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Abstract We prove limit theorems for the super-replication cost of European options
in a binomial model with friction. Examples covered are markets with proportional
transaction costs and illiquid markets. A dual representation for the super-replication
cost in these models is obtained and used to prove the limit theorems. In particular,
the existence of a liquidity premium for the continuous-time limit of the model pro-
posed in Çetin et al. (Finance Stoch. 8:311–341, 2004) is proved. Hence, this paper
extends the previous convergence result of Gökay and Soner (Math Finance 22:250–
276, 2012) to the general non-Markovian case. Moreover, the special case of small
transaction costs yields, in the continuous limit, the G-expectation of Peng as earlier
proved by Kusuoka (Ann. Appl. Probab. 5:198–221, 1995).
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1 Introduction

We consider a one-dimensional binomial model in which the size of a trade has an
immediate but temporary effect on the price of the asset. Indeed, let g(t, ν) be the
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cost of trading ν shares at time t . We simply assume that g is adapted to the natural
filtration and convex in ν with g(t,0) = 0. In this generality, this model corresponds
to the classical transaction cost model when g(t, ν) = λ|ν| with given constant λ > 0.
However, it also covers the illiquidity model considered in [4] and [13], which is
the binomial version of the model introduced by Çetin et al. in [5] for continuous
time.

In continuous time, the super-replication cost of a European option behaves quite
differently depending on the structure of g. In the case of proportional transaction
costs (i.e., when g is nondifferentiable at the origin), the super-replication cost is
very high as proved in [8, 14, 17, 22]. In several papers [2, 16], asymptotic problems
with vanishing transaction costs are considered to obtain nontrivial pricing equations.
On the other hand, when g is differentiable, then any continuous trading strategy
which has finite variation has no liquidity cost. Thus, one may avoid the liquidity
cost entirely as shown in [5] and also in [1]. However, in [6] it is shown that mild
constraints on the admissible strategies render these approximation inadmissible and
one has a liquidity premium. This result is further verified in [13], which derives
the same premium as the continuous-time limit of binomial models. The equation
satisfied by this limit is a nonlinear Black–Scholes equation

−ut (t, s) + σ 2s2

2
H

(
uss(t, s)

) = 0 ∀t < T , s > 0, (1.1)

where t is time, s is the current stock price, and H is a convex nonlinear function of
the second derivative derived explicitly in [6, 13]. Since H is convex, the above equa-
tion is the dynamic programming equation of a stochastic optimal control problem.
Then this problem may be considered as the dual of the original super-replication
problem.

The proof given in [13] depends on homogenization techniques for viscosity solu-
tions. Thus, it is limited to Markovian claims. Moreover, the mentioned duality result
is obtained only through the partial differential equation and not by a direct argument.

In this paper, we extend the study of [13] to non-Markovian claims and to more
general liquidity functions g. The model is again a simple one-dimensional model
with trading cost g. In this formulation, the super-replication problem is a convex op-
timization problem, and its dual can be derived by classical theory. This derivation is
another advantage of the discrete model as a derivation of the dual in continuous time
is essentially an open problem. However, a new approach is now developed in [24].
The dual is an optimal control problem in which the controller is allowed to choose
different probability measures. We then use this dual representation to formally iden-
tify the limit optimal control problem. The dynamic programming equation of this
optimal control problem is given by (1.1) in the Markov case. This representation
also allows us to prove the continuous-time limit.

Our approach is purely probabilistic and allows us to deal with path-dependent
payoffs and path-dependent penalty functions g. One of the key steps is a construction
of Kusuoka given in the context of transaction costs. Indeed, given a martingale M on
the Brownian probability space whose volatility satisfies some regularity conditions,
Kusuoka in [16] constructs on the discrete probability space {−1,1}N a sequence of
martingales of a specific form which converge in law to M . Moreover, the quadratic
variation of M is also approximated through this powerful procedure of Kusuoka.
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This construction is our main tool in proving the lower bound (i.e., the existence
of a liquidity premium) for the continuous-time limit of the super-replication costs.
The upper bound follows from compactness and two general lemmas (Lemmas 7.1
and 7.2).

As remarked before, the super-replication cost can be quite expensive in markets
with transaction costs. Therefore, if g(t, ν) = λ|ν| and λ > 0 is a given constant,
one obtains a trivial result in the continuous-time limit. So we need to scale the
proportionality constant λ as the time discretization gets finer. Indeed, if we take
λn = Λ/

√
n in an n-step model, then the limit problem is the uncertain volatility

model or equivalently G-expectation of Peng [18]. This is exactly the main result of
Kusuoka in [16]. In fact, relatedly, the authors in joint work with Nutz [9] provide a
different discretization of the G-expectation.

The paper is organized as follows. In the next section, we introduce the setup.
In Sect. 3, we formulate the main results. In Sect. 4, we prove Theorem 3.1, which
is a duality result for the super-replication prices in the binomial models. The main
tool that is used in this section is the Kuhn–Tucker theory for convex optimization.
Theorem 3.5 which describes the asymptotic behavior of the super-replication prices
is proved in Sect. 5. In Sect. 6, we state the main results from [16] which are used
in this paper. In particular, we give a short formulation of the main properties of the
Kusuoka construction, which is the main tool in proving the lower bound (liquidity
premium) of Theorem 3.5. In Sect. 7, we derive auxiliary lemmas that are used in the
proof of Theorem 3.5.

2 Preliminaries and the model

Let Ω = {−1,1}N be the space of infinite sequences ω = (ω1,ω2, . . .), where
ωi ∈ {−1,1}, with the product probability Q = { 1

2 , 1
2 }N. Define the canonical se-

quence of independent and identically distributed (i.i.d.) random variables ξ1, ξ2, . . .

by

ξi(ω) = ωi, i ∈ N,

and consider the natural filtration Fk = σ {ξ1, . . . , ξk}, k ≥ 1, and let F0 be trivial.
For any T > 0, denote by C[0, T ] the space of all continuous functions on

[0, T ] with the uniform topology induced by the norm ‖y‖∞ = sup0≤t≤T |y(t)|. Let
F : C[0, T ] → R+ be a continuous map such that there exist constants C,p > 0 for
which

F(y) ≤ C
(
1 + ‖y‖p∞

) ∀y ∈ C[0, T ]. (2.1)

Without loss of generality, we take T = 1.
Next, we introduce a sequence of binomial models for which the volatility of

the stock price is a constant σ > 0 (which is independent of n). For any n, con-
sider the n-step binomial model of a financial market which is active at times
0,1/n,2/n, . . . ,1. We assume that the market consists of a savings account and a
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stock. Without loss of generality (by discounting), we assume that the savings ac-
count price is a constant which equals 1 and the stock price at time k/n is given by

S(n)(k) = s0 exp

(

σ

√
1

n

k∑

i=1

ξi

)

, k = 0,1, . . . , n, (2.2)

where s0 > 0 is the initial stock price. For any n ∈ N, let Wn : Rn+1 → C[0,1] be the
linear interpolation operator given by

Wn(y)(t) := ([nt] + 1 − nt
)
y
([nt]) + (

nt − [nt])y([nt] + 1
) ∀t ∈ [0,1],

where y = {y(k)}nk=0 ∈ Rn+1, and [z] denotes the integer part of z. We consider a
(possibly path-dependent) European contingent claim with maturity T = 1 and payoff

Fn := F
(

Wn

(
S(n)

))
, (2.3)

where, by definition, we consider Wn(S
(n)) as a random element in C[0,1].

For future reference, let C+[0,1] be the set of all strictly positive continuous func-
tions on [0,1] with the uniform topology. Then clearly Wn(S

(n)) is an element of
C+[0,1].
2.1 Wealth dynamics and super-replication

Next, we define the notion of a self-financing portfolio in these models. Fix n ∈ N and
consider an n-step binomial model with a penalty function g. This function represents
the cost of trading in this market, namely g(t, s, ν) is the transaction cost which the
investor pays at time t given that the stock price process and the trading volume at
this moment are equal to s and ν, respectively. We assume the following.

Assumption 2.1 The trading cost function

g : [0,1] × C+[0,1] × R → [0,∞)

is assumed to be nonnegative, adapted, and such that g(t, S,0) = 0. Moreover, we
assume that g(t, S, ·) is convex for every (t, S) ∈ [0,1] × C+[0,1].

In this simple setting, the adaptedness of g simply means that g(t, S, ν) depends
only on the restriction of S to the interval [0, t], namely

g(t, S, ν) = g(t, Ŝ, ν) whenever S(s) = Ŝ(s) ∀s ≤ t.

A self-financing portfolio π with initial capital x is a pair π = (x, {γ (k)}nk=0)

where γ (0) = 0 and for any k ≥ 1, γ (k) is an Fk−1-measurable random variable.
Here γ (k) represents the number of stocks that the investor holds at the moment k/n

before a transfer is made at this time. The portfolio value Yπ(k) := Yπ(k : g) of a
trading strategy π is given by the difference equation

Yπ(k + 1) = Yπ(k) + γ (k + 1)
(
S(n)(k + 1) − S(n)(k)

)

− g

(
k

n
, Wn

(
S(n)

)
, γ (k + 1) − γ (k)

)
(2.4)

for k = 0, . . . , n − 1 and with initial data Yπ(0) = x.
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The term Yπ(k) is the portfolio value at time k/n before a transfer is made at this
time, and the last term in (2.4) represents the cost of trading and is the only source of
friction in the model. Note that the random variable g( k

n
, Wn(S

(n)), γ (k + 1) − γ (k))

is Fk-measurable. We mostly use the notation Yπ(k) when the dependence on the
penalty function is clear.

Let An(x) be the set of all portfolios with initial capital x. The problem we con-
sider is the super-replication of a European claim whose payoff is given in (2.3). The
formal definition of the super-replication price is given by

Vn := Vn(g,Fn) = inf
{
x

∣∣ ∃π ∈ An(x) with Yπ(n : g) ≥ Fn Q-a.s.
}
. (2.5)

2.2 Trading cost

In this subsection, we state the main assumption on g in addition to Assumption 2.1.
We also provide several examples and make the connection to models with propor-
tional transaction costs and models with price impact.

Let G : [0,1] × C+[0,1] × R → [0,∞] be the Legendre transform (or convex
conjugate) of g,

G(t, S, y) = sup
ν∈R

(
νy − g(t, S, ν)

)
, ∀(t, S, y) ∈ [0,1] × C+[0,1] × R. (2.6)

Observe that G may become infinite. It is well known that we have the dual relation

g(t, S, ν) = sup
y∈R

(
νy − G(t, S, y)

)
, ∀(t, S, ν) ∈ [0,1] × C+[0,1] × R.

Example 2.2 The following three cases provide the essential examples of the theory
developed in this paper.

(a) For a given constant Λ > 0, let

g(t, S, ν) = Λν2.

In this example, we directly calculate that

G(t, S, y) = y2/4Λ.

This penalty function is the binomial version of the linear liquidity model of
Çetin et al. [5] that was studied in [13] (see Remark 2.4 below).

In [23], it is proved that the optimal trading strategies in continuous time with
a smooth g do not have jumps. Hence, one expects that in a binomial model
with large n, the optimal portfolio changes are also small. Thus, any trading
cost g which is twice differentiable essentially behaves like this example with
Λ = gνν(t, S,0)/2.

(b) This example corresponds to the example of proportional transaction costs. For
fixed n, there have recently been interesting results in relation to arbitrage. We
refer to the papers of Schachermayer [21], Pennanen and Penner [19], and the
references therein. But as remarked earlier, a fixed transaction cost forces the
super-replication to be very costly as n tends to infinity. Hence, we take a se-
quence of problems with vanishing transaction costs,

gc
n(t, S, ν) = c√

n
S(t)|ν|,



Y. Dolinsky and H.M. Soner

where c > 0 is a constant. This discrete financial market with vanishing transac-
tion costs is the model studied in [16] by Kusuoka. In this case, the dual function
is

Gc
n(t, S, y) =

{
0 if |y| ≤ c S(t)/

√
n,

+∞ else.

(c) This example is a mixture of the previous two. It is obtained by appropriately
modifying the liquidity example. In our analysis, this modification will be used
in several places. For a given constant c, let

Gc
n(t, S, y) =

{
y2/4Λ if |y| ≤ cS(t)/

√
n,

+∞ else.

We directly calculate that

gc
n(t, S, ν) =

⎧
⎨

⎩

Λν2 if |ν| ≤ cS(t)

2
√

nΛ
,

c√
n
S(t)|ν| − c2S2(t)

4nΛ
else.

In the above, the third example is obtained from the first one through an appropri-
ate truncation of the dual cost function G. One may perform the same modification
to all given penalty functions g. The following definition formalizes this.

Definition 2.3 Let g : [0,1] × C+[0,1] × R → [0,∞] be a convex function (in the
third argument) with g(t, S,0) = 0. Then the truncation of g at level c is given by

gc
n(t, S, ν) := gc

n(t, S, ν : g) = sup
{
νy − G(t, s, y)

∣∣ |y| ≤ cS(t)/
√

n
}
,

where G is the convex conjugate of the original g.

An important but simple observation is the structure of the dual function of gc
n.

Indeed, it is clear that the Legendre transform Gc
n of gc

n is simply given by

Gc
n(t, S, y) =

{
G(t, S, y) if |y| ≤ cS(t)/

√
n,

+∞ else,
(2.7)

where G is the Legendre transform of g.
Note that for any n ∈ N, gc

n converges monotonically to g as c tends to infinity.
Also, observe that Example 2.2(b) is the truncation of the function

g(t, S, ν) =
{

0 if ν = 0,

+∞ else.

Example 2.2(c), however, corresponds to the truncation of g(t, S, ν) = Λν2.
We close this subsection by connecting the above model to the discrete liquidity

models.

Remark 2.4 Following the liquidity model which was introduced in [5], we introduce
a path-dependent supply curve

S : [0,1] × C+[0,1] × R → R.
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We assume that S(t, S, ·) is adapted, i.e., it depends only on the restriction of S to the
interval [0, t], namely

S(t, S, ν) = S(t, Ŝ, ν) whenever S(s) = Ŝ(s) ∀s ≤ t.

In the n-step binomial model, the price per share at time t is S(t, Wn(S
(n)), ν), where

ν is the size of the transaction of the investor. The penalty which represents the liq-
uidity effect of the model is then given by

g(t, S, ν) = (
S(t, S, ν) − S(t)

)
ν ∀(t, S, ν) ∈ [0,1] × C+[0,1] × R.

3 Main results

Our first result is a characterization of the dual problem. We believe that this simple
result is of independent interest as well. Also, it will be the essential tool to study the
asymptotic behavior of the super-replication cost.

Recall that Fn and Vn are given, respectively, in (2.3) and (2.5). Moreover, g is the
trading cost function, and G is its Legendre transform.

Theorem 3.1 (Duality) Let Qn be the set of all probability measures on (Ω, Fn).
Then

Vn = sup
P∈Qn

EP

(

Fn −
n−1∑

k=0

G

(
k

n
, Wn

(
S(n)

)
,EP

(
S(n)(n)

∣∣ Fk

) − S(n)(k)

))

,

where EP denotes the expectation with respect to a probability measure P.

The above duality is proved in the next section.
We continue by discussing the main assumption on the trading costs. We assume

that the Legendre transform G of the convex penalty function g satisfies the follow-
ing.

Assumption 3.2 We assume that G satisfies the following growth and scaling con-
ditions:

(a) There are constants C,p > 0, and β ≥ 2 such that

G(t, S, y) ≤ Cyβ
(
1 + ‖S‖∞

)p ∀(t, S, y) ∈ [0,1] × C+[0,1] × R. (3.1)

(b) There exists a continuous function

Ĝ : [0,1] × C+[0,1] × R → [0,∞]
such that for any bounded sequence {αn}, discrete-valued sequence {ξn} in
{−1,1}, and convergent sequences tn → t , S(n) → S (in the ‖ · ‖∞-norm), we
have

lim
n→∞

∣∣
∣∣nG

(
tn, S

(n),
ξnαn√

n
S(n)(tn)

)
− Ĝ

(
t, S,αnS(t)

)
∣∣
∣∣ = 0. (3.2)
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It is straightforward to show that Ĝ is quadratic in the y-variable. Moreover, the
above Assumption 3.2 is essentially equivalent to assuming that G is twice differen-
tiable at the origin. Indeed, if the latter holds, a Taylor approximation implies that

Ĝ(t, S, y) = 1

2
y2Gyy(t, S,0).

We give the following example to clarify the above assumption.

Example 3.3 For γ ≥ 1, let

gγ (ν) = 1

γ
|ν|γ .

Then, for γ > 1,

Gγ (y) = 1

γ ∗ |y|γ ∗
, γ ∗ = γ

γ − 1
.

For γ = 1, G1(y) = 0 for |y| ≤ 1 and is equal to infinity otherwise. Moreover, we
directly calculate that Ĝγ (0) = 0 and for y �= 0,

Ĝγ (y) := lim
n→∞ nGγ

(
y√
n

)
=

⎧
⎨

⎩

G2(t, y) if γ = 2,

0 if γ ∈ [1,2),

∞ if γ > 2.

Notice that Gγ is twice differentiable at the origin only for γ ∈ [1,2].

To describe the continuous-time limit, we need to introduce some further nota-
tion. Let (ΩW , F W,PW) be a complete probability space together with a standard
one-dimensional Brownian motion W and the right-continuous filtration given by

F W
t = σ(σ {W(s)|s ≤ t} ∪ N ), where N is the collection of all PW -null sets. For any

progressively measurable, bounded, nonnegative α, let Sα be the continuous martin-
gale given by

Sα(t) = s0 exp

(∫ t

0
α(u)dW(u) − 1

2

∫ t

0
α2(u) du

)
, t ∈ [0,1]. (3.3)

We also introduce the following notation which is related to the quadratic variation
density of lnSα . Recall that the constant σ is the volatility that was already introduced
in the dynamics of the discrete stock price process in (2.2). Set

a(t : Sα) :=
d〈lnSα〉(t)

dt
− σ 2

2σ
= α2(t) − σ 2

2σ
. (3.4)

The continuous limit is given through an optimal control problem in which α is the
control and Sα is the controlled state process. To complete the description of this
control problem, we need to specify the set of admissible controls.

Definition 3.4 For any constant c > 0, an admissible control at the level c is a pro-
gressively measurable, nonnegative process α(·) satisfying

∣∣a(· : Sα)
∣∣ ≤ c L ⊗ PW -a.s.,

where L is the Lebesgue measure on [0,1]. The set of all admissible controls at the
level c is denoted by Ac.



Convergence for markets with friction

As before, g is the penalty function, and gc
n is the truncation of g at the level c as

in Definition 2.3. Let Fn be a given claim, and Vn = Vn(g,Fn) the super-replication
cost defined in (2.5). For any level c, let V c

n = Vn(g
c
n,Fn).

The following theorem, which will be proved in Sect. 5, is the main result of the
paper. It provides the asymptotic behavior of the truncated super-replication costs V c

n .
Since V c

n ≤ Vn for every c, the result below can be used to show the existence of a
liquidity premium as it was done for a Markovian example in [13]; see Corollary 3.6
and Remark 3.7 below.

Theorem 3.5 (Convergence) Let G be a dual function satisfying Assumption 3.2,
and let Ĝ be as in (3.2). Then, for every c > 0,

lim
n→∞V c

n = sup
α∈Ac

J (Sα),

where

J (Sα) := EW

(
F(Sα) −

∫ 1

0
Ĝ

(
t, Sα, a(t : Sα)Sα(t)

)
dt

)
, (3.5)

and EW denotes the expectation with respect to PW .

Since V c
n ≤ Vn for every c > 0, we have the following immediate corollary.

Corollary 3.6

lim inf
n→∞ Vn ≥ sup

α∈A
EW

(
F(Sα) −

∫ 1

0
Ĝ

(
t, Sα, a(t : Sα)Sα(t)

)
dt

)
, (3.6)

where A is the set of all bounded, nonnegative, progressively measurable processes.

A natural question which for now remains open is under which assumptions the
above inequality is in fact an equality. For the specific quadratic penalty and Marko-
vian payoffs, [13] proves the equality.

Remark 3.7 (Liquidity premium) A related question is whether the limiting super-
replication cost contains a liquidity premium, i.e., whether the right-hand side of
(3.6) is strictly bigger than the Black–Scholes price VBS(F ). For Markovian non-
affine payoffs, this was proved in [6]. Notice that the standard Black–Scholes price
is given by VBS(F ) := EW(F(Sσ )), and this can be achieved by simply choosing the
control α ≡ σ in the right-hand side of (3.6).

In the generality considered in this paper, the following argument might be utilized
to establish a liquidity premium. Fix ε > 0. From (3.1) one can prove the estimate

sup
α∈Aε

EW

(∫ 1

0
G

(
t, Sα, a(t : Sα)Sα(t)

)
dt

)
= O

(
ε2).

Thus, in order to prove the strict inequality, it remains to show that there exists a
constant C > 0 such that

sup
α∈Aε

EW
(
F(Sα)

) ≥ EW
(
F(Sσ )

) + Cε.
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Notice that supα∈Aε EW(F(Sα)) is exactly the G-expectation of Peng. For many
classes of payoffs, this methodology can be used to prove the existence of a liq-
uidity premium. Indeed, for convex types of payoffs such as put options, call options,
and Asian (put or call) options, this can be verified directly by observing that the
maximum in the above expression is achieved for α ≡ √

σ(σ + 2ε).

We close this section by revisiting Example 3.3.

Example 3.8 Let gγ be the power penalty function given in Example 3.3. In the
case of γ = 2, Ĝ is also a quadratic function. Hence, the limit stochastic optimal
control problem is exactly the one derived and studied in [6, 13]. The case γ > 2 is not
covered by our hypothesis, but formally the limit value function is equal to the Black–
Scholes price as Ĝ is finite and zero only when α ≡ σ . This result can be proved
from our results by appropriate approximation arguments. The case γ ∈ [1,2) is in-
cluded in our hypothesis, and the limit of the truncated problem is the G-expectation.
Namely, only volatility processes α that are in a certain interval are admissible.

Since in these markets the investors make only small transactions, a larger γ means
less trading cost. Hence, when γ is sufficiently large (i.e., γ > 2), the trading penalty
is completely avoided in the limit. Hence, for these values of γ , the limiting super-
replication cost is simply the usual replication price in a complete market.

4 Duality

In this section, we prove the duality result in Theorem 3.1. Fix n ∈ N and consider the
n-step binomial model with penalty function g. We first motivate the result and prove
one of the inequalities. Then the proof is completed by casting the super-replication
problem as a convex program and using the standard duality. Indeed, for any
k = 0, . . . , n − 1,

Yπ(k + 1) = Yπ(k) + γ (k + 1)
(
S(n)(k + 1) − S(n)(k)

) − g

(
k

n
, γ (k + 1) − γ (k)

)
.

Since γ (0) = 0 and Yπ(0) = x, we sum over k to arrive at

Yπ(n) − x =
n−1∑

k=0

(
γ (k + 1)

(
S(n)(k + 1) − S(n)(k)

) − g

(
k

n
, γ (k + 1) − γ (k)

))

=
n−1∑

k=0

((
γ (k + 1) − γ (k)

)(
S(n)(n) − S(n)(k)

)

− g

(
k

n
, γ (k + 1) − γ (k)

))
.

Let P be a probability measure in Qn. We take the conditional expectations and use
the definition of the dual function G to obtain
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EP
(
Yπ(n)

) = x + EP

(
n−1∑

k=0

(
γ (k + 1) − γ (k)

) (
EP

(
S(n)(n)

∣∣ Fk

) − S(n)(k)
)

− g

(
k

n
, γ (k + 1) − γ (k)

))

≤ x + EP

(
n−1∑

k=0

G

(
k

n
,EP

(
S(n)(n)

∣∣ Fk

) − S(n)(k)

))

.

If π is a super-replicating strategy with initial wealth x, then Yπ(n) ≥ Fn and

x ≥ EP

(

Fn −
n−1∑

k=0

G

(
k

n
,EP

(
S(n)(n)

∣
∣ Fk

) − S(n)(k)

))

.

Since P ∈ Qn is arbitrary, the above calculation proves that

Vn ≥ sup
P∈Qn

EP

(

Fn −
n−1∑

k=0

G

(
k

n
,EP

(
S(n)(n)

∣
∣ Fk

) − S(n)(k)

))

.

The opposite inequality is proved using the standard duality. Indeed, the proof that
follows does not use the above calculations.

Proof of Theorem 3.1 We model the n-step binomial model as in [7]. Consider
a tree whose paths are sequences of the form (a1, . . . , ak) ∈ {−1,1}k , 0 ≤ k ≤ n.
The set of all paths is denoted by V. The empty path (corresponding to k = 0)
is the root of the tree and denoted by ∅. In our model, each path of the form
u = (u1, . . . , uk) ∈ {−1,1}k , k < n, has two immediate successor paths (u1, . . . , uk,1)

and (u1, . . . , uk,−1). Let T := {−1,1}n be the set of all paths with length n. For
u ∈ V \ T, denote by u+ the set of all paths which consist of the immediate succes-
sors of u. The unique immediate predecessor of a path u = (u1, . . . , uk) ∈ V \ {∅} is
denoted by u− := (u1, . . . , uk−1). For u = (u1, . . . , uk) ∈ V \ T, let

T(u) := {v ∈ T | vi = ui, 1 ≤ i ≤ k}
with T({∅}) = T. For u ∈ V, �(u) is the number of elements in the sequence u, where
we set �(∅) = 0. Finally, we define the functions S : V → R, Ŝ : V → C+[0,1], and
F̂ : T → R+ by

S(u) = s0 exp

(
σ√
n

�(u)∑

i=1

ui

)

,

Ŝ(u) = Wn

({
S(u1, . . . , uk∧�(u))

}n

k=0

)
,

F̂ (v) = F
(
Ŝ(v)

)
.

In this notation, the super-replication cost Vn is the solution of the convex minimiza-
tion problem to

minimize Y(∅) (4.1)

over all β,γ,Y subject to the constraints
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γ (∅) = 0, (4.2)

γ (u) − γ
(
u−) − β

(
u−) = 0 ∀u ∈ V \ {∅}, (4.3)

Y(u) + g

(
�(u−)

n
, Ŝ

(
u−)

, β
(
u−))

− γ (u)
(
S(u) − S

(
u−)) − Y

(
u−) ≤ 0 ∀u ∈ V \ {∅}, (4.4)

Y(u) ≥ F̂ (u) ∀u ∈ T. (4.5)

Notice that (2.4) implies that constraint (4.4) should in fact be an equality. However,
this modification of the constraint does not alter the value of the optimization prob-
lem. The optimization problem given by (4.1)–(4.5) is an ordinary convex program
on the space RV\T × RV × RV. Following the Kuhn–Tucker theory (see [20]), we
define the Lagrangian L : RV × R

V\{∅}
+ × RT+ × RV\T × RV × RV → R by

L(Υ,Φ,Θ,β,γ,Y ) = Y(∅) + Υ (∅)γ (∅) +
∑

u∈V\{∅}
Υ (u)

(
γ (u) − γ

(
u−) − β

(
u−))

+
∑

u∈V\{∅}
Φ(u)

(
Y(u) + g

(
�(u−)

n
, Ŝ

(
u−)

, β
(
u−))

− γ (u)
(
S(u) − S

(
u−)) − Y

(
u−))

+
∑

u∈T

Θ(u)
(
F̂ (u) − Y(u)

)
.

We rearrange the above expressions to arrive at

L(Υ,Φ,Θ,β,γ,Y )

= Y(∅)

(
1 −

∑

u∈∅+
Φ(u)

)
+

∑

u∈V\({∅}∪T)

Y (u)

(
Φ(u) −

∑

ũ∈u+
Φ(ũ)

)

+
∑

u∈T

Y(u)
(
Φ(u) − Θ(u)

) + γ (∅)

(
Υ (∅) −

∑

u∈∅+
Υ (u)

)

+
∑

u∈V\{∅}
γ (u)

(
Υ (u) −

∑

ũ∈u+
Υ (ũ)Φ(u)

(
S(u) − S

(
u−))) +

∑

u∈T

Θ(u)F̂ (u)

+
∑

u∈V\T

( ∑

ũ∈ u+
Φ(ũ)g

(
�(u)

n
, Ŝ(u),β(u)

)
− β(u)

∑

ũ∈ u+
Υ (ũ)

)
. (4.6)

By Theorem 28.2 in [20], we conclude that the value of the optimization problem
(4.1)–(4.5) is also equal to

Vn = sup
(Υ,Φ,Θ)∈RV×R

V\{∅}
+ ×R

T+

inf
(β,γ,Y )∈RV\T×RV×RV

L(Υ,Φ,Θ,β,γ,Y ). (4.7)

Using (4.6) and (4.7), we conclude that
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Vn = sup
(Υ,Φ,Θ)∈D

inf
β∈RV\T

(
∑

u∈T

Θ(u)F̂ (u)

+
∑

u∈V\T

( ∑

ũ∈ u+
Φ(ũ)g

(
�(u)

n
, Ŝ(u),β(u)

)
− β(u)

∑

ũ∈ u+
Υ (ũ)

))

, (4.8)

where D ⊂ RV ×RV\{∅} ×RT+ is the subset of all (Υ,Φ,Θ) satisfying the constraints

∑

u∈∅+
Φ(u) = 1,

∑

ũ∈ u+
Φ(ũ) = Φ(u) ∀u ∈ V \ (

T ∪ {∅}), (4.9)

Υ (u) = Φ(u)
(
S(u) − S

(
u−)) +

∑

ũ∈ u+
Υ (ũ) ∀u ∈ V \ {∅}, (4.10)

Φ(u) = Θ(u) ∀u ∈ T. (4.11)

By (4.9) and (4.10), we obtain that for any (Υ,Φ,Ψ ) ∈ D,

∑
ũ∈ u+ Υ (ũ)

∑
ũ∈ u+ Φ(ũ)

=
∑

ũ∈T(u) Φ(ũ)S(ũ)

Φ(u)
− S(u) ∀u ∈ V \ T, (4.12)

with the convention 0/0 = 0 (observe that
∑

ũ∈T(u) Φ(ũ)S(ũ) = 0 if Φ(u) = 0). Let

D ⊂ R
V\{∅}
+ be the set of all functions Φ : V \ {∅} → R+ which satisfy (4.9). In view

of (2.6), (4.8), (4.9) and (4.11), (4.12),

Vn = sup
Φ∈D

∑

u∈T

Φ(u)

(
F̂ (u) − G

(
�(u)

n
, Ŝ(u),

∑
ũ∈T(u) Φ(ũ)S(ũ)

Φ(u)
− S(u)

))
. (4.13)

Clearly, there is a natural bijection π : D → Qn such that for any Φ ∈ D, the proba-
bility measure P := π(Φ) is given by

P(ξ1 = u1, ξ2 = u2, . . . , ξn = un) = Φ(u) ∀u = (u1, . . . , un) ∈ T. (4.14)

Recall that Qn is the set of all probability measures on (Ω, Fn). Finally, we combine
(4.13) and (4.14) to conclude that

Vn = sup
P∈Qn

EP

(

Fn −
n−1∑

k=0

G

(
k

n
, Wn

(
S(n)(k)

)
,EP

(
S(n)(n)

∣∣ Fk

) − S(n)(k)

))

. �

5 Proof of Theorem 3.5

In this section, we prove Theorem 3.5. However, the proofs of several technical results
needed in this proof are relegated to Sect. 7. Also, Kusuoka’s construction of discrete
martingales is outlined in the next section.
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We start with some definitions. Let B be the canonical map on the space C[0,1],
i.e., for each t ∈ [0,1], B(t) : C[0,1] → R is given by B(t)(x) = x(t). Next, let
M be a strictly positive, continuous martingale defined on some probability space
(Ω̃, F̃ , P̃ ) and satisfying

M(0) = s0 and
d〈lnM〉(t)

dt
≤ c L ⊗ P̃ -a.s. (5.1)

for some constant c. For a martingale M satisfying (5.1), we define several related
quantities. Let Ĝ be as in Assumption 3.2, and σ the constant volatility in the defini-
tion of the discrete market, cf. (2.2). Set

A(t : M) := 〈lnM〉(t) − σ 2t

2σ
, a(t : M) := d

dt
A(t : M), (5.2)

J (M) = Ẽ

(
F(M) −

∫ 1

0
Ĝ

(
t,M,a(t : M)M(t)

)
dt

)
, (5.3)

where Ẽ is the expectation with respect to P̃ . Notice that the notation a is consistent
with the already introduced function a(t : Sα) in (3.4) and that J (M) agrees with the
function defined in (3.5). Also, from (2.1), (3.1), and (5.1) it follows that the right-
hand side of (5.3) is well defined.

Upper bound We start with the proof of the upper bound of Theorem 3.5,

lim sup
n→∞

V c
n ≤ sup

α∈Ac

J (Sα). (5.4)

In what follows, to simplify the notation, we assume that indices have been renamed
so that the whole sequence converges. Let n ∈ N.

By Theorem 3.1, we construct probability measures Pn on (Ω, Fn) such that

V c
n ≤ 1

n
+ En

(

F
(

Wn

(
S(n)

))

−
n−1∑

k=0

Gc
n

(
k

n
, Wn

(
S(n)

)
,En

(
S(n)(n)

∣∣ Fk

) − S(n)(k)

))

,

where En denotes the expectation with respect to Pn. Since V c
n is nonnegative, the

right-hand side of the above inequality is not minus infinity. This, together with (2.7),
yields that for any 0 ≤ k < n,

∣
∣En

(
S(n)(n)

∣
∣ Fk

) − S(n)(k)
∣
∣ ≤ c√

n
S(n)(k) Pn-a.s. (5.5)

and

V c
n ≤ En

(

F
(

Wn

(
S(n)

)) −
n−1∑

k=0

G

(
k

n
, Wn

(
S(n)

)
,En

(
S(n)(n)

∣∣ Fk

) − S(n)(k)

))

+ 1

n
.

For 0 ≤ k ≤ n, set
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M(n)(k) := En

(
S(n)(n)

∣∣ Fk

)
,

αn(k) :=
√

nξk(M
(n)(k) − S(n)(k))

S(n)(k)
,

An(t) :=
∫ t

0
αn

([nu])du = 1

n

[nt]−1∑

k=0

αn(k) + nt − [nt]
n

αn

([nt]).

Let Qn be the joint distribution of the stochastic processes (Wn(S
(n)),An) under

the measure Pn. In view of (5.5), the hypothesis of Lemma 7.1 is satisfied. Hence,
there exist a subsequence (denoted by n again) and a probability measure P on the
probability space C[0,1] such that

Qn �⇒ Q on the space C[0,1] × C[0,1],
where Q is the joint distribution under P of the canonical process B and the process
A(· : B) defined in (5.2). From the Skorohod representation theorem (Theorem 3 of
[11]), it follows that there exists a probability space (Ω̃, F̃ , P̃ ) on which

(
Wn

(
S(n)

)
,An(·)

) −→ (
M,A(· : M)

)
P̃ -a.s. (5.6)

on the space C[0,1] × C[0,1], where M is a positive martingale. More precisely,
the C[0,1] × C[0,1]-valued random variables (Wn(S

(n)),An(·)) (which are defined
on the probability space (Ω̃, F̃ , P̃ )) converge a.s. to (the C[0,1] × C[0,1]-valued
random variable) (M,A(· : M)). As usual, the topology on C[0,1] is the sup topology.
Furthermore, (5.5) implies that Lemma 6.5 applies to this sequence. Hence, we have
the pointwise estimate

∣∣a(t : M)
∣∣ = ∣∣A′(t : M)

∣∣ ≤ c.

Observe that we can redefine the processes αn and M(n), n ∈ N, on the probability
space (Ω̃, F̃ , P̃ ) by setting

M(n)(k) = Ẽ
(
S(n)(n)

∣∣ σ
{
S(n)(1), . . . , S(n)(k)

})
,

αn(k) = n
(
An

((
(k + 1)/n

) ∧ 1
) − An(k/n)

)
, k = 0,1, . . . , n.

Since for any n, the joint distribution of the processes S(n),M(n), αn remains the same
as before, we keep the same notations. In particular, we get for any k ≤ n that

√
n(M(n)(k) − S(n)(k))

αn(k)S(n)(k)
∈ {−1,1} P̃ -a.s. (5.7)

Next, we replace the sequence {αn} (which converges only weakly) by a pointwise
convergent sequence. Indeed, by Lemma A1.1 in [10], we construct a sequence

ηn ∈ conv(α̃n, α̃n+1, . . .), where α̃n(t) := αn

([nt]),
such that {ηn} converges almost surely with respect to L ⊗ P̃ to a stochastic process η.
We now use (5.5) together with the dominated convergence theorem. The result is

∫ t

0
η(u)du = lim

n→∞

∫ t

0
ηn(u)du = lim

n→∞

∫ t

0
αn

([nu])du

= A(t : M) =
∫ t

0
a(u : M)du L ⊗ P̃ -a.s.
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Hence, we conclude that

η(t) = a(t : M) L ⊗ P̃ -a.s.

From (3.2) and (5.6)–(5.7) we conclude that

lim
n→∞

∣∣∣∣nG

( [nt]
n

, Wn

(
S(n)

)
,M(n)

([nt]) − S(n)
([nt])

)
− Ĝ

(
t,M,αn

([nt])M(t)
)
∣∣∣∣

= 0 L ⊗ P̃ -a.s.

Estimate (6.5) and the growth assumption (3.1) imply that the above sequences are
uniformly integrable. Therefore,

I := lim
n→∞En

(
n−1∑

k=0

G

(
k

n
, Wn

(
S(n)

)
,En

(
S(n)(n)

∣∣ Fk

) − S(n)(k)

))

= lim
n→∞ Ẽ

(∫ 1

0
nG

( [nt]
n

, Wn

(
S(n)

)
,M(n)

([nt]) − S(n)
([nt])

)
dt

)

= lim
n→∞ Ẽ

(∫ 1

0
Ĝ

(
t,M,αn

([nt])M(t)
)
dt

)
,

where again, without loss of generality (by passing to a subsequence), we assume
that the above limits exist. We now use the convexity of Ĝ with respect to the third
variable (in fact, Ĝ is quadratic in y) together with the uniform integrability (which
again follows from (3.1) and Lemma 6.5) and the Fubini theorem. The result is

I = lim
n→∞ Ẽ

(∫ 1

0
Ĝ

(
t,M,αn

([nt])M(t)
)
dt

)

≥ lim
n→∞ Ẽ

(∫ 1

0
Ĝ

(
t,M,ηn(t)M(t)

)
dt

)

= Ẽ

(∫ 1

0
Ĝ

(
t,M,η(t)M(t)

))
dt = Ẽ

(∫ 1

0
Ĝ

(
t,M,a(t : M)M(t)

)
dt

)
.

The growth assumption on F , namely (2.1) and Lemma 6.5, also imply that the se-
quence F(Wn(S

(n))) is uniformly integrable. Then, by (5.6),

lim
n→∞En

(
F

(
Wn

(
S(n)

))) = Ẽ
(
F(M)

)
.

Hence, we have shown that

lim sup
n→∞

V c
n ≤ lim sup

n→∞
En

(

F
(

Wn

(
S(n)

))

−
n−1∑

k=0

G

(
k

n
, Wn

(
S(n)

)
,En

(
S(n)(n)

∣∣ Fk

) − S(n)(k)

))

≤ Ẽ

(
F(M) −

∫ 1

0
Ĝ

(
t,M,a(t : M)M(t)

)
dt

)
= J (M).

The above, together with Lemma 7.2, yields (5.4).
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Lower bound Let L(c) be the class of all adapted volatility processes given in Defi-
nition 6.1 below. In Lemma 7.3 below, it is shown that this class is dense in Ac (with
respect to convergence in probability). Hence, for the lower bound, it is sufficient to
prove that for any α ∈ L(c),

lim
n→∞V c

n ≥ J (Sα). (5.8)

Our main tool is the Kusuoka construction which is summarized in Theorem 6.2.
We fix α ∈ L(c). Let P

(α)
n , κ

(α)
n , and M

(α)
n be as in Theorem 6.2 below. In view of

the definition of M
(α)
n , (6.2), and the bounds on κ

(α)
n , for all sufficiently large n, we

have the estimate
∣∣M(α)

n (k) − S(n)(k)
∣∣ ≤ c√

n
S(n)(k) ∀k P (α)

n -a.s.

By the dual representation and the above estimate,

lim
n→∞V c

n ≥ lim sup
n→∞

E(α)
n

(

F
(

Wn

(
S(n)

))

−
n−1∑

k=0

G

(
k

n
, Wn

(
S(n)

)
,M(α)

n (k) − S(n)(k)

))

, (5.9)

where E
(α)
n denotes the expectation with respect to P

(α)
n . From Theorem 6.2 and

the Skorohod representation theorem, it follows that there exists a probability space
(Ω̃, F̃ , P̃ ) on which

(
Wn

(
S(n)

)
, Wn

(
κ(α)
n

)) −→ (
Sα, a(· : Sα)

)
P̃ -a.s. (5.10)

on the space C[0,1] × C[0,1]. Recall that the quadratic variation density a is defined
in (3.4) and also in (5.2). We argue exactly as in the upper bound to show that

lim
n→∞E(α)

n F
(

Wn

(
S(n)

)) = Ẽ
(
F(Sα)

)
. (5.11)

Similarly to the upper bound case, we redefine the stochastic processes M
(α)
n ,

n ∈ N, on the probability space (Ω̃, F̃ , P̃ ). Namely for any k ≤ n, define

M(α)
n (k) = S(n)(k) exp

(
ξ

(n)
k (ω)κ(α)

n (k)n−1/2), (5.12)

where

ξ
(n)
k :=

√
n

σ

(
lnS(n)(k) − lnS(n)(k − 1)

)
.

Again, the joint distribution of M(n), S(n), αn remains as before. Finally, we need to
connect the difference M

(α)
n − S(n) to κ

(α)
n and therefore to a(· : Sα) through (5.10).

Indeed, in view of definition (5.12),

√
nξ

(n)
k

(
M(α)

n (k) − S(n)(k)
) = √

nξ
(n)
k S(n)(k)

(
exp

(
ξ

(n)
k κ(α)

n (k)n−1/2) − 1
)

= S(n)(k)κ(α)
n (k) + O

(
n−1/2).
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In the approximation above, we used the fact that the κ(α) are uniformly bounded by
construction and that ξ

(n)
k = 1

ξ
(n)
k

. We now use (5.10) to arrive at

lim
n→∞

√
nξ

(n)
[nt]

(
M(α)

n

([nt]) − S(n)
([nt])) = a(t : Sα)Sα(t) L ⊗ P̃ -a.s. (5.13)

As in the upper bound case, the growth condition (3.1) and Lemma 6.5 imply that
the sequence nG([nt]/n, Wn(S

(n)),M
(α)
n ([nt]) − S(n)([nt])) is uniformly integrable

in L ⊗ P̃ . Since Ĝ is continuous, by Fubini’s theorem and (3.2), (5.10), (5.13), we
obtain

Ĩ := lim
n→∞En

(
n−1∑

k=0

G

(
k

n
, Wn

(
S(n)

)
,M(α)

n (k) − S(n)(k)

))

= lim
n→∞ Ẽ

(∫

[0,1]
nG

( [nt]
n

, Wn

(
S(n)

)
,M(α)

n

([nt]) − S(n)
([nt])

)
dt

)

= Ẽ

(∫

[0,1]
Ĝ

(
t, Sα, a(t : Sα)Sα(t)

)
dt

)
.

We combine the above equality together with (5.9) and (5.11). The resulting inequal-
ity is exactly (5.8). Hence, the proof of the lower bound is also complete. �

6 Kusuoka’s construction

In this section, we fix a martingale Sα given by (3.3). Then the main goal of this
section is to construct a sequence of martingales on the discrete space that approxi-
mate Sα . We also require the quadratic variation of Sα to be approximated as well.

In [16] Kusuoka provides an elegant approximation for a sufficiently smooth
volatility process α. Here we only state the results of Kusuoka and refer to [16]
for the construction. We start by defining the class of “smooth” volatility processes.
As before, let (ΩW, F W,PW ) be a Brownian probability space, and W a standard
Brownian motion.

Definition 6.1 For a fixed constant c > 0, let L(c) ⊆ Ac be the set of all adapted
processes α on the Brownian space (ΩW , F W,PW) given by

α(t) := α(t,ω) = f
(
t,W(ω)

)
, (t,ω) ∈ [0,1] × ΩW,

where f : [0,1] × C[0,1] → R+ is a bounded function which satisfies the following
conditions:

(i) For any t ∈ [0,1], if w, w̃ ∈ C[0,1] satisfy w(u) = w̃(u) for all u ∈ [0, t], then
f (t,w) = f (t, w̃). (This simply means that α is adapted.)

(ii) There is δ(f ) > 0 such that for all (t,w) ∈ [0,1] × C[0,1],
f 2(t,w) ∈ [

0 ∨ (
σ(σ − 2c)

) + δ(f ), σ (σ + 2c) − δ(f )
]

and

f (t,w) = σ, if t > 1 − δ(f ). (6.1)
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(iii) There is L(f ) > 0 such that for all (t1, t2) ∈ [0,1], w, w̃ ∈ C[0,1],
∣∣f (t1,w) − f (t2, w̃)

∣∣ ≤ L(f )
(|t1 − t2| + ‖w − w̃‖∞

)
.

In Kusuoka’s construction, condition (6.1) is not needed. However, this regularity
will allow us control the behavior of the discrete-time martingales at maturity.

Recall from Sect. 2 that Ω = {−1,1}N, ξ is the canonical map (i.e., ξk(ω) = ωk),
and Q is the symmetric product measure. The martingales constructed in [16] are of
the form

M(α)
n (k,ω) := S(n)(k,ω) exp

(
ξk(ω)κ(α)

n (k,ω)n−1/2), 0 ≤ k ≤ n, (6.2)

where the sequence of discrete predictable processes κ
(α)
n needs to be constructed.

Now let P
(α)
n be a measure on Ω such that the process M

(α)
n is a P

(α)
n -martingale.

Since κα
n will be constructed as predictable processes, a direct calculation shows that

on the σ -algebra Fn, this martingale measure is given by

dP
(α)
n

dQ

∣∣∣∣
Fn

(ω) = 2n
n∏

k=1

q̃(α)
n (k,ω),

where for 0 ≤ k ≤ n, ω ∈ Ω ,

q̃(α)
n (k,ω) = q(α)

n (k,ω)I{ξk(ω)=1} + (
1 − q(α)

n (k,ω)
)
I{ξk(ω)=−1},

q(α)
n (k,ω) = exp(ξk−1κ

(α)
n (k − 1,ω)n−1/2) − (exp(σn−1/2)e

(α)
n (k,ω))−1

exp(σn−1/2)e
(α)
n (k,ω) − (exp(σn−1/2)e

(α)
n (k,ω))−1

,

e(α)
n (k,ω) = exp

(
κ(α)
n (k,ω)n−1/2).

We require that κ
(α)
n is constructed to satisfy
∣
∣κ(α)

n (k,ω)
∣
∣ < c − δ, κ(α)

n (k,ω) > δ − σ

2
,

∣∣κ(α)
n (k − 1,ω) − κ(α)

n (k,ω)
∣∣ ≤ L√

n
, 1 ≤ k ≤ n,

(6.3)

with constants L,δ > 0 independent of n and ω. These regularity conditions on
κ

(α)
n imply that for all sufficiently large n, q

(α)
n (k,ω) ∈ (0,1) for all k ≤ n and

ω ∈ Ω = {−1,1}N. Hence, P
(α)
n is indeed a probability measure.

We also require

κ(α)
n (n,ω) = 0 for sufficiently large n, (6.4)

to ensure M
(α)
n (n) = S

(n)
n (n). This is exactly the reason why we added condition (6.1)

in Definition 6.1.
Let Q

(α)
n be the joint distribution of the pair (Wn(S

(n)), Wn(κ
(α)
n )) under P

(α)
n on

the space C[0,1] × C[0,1] with uniform topology. Recall once again that the proba-
bility space is Ω = {−1,1}N, the filtration {Fk}nk=0 is the usual one generated by the
canonical map, and the quadratic variation density process a(· : Sα) is given in (3.4)
as

a(t : Sα) = α2(t) − σ 2

2σ
.
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Theorem 6.2 (Kusuoka [16]) Let c > 0 and α ∈ L(c). Then there exists a sequence
of predictable processes κ

(α)
n on (Ω, {Fk}nk=0) satisfying (6.3) and (6.4). Hence, there

also exist sequences of martingales M
(α)
n and martingale measures P

(α)
n such that

Q(α)
n �⇒ Q(α) on the space C[0,1] × C[0,1],

where Q(α) is the joint distribution of (Sα, a(· : Sα)) under the Wiener measure PW .

For the construction of κ
(α)
n , we refer the reader to Proposition 5.3 in [16].

Remark 6.3 It is clear that one constructs the process κ
(α)
n by an appropriate discrete

approximation of a(· : Sα). However, this discretization is not only in time, but also in
the probability space. Namely, the process α is a process on the canonical probability
space C[0,1], while κ

(α)
n lives on the discrete space Ω . This difficulty is resolved by

Kusuoka in [16].

Remark 6.4 Although the tightness of the processes Wn(κ
(α)
n ) is not stated in Propo-

sition 5.3 of [16], it follows directly from the proof of that result. Indeed, Kusuoka
shows in the proof that the joint distributions of the constructed processes Wn(Mn)

and Wn(Bn) converge weakly to the distribution of a pair of the form (M,B), where
B is a Brownian motion, and M is an exponential martingale,

M(t) = s0 exp

(∫ t

0
g(u,B)dB(u) − 1

2

∫ t

0
g2(u,B)du

)
, t ∈ [0,1].

Since g : [0,1] × C[0,1] → C[0,1] is a continuous map, we conclude that the joint
distributions of Wn(Mn) and {(g2(k/n, Wn(Bn)) − σ 2)/(2σ)}nk=0 converge weakly
to (M,a(· : M)). This is exactly the statement of Theorem 6.2.

We complete this section by stating (without proof) a lemma which summarizes
the main results from Sect. 4 in [16]; see in particular Propositions 4.8 and 4.27 in
[16]. In our analysis, the lemma below provides the crucial tightness result which is
used in the proof of the upper bound of Theorem 3.5. Furthermore, inequality (6.5)
is essential in establishing the uniform integrability of several sequences.

Let (Ω, Fk) be the probability space introduced in Sect. 2.

Lemma 6.5 (Kusuoka [16]) Let {M(n)} be a sequence of positive martingales with
respect to probability measures Pn on (Ω, Fn). Suppose that there exists a constant
c > 0 such that for any k ≤ n,

∣∣S(n)(k) − M(n)(k)
∣∣ ≤ cS(n)(k)√

n
Pn-a.s.

Then from Proposition 4.8 in [16] and the inequality S
(n)
k ≤ (1 + c/

√
n)M

(n)
k it fol-

lows that for any p > 0,
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sup
n

En

(
max

0≤k≤n

(
S(n)(k)

)p
)

≤ (1 + c)p sup
n

En

(
max

0≤k≤n

(
M(n)(k)

)p
)

< ∞, (6.5)

where En is the expectation with respect to Pn. Moreover, the distributions Qn on
C[0,1] of Wn(S

(n)) under Pn form a tight sequence, and under any limit point Q

of this sequence, the canonical process B is a strictly positive martingale in its own
filtration. Furthermore, the quadratic variation density of B under Q satisfies

∣∣a(t : B)
∣∣ ≤ c.

Observe that the last inequality follows directly from Proposition 4.27 in [16].

7 Auxiliary lemmas

In this section, we prove several results that are used in the proof of our convergence
result. Lemmas 7.2 and 7.3 are related to the optimal control (3.5). The first result,
Lemma 7.1, is related to the properties of a sequence of discrete-time martingales
M(n). Motivated by (5.5) and Lemma 6.5, we assume that these martingales are suf-
ficiently close to the price process S(n). Then, in Lemma 7.1 below, we prove that the
processes αn defined below converge weakly. The structure that we outline below is
very similar to the one constructed in Theorem 6.2. However, below the martingales
M(n) are given, while in the previous section, they are constructed. The limit theorem
in Lemma 7.1 is the main tool in the proof of the upper bound of Theorem 3.5.

Let (Ω, Fn) be the discrete probability structure given in Sect. 2. For a probability
measure Pn on (Ω, Fn) and k ≤ n, set

M(n)(k) := En

(
S(n)(n)

∣
∣ Fk

)
,

αn(k) :=
√

nξk(M
(n)(k) − S(n)(k))

S(n)(k)
.

Suppose that there exists a constant c > 0 such that for any k ≤ n,
∣∣αn(k)

∣∣ ≤ c Pn-a.s. (7.1)

Let Qn be the distribution of Wn(S
(n)) under the measure Pn. Then by Lemma 6.5,

this sequence {Qn} is tight. Without loss of generality, we assume that the whole
sequence {Qn}∞n=1 converges to a probability measure Q on C[0,1]. Moreover, the
canonical map B under Q is a strictly positive martingale. Then Lemma 6.5 also
implies that the process A(· : B) given in (5.2) is well defined. The next lemma proves
the convergence of the sequence {αn} as well.

Lemma 7.1 Assume (7.1). Let Q̂n be the joint distribution under Pn of Wn(S
(n)) and∫ t

0 αn([nu]) du. Then

Q̂n �⇒ Q̂ on the space C[0,1] × C[0,1],
where Q̂ is the joint distribution of the canonical process B and A(· : B) under Q.
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Proof Hypothesis (7.1) implies that Lemma 6.5 applies to the sequence {Pn}. Hence,
under this sequence of measures, estimate (6.5) holds. Let Yn be the piecewise con-
stant process defined by

Yn(t) =
[nt]∑

j=1

M(n)(j) − Mn(j − 1)

S(n)(j − 1)
, t ∈ [0,1], (7.2)

with Yn(t) = 0 if t < 1
n

. In view of (7.1), there exists a constant c1 such that for any
k < n,

∣∣M(n)(k + 1) − M(n)(k)
∣∣ ≤ c1√

n
S(n)(k) Pn-a.s.

We use this together with (6.5) to arrive at

lim
n→∞En

(
max

1≤k≤n

∣∣M(n)(k) − M(n)(k − 1)
∣∣
)

= 0. (7.3)

Let D[0,1] be the space of all càdlàg functions equipped with the Skorohod topology.
Let P̂n be the distribution on the space D[0,1] × D[0,1] of the piecewise constant
process {(1/S(n)([nt]),M(n)([nt]))}0≤t≤1. We use (7.1) and Lemma 6.5 to conclude
that

P̂n �⇒ P̂ on the space D[0,1] × D[0,1], (7.4)

where the measure P̂ is the distribution of the process (1/B,B) under Q. In fact, for
this convergence, we extend the definition of B so that it is still the canonical process
on the space D[0,1], and the measure Q is extended to a probability measure on
D[0,1].

Since the canonical process B is a strictly positive continuous martingale under Q,
we apply Theorem 4.3 of [12] and use (7.3), (7.4). This gives the convergence

Q̂n �⇒ Q̂ on the space D[0,1] × D[0,1] × D[0,1],
where Q̂n is the distribution of the triple {(1/S(n)([nt]),M(n)([nt]), Yn([nt]))}0≤t≤1

under Pn, and Q̂ is the distribution of {(1/B(t),B(t),
∫ t

0 dB(u)/B(u))}0≤t≤1 under
the measure Q.

In view of the Skorohod representation theorem, we may assume without loss
of generality that there exist a probability space (Ω̃, F̃ , P̃ ) and a strictly positive
continuous martingale M such that

{(
1

S(n)([nt]) ,M
(n)

([nt]), Yn

([nt])
)}

0≤t≤1

−→
{(

1

M(t)
,M(t),

∫ t

0

dM(u)

M(u)

)}

0≤t≤1

P̃ -a.s. on the space D[0,1] × D[0,1] × D[0,1]. Now set Y(t) = ∫ t

0 dM(u)/M(u),
so that dM = MdY . Therefore,

M(t) = M(0) exp

(
Y(t) − 〈Y 〉(t)

2

)
and 〈lnM〉(t) = 〈Y 〉(t).
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Hence, to complete the proof, it is sufficient to show that
{∫ t

0
αn

([nu])du

}

0≤t≤1
−→

{ 〈Y 〉(t) − σ 2t

2σ

}

0≤t≤1
P̃ -a.s. on the space D[0,1].

Observe that the process αn can be redefined on the probability space (Ω̃, F̃ , P̃ ) by

αn(k) =
√

nξ
(n)
k (M(n)(k) − S(n)(k))

S(n)(k)
,

where ξ
(n)
k :=

√
n

σ
(lnS(n)(k)− lnS(n)(k − 1)). From the definitions of αn and ξ

(n)
k we

have (again using that ξ (n) = 1/ξ (n))

M(n)(k) = S(n)(k)
(
1 + ξ

(n)
k αn(k)n−1/2)

= S(n)(k − 1) exp
(
σξ

(n)
k n−1/2)(1 + ξ

(n)
k αn(k)n−1/2).

Then, by a Taylor expansion, there exists a constant c2 such that for any 1 ≤ j ≤ n,
∣∣∣∣
M(n)(j) − M(n)(j − 1)

S(n)(j − 1)
− 1√

n

((
σ + αn(j)

)
ξ

(n)
j − αn(j − 1)ξ

(n)
j−1

)

− σ

2n

(
σ + 2αn(j)

)
∣∣
∣∣ ≤ c2

n3/2
a.s.

This, together with (7.2), yields that for any n ∈ N and t ∈ [0,1], we have
∣
∣∣∣∣
Yn(t) − σ√

n

[nt]∑

j=1

ξ
(n)
j − σ

2n

(

σ [nt] + 2
[nt]∑

j=1

αn(j)

)∣
∣∣∣∣
≤ c3√

n
a.s.

for some constant c3. Since σ√
n

∑k
j=1 ξ

(n)
j = ln(S(n)(k)/s0), the above calculations

imply that
∫ t

0
αn

([nu])du −→ 1

σ

(
Y(t) − ln

(
M(t)/s0

) − t

2

)
= 〈Y 〉(t) − σ 2t

2σ
P̃ -a.s. �

Next, let c > 0 be a constant, and M a strictly positive, continuous martingale
defined on some probability space (Ω̃, F̃ , P̃ ) satisfying the conditions

M(0) = s0 and
∣∣a(t : M)

∣∣ ≤ c P̃ -a.s. (7.5)

In fact, a nonnegative volatility process α is in Ac if and only if the corresponding
process Sα satisfies the above condition. However, Sα is defined on the canonical
space (ΩW , F W,PW), and M is defined on a general space. In the next lemma, we
show that maximization of the function J (M) defined in (5.3) over all martingales M

satisfying constraint (7.5) is the same as maximizing J (Sα) over α ∈ Ac. The main
difficulty in the proof of this statement is that a priori the optimal martingale (for the
functional J ) can generate a filtration larger than the Brownian filtration. The proof
follows the ideas of Lemma 5.2 in [16] and uses a randomization technique.

Lemma 7.2 Let M be a strictly positive, continuous martingale on (Ω̃, F̃ , P̃ ) satis-
fying (7.5). Then

J (M) ≤ sup
α∈Ac

J (Sα).
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Proof Set

Y(t) =
∫ t

0

dM(u)

M(u)
, t ∈ [0,1],

so that

M(t) = s0 exp

(
Y(t) − 〈Y 〉(t)

2

)
, t ∈ [0,1].

By enlarging the space if necessary, we may assume that (Ω̃, F̃ , P̃ ) is rich enough to
support a Brownian motion Ŵ which is independent of M . For λ ∈ [0,1], define

Yλ = √
1 − λY + σ

√
λŴ and Mλ = s0 exp

(
Yλ − 〈Yλ〉

2

)
.

Notice that for all λ, Mλ satisfies the conditions of (7.5). Hence, the family

F(Mλ) −
∫ 1

0
Ĝ

(
t,Mλ, a(t : Mλ)Mλ(t)

)
dt, λ ∈ [0,1],

is uniformly integrable, and the continuity of Ĝ implies that

J (M) = lim
λ→0

J (Mλ).

Hence, it suffices to show that

J (Mλ) ≤ sup
α∈Ac

J (Sα)

for all λ > 0. Since d〈Y 〉(t) ≥ λσ 2dt for any λ > 0, without loss of generality we
may assume that for the initial processes M,Y , we have

Z(t) := d〈Y 〉(t)
dt

≥ ε L ⊗ P̃ -a.s.

for some ε > 0. Set

W̃ (t) =
∫ t

0

dY (u)√
Z(u)

, t ∈ [0,1],

κn(0) = σ and κn(k) = n

∫ k/n

(k−1)/n

√
Z(u)du for 0 < k < n, (7.6)

M(n)(t) = s0 exp

(∫ t

0
κn

([nu])dW̃(u) − 1

2

∫ t

0
κ2
n

([nu])du

)
, t ∈ [0,1], n ∈ N.

By Lévy’s theorem, W̃ is a Brownian motion with respect to the filtration of M .
Therefore, the martingale M(n) satisfies (7.5). Also, from (7.6) it is clear that

lim
n→∞κn

([nt]) = √
Z(t)

in probability for the measure L ⊗ P̃ . On the other hand, Itô’s isometry and the
Doob–Kolmogorov inequality imply that

lim
n→∞ max

0≤t≤1

∣∣∣∣

∫ t

0
κn

([nu])dW̃(u) − Y(t)

∣∣∣∣ = 0
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in probability with respect to P̃ . Thus,

M(n) −→ M and a
(· : M(n)

) −→ a(· : M) a.s.

on the space D[0,1]. We use these convergence results and the uniform integrability
of

F
(
M(n)

) −
∫ 1

0
Ĝ

(
t,M(n), a

(
t : M(n)

)
M(n)(t)

)
dt, λ ∈ [0,1], n ∈ N

(which follows from the growth assumption (3.1)) to conclude that

J (M) = lim
n→∞J

(
M(n)

)
.

Hence, it suffices to prove for any n ∈ N that

J
(
M(n)

) ≤ sup
α∈Ac

J (Sα). (7.7)

We prove the above inequality by a randomization technique. Fix n ∈ N. From the
existence of regular conditional distributions, there exists for any 1 ≤ k < n a function
ρk : R × C[0,1] × Rk → [0,1] such that for any y, ρk(y, ·) : C[0,1] × Rk → [0,1] is
measurable and satisfies P̃ -a.s.

P̃
(
κn(k) ≤ y

∣∣ σ
{
W̃ , κn(0), . . . , κn(k − 1)

}) = ρk

(
y, W̃ , κn(0), . . . , κn(k − 1)

)
.

Furthermore, P̃ -almost surely, ρk(·, W̃ , κn(0), . . . , κn(k − 1)) is a distribution
function on R. Let W be the Brownian motion on our canonical space (ΩW ,

F W,P W). We extend this space so that it contains a family Ξ1, . . . ,Ξn−1 of i.i.d. ran-
dom variables which are uniformly distributed on the interval (0,1) and independent
of W . Let (Ω̃W , F̃W , P̃ W ) be the extended probability space. We assume that it is
complete.

Next, we recursively define the random variables U0 = σ and, for 1 ≤ k < n,

Uk = sup
{
y

∣
∣ ρk(y,W,U1, . . . ,Uk−1) < Ξk

}
. (7.8)

In view of the properties of the functions ρi , we can show that U1, . . . ,Un−1 are mea-
surable. Furthermore, Ui is independent of Ξk for any i < k. This property, together
with (7.8), yields that for any y ∈ R and 1 ≤ k < n,

P̃ W
(
Uk ≤ y

∣∣ σ {W,U0, . . . ,Uk−1}
)

= P̃ W
(
ρk(y,W,U0, . . . ,Uk−1) ≥ Ξk

∣∣ σ {W,U0, . . . ,Uk−1}
)

= ρk(y,W,U0, . . . ,Uk−1).

Thus, we conclude that the vector (W,U0, . . . ,Un−1) has the same distribution as
(W̃ , κn(0), . . . , κn(n−1)). Also note that for any k and t ≥ k/n, κn(k) is independent
of W̃ (t) − W̃ (k/n). Furthermore, since for any k, κn(k) takes values in the interval
[√0 ∨ σ(σ − 2c),

√
σ(σ + 2c)], for 1 ≤ k < n, there exist functions

Θk : C[0, k/n] × (0,1)k → [√
0 ∨ σ(σ − 2c),

√
σ(σ + 2c)

]

satisfying
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Uk = Θk(W,Ξ1, . . . ,Ξk), 1 ≤ k < n,

where in the expression above we consider the restriction of W to the interval
[0, k/n]. Next, we introduce the martingale

SU(t) := s0 exp

( [nt]∑

i=0

(
Ui

(
W

(
i + 1

n

)
− W

(
i

n

))
− U2

i

2n

))

, t ∈ [0,1].

Finally, for any z := (z1, . . . , zn−1) ∈ (0,1)n−1, define a stochastic process by

U(z)(t) = σ if t = 0 and U(z)(t) = Θ[nt](W, z1, . . . , z[nt]) for t ∈ (0,1].
Observe that U(z) is in Ac. Recall the definition of Sα in (3.3). Since U(z) is piecewise
constant, we have

SU(z) (t) = s0 exp

( [nt]∑

i=0

(
Θi(W,z1, . . . , zi)

(
W

(
i + 1

n

)
− W

(
i

n

))

− Θ2
i (W, z1, . . . , zi)

2n

))

.

We now use Fubini’s theorem to conclude that

J
(
M(n)

) = J (SU ) =
∫

z∈(0,1)n
J (SU(z) )dz1 · · ·dzn ≤ sup

α∈Ac

J (Sα), (7.9)

and (7.7) follows. �

Our final result is the denseness from Definition 6.1 in Ac of the subset L(c). The
following result is proved by standard arguments. Since we could not find a direct
reference, we provide a self-contained proof.

Lemma 7.3 For any c > 0,

sup
α∈Ac

J (Sα) = sup
α̃∈L(c)

J (Sα̃).

Proof Let {φn}∞n=1 ⊆ L(c) be a sequence which converges in probability (with re-
spect to L ⊗ P W ) to some α ∈ Ac. By the Itô isometry and the Doob–Kolmogorov
inequality, we directly conclude that {Sφn} converges to Sα in probability on the space
C[0,1]. Then, invoking the uniform integrability of

F(Sφn) −
∫ 1

0
Ĝ

(
t, Sφn, a(t :, Sφn), Sφn(t)

)
dt, λ ∈ [0,1], n ∈ N,

once again gives limn→∞ J (Sφn) = J (Sα).
Therefore, to prove the lemma, we need to construct, for any α ∈ Ac, a sequence

{φn}∞n=1 ⊆ L(c) which converges in probability to α. Thus, take α ∈ Ac and δ > 0. It
is well known (see [15], Chap. 4, part b of Lemma 2.4) that there exists a continuous
process φ adapted to the Brownian filtration which satisfies

L ⊗ P W
(|α − φ| > δ

)
< δ. (7.10)
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Since the process φ is continuous, for all sufficiently large m, we have

P W
(

max
0≤k≤m−2

sup
k/m≤t≤(k+2)/m

∣∣φ(t) − φ(k/m)
∣∣ > δ

)
< δ. (7.11)

Clearly, for any 1 ≤ k ≤ m, there exists a measurable function θk : C[0, k/m] → R

for which

θk(W) = φ(k/m), 1 ≤ k ≤ m,

where in the expression above we consider the restriction of W to the interval
[0, k/m]. Fix k. It is well known (see, for instance, [3], Chap. 1, Theorem 1.2) that
any simple function (i.e., a linear combination of indicator functions) on a separable
metric space can be represented as a limit (in probability) of Lipschitz-continuous
functions. From the denseness of simple functions in the space of bounded functions
(with respect to convergence a.s.) it follows that we can find a sequence of bounded
Lipschitz-continuous functions ϑn : C[0, k/m] → R, n ∈ N, such that limn→∞ ϑn

= θk a.s. with respect to the Wiener measure on the space C[0, k/m]. We conclude
that there exist a constant H > 0 and a sequence of functions Θk : C[0,1] → R,
1 ≤ k ≤ m − 3, such that for any z1, z2 ∈ C[0,1] and 1 ≤ k ≤ m − 3,

Θk(z1) = Θk(z2) if z1(s) = z2(s) for all s ≤ k/m,
∣∣Θk(z1)

∣∣ ≤ H, (7.12)
∣∣Θk(z1) − Θk(z2)

∣∣ ≤ H
(‖z1 − z2‖

)
, (7.13)

P W
(∣∣Θk(W) − φ(k/m)

∣∣ > δ
)
< δ/m. (7.14)

Let Θ−1,Θ0,Θm−2 : C[0,1] → R be given by Θ−1 = Θ0 ≡ φ(0) and Θm−2 ≡ σ .
Define f1 : [0,1] × C[0,1] → R by

f1(t, z) =
{

([mt] + 1 − mt)Θ[mt]−1(z) + (mt − [mt])Θ[mt](z), t < 1 − 1/m,

f1(t, z) = σ, t ≥ 1 − 1/m.

Denote a = √
0 ∨ σ(σ − 2c) and b = √

σ(σ + 2c). Without loss of generality we
assume that δ < min(σ − a, b − σ). Set

f (t, z) = (
(a + δ) ∨ f1(t, z)

) ∧ (b − δ), t ∈ [0,1], z ∈ C[0,1].
Using (7.12) and (7.13), we conclude that for any 0 ≤ k ≤ m − 2, z1, z2 ∈ C[0,1],
and t1, t2 ∈ [k/m, (k + 1)/m],

∣∣f (t2, z2) − f (t1, z1)
∣∣ ≤ ∣∣f1(t2, z2) − f1(t1, z2)

∣∣ + ∣∣f1(t1, z2) − f1(t1, z1)
∣∣

≤ m|t1 − t2|
(∣∣Θk−1(z2)

∣∣ + ∣∣Θk(z2)
∣∣)

+ ∣∣Θk−1(z2) − Θk−1(z1)
∣∣ + ∣∣Θk(z2) − Θk(z1)

∣∣

≤ 2(H + σ)(m + 1)
(|t1 − t2| + ‖z1 − z2‖

)
.

Define the process {Θ(t)}0≤t≤1 by Θ(t) = f (t,W), t ∈ [0,1]. By the choice of δ,
it follows that Θ ∈ L(c). Next, observe that for any t ∈ [1/m,1 − 1/m], we have

∣∣Θ(t) − φ(t)
∣∣ ≤ max

(∣∣φ(t) − Θ[mt](W)
∣∣,

∣∣φ(t) − Θ[mt]−1(W)
∣∣).
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Thus, for any t ∈ [1/m,1 − 1/m],
∣∣Θ(t) − α(t)

∣∣ ≤
(

max
0≤k≤m−3

sup
k/m≤t≤(k+2)/m

∣∣φ(t) − φ(k/m)
∣∣
)

+
(

max
0≤k≤m−3

∣∣φ(k/m) − Θk(W)
∣∣
)

+ ∣∣α(t) − φ(t)
∣∣. (7.15)

Finally, by combining (7.10), (7.11), (7.14), and (7.15) we get

L ⊗ P W
(|Θ − α| > 3δ

)
<

2

m
+ 3δ < 5δ.

Since δ > 0 was arbitrary, we complete the proof. �
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