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Abstract

We consider a stochastic optimization problem of maximizing the expected
utility from terminal wealth in an illiquid market. A discrete time model is con-
structed with few additional state variables. The dynamic programming approach
is then developed and used for numerical studies. No-arbitrage conditions were
also discussed.
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1 Introduction
A classical Merton problem [9, 10] of a rational investor is to maximize her expected
utility from final wealth

E
[
U
(

y+
∫ T

0
zudSu

)]
over all admissible trading strategies z with a given utility function U . The process zt
represents the shares of stocks held at time t, while St is the spot price. It is well known
that the dynamic programming approach yields a nonlinear parabolic partial differential
equation which admits explicit solutions for power, logarithmic or exponential utilities.

This paper studies the same problem but in an illiquid financial market. We adopt
the modeling approach of Roch and Soner [11] developed for continuous time. In par-
ticular, price impact is included in our model. This impact, described in Section 2,
is random and hence the liquidity risk is not simply deterministic. We start with an
appropriate discretization of the model in Section 3. Then, the dynamic programming
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approach is developed. As well known in the literature, when not properly introduced,
price impact may lead to arbitrage in the market. Especially in models with random
impact, no-arbitrage is not immediately implied by the existence of a risk neutral mea-
sure for the price process with no-impact. We investigate this question and obtain
conditions for no-arbitrage. In particular, we prove that the resulting value function is
less than the Merton value when there is no initial price impact. This is the content
of Theorem .1, below. However, when there exists initial liquidity premium in the ob-
served stock price, then it is intuitively expected, that the investor may and does use
this to achieve a value larger than the Merton one. This is clearly demonstrated in the
numerical examples.

The paper is organized as follows. In Section 2, we briefly describe the liquidity
risk model of Roch and Soner [11]. In Section 3, we explain the discrete version of
that model. In Section 4, we define our stochastic optimization problem and show that
the dynamic programming principle holds. Section 5 is dedicated to numerical results.

2 A liquidity risk model
In this section, we briefly introduce the model for liquidity risk proposed by Roch and
Soner in [11]. Many existing price impact models can be seen as a particular or limiting
case of it. Their starting point is the seminal paper of Kyle [8], where three important
dimensions of illiquidity: depth, resilience and tightness, are identified. Depth is the
size of the order flow required to change prices by one monetary unit, resilience is
the degree to which prices recover from the price impact and tightness is the bid-ask
spread.

Asset prices are frequently obtained through a limit order book (LOB). There are
two types of trades: limit orders, i.e., orders to buy or sell a given amount of shares at
a specific price and market orders which are executed against the limit orders. Limit
orders are kept in the LOB until a market order comes in that matches to one of the
existing limit orders. They provide liquidity by filling the LOB whereas the market
orders deplete it. In [11] a trader is considered who only makes market orders. His
trades have an impact on the prices.

We are given a trading horizon T and a filtered probability space (Ω,F ,(Ft)0≤t≤T ,P)
satisfying the usual conditions. The filtration Ft represents the information the trader
has at time t. At every time t ≤ T he observes the LOB and knows the average price to
pay for a transaction of size z via a market order. We represent the LOB at time t by
the function ρ

+
t (s), which denotes the density of the number of shares offered at some

ask price s and by ρ
−
t (s), which denotes the density of the number of shares offered at

some bid price s.
Now suppose that a trader wants to buy (resp. sell) z > 0 number of shares at time

t through a market order. We denote the ask price by at and the bid price by bt . The
total amount paid (resp. received) is then∫ sz

at

sρ
+
t (s)ds, (resp.

∫ bt

sz

sρ
−
t (s)ds),
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where sz solves the equation∫ sz

at

ρ
+
t (s)ds = z, (resp.

∫ bt

sz

ρ
−
t (s)ds = z).

A trade occurs when a market order is placed. Hence, the limit orders in the LOB
are executed with the cheapest to the most expensive until the total number of shares
ordered is reached. The optimal strategies typically consist of small trades, such that
the price paid is never too far away from the best bid and ask price. A consequence is
that one may assume that the LOB has a constant density outside the bid-ask spread at
time t, i.e.

ρ
+
t (s) =

1
2mt

χ{s≥at} (resp. ρ
−
t (s) =

1
2mt

χ{s≤bt}).

Here, mt is an adapted càdlàg process and 1
2mt

is exactly the depth of the LOB. Under
this assumption, when buying z number of shares we obtain sz = at +2mtz and the total
amount paid is atz+mtz2. After buying z number of shares the best bid price bt does
not change, whereas the best ask price at moves to at +2mtz. So for prices between at
and at +2mtz the density of the LOB is zero. Elsewhere it remains unchanged.

We denote the equilibrium price process by St . It may not be observable and is
the theoretical value of the stock. Furthermore, it is only observable in the long run
and when the trader stops trading. In the model, also the mid-quote price process S∗t
is used which depends on the portfolio activity of the trader. In the long run and when
the trader stops trading S∗t converges to St . Also the bid and ask price processes, at and
bt converge to S∗t when the impact on the trades vanishes and in the long run at and
bt converge to St . As either at or bt may converge to S∗t faster then the other process,
S∗t is typically not the average of at and bt . Note that the mid-quote price process
is important, as it is affected by the depth, whereas the bid-ask spread (tightness) is
associated to the proportional cost. This will allow us to consider a reduced model,
where the proportional transaction costs vanish.

We consider a simple trading strategy zt = z0 +∑
n
k=0 ξkχ{τk≤t}, where

0 = τ0 ≤ τ1 ≤ . . .≤ τn ≤ T

are stopping times and ξk is Fτk -measurable. If at time τk, we buy ξk > 0 number
of shares, the ask price increases by ∆aτk = 2mτk ξk. The increment of S∗τk

is ∆S∗τk
=

2mτk ξk. Using this simple strategy Roch and Soner postulate in [11] the dynamics of
the difference of the mid-quote price and the equilibrium price process lt := S∗t −St

dlt =−κt ltdt +2mtdzt ,

where κt is the resilience. Let xt be the position in the money market account at time t.
We denote the liquidation value of the portfolio (after ignoring the bid-ask spread) by
Yt = xt + zt(S∗t −mtzt). Then, according to [11] its dynamics after ignoring the bid-ask
spread is

dYt = zt(dSt −κt ltdt)− z2
t dmt .

The case with infinite resilience corresponds to the model proposed by Çetin, Jarrow
and Protter in [2]. Later it was studied in [3, 7]. Similar models are also used in the
optimal execution problems. We refer the reader to [6, 12] and to the references therein.
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3 Model assumptions in discrete time
We consider the discrete version of the liquidity risk model introduced in [11]. The
financial market consists of a risky asset and a risk-free asset. The risk-free asset is
taken to be a numeraire and for simplicity we set the interest rate r = 0. We are given a
finite trading horizon T and divide the trading period [0,T ] into N ∈ N equal intervals
of length h = T

N , such that the agents trade at the times tn = nh, for n = {0,1, . . . ,N}.
Furthermore, we have a probability space (Ω,F ,P), where the sample space Ω is given
by

Ω = {(ξ1, . . . ,ξN) : ξk ∈ {+1,−1}, ∀1≤ k ≤ N}.

For the σ -algebra we take F = 2Ω. The random variables {ξk}N
k=1 are i.i.d and satisfy

P[ξk =±1] =
1
2
, ∀1≤ k ≤ N.

We denote the equilibrium stock price process by S = {Sn}N
n=1 meaning Sn := Stn

and choose the binomial model for it. Thus, we have

Sn+1 = Sn(1+µh+σ
√

hξn+1),

for all n ∈ {0, . . . ,N−1} with S0 = s > 0. We take the filtration F= {Fn}N
n=1 to be the

σ -algebra generated by S, i.e. Fn = σ(S1, . . . ,Sn) for n ∈ {1, . . . ,N} and F0 = { /0,Ω}.
By z = {zn}N

n=1 we denote the portfolio process which is adapted to the filtration F.
This choice makes the dynamic programming principle easier to state. Furthermore,
we have the mid-quote price process which we denote by S∗ = {S∗n}N

n=1.
Following the continuous time model proposed in [11] we postulate that S∗ con-

verges to S geometrically in the absence of trading. Hence,

S∗n+1−S∗n =−κh(S∗n−Sn)+(Sn+1−Sn)+2mn+1(zn+1− zn), (3.1)

where κ > 0 is the resilience parameter, which is assumed to be a constant for simplic-
ity, and 1/2mn is the depth. For n ∈ {0, . . . ,N}, set

ln := S∗n−Sn,

so that in view of (3.1) it solves the equation

ln+1 = (1−κh)ln +2mn+1(zn+1− zn).

Let Y = {Yn}N
n=1 be the liquidation value after ignoring the bid-ask spread,

Yn := xn +(S∗n−mnzn)zn,

where xn is the position in the money market. Then, Y solves

Yn+1−Yn = xn+1− xn +(S∗n+1−mn+1zn+1)zn+1− (S∗n−mnzn)zn,
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where xn+1−xn is the money needed to purchase zn+1−zn number of shares at the time
step n+1. The average price paid for zn+1− zn number of shares is

S∗n +mn+1(zn+1− zn) = S∗n+1−mn+1(zn+1− zn)

= Sn+1 +(1−κh)ln +mn+1(zn+1− zn).

Hence, we obtain

Yn+1−Yn =−Sn+1zn+1 +Sn+1zn− ln(1−κh)zn+1 + ln(1−κh)zn

−mn+1(zn+1− zn)
2 + ln+1zn+1 +Sn+1zn+1−mn+1z2

n+1− lnzn

−Snzn +mnz2
n

= (Sn+1−Sn)zn +(ln+1− ln)zn+1 +κhlnzn+1−κhlnzn

−mn+1(zn+1− zn)
2−mn+1z2

n+1 +mnz2
n

= (Sn+1−Sn)zn−κhlnzn− (mn+1−mn)z2
n.

We sum the above to arrive at

Yr = Y0 +
r−1

∑
n=0

[
(Sn+1−Sn)zn−κhlnzn− (mn+1−mn)z2

n

]
.

The difference between the value Y0 +∑
r−1
n=0(Sn+1− Sn)zn that one obtains in the fric-

tionless market and the liquidation value above is given by,

Lr :=
r−1

∑
n=0

κhlnzn +(mn+1−mn)z2
n.

Hence, Lr is the liquidity cost of the LOB. The following result is similar to Theorem
.2 in [11] and is central to our no-arbitrage analysis.

Lemma .1 Let ηn = ln−2mnzn and assume that η0 = 0. If mn is a non-negative con-
stant and κ < 2/h, then Lr ≥ 0 for all r ≥ 1. In general, if

φn :=
Λ2

n

mn
, with Λn = (1−κh)n

is a supermartingale, then E[Lr]≥ 0. Furthermore, Lr has the representation

Lr =
1
4

(
η2

r

mr
−

η2
0

m0

)
− 1

4

r−1

∑
n=0

l2
nΛ
−2
n (φn+1−φn). (3.2)

Proof. We first consider the case mn = M > 0. The definition of η implies that

zn =
ln−ηn

2M

and η solves
ηn−ηn+1 = ln− ln+1 +2M(zn+1− zn) = κhln.

5



This leads to

Lr =
r−1

∑
n=0

(ηn−ηn+1)(ln−ηn)

2M
=

r−1

∑
n=0

η2
n+1−η2

n − (ηn−ηn+1)
2 +2ln(ηn−ηn+1)

4M

=
r−1

∑
n=0

(η2
n+1−η2

n +(2κh− (κh)2)l2
n

4M
=

1
4M

(η2
r −η

2
0 +

r−1

∑
n=0

(2κh− (κh)2)l2
n ≥ 0,

provided that 0 < κ < 2
h . Next, we consider the general case. We use the notation

∆mn+1 = mn+1−mn and ∆
1

mn+1
= 1

mn+1
− 1

mn
. Recall the definition of η to compute,

κhlnzn =
1

2mn
(ηn−ηn+1)(ln−ηn)−2z2

n(∆mn+1)

=
1

4mn
[η2

n+1−η
2
n − (ηn−ηn+1)

2 +2ln(ηn−ηn+1)]−2z2
n(∆mn+1)

=
1

4mn

[
η

2
n+1−η

2
n − (κhln +2zn(∆mn+1))

2 +2ln(κhln +2zn(∆mn+1))
]

−2z2
n(∆mn+1)

=
η2

n+1

4mn+1
− η2

n

4mn
− η2

n

4

(
∆

1
mn+1

)
−

η2
n+1−η2

n

4

(
∆

1
mn+1

)
−2z2

n(∆mn+1)

+(2κh− (κh)2)
l2
n

4mn
+(1−κh)

znln
mn

(∆mn+1)−
z2

n

mn
(∆mn+1)

2

=
η2

n+1

4mn+1
− η2

n

4mn
+(2κh− (κh)2)

l2
n

4mn
− l2

n

4

(
∆

1
mn+1

)
+
(

mnznln−m2
nz2

n−
η2

n+1−η2
n

4

)(
∆

1
mn+1

)
−2z2

n(∆mn+1) (3.3)

+(1−κh)
znln
mn

(∆mn+1)−
z2

n

mn
(∆mn+1)

2. (3.4)

Then, a tedious but otherwise direct computation shows that

(3.3)+ (3.4) =
(

mnznln−m2
nz2

n−
(ηn+1−ηn)

2 +2(ln−2mnzn)(ηn+1−ηn)

4

)(
∆

1
mn+1

)
+(1−κh)

znln
mn

(∆mn+1)−
z2

n

mn
(∆mn+1)

2−2z2
n(∆mn+1)

=
1
4
(2κh− (κh)2)l2

n

(
∆

1
mn+1

)
+
[
mnznln−m2

nz2
n− z2

n(∆mn+1)
2

+(1−κh)znln(∆mn+1)−κhlnmnzn−2mnz2
n(∆mn+1)

](
∆

1
mn+1

)
+(1−κh)

znln
mn

(∆mn+1)−
z2

n

mn
(∆mn+1)

2−2z2
n(∆mn+1)

=
1
4
(2κh− (κh)2)l2

n

(
∆

1
mn+1

)
− z2

n(∆mn+1).
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Hence,

κhlnzn =
1
4

(η2
n+1

mn+1
− η2

n

mn

)
− l2

n

4

(
∆

1
mn+1

)
+(2κh− (κh)2)

l2
n

4mn+1
− z2

n(∆mn+1).

Summing up the liquidity costs leads to

Lr =
r−1

∑
n=0

[
κhlnzn +(mn+1−mn)z2

n

]
=

1
4

(
η2

r

mr
−

η2
0

m0

)
− 1

4

r−1

∑
n=0

l2
n

[( 1
mn+1

− 1
mn

)
+
(
(κh)2−2κh

) 1
mn+1

]
. (3.5)

Recall that φn = Λ2
n/mn with Λn =

(
1−κh

)n. Hence,

φn+1−φn = Λ
2
n

( 1
mn+1

− 1
mn

)
+(Λ2

n+1−Λ
2
n)

1
mn+1

and
Λ
−2
n (φn+1−φn) =

( 1
mn+1

− 1
mn

)
+((κh)2−2κh)

1
mn+1

.

So equation (3.5) can be written as (3.2). Thus, we see that Lr is non-negative in
expectation provided that φn is a supermartingale. 2

Remark .1 Suppose mn = MSn, where M is a non-negative constant. For h sufficiently
small φn is a supermartingale under P (resp. under the equivalent martingale measure
Q) only if

κ >
σ2−µ

2
(resp. κ >

σ2

2
).

Indeed, we directly compute the expected value under the measure P to obtain

E
[

φn+1

φn

∣∣∣Fn

]
= E

[
(1−κh)2 Sn

Sn+1

∣∣∣Fn

]
= (1−κh)2

(
1+µh

1+2µh−σ2h+µ2h2

)
.

For h sufficiently small, φn is a supermartingale provided that

(1−2κh)
( 1+µh

1+2µh−σ2h

)
< 1,

which leads to κ > σ2−µ

2 . Similarly, under the measure Q we obtain κ > σ2

2 . �

In [11], it is shown that the above result implies that this model is arbitrage free.
From the classical no-arbitrage theory we know that if there exists a measure Q equiv-
alent to P such that the stock price process S is a martingale, then there are no arbitrage
opportunities. Here in the liquidity risk setup, the additional supermartingale condition
on the process φn must also hold under the equivalent measure Q. Having an arbitrage
free model allows us to consider the expected utility from final wealth problem. This
will be discussed in the next section.
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4 Expected utility from terminal wealth
In this section, we study the optimal stochastic problem of maximizing the expected
utility from terminal wealth. From Remark .1 it follows that mn = MSn, with M > 0 is
a good choice for the depth parameter. We first formulate our stochastic optimization
problem. We consider a dynamic system

X := (Sn, ln,Yn,zn) ∈ R+×R×R+×R,

which is characterized by its state at any time step n ∈ {0,1, . . . ,N}. It evolves in an
uncertain environment and solves the equations

Sn+1 = Sn(1+µh+σ
√

hξn+1)

ln+1 = (1−κh)ln +2MSn+1(zn+1− zn) (4.1)
Yn+1 = Yn +(Sn+1−Sn)zn−κhlnzn−M(Sn+1−Sn)z2

n

zn+1 = zn +(zn+1− zn),

with initial states Sk,s
k = s, lk,s,l,∆z

k = l,Y k,s,l,y,z,∆z
k = y and zk,z,∆z

k = z at the time step
k. To fully represent our stochastic control problem the process z is needed as a state
variable, whereas ∆z = {∆zn}N−1

n=k+1 with ∆zn = zn−zn−1 is the control variable. We see
in equation (4.1) that the process l is influenced by the control ∆z. The set of admissible
controls will be denoted by A . Then the objective is to maximize over all admissible
controls a cost functional J(k, x̃,∆z) which is defined below.

For a given utility function U our objective functional has the form

J(k, x̃,∆z) = E[U(Y k,x̃,∆z
N )],

where x̃ = (s, l,y,z) is the initial condition at the time step k. The value function is then
defined to be the maximum value

v(k, x̃) = sup
∆z∈ ˜A

J(k, x̃,∆z),

where ˜A = Ak(x̃) = {∆z s.t. Y k,x̃,∆z
t ≥ 0 ∀t ∈ {k, . . . ,N} a.s.} is the class of admissible

controls.
Let vM be the corresponding Merton value function of the liquid market. The no-

arbitrage consideration implies that the vM should dominate v for initial values in which
there is no liquidity premium, i.e., when η = 0 or equivalently when l = 2Msz. The
following result proves this.

Theorem .1 Suppose that φn is a Q-supermartingale. Then, for all x̃ = (s, l,y,z) such
that l = 2Msz, we have

v(k, x̃)≤ vM(k,y).

Proof. We use (3.2) to rewrite the dynamics of Y as follows,

YN = YN−1 +(SN−SN−1)zN−1 +(LN−LN−1)

= YN−1 +(SN−SN−1)zN−1−
1

4M

(
η2

N
SN
−

η2
N−1

SN−1

)
+

1
4

l2
N−1Λ

−2
N−1(φN−φN−1).

8



By Doob’s decomposition theorem, φN = S̃N +AN , where S̃ is a Q-martingale and A is
a predictable, decreasing process with A0 = 0. Hence, there is an adapted process α̃

such that φN−φN−1 = α̃N−1(SN−SN−1)+AN−AN−1. Set αn =
1
4 l2

nΛ−2
n α̃n to compute,

1
4

l2
N−1Λ

−2
N−1(φN−φN−1) = αN−1(SN−SN−1)+

1
4

l2
N−1Λ

−2
N−1(AN−AN−1).

Then, we directly estimate that

E[U(Y k,x̃,∆z
N )] = E

[
E
[
U
(

YN−1 +(SN−SN−1)(zN−1 +αN−1)

− 1
4M

(
η2

N
SN
−

η2
N−1

SN−1

)
+

1
4

l2
N−1Λ

−2
N−1(AN−AN−1)

)∣∣∣FN−1

]]
≤ E

[
E
[
U
(

YN−1 +(SN−SN−1)(zN−1 +αN−1)

− 1
4M

(
η2

N
SN
−

η2
N−1

SN−1

))∣∣∣FN−1

]]
= · · ·

≤ E
[
U
(

y+
N−1

∑
n=k

(Sn+1−Sn)(zn +αn)+
1

4M
η2

k
Sk

)]
.

In the last step, we use the assumption that ηk = l− 2Msz = 0. Since the supremum
over z is the same as the supremum over z+α , we obtain the claimed inequality.

2

4.1 Reduction of one state variable
Our stochastic control problem has four state variables and one control variable. Clearly,
less state variables would be desirable especially from the numerical point of view. The
idea of this reduction is to use z itself and not its increments as the control process.
However, the dynamics of l contains the increments. So as before we introduce the
variable ηn = ln−2MSnzn. Then, its dynamics are given by

ηn+1−ηn =−κh(ηn +2MSnzn)−2Mzn(Sn+1−Sn). (4.2)

Then, we rewrite the dynamics of Y in terms of η and obtain

Yn+1−Yn = (Sn+1−Sn)zn−κhηnzn−2MκhSnz2
n−M(Sn+1−Sn)z2

n. (4.3)

The difference equation for S remains the same since the process l does not influence
S. We now notice that the state equations (4.2), (4.3) and the equation of S for the vari-
ables (S,η ,Y ) depend only on themselves and z but not on the increment ∆z. Hence,
we can define a new control problem with three state variables (S,η ,Y ) and one con-
trol variable z = {zn}N−1

n=k+1. Let x := (s,η ,y) be the initial condition and define the
corresponding value function by,

V (k,x) = sup
z∈A

J(k,x,z), (4.4)
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where A = Ak(x) = {z s.t. Y k,x,z
t ≥ 0 ∀ t ∈ {k, . . . ,N} a.s.}. We have the following

relation between the two value functions v and V

V (k,x) =V (k,s,η ,y) = sup
z̄∈R

v(k,s,η +2Msz̄,y, z̄) = sup
z̄∈R

v(k, x̃).

Since this fact is not used in this paper, we do not provide its and refer to [13].
In this reduced setup, we continue with a of the dynamic programming principle

(DPP). We first introduce the following notation. We denote the controlled process by
Xk,x,z

n := (Sk,s
n ,ηk,s,η ,z

n ,Y k,s,η ,y,z
n ) and the initial condition by x := (s,η ,y). Furthermore,

we use the following abbreviations u := µh+σ
√

h and d := µh−σ
√

h.

Theorem .2 The value function V (k,x) is continuous in x ∈ R+×R×R+ =: Q and
for every k ∈ {0,1, . . . ,N−1} the dynamic programming principle holds ,

V (k,x) = sup
z∈I (x)

E[V (k+1,Xk,x,z
k+1 )],

where

I (x) = {z ∈ R : y+(us−κhη)z− (2Msκh+Mus)z2 ≥ 0 and

y+(ds−κhη)z− (2Msκh+Mds)z2 ≥ 0}.

Proof. In view of (4.3), the definition of I (x) implies that Y k,x,z
k+1 ≥ 0 for every z∈I (x)

with probability one (i.e, for two possible values). We first show that I (x) is a bounded
set. Indeed, set

yup(z) := y+(us−κhη)z− (2Msκh+Mus)z2, if ξN = 1

ydown(z) := y+(ds−κhη)z− (2Msκh+Mds)z2, if ξN =−1.

Then, the zeroes of yup(z) are

zup
1,2 =

(us−κhη)∓
√

(us−κhη)2 +4(2Msκh+Mus)y
2(2Msκh+Mus)

and those of ydown(z) are

zdown
1,2 =

(ds−κhη)∓
√
(ds−κhη)2 +4(2Mκh+Mds)y

2(2Mκsh+Mds)
.

Furthermore, the coefficient of z2 of the function yup(z) is always non-positive, whereas
the coefficient of z2 of the function ydown(z) is non-negative, whenever κ ≤− d

2h and
non-positive otherwise. So if z ∈ [zup

1 ,zup
2 ] =: I1, then yup(z)≥ 0. Whenever κ ≤ − d

2h
we have ydown(z)≥ 0 if z ∈ (−∞,zdown

1 ]∪ [zdown
2 ,∞) =: I2, otherwise we have ydown(z)≥

0 if z ∈ [zdown
1 ,zdown

2 ] := Ĩ2. Thus, we see that yup(z),ydown(z)≥ 0 if z ∈ I3 := I1∩ I2 or
z ∈ Ĩ3 := I1∩ Ĩ2, Note that I3 resp. Ĩ3 is not empty as it contains z = 0.

We prove the statement by induction. So we observe that at the final step N, the
value function is continuous as V (N,x) =U(y). Also, the dynamic programming prin-
ciple holds trivially at the time step N. Indeed, it is the definition of V (N−1,x).
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Next, we show that the value function V (N− 1, ·) is continuous in Q at the time
step N−1. Let x∗ := (s∗,η∗,y∗) be the limit of an arbitrary sequence xk = (sk,ηk,yk).
Then take an ε-optimal control zε ∈ int(I (x∗)), where ε > 0. Hence, there exists a
K∗ such that for all k ≥ K∗ we have zε ∈I (xk). Furthermore, by continuity of U and
Y N−1,x,z

N we have
U(Y N−1,x∗,zε

N ) = lim
k→∞

U(Y N−1,xk,zε

N ).

Then, for any ε > 0 and by the dominated convergence theorem we see

V (N−1,x∗)≤ E[U(Y N−1,x∗,zε

N )]+ ε = lim
k→∞

E[U(Y N−1,xk,zε

N )]+ ε

≤ liminf
k→∞

V (N−1,xk)+ ε.

Since ε > 0 is arbitrary, it remains to show that

limsup
k→∞

V (N−1,xk)≤V (N−1,x∗). (4.5)

Given ε > 0 there exists an ε-optimal zε
k ∈ I (xk). For any admissible control z we

have z ∈ I3. Since I3 is a bounded interval we have

sup
k,ε
|zε

k |< ∞.

Therefore, there exists a convergent subsequence zε
kn

such that limn→∞ zε
kn
= zε . By the

dominated convergence theorem and ε-optimality of zε
k ,

V (N−1,x∗)≥ E[U(Y N−1,x∗,zε

N )] = lim
n→∞

E[U(Y
N−1,xkn ,z

ε
kn

N )]

≥ limsup
n→∞

V (N−1,xkn)− ε.

Hence, (4.5) follows and the continuity of V (N−1, ·) is proved. What remains to prove
is the dynamic programming principle at the time step N−1, i.e., we need to show that

V (N−2,x) = sup
zN−2∈I (x)

E[V (N−1,XN−2,x,zN−2
N−1 )].

Set z = (zN−2,zN−1), and use the Markovian structure of the state variables to arrive at

E[U(Y N−2,x,z
N )] = E[E[U(Y

N−1,X
N−2,x,zN−1
N−1 ,zN−1

N )|FN−1]]≤ E[V (N−1,XN−2,x,zN−2
N−1 )].

Taking the supremum on both sides leads to

V (N−2,x) = sup
z∈A

E[U(Y N−2,x,z
N )]≤ sup

zN−2∈I (x)
E[V (N−1,XN−2,x,zN−2

N−1 )].

The opposite inequality is proved using the continuity of V (N − 1, ·). Fix an initial
condition x0 ∈ Q and set

(α,β ) := (zN−2,zN−1) and Xα := XN−2,x0,α
N−1 .
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Fix ε > 0, and choose α ∈I (x0) such that

sup
α∈I (x0)

E[V (N−1,Xα)]≤ E[V (N−1,Xα)]+ ε. (4.6)

For every x ∈ Q, choose β ε(x) ∈I (x) such that

V (N−1,x)≤ E[U(Y N−1,x,β ε (x)
N )]+ ε = J(N−1,x,β ε(x))+ ε. (4.7)

The family of open sets

Oε
x := {y ∈ Q : |J(N−1,y,β ε(x))− J(N−1,x,β ε(x))|< ε

and |V (N−1,y)−V (N−1,x)|< ε} (4.8)

for x ∈ Q is an open cover of Q. Since any open cover of a separable space contains
a countable subcover, there exists a subsequence xn ∈ Q such that ∪nOε

xn = Q. Set
C1 := Oε

x1
and Cn+1 = Oε

xn+1
\∪n

k=1O
ε
xk

. Then, for all x ∈ Q there exists a k ∈ N such
that x ∈Ck. We denote that unique integer by k(x). Note that k(x) is by construction a
measurable function. Since Ck’s are disjoint, Q = ∪k(x)O

ε
xk(x)

. Also note that the map

(α,ω) 7→ Xα(ω) =: Xα

is measurable. Hence, so is k(Xα). Define β̂ = β ε(xk(Xα )) and set zε = (α, β̂ ) ∈A .
Since β̂ is a composition of measurable functions, it also is measurable. We now
directly calculate that

J(N−2,x0,zε) = E[U(Y N−2,x0,zε

N )] = E[E[U(Y N−1,Xα ,β̂
N )|FN−1]]

= E[J(N−1,Xα ,β ε(xk(Xα ))]

(4.8)
≥ E[J(N−1,xk(Xα ),β

ε(xk(Xα )))]− ε

(4.7)
≥ E[V (N−1,xk(Xα ))]−2ε

(4.8)
≥ E[V (N−1,Xα)]−3ε.

Hence,

V (N−2,x0)≥ J(N−2,x0,zε)≥ E[V (N−1,Xα)]−3ε

(4.6)
≥ sup

α∈I (x0)

E[V (N−1,Xα)]−4ε.

The general case follows by induction. The induction hypothesis is that V (N− k, ·)
is continuous and that the dynamic programming principle holds at the time step N−
k−1, i.e.

V (N− k−1,x) = sup
zN−k−1∈I (x)

E[V (N− k,XN−k−1,x,zN−k−1
N−k ].
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Then, the continuity of V (N−k−1, ·) is proved exactly as the continuity of V (N−1, ·)
by using the induction hypothesis. The dynamic programming principle at the time
step N− k−1, i.e.

V (N− k−2,x) = sup
zN−k−2∈I (x)

E[V (N− k−1,XN−k−2,x,zN−k−2
N−k−1 )].

is proved exactly as in the time step N−1. 2

Proposition .1 There exists an optimal feedback strategy z for the optimal control
problem (4.4).

Proof. Since I (x) is a bounded set, by Theorem .2 we have

V (k,x) = max
z∈I (x)

E[V (k+1,Xk,x,z
k+1 )].

Set z∗k(x) = argmaxz{E[V (k+ 1,Xk,x,z
k+1 )]}. We construct an optimal feedback strategy

in the following way: We start at the time step k with x and choose z∗k ∈ z∗k(x). Having
the dynamics of the state variables we obtain a random variable X∗k+1. At the time step
k+ 1 we choose z∗k+1 ∈ z∗k+1(X

∗
k+1) and continue with the iteration. The optimality of

the feedback control follows from the DPP. 2

5 Numerical results
In this section, we solve the optimization problem numerically. Hence, dimension
reduction of the problem (4.4) is desirable. One may achieve this by assuming that the
utility function is of power type,

U(y) =

{
y1−γ

1−γ
, 0 < γ,

log(y), γ = 1.

Indeed, the homothety of the utility function leads to

V (k,x) =V (k,s,η ,y) = s1−γV (k,1,η/s,y/s) =: s1−γ w(k,ψ, ỹ). (5.1)

Then, Theorem .2 and (5.1) provide a dynamic programming equation for w as well,

w(k,ψ, ỹ) = sup
z∈I (ψ,ỹ)

E
[
(1+µh+σ

√
hξk+1)

1−γ w(k+1,ψk,ψ,z
k+1 ,Ỹ k,ψ,ỹ,z

k+1 )
]
. (5.2)

The state variables ψ and Ỹ solve the equations

ψn+1 =
(1−κh)ψn−2Mκhzn−2Mzn(µh+σ

√
hξn+1)

1+µh+σ
√

hξn+1
(5.3)

Ỹn+1 =
Ỹn−κhψnzn +(µh+σ

√
hξn+1)(1−Mzn)zn−2Mκhz2

n

1+µh+σ
√

hξn+1
. (5.4)
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We continue by describing the algorithm. We first discretize the continuous state
space (ψ,Ỹ ) and the control space z with grid sizes ∆ψ,∆Ỹ and ∆z. The discretized
state variables ψ and Ỹ lie in closed intervals Iψ and IỸ . The same holds for the con-
trol variable z, i.e., z ∈Iz. We start the algorithm at the final time step N, and compute
w(N,ψ,Ỹ ) = U(Ỹ ), for all discrete values of Ỹ ∈ IỸ . For the recursion step, we use
(5.2), (5.3) and (5.4). If the state variables (ψ,Ỹ ) at the next time step fall outside the
interval Iψ ×IỸ , we use an extrapolation to compute the value function w for these
values.

We set γ = 0.75,σ = 0.3,µ = 0.04,M = 0.2,κ = 12,T = 2 and N = 20. The value
function w is plotted in Figure 5. Figure 5 is the plot of the difference w− vM . This
graph shows that Merton’s value function vM dominates w for values of ψ around the
origin. This is more apparent if one considers Figure 5, where we fix ψ and plot w−vM .
However, there is also local arbitrage since the opposite inequality also holds for some
values of ψ . The corresponding optimal strategy z∗ is plotted in Figure 5. Note that the
optimal strategy grows almost linearly in ψ , whereas in ỹ it changes less.
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Figure 1: Numerical results for w and w− vM
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Figure 2: Numerical results for w− vM for fixed ψ and the optimal strategy z∗

6 Concluding remarks
In this paper, we consider the expected utility from terminal wealth in a liquidity risk
model proposed by Roch and Soner [11], in discrete time. We prove the dynamic
programming principle and use it to compute the value function for some parameter
values. We also show that the resulting discrete time model is arbitrage free for some
parameter values. Indeed, for these parameter values, the value function with liquidity
is bounded from above by Merton’s value function, provided that the initial liquidity
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premium is zero. This is confirmed by numerical calculations which also show local
arbitrage when there is initial price impact, or equivalently when the state variable ψ is
initially not zero.
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