithm utilizing the DPP. This numerical scheme allows us to consider markets with much larger time steps despite the
introduction of an extra state variable Zt = z. To obtain φh(t, s) from vh(t, s, z) we note that

φh(t, s) = inf
z

vh(t, s, z). (2.8)

Remark 2.1. Observe that if s ∉ O, then τt,s = t . So in this case vh(t, s, z) as well as φh(t, s) are equal to g(t, s).

3. Properties of the value function and dynamic programming

Proposition 3.1. There exists an optimal portfolio Z for the superreplication problem (2.6). The same statement holds for (2.7).

Proof. We only prove the statement for (2.6), since (2.7) follows similarly. Set α := φ(t, s).
Choose y = max


g


τt,s, St,sτt,s


(ω) : ω ∈ Ω


and Z ≡ 0 to see that α < ∞. To shorten the notation define

A(t, s, y) :=


F-adapted Z : Y t,s,y,Z

τt,s
≥ g


τt,s, St,sτt,s


a.s.


.

We note that A(t, s, y) satisfies the monotonicity property in y, i.e. A(t, s, y1) ⊆ A(t, s, y2) for y1 < y2. Clearly, A(t, s, y)
is non-empty for every y > α, and our aim is to show that A(t, s, α) is non-empty. Take any decreasing sequence {λn}n∈N
with λn ↓ α. It is clear that

A(t, s, α) =


λn>α

A(t, s, λn).

Indeed, it follows from the monotonicity of A(t, s, y) that A(t, s, α) ⊂ A(t, s, λn) for λn > α, which proves one side
of the equality. On the other hand, if Z ∈ A(t, s, λn) for all λn > α, then by continuity of Y t,s,y,Z with respect to y, it is
straightforward to see that Z ∈ A(t, s, α), since λn ↓ α.A(t, s, λn) is a non-empty closed set. We now claim thatA(t, s, λn)
is bounded, hence compact. For a clear and simple exposition of the boundedness argument, we assume that τt,s ≡ T . Take
the equivalent martingale measure Q of the observed stock price process S. First we show that Zt is bounded. Consider the
inequality obtained by conditioning on Ft+h

0 ≤ EQ

g (T , ST )

Ft+h


≤ EQ

Y t,s,y,Z
T

Ft+h


≤ y + Zt(St+h − St),

since νθ(ν) ≥ 0 for all ν ∈ R. We see that Zt is bounded, for otherwise it violates the non-negativity of y + Zt(St+h − St),
because the up and down factors satisfy d < 1 < u. By induction, assume that {Zr}r∈{t,...,u−h} is bounded. Then by
conditioning on Fu+h, we obtain similarly

0 ≤ EQ

Y t,s,y,Z
T

Fu+h


≤ y +

u−h
k=t

Zk(Sk+h − Sk) + Zu(Su+h − Su),

which shows the boundedness of Zu. Via this procedure, we can show that {Zr}r∈{t,...,T−h} is bounded. To prove the
boundedness of ZT , we observe conditioning on FT that

0 ≤ y +

T−h
k=t

Zk(Sk+h − Sk) − ∆ZT θ(∆ZT )

by adaptedness of Z . Since the supply curve is S(t, s, ν) monotone in ν, we see that ZT has to be bounded. To adapt the proof
for the case τt,s ≢ T , we condition on Fτt,s∧u instead of Fu.
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By monotonicity of A(t, s, y) in y, any finite collection of {A(t, s, λn)}
∞

n=1 has non-empty intersection. Since A(t, s, λn)
is compact for every n ∈ N, their intersection A(t, s, α) is non-empty and compact. �

Proposition 3.2. Assume that the function ν ∈ R → νθ(ν) ∈ R+ is convex. Then for fixed (t, s) ∈ [0, T ) × R+, the value
function vh(t, s, z) is convex in the portfolio variable z.

Proof. Fix (t, s) ∈ [0, T ) × R+. Let λ ∈ [0, 1], and z1, z2 ∈ R. We want to show that

vh(t, s, λz1 + (1 − λ)z2) ≤ λvh(t, s, z1) + (1 − λ)vh(t, s, z2).

For i = 1, 2, set yi := v(t, s, zi). Then by Proposition 3.1, there exists Z i,t,s,z
∈ F such that Z i

t = zi and

Y t,s,yi,Z i
τt,s

≥ g

τt,s, Sτt,s


a.s. for i = 1, 2.

Then define the control Ẑ := λZ1
+ (1 − λ)Z2. Clearly Ẑ ∈ F and Ẑt = λz1 + (1 − λ)z2. Moreover, convexity of ν → νθ(ν)

implies that

Y t,s,λy1+(1−λ)y2,Ẑ
τt,s

≥ λY t,s,y1,Z1
τt,s

+ (1 − λ)Y t,s,y2,Z2
τt,s

≥ g

τt,s, Sτt,s


a.s.

We conclude that λy1 + (1 − λ)y2 is superreplicating. Hence, we prove the claim. �

Theorem 3.1. For any stopping time η taking values in {t, t+h, . . . , T } and s ∈ O, theminimal super-replicating cost vh(t, s, z)
satisfies

vh(t, s, z) = inf

y : Y t,s,y,Z

η∧τt,s ≥ g

τt,s, St,sτt,s


1{τt,s≤η} + vh 

η, St,sη , Z t,s,z
η


1{τt,s>η}

a.s. for some F-adapted Z satisfying Zt = z

.

Proof. Let (t, s, z) ∈ [0, T ) × R+ × R. Set

W h(t, s, z) := inf

y : Y t,s,y,Z

η∧τt,s ≥ g

τt,s, St,sτt,s


1{τt,s≤η} + vh 

η, St,sη , Z t,s,z
η


1{τt,s>η}

a.s. for some F-adapted Z satisfying Zt = z

.

Note that by convexity, vh is continuous in z andwemake a similar argument as in Proposition 3.1 to show that the infimum
in W h(t, s, z) is attained. First, we claim that vh(t, s, z) ≤ W h(t, s, z). Set y := W h(t, s, z). Then there exists Z t,s,z

∈ F such
that Zt = z and

Y t,s,y,Z
η∧τt,s ≥ g


τt,s, St,sτt,s


1{τt,s≤η} + vh 

η, St,sη , Z t,s,z
η


1{τt,s>η} a.s.

Let ω ∈ Ω be arbitrary. If η(ω) ≥ τt,s(ω), we have

Y t,y,Z
τt,s

(ω) ≥ g

τt,s, St,sτt,s


(ω).

Otherwise, η(ω) < τt,s(ω) implies that

Y t,y,Z
ηt,s

(ω) ≥ v

η, St,sη , Z t,z

η


(ω).

Then there exists Ẑη(ω),Sη(ω)
∈ F such that Ẑη(ω) = Z t,s,z

η(ω) such that

Y
η(ω),Sη(ω),Y t,s,y,Z

η (ω),Ẑ
τη(ω),Sη(ω)

≥ g

τη(ω),Sη(ω)

, Sτη(ω),Sη(ω)


.

We define

Z̄s =


Zs ∈ s ∈ [t, η]

Ẑs s ∈ [η, τt,s].

By construction Z̄ ∈ F and Ẑt = z. Moreover,

Y t,y,Z̄
τt,s

≥ g

τt,s, Sτt,s


so that y is superreplicating. Hence, vh(t, s, z) ≤ W h(t, s, z).
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To show the claim, it remains to proveW h(t, s, z) ≤ vh(t, s, z). Set y := vh(t, s, z). Then there exists Z t,s,z
∈ F such that

Zt = z and

Y t,s,y,Z
τt,s

≥ g

τt,s, Sτt,s


a.s.

Let ω ∈ Ω . If τt,s(ω) ≤ η(ω), then

Y t,s,y,Z
τt,s

(ω) ≥ g

τt,s, Sτt,s


(ω).

Otherwise if η(ω) < τt,s(ω), then

Y
η(ω),Sη(ω),Y t,s,y,Z

η(ω)
,Z

τη(ω),Sη(ω)
= Y t,s,y,Z

τη(ω),Sη(ω)
≥ g


τη(ω),Sη(ω), Sτη(ω),Sη(ω)


.

Therefore,

Y t,s,y,Z
η(ω) ≥ vh(η(ω), Sη(ω), Z t,s,z(ω))

so that vh(t, s, z) ≥ W h(t, s, z). �

This theorem is an extension of the dynamic programming established in [3] for European claims. In the case of a European
option with payoff f , we have τt,s = T so that for η = t + hwe have the following representation of 3.1

vh(t, s, z) = min y
s.t. y + zs(u − 1) − (zu − z)θup(zu − z) ≥ vh (t + h, su, zu) ,

y + zs(d − 1) − (zd − z)θdown(zd − z) ≥ vh (t + h, sd, zd) ,

where zu and zd are the values Zt+h takes depending on whether the stock price is up or down. By abuse of notation we
will suppress the dependence of θ on the up or down state. We reformulate the above representation of the dynamic
programming as

vh(t, s, z) = max

min

a


vh (t + h, su, z + a) − zs(u − 1) + aθ(a)


,

min
b


vh (t + h, sd, z + b) − zs(d − 1) + bθ(b)


, (3.1)

by using the notation zup = z + a and zdown = z + b. The difference equation (3.1) is called the dynamic programming
equation. It is complemented by the terminal data

vh(T , s, z) = f (s) ∀s ∈ (0, ∞), z ∈ R. (3.2)

Next consider a barrier option characterized by the open set O and a payoff function g . Observe that by Remark 2.1
vh(t, s, z) = g(t, s) for s ∉ O. If s ∈ O, then τt,s > t . Again we take η = t + h in Theorem 3.1. So the stock price either goes
up to su or goes down to sd. Without loss of generality consider only the case that the stock price goes up. For su ∉ O by
Remark 2.1 we get that v(t + h, su, z) = g(t + h, su). This implies

y + zs(u − 1) − (zu − z)θup(zu − z) ≥ g(t + h, su) = vh (t + h, su, zu) .

On the other hand, if su ∈ O according to Theorem 3.1 we also obtain

y + zs(u − 1) − (zu − z)θup(zu − z) ≥ vh (t + h, su, zu) .

Similar analysis can be carried if the price goes down to sd. Therefore, we obtain the same dynamic programming
equation (3.1) as for the European options. However, we note that vh(t + h, St+h, Zt+h) is equal to g(t, s), if St+h ∉ O.

Remark 3.1. The initial portfolio dependence z of the value function vh(t, s, z) has also the advantage that we can work
with payoffs that depend on the portfolio value at expiry. So for instance we could consider a barrier function characterized
by the payoff g(τ , Sτ , Zτ ) and the open set O, where τ is the first exit time from the set O. This enables us to consider
liquidation costs at time τ . This cost at τ depends on the settlement of the option.

A portfolio (x, z) is said to dominate (x̄, z̄) if

x − (z̄ − z) (s + Λ(z̄ − z))+ ≥ x̄. (3.3)

Under a scenario ω if the option settles at time τ(ω) with x̄money in the bank account and z̄ number of shares in the stock,
then we require that (Xτ (ω), Zτ (ω)) dominates (x̄, z̄).



S. Gökay, H.M. Soner / Nonlinear Analysis: Real World Applications ( ) – 7

For example, on a path ω the call option settles with x̄money in the bank account and z̄ number of shares, where

(x̄, z̄) =


(−K , 1) ST (ω) > K
(0, 0) ST (ω) ≤ K .

(3.4)

Because of Y = X + ZS and (3.3), we obtain the boundary condition for the value function

vh(T , s, z) =


zs + (1 − z) (s + Λ(1 − z))+ − K s > K
zs + (0 − z) (s + Λ(0 − z))+ s ≤ K .

(3.5)

4. Parameters

Although we can adapt our numerical algorithm for any loss function θ such that ν → νθ(ν) is convex, we restrict
ourselves for a linear supply curve with liquidity parameter Λ, i.e.

S(t, St , ν) = St + Λν. (4.1)

This supply curve may take negative values, which is undesirable for a price. However, we work with (4.1) instead of
(St + Λν)+. The same approach was followed in [3], because the change in optimal portfolios are expected to be small
so that one never has a negative price.

We emphasize that we can work with any up and down factors, u and d, as well as with any time step N . In particular,
we take

u = exp

σ
√
h


, and d = exp

−σ

√
h


, where h =


T
N

. (4.2)

Here σ is the volatility of the price process and h > 0 is the time step. With this choice of parameters ud = 1.

5. Algorithm

In this section, we develop an algorithm to calculate the superreplicating cost vh(t, s, z), therefore φh(t, s) as a result
of (2.8). In the algorithm, we also compute the optimal hedge z∗(t, s, z) at the node (t, s), if one has an initial position of z
shares. Solving for φh(t, s) by means of the optimization problem discussed in Section 2 is computationally expensive for
many time steps. This is because one has to work on a non-recombitant tree due to the path dependent structure of the
portfolio process. Therefore, the number of nodes in the tree grows exponentially with the number of steps to maturity. As
an alternative we use the dynamic programming equation (3.1) to calculate vh(t, s, z) by marching backwards in time on
a recombitant tree. Despite the fact that we are adding another state variable, the initial portfolio dependence Zt = z, to
the value function vh(t, s, z) our numerical scheme allows us to compute larger time steps efficiently. Once we computed
vh(t, s, z) for all z, we can find φh(t, s) by Eq. (2.8).

Next we describe the algorithm for a barrier option characterized by the open set O and the payoff function g . We start
by discretizing the continuous state variable Zt = z with a grid size of ∆z. As described above, we march backwards in
time on the recombitant tree using the dynamic programming equation (3.1). Therefore to start the algorithm, first we set
vh(T , s, z) = g(T , s) for all discretized z values. In the recursion step if s ∉ O, then we set vh(t, s, z) = g(t, s) for all z.
Otherwise, we note that the dynamic programming equation (3.1) consists of taking the maximum of two minimization
problems. Hence, it is sufficient enough to develop an algorithm to solve one of them. To this aim, we look for the optimizer
z∗(t, s, z)

z∗(t, s, z) = argmin
ξ

vh(t, s, ξ) + Λ(ξ − z)2, (5.1)

where in the recursion step we calculated vh(t, s, ξ) for all discretized ξ and the initial portfolio value z is known. Formally,
we force the first order condition and obtain that

z = Ĝ(t, s, z∗(t, s, z)) for Ĝ(t, s, ξ) =
1
2Λ

vξ (t, s, ξ) + ξ . (5.2)

The convexity of vh(t, s, z) in z implies that

Ĝξ (t, s, ξ) =
1
2Λ

vξξ (t, s, ξ) + 1 > 0.

So Ĝ(t, s, ξ) is an increasing function in ξ . To find z∗(t, s, z) we employ a search algorithm for a dummy variable ξ z . We
start from an initial value ξ z and increase incrementally by ∆z until ξ z satisfies

Ĝ(t, s, ξ z) ≤ z < Ĝ(t, s, ξ z + ∆z).
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We denote by z∗(t, s, z) the ξ z satisfying the above condition. Let us assume that the initial portfolio variable z takes values
in an interval {−A, −A + ∆z, . . . , B}. To find z∗(t, s, −A) we need to start the search from an initial value ξ−A. This can be
chosen to be −A as well. However, the strength of the algorithm relies on the fact that to compute z∗(t, s, z) for z > −A, we
do not need to start from a fixed portfolio value. This saves considerable amount of time and computational effort. In fact
once we computed z∗(t, s, z) we can start the search for z∗(t, s, z + ∆z) from z∗(t, s, z). The previous observation is based
on the monotonicity property of Ĝ(t, s, ξ) in ξ . After we calculate z∗(t, s, z), we store it and use it to evaluate

min
ξ

vh (t + h, St+h, ξ) − z (St+h − St) + Λ (ξ − z)2 ,

since the minimizer of the above equation is z∗(t + h, St+h, z). Then we can compute vh(t, s, z) via (3.1) and store it for all
(s, z) and complete the recursion step.

6. Numerical results

In this section, we are concerned with computing the optimal hedge in feedback form and compare it to other standard
strategies. In particular, we consider the three different strategies given in feedback form

z∗(t, s, z) = argmin
ξ

vh(t, s, ξ) + Λ(ξ − z)2, (6.1)

z∆(t, s) =
φh(t + h, su) − φh(t + h, sd)

s(u − d)
, (6.2)

zm(t, s) = argmin
z

vh(t, s, z). (6.3)

The first portfolio value (6.1) is the optimal hedge at node (t, s) if one has an initial position of z shares. In (6.1) it is crucial
to keep track of the initial portfolio position z because of the path dependent structure of the problem. The second portfolio
value (6.2) is the discrete version of the delta hedge. The third portfolio value (6.3) gives us the portfolio z for which the
value function vh(t, s, z) takes its minimum value. Observe that for the second (6.2) and the third (6.3) portfolio values the
initial portfolio variable z dependence disappears.

The discrete-delta strategy and the minimizer of the value function are path-independent strategies, i.e. they depend
on the node of the binomial lattice but not on the path followed up to that node. However, we observe that the optimal
hedge is path-dependent. In fact, to compute the optimal strategy at a node of the binomial tree, one needs to know the
initial position in the risky asset before coming to that node. Intuitively, if the initial number of shares is known at a node,
then one knows which path is followed up to that node. This supports the introduction of the extra state variable, the initial
position in the risky asset, to the value function.

Let us assume we are initially at node (t, s) and consider a path ω ∈ Ω . Also suppose at this node the initial portfolio
value is Zt = z and the initial wealth value is Yt = y. For this path ω on the binomial tree the values of the wealth process
corresponding to a strategy Z t,s,z are given by

Y t,s,y,Z
u+h (ω) = Y t,s,y,Z

u (ω) + Z t,s,z
u (ω)


St,su+h(ω) − St,su (ω)


− Λ


Z t,s,z
u+h (ω) − Z t,s,z

u (ω)
2

for u ∈ {t, . . . , τt,s(ω) − h}.
Choose y := Yt = vh(t, s, z) for Zt = z and compare the wealth values and the superreplicating values on a given path

ω by looking at the difference

Y t,s,y,Z
u (ω) − vh 

u, St,su (ω), Z t,s,z
u (ω)


, ∀u ∈ {t, . . . , τt,s(ω)} (6.4)

for the three different strategies: First for the hedge defined recursively by

Zt(ω) = z and Z t,s,z
u+h (ω) = z∗(u + h, Su+h(ω), Z t,s,z

u (ω)) ∀ u ∈ {t, . . . , τt,s(ω) − h}.

Second for the strategy

Zt(ω) = z∆(t, s) and Z t,s,z
u (ω) = z∆(u, St,su (ω)) ∀ u ∈ {t, . . . , τt,s(ω)}.

If τt,s(ω) = T , then by convention we set Z t,s,z
T (ω) = Z t,s,z

T−h (ω). Third for the strategy

Zt(ω) = zm(t, s) and Z t,s,z
u (ω) = zm(u, St,su (ω)) ∀ u ∈ {t, . . . , τt,s(ω)}.

We choose (6.4) as a criterion to evaluate the performance of different strategies. If Z t,s,z is a superreplicating strategy, it
should satisfy

Y t,s,y,Z
u (ω) ≥ vh 

u, St,su (ω), Z t,s,z
u (ω)


, ∀u ∈ {t, . . . , τt,s(ω)}, ∀ω ∈ Ω.
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Assume this is not the case, then there exists a node (u, Su(ω)) on some path ω starting from (t, s) such that

Y t,s,y,Z
u (ω) < vh (u, Su(ω), Zu(ω)) . (6.5)

This implies that for any strategy Z
u,Su(ω)

∈ F with Z
u,Su(ω)

u = Z t,s,z
u , we can find a path ω starting from (u, Su(ω)) such that

the wealth value at time τu,Su(ω)(ω) fails to dominate the payoff, i.e.

Y u,Su(ω),Y t,s,y,Z
u ,Z

τu,Su(ω)
(ω) < g


τu,Su(ω)(ω), Sτu,Su(ω)

(ω)

.

In particular, choosing Z̄ = Z one can see that Z is not superreplicating.
We give examples of paths for European call and capped options aswell as up-and-out call options, onwhich the standard

strategies zm(t, s) and z∆(t, s) perform badly. Given such a path ω starting from (t, s), we observe that (6.5) holds at some
node (u, Su(ω)) for these portfolio strategies. Moreover, these paths are exactly those, where the wealth processes Y fail to
dominate the payoff g at node


τt,s(ω), Sτt,s(ω)


, if one uses zm(t, s) and z∆(t, s) as portfolio strategies. As expected, we see

numerically that the optimal strategy given in feedback form z∗(t, s, z) always superreplicates the claim. So at every node
(u, Su(ω)) on each path ω it satisfies Y t,s,y,Z

u (ω) ≥ vh(u, Su, Zu(ω)) and it dominates the payoff g . This indicates that the
optimal strategy given in feedback form z∗(t, s, z) is not equal to the strategies consisting of zm(t, s) and z∆(t, s). However,
there are scenarios ω, where z∗(t, s, z), z∆(t, s) and zm(t, s) agree with each other at some or at all nodes on ω. Since
z∗(t, s, z) is not always equal to zm(t, s) and z∆(t, s), the initial portfolio z dependence of the value function vh(t, s, z)
turns out to be crucial to extract information about the hedge. Therefore, we note that knowing only the value function
φh(t, s) is not sufficient to compute the hedge.

Denote by φh,Λ(0, 1) the discrete-time superreplicating cost with liquidity parameter Λ. Then, we take the relative
difference between φh,Λ(0, 1) and φh,0(0, 1), i.e.

φh,Λ(0, 1) − φh,0(0, 1)
φh,0(0, 1)

as the liquidity premium. It measures how much in addition has to be paid due to the liquidity parameter Λ.
If one uses a strategy consisting of zm(t, s) or z∆(t, s), then there exists paths, where the difference between the wealth

process and the payoff take large negative values. We numerically observe this is the case, if the zm(t, s) and z∆(t, s) vary
rapidly, in particular oscillate. However, the optimal hedge given in feedback form

z∗(t, s, z) = argmin
ξ

vh(t, s, ξ) + Λ(ξ − z)2

is immune to rapid changes due to the penalization term Λ(ξ − z)2. Therefore, this penalization has a ‘‘smoothing out’’
effect on the hedge even for a small liquidity parameter Λ. In our numerical experiments, the liquidity parameter Λ and
the maturity T are chosen such that these effects of illiquidity on the portfolio strategies as well as their associated wealth
processes are exaggerated. Moreover, for sufficiently small Λ, this penalization is relatively ‘‘cheap’’ for z∗(t, s, z), since for
z∆(t, s) and zm(t, s) the difference between the wealth process and the payoff may take negative values. We also report
on the dependence of φh,Λ(0, 1) on various liquidity parameters Λ, and exhibit the premiums paid for these liquidity
parameters. We see that for appropriate liquidity parameters these premiums are small. We suggest to use the hedge given
in feedback formby z∗(t, s, z) from the algorithm instead of zm(t, s) and z∆(t, s). For a sufficiently smallΛ > 0, this portfolio
choice will yield a ‘‘nice’’ hedge with a ‘‘small’’ cost.

6.1. Numerical experiments

In all the conducted numerical experiments we start from the node (t0, s0) = (0, 1) with zero initial shares, i.e. Z0 = 0.
We work with a yearly maturity T = 1 and take a yearly volatility σ = 0.25. Also, the spacing between two consecutive
portfolio values is ∆z = 0.0005.

6.1.1. Call option
In this numerical example, we illustrate that there exists scenarios ω, where the three strategies given in feedback form

by (6.1)–(6.3) are not only very close to each other, but also their corresponding wealth processes are almost equal. More
importantly, although we start with Z0 = 0 number of shares, which is not equal to zm(0, 1) and z∆(0, 1) in both cases,
z∗(t, s, z) is attracted to z∆(t, s) and zm(t, s) after some time.

In this example we take the strike of the call option to be K = 0.85, the number of time steps N = 65, the discretized
portfolio values z lie in the interval [0, 1] and the liquidity parameter Λ is 0.03. We take the final liquidation cost into
account and consider the payoff at maturity to be given by (3.5).

For the path ω, Fig. 1 depicts the stock price values over time, and Fig. 2 shows how the three different strategies evolve
with respect to time on this path ω. Moreover, the Fig. 3 illustrates the performance of the three different strategies by
plotting the difference Y t,s,y,Z

u (ω) − vh

u, St,su (ω), Z t,s,z

u (ω)

for u ∈ {0, . . . , T } on the path ω.
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Fig. 1. Stock price values over time for a call option.

Fig. 2. Values of different strategies over time for a call option.

6.1.2. Capped option
For the capped option with payoff g(s) = s ∧ 1 we choose a liquidity parameter Λ = 0.2, the number of time steps

N = 75 and the discretized z values lie in the interval [−2, 2]. We also incorporate the liquidity cost at maturity. This option
settles on the path ω with zero money in the bank account and with one share if ST (ω) < 1. On the other hand in the case
ST (ω) ≥ 1 the agent gets 1 unit in the bank account and zero number of shares. Therefore, the terminal data for the value
function is given by

vh(T , s, z) =


zs + (1 − z) (s + Λ(1 − z))+ s < 1
zs + (0 − z) (s + Λ(0 − z))+ + 1 s ≥ 1.

Fig. 4 illustrates the stock price values with respect to time on a path ω. We also can see from Fig. 5 how the three
different strategies evolve over time on ω. The strategies given in feedback form by zm(t, s) and z∆(t, s) vary rapidly, in fact
they oscillate. However, the optimal hedge z∗(t, s, z) makes less rapid changes, it is a ‘‘smoothened out’’ version of zm(t, s)
and z∆(t, s). Fig. 6 depicts the performance of corresponding three strategies. It plots Y t,s,y,Z

u (ω)−vh

u, St,su (ω), Z t,s,z

u (ω)

for

u ∈ {0, . . . , T } on the path ω. We note that this difference is always positive for z∗(t, s, z) indicating that the corresponding
wealth dominates the payoff on ω. On the other hand, the difference Y t,s,y,Z

u (ω) − vh

u, St,su (ω), Z t,s,z

u (ω)

for zm(t, s) and

z∆(t, s) become negative on the path, in particular they fail to dominate the payoff at maturity on this path. This supports
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Fig. 3. The performance of different strategies over time for a call option.

Fig. 4. Stock price values over time for a capped option.

that the optimal hedge is not always equal to the discrete delta-hedge z∆(t, s) or to zm(t, s). Furthermore, the optimal hedge
behaves nicer than z∆(t, s) or zm(t, s) and it performs well in the sense that it superreplicates.

6.1.3. Up-and-out call options
We also investigate an up-and-out call option with strike K = 0.9, barrier B = 1.55 with liquidity parameter Λ = 0.01.

The discretized z-values lie in the interval [−4, 4] and work with a time step N = 72. The settlement of the barrier option
at maturity resembles the one of vanilla call with the same strike. For a path ω with τ0,1(ω) < T , the settlement is that the
investor gets zero share and pays zero amount of money. Hence, we obtain for Sτ0,1(ω)(ω) = s

vh(τ0,1(ω), s, z) =

zs + (0 − z) (s + Λ(0 − z))+ B ≤ s
zs + (0 − z) (s + Λ(0 − z))+ s ≤ K , τ0,1(ω) = T
zs + (1 − z) (s + Λ(1 − z))+ − K K < s < B, τ0,1(ω) = T .

Fig. 7 shows the stock price values over time on a pathω. As in the capped option, Fig. 8 illustrates that the optimal hedge
given by z∗(t, s, z) shows much less variability than the strategies consisting of zm(t, s) and z∆(t, s). In the Fig. 9 we can
see that the wealth process using the strategy composed of z∗(t, s, z) dominates the payoff at maturity, whereas the wealth
processes corresponding to zm(t, s) and z∆(t, s) perform badly.

In the next numerical experiment, we exhibit that the underperformance of the strategies zm(t, s) and z∆(t, s) can be
severe to demonstrate the effect of liquidity on the hedges. Fig. 10 depicts the stock price values. Fig. 11 clearly illustrates
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Fig. 5. Values of different strategies over time for a capped option.

Fig. 6. The performance of different strategies over time for a capped option.

Fig. 7. Stock price values over time for an up-and-out call option.
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Fig. 8. Values of different strategies over time for an up-and-out call option.

Fig. 9. The performance of different strategies over time for an up-and-out call option.

that the optimal hedge given by z∗(t, s, z) showsmuch less variability than the strategies consisting of zm(t, s) and z∆(t, s).
Fig. 12 shows the performance of the three different strategies over time on this pathω. For a liquidity parameterΛ = 0.05,
we see that from Fig. 12 that the wealth processes at expiry take huge negative values.

6.2. Dependence on lambda

Weend this section by demonstrating the dependence of the superreplicating valueφh,Λ(0, 1) on the liquidity parameter
Λ. We take as an example the up-and-out call optionwith strike K = 0.9, barrier B = 1.55 and 3-monthmaturity. As before,
the discretized z-values lie in the interval [−4, 4] and work with a time step N = 72.

Fig. 13 depicts the dependence of φh,Λ(0, 1) on the liquidity parameter Λ. Moreover, we can see in Table 1 the premium
paid for the liquidity parameters.

7. Conclusion

In this article, we studied the hedging strategy of European and barrier options in a binomial illiquid market. We
computed numerically the optimal strategy in feedback form by means of a dynamic programming equation (3.1). This
optimal strategy is not equal to the discrete-delta strategy or to the strategy consisting of minimizers of the value function.
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Fig. 10. Stock price values over time for an up-and-out call option on a different path.

Fig. 11. Values of different strategies over time for an up-and-out call option on a different path.

Table 1
Dependence on Λ.

Λ φh(0, 1) Premium Λ φh(0, 1) Premium

0 0.11306585 0% 0.11 0.12536238 10.9%
0.01 0.11501288 1.72% 0.12 0.12621952 11.6%
0.02 0.11631608 2.87% 0.13 0.12705196 12.4%
0.03 0.11753354 3.95% 0.14 0.12786791 13.1%
0.04 0.11865432 4.94% 0.15 0.12867836 13.8%
0.05 0.11973516 5.89% 0.16 0.12947439 14.5%
0.06 0.12075685 6.80% 0.17 0.13025493 15.2%
0.07 0.12174484 7.67% 0.18 0.13104049 15.9%
0.08 0.12268063 8.50% 0.19 0.13180431 16.6%
0.09 0.12361261 9.32% 0.2 0.13256691 17.3%
0.1 0.12448931 10.1%

We demonstrate this by exhibiting paths, where the discrete-delta strategy or the minimizer of the value function fail to
dominate the payoff. On such paths, these strategies show great variability, whereas the optimal hedging strategy is exposed
to less variability due to the effect of liquidity. Therefore, we propose superreplicating the option using a sufficiently small
liquidity parameter Λ to obtain a ‘‘nice’’ hedge but pay some premium to achieve it.
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Fig. 12. The performance of different strategies over time for an up-and-out call option on a different path.

Fig. 13. The dependence of φh(0, 1) on Λ.

Acknowledgments

The research was partly supported by the European Research Council under the grant 228053-FiRM. Financial support
from Credit Suisse through the ETH Foundation and by the National Centre of Competence in Research ‘‘Financial Valuation
and Risk Management’’ (NCCR FINRISK) is also gratefully acknowledged.

References

[1] U. Çetin, R.A. Jarrow, P. Protter, Liquidity risk and arbitrage pricing theory, Finance and Stochastics 8 (2004) 311–341.
[2] U. Çetin, L.C.G. Rogers, Modeling liquidity effects in discrete time, Mathematical Finance 17 (2007) 15–29.
[3] S. Gökay, H.M. Soner, Liquidity in a binomial market, Mathematical Finance 22 (2) (2012) 250–276.
[4] U. Çetin, H. Soner, N. Touzi, Option hedging for small investors under liquidity costs, Finance and Stochastics 14 (2010) 317–341.
[5] Y. Dolinsky, H.M. Soner, Duality and convergence for binomial markets with friction, Finance and Stochastics (2013) 1–29.
[6] D. Bertsimas, A.W. Lo, Optimal control of execution costs, Journal of Financial Markets 1 (1) (1998) 1–50.
[7] S. Gökay, A.F. Roch, H.M. Soner, Liquidity Models in Continuous and Discrete Time, Springer Berlin Heidelberg, 2011.
[8] M. Broadie, P. Glasserman, S.G. Kou, A continuity correction for discrete barrier options, Mathematical Finance 7 (1997) 325–349.
[9] M. Broadie, P. Glasserman, S. Kou, Connecting discrete and continuous path-dependent options, Finance and Stochastics 3 (1999) 55–82.

[10] P. Boyle, S.H. Lau, Bumping up against the barrier with the binomial method, The Journal of Derivatives 1 (4) (1994) 6–14.
[11] L. Rogers, E. Stapleton, Fast accurate binomial pricing, Finance and Stochastics 2 (1997) 3–17.
[12] P. Carr, K. Ellis, V. Gupta, Static hedging of exotic options, The Journal of Finance 53 (1998) 1165–1190.
[13] E. Derman, D. Ergener, I. Kani, Static option replication, The Journal of Derivatives 2 (4) (1995) 78–95.
[14] P. Bank, D. Baum, Hedging and portfolio optimization in financial markets with a large trader, Mathematical Finance 14 (2004) 1–18.

http://refhub.elsevier.com/S1468-1218(13)00072-2/sbref1
http://refhub.elsevier.com/S1468-1218(13)00072-2/sbref2
http://refhub.elsevier.com/S1468-1218(13)00072-2/sbref3
http://refhub.elsevier.com/S1468-1218(13)00072-2/sbref4
http://refhub.elsevier.com/S1468-1218(13)00072-2/sbref5
http://refhub.elsevier.com/S1468-1218(13)00072-2/sbref6
http://refhub.elsevier.com/S1468-1218(13)00072-2/sbref7
http://refhub.elsevier.com/S1468-1218(13)00072-2/sbref8
http://refhub.elsevier.com/S1468-1218(13)00072-2/sbref9
http://refhub.elsevier.com/S1468-1218(13)00072-2/sbref10
http://refhub.elsevier.com/S1468-1218(13)00072-2/sbref11
http://refhub.elsevier.com/S1468-1218(13)00072-2/sbref12
http://refhub.elsevier.com/S1468-1218(13)00072-2/sbref13
http://refhub.elsevier.com/S1468-1218(13)00072-2/sbref14


16 S. Gökay, H.M. Soner / Nonlinear Analysis: Real World Applications ( ) –

[15] R. Frey, Perfect option hedging for a large trader, Finance and Stochastics 2 (1998) 115–141.
[16] R. Frey, A. Stremme, Market volatility and feedback effects from dynamic hedging, Mathematical Finance 7 (1997) 351–374.
[17] R.A. Jarrow, Market manipulation, bubbles, corners, and short squeezes, Journal of Financial and Quantitative Analysis 27 (1992) 311–336.
[18] R.A. Jarrow, Derivative security markets, market manipulation, and option pricing theory, Journal of Financial and Quantitative Analysis 29 (1994)

241–261.
[19] V. Ly Vath, M. Mnif, H. Pham, A model of optimal portfolio selection under liquidity risk and price impact, Finance and Stochastics 11 (2007) 51–90.
[20] E. Platen, M. Schweizer, On feedback effects from hedging derivatives, Mathematical Finance 8 (1998) 67–84.
[21] A.F. Roch, Liquidity risk, price impacts and the replication problem, Finance and Stochastics 15 (3) (2011) 399–419.
[22] K. Sircar, G. Papanicolaou, General Black-Scholes models accounting for increased market volatility from hedging strategies, Applied Mathematical

Finance 5 (1998) 45–82.
[23] P. Bank, D. Kramkov, A model for a large investor trading at market indifference prices. I: single-period case, preprint.
[24] P. Bank, D. Kramkov, A model for a large investor trading at market indifference prices. II: continuous-time case, preprint.

http://refhub.elsevier.com/S1468-1218(13)00072-2/sbref15
http://refhub.elsevier.com/S1468-1218(13)00072-2/sbref16
http://refhub.elsevier.com/S1468-1218(13)00072-2/sbref17
http://refhub.elsevier.com/S1468-1218(13)00072-2/sbref18
http://refhub.elsevier.com/S1468-1218(13)00072-2/sbref19
http://refhub.elsevier.com/S1468-1218(13)00072-2/sbref20
http://refhub.elsevier.com/S1468-1218(13)00072-2/sbref21
http://refhub.elsevier.com/S1468-1218(13)00072-2/sbref22

	Hedging in an illiquid binomial market
	Introduction
	Model
	Properties of the value function and dynamic programming
	Parameters
	Algorithm
	Numerical results
	Numerical experiments
	Call option
	Capped option
	Up-and-out call options

	Dependence on lambda

	Conclusion
	Acknowledgments
	References


