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We construct a model for liquidity risk and price impacts in a limit order book setting
with depth, resilience and tightness. We derive a wealth equation and a characteriza-
tion of illiquidity costs. We show that we can separate liquidity costs due to depth and
resilience from those related to tightness, and obtain a reduced model in which propor-
tional costs due to the bid-ask spread is removed. From this, we obtain conditions under
which the model is arbitrage free. By considering the standard utility maximization
problem, this also allows us to obtain a stochastic discount factor and an asset pricing
formula which is consistent with empirical findings (e.g., Brennan and Subrahmanyam
(1996); Amihud and Mendelson (1986)). Furthermore, we show that in limiting cases for
some parameters of the model, we derive many existing liquidity models present in the
arbitrage pricing literature, including Cetin et al. (2004) and Rogers and Singh (2010).
This offers a classification of different types of liquidity costs in terms of the depth and
resilience of prices.
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1. Introduction

The notion of liquidity in financial markets can either refer to the added costs
associated to trading large quantities of a given financial security, or can address
the ability to trade this asset without triggering important changes in its prices. On
one hand, we may think of the level of liquidity as a measure for the added costs per
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transaction and model it through an exogenously defined supply curve which gives
the price per share as a function of the transaction size and time. In particular, if
a trade only affects the current price paid, we are effectively in this setting and the
transaction costs depend mainly on the size of the trade. On the other hand, these
added liquidity costs are the result of changes in the supply and demand of the asset
due to volume imbalances. It is well recorded that large trades can have a lasting
impact on the supply and demand of the asset in such a way that future prices will
be affected. A part of this impact can be permanent and another part may decay
with time. Thus, we see that these two notions are closely related. In this paper, we
present a general framework for liquidity risk models for which many existing large
trader and price impacts models can be seen as a particular or limiting case. We
show it is arbitrage free, we obtain a stochastic discount factor and derive an asset
pricing formula which relates the current price to its future payoff and the expected
future levels of liquidity.

Following [30] we identify three equally important dimensions of liquidity: depth,
resilience and tightness. Depth is defined as the size of the order flow required to
change prices by one monetary unit. Resilience is the degree to which prices recover
from small trades. Tightness is defined as the cost per share of turning around a
position. Clearly these three concepts are closely related and pertain to the second
approach to liquidity described above, namely the ability to trade without triggering
important changes in prices. Tightness is usually directly modeled by considering
a bid and an ask price, or equivalently, a transaction cost which is proportional to
the trading volume as done in the classical model of [17, 31]. However, an analytical
study of liquidity and liquidity risk requires proper modeling of all components of
liquidity. Furthermore, liquidity becomes a risk when the levels of depth, resilience
and tightness evolve stochastically in time.

There is a large literature on equilibrium models which incorporate liquid-
ity. In equilibrium models, liquidity is often introduced by considering differ-
ent classes of investors with different information sets, as in the seminal works
of [8, 9, 22, 25, 30, 38]. Trades then occur between uninformed investors, who can
be thought as information gatherers and liquidity providers, and informed investors,
who profit from the illiquidity of the market. In the market-making model of [22, 30]
market liquidity is introduced by considering a market structure in which a market
maker must trade with informed and uninformed traders. By specifying the risk
aversion of the market participants, the distribution of noisy trade volume, and/or
the probability of informed trades, the authors develop general equilibrium models
for which we can obtain theoretical properties of prices and the cost of trading due
to liquidity. On the other hand, there is a less extensive literature on liquidity risk
from an arbitrage pricing theory perspective. In this setting, liquidity costs and price
processes are hypothesized rather than endogenously derived from fundamentals.
See for instance [13, 26].

We propose an arbitrage-free model, outlined in Sec. 4.3, for liquidity risk
from the perspective of liquidity providers with desirable stylized facts justified
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by empirical studies and theoretical works on equilibrium models. The model is
complex enough to allow for general dynamics for the three components of liquidity
yet sufficiently mathematically tractable to allow for the development of an arbi-
trage pricing theory and an asset pricing formula. To do so, we take the point of
view of an investor who observes a limit order book and provides liquidity to better
informed traders by making market orders. The investor hypothesizes a probability
distribution for a number of dynamic processes that represent features of the limit
order book that relate to the three dimensions of liquidity. Moreover, he assumes a
certain relation between his trades and the future dynamic of these processes. As
a result, this passive investor knows the total cost of trading due to illiquidity and
can solve for his optimal holdings in this setting.

Our main contribution is a reduced model, given in Sec. 4.4, which separates
liquidity costs due to depth and resilience from those related to tightness in order to
focus entirely on the first two dimensions of liquidity which are less understood from
an arbitrage pricing perspective. We see that, unlike proportional transaction costs,
liquidity costs related to depth and resilience can be defined for strategies that do
not have finite variation. By considering the standard utility maximization problem,
this also allows us to derive, from first-order conditions, a stochastic discount factor
and an asset pricing formula which states that the post-liquidation asset price is the
risk neutral expectation of the future post-liquidation asset price minus a weighted
integral of the future optimal portfolio holdings. It is interesting to note that this
result is in line with many empirical findings, namely the work of [7, 12] who find
that measures of liquidity are positively correlated to equity returns. We also make
more apparent the interaction between depth and resilience and distinguish two
different kinds of liquidity costs that can arise in this framework.

The importance of stochastic discount factors is well known in the asset pric-
ing literature. Although the utility maximization analysis only applies to a single
agent, [16] recognizes the universality of the first-order conditions (also referred to
as the Euler equation) which gives rise to the asset pricing equation: “We have not
assume complete markets or a representative agent. These equations apply to each
individual investor ... independently of the presence or absence of other investors or
other assets.” The first-order conditions technique has been applied to a large num-
ber of settings, including more recently the liquidity-adjusted CAPM model of [1]
and its extension by [39]. The liquidity premium in these two models is related to
the tightness of the market due to a bid-ask spread. Cetin and Rogers [14] obtain
a stochastic discount factor in a discrete-time supply curve model with nonpropor-
tional deterministic liquidity costs. Prices are assumed to be fully resilient between
time steps. Our asset pricing formula is obtained for a general liquidity risk model
in continuous time with time-varying tightness, depth and resilience.

The paper is organized as follows. In Sec. 2, we discuss existing liquidity mod-
els that have a relation to our proposed model. In Sec. 3, we present the model
and in Sec. 4 we derive the dynamics of the wealth process and analyze the liquid-
ity costs in terms of the three dimensions of liquidity described above. A careful
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choice of the state dynamics and the wealth equation, given by Eq. (4.8), is the
essential step in obtaining the arbitrage Theorem 4.1 and the asset pricing for-
mula (5.4). In Sec. 5, we derive the asset pricing formula from first-order conditions
of a utility maximization problem. From this, we also obtain the associated stochas-
tic discount factor from the investor’s first-order conditions. In the last section, we
present the connection between our model and other existing liquidity models in the
arbitrage pricing literature by proving convergence results in relation to depth and
resilience.

2. Existing Mathematical Models of Liquidity

Nowadays, asset prices are frequently obtained through a limit order book (LOB),
in which limit orders, i.e. orders to buy or sell a given amount of shares at a specified
price, are entered by market participants and kept until a market order comes in
to match one of the existing limit orders. As mentioned in the introduction, many
liquidity risk models (c.f. [2, 18, 23, 34]) directly aim to model limit order books in
an arbitrage-free setting. The advantage of this approach is that the availability of
historical LOB data now allows investors to estimate concerned quantities without
the need to develop an equilibrium theory which takes into account many more
fundamental, yet less tangible economic variables. The important features include
the level of supply and demand, the amount of resilience and the bid-ask spread.
There are two different kinds of liquidity costs that have been modeled in this part
of the literature. Both approaches have their positive and negative aspects and
the goal of this section is to present these models in order to develop a unified
framework for arbitrage pricing in the presence of liquidity costs. In Sec. 6, we
show that these two kinds of liquidity costs arise in limiting cases of our model.
This offers a classification of different types of liquidity costs in terms of depth and
resilience.

Limit order books are sometimes modeled implicitly through a supply curve.
In supply curve models, asset prices are hypothesized to be given by stochastic
processes {S¢(x)}1>0,zer giving at every point in time ¢ the price (per share) for a
transaction of size x. This idea was developed in a general semimartingale setup in
[13]. In this setup, the liquidity cost as defined by the supply curve model is given
by an integral of the square of the gamma of the portfolio with respect to time. We
refer to this as the liquidity costs of the first kind. Due to its exogenous nature, the
supply curve does not however take into account the impact of trading (however
small) on its future evolution. An immediate consequence of this fact is that the
supply curve effectively has infinite resilience. Indeed, if a trade is made at time
t, the supply curve takes the same form at time ¢+ regardless of the size of past
trades, including the one at time ¢. As a result, it can be shown that the optimal
strategy is to divide all block trades into infinitesimally smaller ones and execute
them at infinitesimally small time intervals. More specifically, [13] show that only
continuous strategies that have finite variation should be used. The trades are then
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effectively made at the best bid or best ask prices and all liquidity costs associated
to large trades are avoided.

To remedy this shortcoming, two approaches were considered in the literature.
The first approach is to limit the speed of trading by putting a bound on the gamma
of the strategy, i.e. a bound on the speed of change of the position with respect to
the asset price. This approach can be found in [15]. The economic idea behind this
approach is that the speed of resilience of the supply of an asset, namely the time it
takes for the limit order book to fill up to its previous level after a market order, is
limited to the speed of change of the asset price. By restricting the speed at which
changes to portfolio holdings can be made, we effectively restrict the investor to
wait for prices to return to their equilibrium values before making the next trade.
In discrete time, this idea is more apparent. Indeed, the speed of trading is naturally
restricted by the time between time steps. Since trading is not allowed between two
time steps in the discrete setting, it is impossible for the investor to break down
her trades into smaller ones before the next change in prices. The results of [27]
show that hedging prices obtained in a discrete model version of [15] converges to
prices obtained in the continuous model, supporting the economic relevance of the
assumptions on gamma restrictions in [15]. From our modeling point of view, this
approach is, however, not fully adequate as it implicitly assumes full resilience of
prices between two time steps.

The second approach is to consider the impact of trading on the supply curve,
as advocated in [34]. See also [2, 3, 32] and references therein. By assuming that
all trades have an impact on the supply of the asset proportionally to the size of
the transaction, a change in the position in the asset will incur essentially the same
positive liquidity cost in the short term whether it is passed as one block trade or
divided into smaller ones and executed rapidly. The first approach indirectly models
the finite resilience of the supply curve by placing restrictions on trading, whereas
the second models the lasting impact of trades on the limit order book. Note that
a more natural notion of resilience is also present in [2, 3, 32], in which a portion
of the permanent impact is assumed to decay exponentially with time. Most of
these papers are concerned with an important but specific problem of the optimal
execution of a large order as formulated by [10]. The typical time horizon of this
problem is a few hours, and this is reflected in these models. Our goal, however, is
to understand phenomena that go well beyond this time scale. Thus the similarities
between these models and ours is only in the short term effects.

Another popular approach in the price impact literature is to model exogenously
the liquidity premium in terms of instantaneous price impacts. In contrast to the
gamma restriction of [15], liquidity costs due to temporary imbalances in the supply
and demand of the asset are modeled in terms of the speed of trading with respect
to time in [4, 5, 36]. More specifically, the restriction imposed on trading strategies z
is that they are assumed to be absolutely continuous with respect to time. Liquidity
costs over the time interval [0, 7] are then assumed to be given by an integral of
the form fOT h(%s)ds, in which Z is the Radon-Nikodym derivative with respect to
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the time variable. We refer to it as the liquidity costs of the second kind. This idea
was taken a step further by [23] by including a decay factor inside the integral. See
also [24] in this regard.

To justify this model, [5] first make a setup in discrete time in which the liquidity
cost of transactions depends on the inverse of the time between them. In the limit as
the time step goes to zero, discrete trades are not allowed so that the limiting model
should be thought as an approximation of the discrete setup. Rogers and Singh [35]
derive this form of liquidity costs from a construction involving a limit order book,
when trades are assumed to have no impact on prices. Starting from a discrete time
description of the dynamics of the LOB, it is shown that one captures a liquidity
cost by letting the level of the supply vary proportionally to the size of the time step
when the time step goes to zero. Clearly, strategies with jumps are very expensive in
this setting. Once again, we are forced to only allow absolutely continuous strategies
in this setting. In particular, it suggests that this kind of illiquidity is appropriate
when depth is low and that resilience is high. We will come back to this idea later
in the text.

Note that absolutely continuous strategies incur no liquidity costs of the first
kind. However, we see in Sec. 6 that when price impacts decay with time, both
kinds of liquidity costs are present regardless of the type of strategies used and
many models discussed so far can be obtained as limiting cases when the speed of
exponential decay and/or the depth converges to infinity. Our results thus offer a
straightforward economic justification for known liquidity costs models and provides
a general framework that incorporates existing paradigms. In particular, a positive
aspect of our setup is the lack of restrictions on the type of strategies allowed.

3. A General Model

We consider a financial asset, called the stock, which is actively traded through
a limit order book. In this setting, there are two types of trades possible, namely
limit orders and market orders. A limit order is an order to buy or sell the stock at
a specific price which is not immediately executed. Limit orders provide liquidity
by filling the limit order book. On the other hand, impatient traders can submit
market orders (also known as marketable limit orders) which are executed against
the existing limit orders and thereby deplete the order book. In this section, we give
a static description of the order book and the impact of a trade on its composition.
We are given a trading horizon T with (Q, F, (Ft)o<t<7, P) a filtered probability
space satisfying the usual conditions. We assume that the spot rate of interest is a
constant, and for simplicity we always use discounted price processes throughout.
We take the point of view of a trader (not necessarily large) who only makes
market orders. The information that the investor has is represented by the filtration
(Ft)o<t<r. The investor is said to be a liquidity provider in the sense that he does
not necessarily try to profit from less informed investors by slowly revealing his
information through his trades. His trades however has an impact on prices, but
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rather than making assumptions about preferences and behaviors of other investors,
we hypothesize a direct relation between the investor’s trades and prices, which we
now describe.

We assume that at any time ¢ < T traders observe the limit order book and
know the average price to pay per share for a transaction of size z via a market
order. Following the literature (for instance [2]), we represent the limit order book
by two functions p;” and p; . The quantity p; (s) (resp. p; (s)) denotes the density
of the number of shares offered at the ask price (resp. bid price) s at time ¢. For

instance,
S2
[ eos

s1
is the total number of shares offered between prices s; and so. If a trader wants
to buy (resp. sell) z shares at time ¢ through a market order then the total dollars
paid (resp. obtained) for this order is

S. by
/ sp; (s)ds (resp./ spt(s)ds>,

z

where s, solves the equation

/a o (s)ds = = <p / " o (s)ds = ) (3.1)

z

and a; is the smallest price at which p; (s) > 0 whereas b; is the highest price at
which p; (s) > 0. The prices b; and a; are called best bid and best ask prices.

To understand the above expressions, note that a market order to buy will start
at the quoted price a; obtaining p¢(at)ds shares at that price, then moving up the
limit order book until the price of s, is paid for the last p;(s,)ds shares purchased.
The total shares purchased is then z.

It is well known and very intuitive that the most optimal strategies in this setting
consist in trading small quantities so that the price paid is never too far from the
best bid and the best ask prices. In other words, one rarely execute orders deep
in the limit order book. As a result, we make the simplifying assumption that the
limit order book has a constant density 2—7}% outside the bid ask spread at time
t, in which m = (my);>0 is a given adapted stochastic process. This simplifying
assumption is supported by the empirical evidence in [11], especially for frequently
traded and large volume stocks. Furthermore, [28] provide theoretical justification
based on the notion of quasi-arbitrage. In the constant density case, s, = a;1{.0}+
bili.<0y +2my2z and the total dollars paid (resp. obtained) for z shares is

1 ai+2myz
_ 2
— / sds = aiz +myz

th at

1 b
resp. —/ sds = bz +my22 .
th bi+2my z
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The depth at time ¢, i.e. the size of the order flow required to shift prices by
one dollar, is %mt Consequently, m; in our supply curve is a measure of illiquidity.
Indeed, the larger is my, the larger is the price impact realized to trade z shares.

Recall that in our market, a trade occurs when a market order is placed. As a
result of this market order, limit orders in the limit order book are executed starting
with the cheapest to the most expensive (in the case of a buying order) until the
total number of shares ordered is reached as in expression (3.1). Once the order
is executed, the respective limit orders disappear and a gap is created in the limit
order book. For example, after a purchase of z shares at time ¢, the best bid price
should stay at b; whereas the best ask price should move to a; + 2m;z. This means
that immediately after this trade, the limit order book density function would be 0
for prices between a; and a; + 2m;z and remains unchanged elsewhere.

So far, this is a static view of the limit order book in the sense that the processes
a, b and m have not yet been specified in dynamical terms. We give a precise
definition of the bid and ask processes b and a in terms of z and other hypothesized
processes in the next section.

3.1. Bid and ask prices

The starting point of our dynamic model, as in many other financial models, is
an equilibrium stock price process {Sf}i>0. This process may not be observable
and it is the theoretical value of the stock which will be only observed in the long
run when the trader stops trading. In the context of [8, 30] this might be seen as
the price that is known by the informed trader. See Remark 4.1 below for a more
detailed discussion. In general, it can be constructed from other primitives such as
preferences, endowments and specific microstructure features of the market. Since
this side of the theory is very well established, we just simply assume that it is a
continuous semimartingale.

The other important processes are the bid and the ask processes {a;};>o and
{bi}1>0. By definition, we take b, < a;, all ¢ > 0. It is also assumed that the bid
and the ask processes converge to Sy in the absence of any further portfolio activity
when ¢ goes to infinity. This will be made more precise in the following section. The
speed of this time decay is clearly a model parameter which relates to the resilience
of the supply and demand of the asset.

Following the literature, we assume that there is a “mid-quote” stock price pro-
cess {S:}1>0 as well. This process again may not be observable, and as for the bid
and the ask processes, it depends on the portfolio activity of the trader. It is the
value to which the bid and ask processes converges when the impact of trades on
the bid-ask spread has vanished. Since in general one of these two processes may
converge faster than the other, this is typically not the exact arithmetic average
of the bid and ask prices. However it always falls in between. The definition of the
mid-quote price is essential in our model to separate the effects of depth from the
effects of tightness or equivalently, the bid-ask spread. In particular, the wealth-like
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process Y in the absence of bid-ask spread (defined in (4.3), below) is obtained
from S.

Note that we have two types of resilience in the model, modeled as time decays,
namely a time decay of the bid-ask spread and a time decay of the trader’s impact
on the observed prices.

4. Trading Strategies and Price Dynamics

In this subsection, we postulate the dynamics of the price processes described in the
previous subsection for simple trading strategies and extend this definition to more
general trading strategies. Our goal is to obtain a mathematically tractable dynamic
equation for the value of a portfolio, or wealth process, as given by Eq. (4.8). The
derivation in this section is thus crucial given that Eq. (4.8) is the key result needed
to derive the no arbitrage theorem and the existence of a stochastic discount factor.

We assume that all processes are cadlag (i.e. they are right continuous and
have left limits) and if needed the initial value of any process is given as its left
limit. We summarize the trading strategy of the investor by {z:}i>0. It is simply
the number of shares of the risky asset held at time ¢. It is well known that in a
model with a bid-ask spread, z has to be of bounded variation. We then represent
it as z = 2T — 2z~ with z* nondecreasing processes. In that case, z;" represents
the cumulative number of shares bought up to time ¢, whereas z; represents the
cumulative number of shares sold up to time .

We start by describing the dynamics of the price processes and the liquidation
value of the portfolio for a simple strategy of the form

2= Z EeX {rp <t} (4.1)

0<k<n
where 0 = 79 < 74 < -+ < 7, < T is a sequence of stopping times and & is
a F,, -measurable random variables for £ > 0. We take zp— = 0. We will then

postulate a dynamic for the liquidation value for general trading strategies which
will be consistent with this special case, in a sense which will be explained in Sec. 6.
Suppose that at time 7; a positive buy order of size & > 0 is executed. In view
of the discussion on the limit order book, the ask price increases by an amount of
Aar, = 2m.,&;. Here, we think of a; as the observed price after the trade at time
t so that the ask price in effect when the trade at time ¢ is made is a;—. Similarly,
we define the increment of S at time 7; by 2m, ;. The upper bid-ask spread is the
difference ay := a; — S¢, whereas the lower part of the bid-ask spread is defined by
(B¢ := St —b;. Since we assume that the bid and ask prices converge to the mid-quote
price exponentially fast between trades, we have the following equations for o and 3:

day == d(ar — Si) = —Reeudt + Y 2mr &iX(ri—te,<0) = —Reapdt + 2mydz;
=0

—hradt + 2my_dz; + 2d[m, 27 )4,
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By := d(Sy — by) = —keBedt + Y 2mr &iX(r=te,50) = —FaBydt + 2mydzf
=0

= —/%tﬁtdt + 2mt_dzt+ + 2d[m, Z+]t,

where &; > 0 is a relaxation parameter and d[m, z¥] is the covariation between the
processes m and z¥, see [33]. In the above discrete setting, it is simply given by
dim, z%]; = Amy Az for t = 7; (i > 0) and is zero at other times.

The price S; is always between the best bid and best ask prices and is inter-
preted as the observed mid-quote price when the bid-ask spread vanishes. Moreover,
as stated before, it is assumed that this mid-quote price converges back to the equi-
librium price in the long run when the trader stops trading.

Let ¢, = S; — Sf represent the difference between the mid-quote price and the
equilibrium price. We postulate the following connection between the mid-quote
and the equilibrium price,

dét = —Htgtdt + th_dzt + 2d[m, Z]t

and fy— = 0, in which «; is the given parameter of resilience of the asset’s mid-quote
price. We allow the processes k¢, i+ to depend on state variables such as S;, S§ and
zt. When trading stops, i.e. when z remains constant after some time ¢, then

Ay

Sy =S¢ = (St — E)E

to
in which Ay := exp(— fot Kydu). Although this is mainly a phenomenological assump-
tion, it is in fact a very general model for decay of price impacts since we allow the
process k to depend on other state variables. Indeed, any positive decreasing pro-
cess Ay which is absolutely continuous can be written in the form Ag exp(— fot Koy du)
for some integrable process k. Without loss of generality we can also take Ag = 1.
Furthermore, we will argue in Remark 4.1 below, that this choice for the mid-quote
dynamics is consistent with the continuous auction equilibrium described by [8, 30].
Clearly, ¢, o, 5 can be solved in terms of z. For future reference, we provide these
formulae

0= A, (2 /Ot(Au)‘l Mz + Q/Ot(Au)‘l d[m,z]u>,
o = Ay <a0 + 2/0t(Au)1 M_dz, + 2/(:(/1”)1 d[m,z]u>7 (4.2)

B, = A, (ﬂo + 2/t(]\u)—1 My_dz + 2/t(]\u)—1 d[m7z+]u>
0 0

with the decay factors defined as

t t
Ay :=exp <—/ mudu), Ay = exp(—/ /%udu).
0 0
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Note that the best bid and ask processes a and b also converge to S¢ in the long
run since a = S + « (resp. b = S+ ) and oy (resp. B¢) converges to zero when
trading stops and ¢ goes to infinity.

More extensions to this model are possible. For instance, one can assume that
some part of the cumulative trade impacts ¢; does not decay with time so that the
process S converges to a secondary process S° which includes permanent impacts
proportional to ¢;. On the other hand, one can assume that the lower and upper part
of the bid-ask spread converges to some given constants when ¢ goes to infinity and
the trader stops trading. This can be obtained by replacing the drift by —&(a — ag)
for instance. Furthermore, there is no need to assume that the speed of decay of the
lower part of the bid-ask spread is same as that of the upper part. However, none
of these generalizations would offer any new insights for our purposes, so to keep
the notation as simple as possible we will not further consider these extensions.

Note that tightness in this model is time varying since the best bid and best ask
prices follow different dynamics. The cost of turning around a position is directly
proportional to the bid-ask spread.

Remark 4.1. We argue that the above dynamics (4.2) for the mid-quote price is
consistent with the dynamic equations derived in [30]. A similar comparison to the
model of [8] can also be made. Indeed, in Kyle’s model the informed traders know the
future value of the stock (which is denoted by v in the paper) and trade accordingly.
In our setting, however, the focus is on the uninformed trader. The equilibrium price
Sy is the analog of v, though the former represent the current fundamental value
of the stock and the latter is the future value of the stock. In this sense, the value
of v is only measurable with respect to F for some s > t. Note that in [30], the
illiquidity parameter \(¢) is endogenously derived as a function of the volatilities of
several quantities. In our model, A is left unspecified and exogenously given. Then,
the continuous auction equilibrium of [30] (c.f., Egs. (4.2) and (4.3) on p. 1326
of [30]) is described by,

da(t) = B(t)[v — p(t)]dt,

dp(t) = A(t)[dx(t) + du(t)],
where p(t) is the price, u(t) is the trading strategy of the uninformed trader and
z(t) is the strategy of the insider. So we can make the following correspondences:

A(t) = 2my, u(t) = 2z, p(t) = S, v = Sf. Using these and the above equations, we
obtain the following equation for ¢; = S, — S5 = p(t) — v,

dly = dlp(t) — v] = A(t)[dz(t) + du(t)] = —\)B(E)[p(t) — v]dt + A(t)du(t)
= —Htgtdt + thdzt,

with k; = G(t)A(t). This is precisely Eq (4.2). In [30], the parameters A(t) and ((t)
and the prices p(t) are obtained in a competitive market in equilibrium with risk-
neutral market makers and an insider. In our setting, we leave m; and k; general
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and unspecified, and consider a partial equilibrium problem for the uninformed
trader in Sec. 5. However, the main insight we take away from Kyle’s model is
that the convergence of the market prices to the “informed” value of the asset is
absolutely continuous with respect to time as in the equation for x(t) above, or the
corresponding first time in the equation for ¢; in our model.

4.1. Portfolio value

Since the changes in the portfolio composition result in a liquidity cost, the value of
the portfolio needs to be carefully defined. Indeed, as in the models for proportional
transaction costs (c.f., [17, 19, 21, 31, 37]) or in the discrete model for liquidity
of [27], we need to keep track of z as well as the position in the money market
account for the valuation of the wealth process. Let x; be the position in this
account. Then, in our model we either need the pair (z, z) or any other invertible
transform of this pair. One choice of such a transformation is (Y, z) with

Yt =T + Zt(St — mtzt). (43)

This quantity is interpreted as the liquidation value of the portfolio after ignoring
the bid-ask spread. Clearly, the right choice of the mid-quote price S is crucial in
the definition of Y. Indeed, the structure of the dynamic equation (4.2) is essential
in the derivation of several desired properties of Y which are outlined in the next
subsection.

4.2. Dynamaics

In order to obtain the dynamics for the liquidation value process Y, we first assume

that z is given by (4.1). To ease the notation, for any cadlag process v, we write
AFy = Up = U

In view of the discussion on the limit order book, the change in the money market

account at time 7 is given by the total cost of the trade at time 74, for a self-

financing strategy. Namely,

Afw = —&p(a,- +me&e)Xqg>0) = &b + Mr k)X (g <0)
= —&S, - — me, |&|* — €kl (- Xgee >0y + B, - Xgen <oy
We now directly calculate that
AMY = Afa (2, + &)(S, - + 2mn & — ma (2, + &)
_ZT,C_(ST,C_ - mrk_zrk_)
= —l6kl(a, Xqers0) + B, Xiercop) — (2, )2Akm,
where we uses the fact that S;, = Srk‘ + 2m,, &. The quantity
|§k|(a7'k_x{£k>0} + ﬂTk—X{£k<0})
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is the proportional transaction cost associated to the trade at time 75. As a result,
tightness, defined as the cost of turning around a position per share, is given by
Oro— + Or.— (the bid-ask spread) at time ¢.

Since the interest rate is taken to be zero and since z; = z,,_, on the interval
[Tk—1,Tk),

Y‘rkf - Y‘kal = Z"'k—l((S - Sve—k 1) (67'; - E"'k—l)) - (ZTk—l)Q(m‘r; - mmq)

T T
= / Zy— (dSy, — Ky lydu) — / 22_dm,,.
Tk—1 Tk—1

In the above, we also used Eq. (4.2). The above calculation shows that for k£ > 1
and t € [Tk, Tht1)

=Yoo + A% + Z — Y, 4+ AY)+Y, -,

t t
=Y + / 2y (dSE — kylydu) — / 22_dm, — T, (4.4)
0 0

where the cumulative cost of proportional transaction cost T} is given by

¢
T, ::/ (y-dz + B,-dz;).
0

This cost is directly related to the notion of tightness of the limit order book.

For a general portfolio process z, which is cadlag, we postulate the dynamics of
Y: to be given by (4.4). We will see in Proposition 6.2 that this definition is stable
in the sense that any sequence of liquidation values corresponding to a sequence of
discrete approximations of z converge to the liquidation value with this dynamics.

4.3. Model overview
In this short subsection, we summarize the above model. The only control process is
2z := 2z — z; = the number of risky assets held at time ¢,

where both zti are nondecreasing with z;" is the total stock purchases up to time ¢
and the total sales is given by z; . Five state variables are

S¢ := equilibrium value of the stock,
by == Sy — Sf, with S; := mid-quote price,
ag := a; — S, with a; := best ask price,
B¢ := St — by, with by := best bid price,
Y := x4 + 2¢(Sy — myz), with x4 := position in the money market.
Notice that one may use S instead of £ and also use x instead of Y. However, in what

follows this choice of (S¢,¢,a, 3,Y) is the most convenient one. (In the theory of
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optimal control, formally, z must be considered as a state variable while the control
is dz. However, we do not need this subtle difference in what follows.)

The model description will be complete when the dynamics of the state variables
are given. So we recall the dynamics (4.2) and (4.4) for the reader’s convenience.

doy = —Reoudt + 2my-dz, + 2d[m, 27 ¢,
dBy = —RiBedt + 2my-dz + 2d[m, 27,

(4.5)
dgt = —Iitgtdt + th—dzt + Qd[m7 Z]t,
dY; = 2, (dS§ — klydt) — (2,-)2dmy — dTy,
where the coefficients %, k and m are given adapted processes and
t
Tyi= [ lau-dsf + 0,z (46)
0

Finally, the equilibrium stock price process S¢ can be taken as a general continuous
semimartingale.

The above description assumes that the portfolio process is a semimartingale
as dz terms appear in the dynamics. However, by an appropriate rewriting of the
equations would allow us to define ¢ even for cadlag z processes. Indeed, from (4.2),
we see that the process ¢ can be written in the form

b t
0 = Ay (2/0 A—Sms,dzs + 2/0 A—sd[z,m]s>
t t
=N\ [ -2 —zs—dmgs + 2 — s
t( /0 ASZ dmgs + /0 Asd(mz)>

t t s— A

= 2<mtzt —/ zsdms) — 2/ Ks <mszs —/ zudmu) s
0 0 0 As

o [ 0 M
=0, — | ke, —ds, (4.7
0 As

where €9 = 2m; 2z, —2 fg zs—dmg. We thus define ¢ for a general process z from (4.7)
(in fact, for technical reasons from stochastic integration theory, by a general process
we mean a cadlag process, i.e. a process which left continuous with right limits).
This definition of ¢ offers a lot of stability in terms of the convergence of liquidation
values of approximating sequences to the liquidation value of the limit. See the
results of Sec. 6 below in this regard.

However, for Y we still need z to be of bounded variation due to dT" term. In
order to define a liquidation value for general cadlag strategies, we need to omit
this term in (4.4). This is the content of the next subsection.

4.4. Reduced model

As discussed in the introduction, we would like to separate the costs that are pro-
portional to transactions and the continuous trading. This is achieved simply by
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either ignoring the 7; term in the above equations, or equivalently, by formally
sending the parameter 4 to infinity. Then, the bid and ask spreads are not needed
in the description of the model. Hence, this simplified market contains three state
variables S¢, ¢, Y. The dynamics of the first two processes are as before, whereas

dY; = 2, (dSE — klydt) — (2, )2dm. (4.8)

We may achieve further simplify by assuming that x; is a constant and that m;
is either a constant or a constant multiple of Sy as done in Remark 4.2, below.

It is intuitively clear that in any model with illiquidity the portfolio value should
be less than the value in an infinitely liquid model. However, in models with market
impact this is not immediately obvious. Hence, we continue by showing that the
liquidity cost in the reduced model is non-negative in the mean. This in turn would
imply that this model is free of arbitrage and it properly isolates the effects of depth
and resilience on liquidity costs.

We also would like to emphasize that the reduction of the model is not a routine
process. Although it is clear that such a reduction is done by simply setting the
bid and the ask spreads zero, these spreads are defined with respect to a mid-
quote price S. Hence, the definition of S is the important point in this reduction.
Indeed, our choice of (4.2) is not only consistent with [30] (as argued in Remark 4.1)
but it allows us to prove the following no arbitrage result, Theorem 4.1, and the
convergence results of Sec. 6.

As we can see in (4.8), the difference in the liquidation value obtained in a
frictionless market Yp_ + fg 2,dS? and our current liquidity risk setup is given by

¢ ¢
Lt:/ zumuﬁudu—k/ zz,dmu. (4.9)
0 0

Indeed, L; is the liquidity costs associated to the depth and the resilience of the limit
order book.

In the case k = 0, we are effectively in the liquidity risk model of [34], in which
it is known that the stochastic nature of the level of the order book 1/2m; can lead
to higher gains than in the frictionless case. In other words, the integral f(f z2_dmy,
may take negative values. This is due to the fact that the impact of a trade, which
is proportional to m;, can be bigger than when this position is liquidated due to
a decrease in m. As a result, [34] showed that there is no arbitrage in the case
K = 0 if there exists an equivalent measure that makes S¢ a local martingale and
m a local submartingale. On the other hand, when m is constant, only the integral
fot Zukulydu remains and intuitively this term should be related to the part of the
value of the portfolio lost due to time decay of temporary price impacts.

We have the following result:

Theorem 4.1. Let L; be as in (4.9). Then Ly > 0, if my is constant. In general,
if we assume that ¢y == A? /my is a local super-martingale, then

E[L:] >0, Vt>0.
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Proof. Set
fo =0 — 2myzy,
so that
dfy = —klydt — 22— dmy.

We directly calculate that

t t t
/ Zukulydu = —/ Zu—dfy — 2/ zz_dmu
0 0 0

:/Ot ! <fu-—£u->dfu—2/0tz3-dmu

2my, -

—/t ! d(fz)—/t 1 2 d[m] +/t ! Ko (o) du
B 0 4mu* “ 0o M- “ “ 0 2mu* e

t
+/ Zu— fu—dmy,.
0 My-

In particular, if m is constant,

t 2 t
1
L; :/ Zubulydu = (f2) —|—/ 2—Hu(€u)2du > 0.
0 0

4m

If m is not constant, then

t t t
1, 1 ) 1 1/ 1
uRuty = — — = _ — ] — = u*d , —
/o Futiubudu 4mtft 4/0 Ju d<mu> 2 Jo f [f mu]
o | tq
[ gt dut [ dma [ dm,
0 2my, 0 May- 0 My-

1o, 1 (", 1 t ) b,
= —ff—- Codl— | + —— kK (ly) du — Zy,—dmy,,
4my 4 f, My, 0 2my 0

after many simplifications. Hence,

L —sz—l/tﬁ A 2%do
ET am g ), e e T

in which ¢; := A?/m;. From this last equation, we see that if the process ¢ is a
supermartingale then L; is non-negative in expectation. O

In general, the proportional transaction costs given by T in Eq. (4.6) are
always non-negative, so the previous result also applies to the nonreduced model of
Eq. (4.4).

For future reference, we record the above calculations for the Y dynamics as

=Y, _dS¢ — — 24— | 2_A2do,. 4.1
}/I-f YO +/0 Zy Su 4mtft + 4/0 u u (b ( 0)
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Remark 4.2. Suppose that

my de

Kt =K, — =m,

t 55 55

where k, m, u, 0 are non-negative constants and B is a standard Brownian motion.
Then, by a direct calculation we conclude that ¢ is a supermartingale only if

= pdt + odBy, (4.11)

o —2pu
>
=Ty
The standard definition of an arbitrage opportunity, c.f. [29], is a wealth pro-
cess Y, as defined in (4.10), which is bounded from below by a constant and which
satisfies

Yo- =0, P{Y7>0}=1 and P{Yy >0} >0. (4.12)

We conclude this section with the following theorem which characterizes the absence
of arbitrage opportunities.

Theorem 4.2. Suppose there exists a measure Q equivalent to P under which S€ is
a local martingale and ¢y := A? /my is a supermartingale, then there are no arbitrage
opportunities.

Proof. By the Doob-Meyer decomposition theorem there exists a Q-local martin-
gale M and a decreasing predictable process A such that ¢ = M + A. Since,

t t
1 1
Y, =Yy +/ Zy-dSE — — f2 + —/ 2N 2do,
0 4mt 4 0
then

Y+ —f7 — —/ Z_A2dA, = / 2,-dSE — —/ 2 _A2dM, > —a,
4mt 4 0 0 4 0

for some constant «, where we used that A is decreasing. Now, S¢ and M are Q-

local martingales hence Y; + £L-f7 — § "2 A;%dA, is also a local martingale

and because it is bounded from below it is a supermartingale. Therefore, when
Yy~ = 0, and EQ[Y7] < 0. But, because Q is equivalent to P, if Y7 were an arbitrage
opportunity, Eq. (4.12) would also be satisfied by Q as well. This would imply that
EQ[Y7] > 0 which is in clear contradiction with the supermartingale property of Y’
under Q. O

One should compare the previous no arbitrage result to the classical no arbitrage
result in a frictionless market for which the martingale condition only applies to the
process S¢. In a liquidity risk setting, the additional supermartingale condition on
the process ¢ must also be satisfied under the risk neutral measure of S in order to
rule out arbitrage opportunities. The absence of arbitrage opportunities now allows
us to solve the utility maximization problem of the following section.
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5. The Asset Pricing Formula

In this section, we study the equilibrium consequences of the reduced model without
the proportional transaction costs as outlined in Sec. 4.4. In particular, we consider
an investor who maximizes the expected utility from final wealth, and we assume
the no arbitrage conditions of Theorem 4.2 are satisfied. From first-order conditions,
we obtain a stochastic discount factor and an asset pricing formula. Note that in
most proportional transaction costs models investors may not trade or consume at
the marginal rate of substitution since frictions may make it suboptimal to trade
at this point. For this reason, we consider the reduced model in this section.

Let kK > 0 and m > 0 be given adapted processes and m is a semimartingale.
Let S be a non-negative semimartingale and Z be the set of all cadlag processes
z such that z_ is integrable with respect to S¢ and the Lebesgue measure, and z2
is integrable with respect to m. Then, for z € Z consider the controlled processes
Y?, f#,4%% given by

¢
0
07 = 2myzy — 2/ Zu_dmy,,
0

t
A
G =10 - /0 sl 3 ds,

dff = —klidt — 2z,—dmy,
dYF = z— dS} — Rl zpdt — zf, dmy.
We also have the following equivalent representation for the process f?#:
fE =40 —2myz.

Given a concave, nondecreasing utility function U satisfying the Inada conditions

(see [29]), we consider the optimization problem
sup  U(z), U(z):=EF[UYF),
2E€E2Zadm

where Z,4., is the set of all admissible portfolios so that Y# is uniformly bounded
from below by a constant. We relegate the important question of existence of a
maximizer to future work and assume that there exists z* € Z,4,, which maximizes
the above problem.

Let

Sy =S¢+ £ — 2myz; = S+ f, (5.1)

be the post-liquidation stock price (observed for strategy z*). It is the price that we
would observe at time ¢, if the portfolio z* were liquidated at time ¢. This is in fact
a more accurate expression for the value of the stock for an outside investor since
the observed stock price S; is temporarily inflated due to the current position of
the trader.
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Now, introduce a probability measure QQ, which is the analogue of the risk neutral
measure, by the following stochastic discount factor:
d U' (v}
Q. _Uvp) , (5.2)
B U (Y7)]
in which Y7 is the liquidation value of the portfolio z*. In the above, we assume
that EF[U’(Y;)] is finite.
Under Q, S* is not a martingale. However, Theorem 5.1 below states that

SF =8 + EYL*(t,T)|F) (5.3)

is a Q-martingale, in which

T
o Aw)
L*(t,T) = 2mt/t K D) zrdu.

Equivalently,
S; = E¥(S; — L*(t,T)|F)

T
A(u)

=EY(S;|F) —2m: | E%(k zk

( T| t) t /t u A(t) u

Even though our asset pricing formula gives the price in terms of an endogenous

variable, the optimal holdings, it still gives valuable predictions about prices without

making any more specific assumptions like completeness of the market, specific

]-'t) du. (5.4)

distributional assumptions on specified processes or market clearing conditions. In
particular, the previous equation states that the current post-liquidation stock price
is the risk neutral expected value of the final post-liquidation stock price minus a
weighted average of the future optimal portfolio positions. In other words, the price
today exhibits a liquidity adjustment to take into account the expected effects of the
trader’s future holdings on future prices. Moreover, the second part of the equation
shows that our model predicts that the liquidity adjustment is proportional to the
current value of the liquidity parameter my, i.e. inversely proportional to the depth
of the limit order book. These two results are in line with the empirical findings
of [6, 7, 12].
We have the following result.

Theorem 5.1. Suppose that the wutility mazimization admits a mazimizer z* €
Zadm Such that

EF(U'(Y4)) < 0.

Let Q be given in (5.2). Then, the liquidity-adjusted price process g*, defined in
Eq. (5.3), is a Q-martingale.

Proof. Let  be a stopping time on [0,77]. For all € > 0, define 2¢ = 2* + ex(,77-
By the linearity of the equation satisfied by the ¢ process, we conclude that
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*

0*° = 0* 4+ el?, where (* is the process ¢* for z = z*, and ¢ is the process ¢?
for z = X[g,). More specifically, we find that I = 2mge~ s "””SdSX[g,T} (t). Then, we
directly calculate that

t t
Y =Y — € <2m9/ e I8 590 o (u)du +/ X(0.7) (“)dmu)
0 0
t t
e ( [ xomas; [ rtixr (u)du)
0 0

t
—€ <2m9/ Kye Jo ”ﬁdsx[eﬂ (u)zhdu + 2/
0 0

Clearly, all the integrals in the above expression are well defined, hence z¢ € Z,4., .
Since z* is a maximizer,

t
X(0,7) (U)ZZ—dmu)-

U(Z") > U, Ye>0.

By differentiating the above inequality, we arrive at

EX(U'(Y7)Yr) =0, (5.5)
where Y* := Y*" and
d e
yt = &Yt e=0-

Hence,

T T
Vr =/ X(e,T}(U)dSZ—/ Kl Xo,7)(w)du
0 0
T . T
_2m9/ Kye o ”SdSX[Q’T](u)z;du— 2/ X(o,11(u) 2~ dmy,
0 0

* e * 2m r *
= St + fr — (5§ +f9)—r00)/9 Au)kyzldu

since
T

—/OTfquZX[e,T] (wdu = fr — fg + 2/0 Zy- X0, 1) (u)dmy,.
Then, (5.5) implies that
E%(Yr) = 0.
Recall that
S; =S+ —2mez] = S; + ff.
Then, the above can be rewritten as

EQ(S; 4+ L*(0,T)) = E%(S}), V6, (5.6)
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where

. ToAw)
L*(0,T) = 2m9/0 /ﬁuwzudu.

Equation (5.6) can be
E(S5) = E4(S7), V0 (5.7)

in which S} = S; +EQ(L*(¢, T)|F;). Since this equality holds for all stopping times
0, we deduce that S*isa martingale. Hence, the current post-liquidation stock price
is the “risk neutral” expected value of the final post-liquidation stock price minus
a weighted average of the future optimal portfolio positions. O

6. Convergence of the Model

Although there are many liquidity models in the literature, there are essentially two
approaches that have been proposed to model liquidity in arbitrage-free settings.
As discussed in the introduction, we refer to the approaches as the liquidity costs
of the first kind, given by fOT med[z]; as [13] (in the case of a linear supply curve),
and the second kind, given by liquidity costs of the form fOT h(Z)dt.

In this section, we demonstrate the connection between these two approaches
by showing that both models can be obtained as a limit of our current setup. More
precisely, we are interested in the behavior of the model as the speed of decay goes
to infinity. In order to do this, we define AX for K > 0 as the process A defined
in (4) with  replaced by Kr. Furthermore, we denote the associated processes by
K 05 YK ete.

6.1. Liquidity costs of the first kind

CJP
t

In [13], it is postulated that the value of the money market account x at time ¢

is given (in our notation) by

t t
o0 =Yy — 2,8¢ —|—/ 2y—dS;, —/ My d[z]y
0 0

in the case of a linear supply curve, when z is a semimartingale.

When the speed of exponential decay is large (i.e. when K is large), the tempo-
rary impact decays quickly so that we expect that the liquidation value is close to
that of the Cetin—Jarrow—Protter liquidity risk model. Indeed, we have the following
result:

Proposition 6.1. Let z be a semimartingale. Suppose (° is uniformly bounded
and k strictly positive. Then, ™ — xCIP wuniformly on compact time intervals in

probability (ucp, for short) as K — oo, i.e. for all e >0 and allt > 0

im P( sup |2K —29P| > e) = 0.

1
K—oo 0<s<t
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Proof. The expression for Y& in (4.8) can be re-written, using (4.2), as follows:
¢ ‘ ¢ ¢
YA =Y —|—/ zy-dS;, —|—/ 2y dlX —/ (2my— 2y dzy + 22y d[m, 2]y + 22_dm,,)
0 0 0
¢ ‘ ¢ ¢
=Y, —|—/ 2u—dS, —|—/ 2y dlE —/ (2my— 2y dzy + dim, 2], + 22_dm,,)
0 0 0
¢ ‘ ¢ ¢
=Yy —|—/ 2u—dS;, —|—/ 2y dlE —/ (2 2y dzy — my_dz2) — 22my
0 0 0

t t t
=Yy —|—/ 2, dSE —/ 5 dzy + 05 2 — 05, 2], —|—/ Mo d[2]y — M2}
0 0 0

by integration by parts. As a result, we find that

YthYg_—!—/ Zu— dSl /EK dz, — /mu —|—€ zp — mtzf

since [(¥,2]; = fot 2my,—d[2],, using (4.2).
From (4.7), recall that the process /X can be written in the form

K

K 0 ! o Ay
0, :ét—/ KHSE_AK S

0 s
This integral is defined a.s. Furthermore, since Y is bounded, so is the sequence
(t5) g >0. Note that AKX = (A})E. Since ¢° is bounded and left-continuous, we find

that
/ KK:S 55— AK t—

for all t as K — oo by applying Lemma 6.1 below to g(s) = 1/A;. As a result, we
find that /X — 0 a.s.

By the Dominated Convergence Theorem for stochastic integrals (see Theo-
rem 32 of Chapter IV in [33]), we find that [ ¢ dz converges to zero in ucp.

Now, 25 = Y& — 2,(S; — myz:) by definition (see (4.3)). Hence,

= x?JP / EK dz, + E zp — mtzf + 257 — 25t + mtzt2

since S¢ = § — (K, m|

In the preceding proof, we used the following lemma.

Lemma 6.1. Let g : [0,00] — R be a positive, strictly increasing continuously
differentiable function. Let t > 0. If f : [0,t) — R is bounded and has a left limit
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at t, then
t

[ i) (s)ds = tim f(5),

K (s
in which g (s) = K (%) 20

Proof. Let ¢ > 0. Take § > 0 such that |f(s) — f(t—)| < e for t —§ < s < t. Since
g is strictly increasing, we can take K large enough so that gx(s) < m for all

s <t—0d. Then, | [; gx(s)f(s)ds — f:_(s Ji(8)f(s)ds| < e. Furthermore,

| ats)s)s— ) [ anlopis

t
< e/ K (s)ds.
t

-5
To finish the proof, it suffices to notice that

/t;gK(S)ds —1— (%Y(

converges to 1 when K — oo. O

One of the properties of the liquidation value in the CJP model, is that, under
mild conditions on the semimartingale z, one can always find a sequence of contin-
uous processes z" with finite variation such that 2 = 0 and

T T T
Yo— +/ zi_dS, — / My d[z"]y — mrp(258)? — Yo —|—/ Zu—dSy
0 0 0

in L2. In other words, the liquidation value obtained using the strategy z" in the
liquidity risk model of [13] converges to the liquidation value obtained using z in
an infinite liquidity model. However, since z™ is continuous and has finite variation
the liquidity costs associated to these strategies are zero. Although, this is in line
with the common practice of dividing big trades into smaller ones in practice, the
model has the undesirable property that liquidity costs can be completely avoided
in the limit by doing this. In our model, liquidity costs of an approximating trading
strategy is approximately the same as the liquidity cost of the approximated strategy
as stated in the following proposition, thus showing that the total liquidity cost of
a strategy is a continuous function on the space of strategies as defined below.

Proposition 6.2. Let (2"),>1 be a sequence of continuous processes converging in
probability to z. Let m = m+a, with m a local martingale and a an adapted process
of finite variation. Suppose m is bounded from above and below, a is of integrable
bounded variation and E[m]pr < oco. Let £" and f™ be the processes associated to
z". Then, the liquidity costs associated to the processes z",

n __ 1 n\2 1 n\2
L' = o+ [ o€,
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converges in probability to the liquidity costs associated to z, i.e. L = ﬁ 24
[ 52— ku(Cy)?du, as n — oc.

Proof. Let (" = 2m,z1 — 2f0t 2" dmg. Then (1 = (0" — f(f msfg’”ﬁ—:ds. By
Theorem 4.1 of [20], we know that (%" converges in probability to ¢°. Since
E fOT /15//\\—? ds = E(1 — A7) < oo, we also find that ¢ converges in probability
to £. In particular, f converges to f. Also, (/")? converges to £? by the continuous

mapping theorem. Another application of Theorem 4.1 of [20] yields the result.

|

6.2. Liquidity costs of the second kind

In models of the second kind, liquidity costs are of the form fOT h(zs)ds. Almgren [4]
justifies this model with a discrete time construction. He assumes there is a tem-
porary part to price impacts for the average price paid for a transaction which is
proportional to the size of the transaction and inversely proportional to the length
of time between trades, i.e. it is proportional to W in which § is the time
between two trades. In the formal limit § — 0, this quantity is interpreted as the
speed of trading Z;. In his model, the temporary impact does not affect the price
paid at the next transaction. In this sense prices are highly resilient with respect to
the temporary price impact. However, due to the assumption that the temporary
impact is inversely proportional to the time between trades, thus modeling the fact
that when one trades faster he pays more liquidity costs, the depth of the order
book is also implicitly assumed to be going to zero as the time between trades goes
to zero. The analogy with our current model is obtained by taking the parameters
m and ~ arbitrarily large. Note that in this case the liquidity cost of a block trade,
or more generally the liquidity cost of trading with a non-zero quadratic variation,
is arbitrarily large. We are thus forced to use absolutely continuous strategies. We
have the following result.

Proposition 6.3. For K > 1, let m = Km; and kX = Kr;. Suppose k is cadlag
and is bounded away from zero. Suppose z is absolutely continuous and denote by
2 its Radon—Nykodym derivative. Assume further that Z is cadlag, and zp = 0. For
K > 1, denote by L¥ the associated liquidity cost process. Then,

T
lim L& :/ 9™s 3245,

0

K—oo Rs

Proof. Since zp =0,

1 |
K __ K\2 K\2
Ly = 4KmT(£T) —|—/0 2KmsK/iS(€S )ds

in which ¢/ = 2 [ Kr,(§2)XZ=z.ds. This implies that lim o (5 = 22=%,_
a.s. by Lemma 6.1.
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Since k is bounded away from zero, and m,x and Z are cadlag, mi2;/ke is
bounded on [0,7] a.s. Also, since 0 < fot Kms(ﬁ—z)de < 1, we have that ¢X is
also bounded a.s., uniformly in K. We obtain the result with an application of the
bounded convergence theorem. O

Remark 6.1. In the preceding proposition, it is necessary to assume that z7 = 0,
because otherwise there is a final block trade to liquidate the position at time
T, which would be infinitely costly. Mathematically, this appears from the term
mi 22 in the liquidation value Yz. In particular, since K is arbitrarily large, we
find that this last liquidity cost is arbitrarily large. By assuming zp = 0, we are
implicitly assuming that the position is liquidated before time 7' in an absolutely
continuous fashion. Note that in all models of the second kind we have mentioned
in the introduction, it is either assumed that zp = 0 or that my = 0 to exclude the

liquidity cost of the liquidation of the portfolio.

7. Concluding Remarks

In this paper, we have developed a general model for illiquidity, outlined in Sec. 4.3,
for an agent who sends market orders to a limit order. This model has the
three important quantities identified earlier in the literature. We also argued in
Remark 4.1 that the exponential decay of the price impact is consistent with the
seminal model of [30]. Moreover, the model allows to separate the liquidity costs
associated to the bid-ask spread and to continuous trading. This separation allows
us to derive a reduced model which ignores the transactions costs by properly iden-
tifying a mid-quote price process S and a wealth process Y. In Theorem 4.1 we also
showed that the simplified model is arbitrage free.

We then used the reduced model in a classical utility maximization setting.
This consideration shows that the post-liquidation asset price is the risk neutral
expectation of the future post-liquidation asset price minus a weighted integral
of the future optimal portfolio holdings. It is consistent with empirical findings
of [7, 12]. In the final section, we obtained several other models as limiting cases of
this reduced model.
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