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LIQUIDITY IN A BINOMIAL MARKET
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We study the binomial version of the illiquid market model introduced by Çetin,
Jarrow, and Protter for continuous time and develop efficient numerical methods for
its analysis. In particular, we characterize the liquidity premium that results from
the model. In Çetin, Jarrow, and Protter, the arbitrage free price of a European option
traded in this illiquid market is equal to the classical value. However, the corresponding
hedge does not exist and the price is obtained only in L2-approximating sense. Çetin,
Soner, and Touzi investigated the super-replication problem using the same supply
curve model but under some restrictions on the trading strategies. They showed that
the super-replicating cost differs from the Black–Scholes value of the claim, thus
proving the existence of liquidity premium. In this paper, we study the super-replication
problem in discrete time but with no assumptions on the portfolio process. We recover
the same liquidity premium as in the continuous-time limit. This is an independent
justification of the restrictions introduced in Çetin, Soner, and Touzi. Moreover, we
also propose an algorithm to calculate the option’s price for a binomial market.
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1. INTRODUCTION

It is well documented that the limited supply of a financial instrument introduces liquidity
risk. This is due to the timing and the size of an order. Indeed, there have been numerous
studies to incorporate the price impact of placing a sufficiently large order. One can
classify these approaches in two main categories. The first one deals with feedback effects
on dynamic portfolios on asset prices. In particular, in Platen and Schweizer (1998) it is
demonstrated that if trading is carried out on a large scale, it has an effect on the asset price
of the underlying in the form of an increase on the market volatility. This is especially
important in an economy under the presence of a large trader. In Frey and Stremme
(1997), the interaction of a program trader with reference traders has been studied. If the
prices are modeled as a geometric Brownian motion for reference traders, the existence
of a large trader changes the price process to an Ito process, where the volatility increases
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and becomes order size and time dependent. In Platen and Schweizer (1998), starting
from a given volatility it is characterized how the volatility would transform under the
price impact of the portfolio decision of the large trader. However, one is interested in the
fixed point of this volatility transformation, because every time the large investor trades
it is going to change the volatility of the diffusion process. This has been established
in Frey (1998), where he exhibits a nonlinear partial differential equation (PDE) for
the option replication problem under the setting of a large investor and investigates the
existence and uniqueness of solutions as well as the trading strategies. Bank and Baum
(2004) also studies the issue of feedback effect of the large trader when he makes his
portfolio decision. In this work, the authors model prices as a family of semimartingales
depending on a parameter. The parameter represents the large investor’s position kept
on a constant level. This approach generalizes the reaction-diffusion setting in Frey and
Stremme (1997). In all these approaches, the effect of the order placed by the large
investor persists until the next order makes the asset prices follow a different dynamics.
Some other studies falling into this category are Jarrow (1992, 1994) and Papanicolaou
and Sircar (1998).

In the second class of models, the size of the trade has also an instantaneous effect on
the price of the asset; however, this effect is not permanent, it is a temporary impact. This
is exactly the key difference between the two groups of the liquidity models. In particular,
to model the impact of liquidity, Çetin, Jarrow, and Protter (2004) postulate the existence
of an exogenously given supply curve to which any small trader in the market acts as a
price taker. This supply curve produces a price for a given size and time of a trade. The
trading history does not alter the shape of the supply curve so all small investors trading
identical quantities at any time pay the same amount. In this article, we will consider the
binomial version of the Çetin–Jarrow–Protter model.

Çetin, Jarrow, and Protter (2004) investigated the fundamental theorems of asset pric-
ing under the existence of illiquidities with their supply curve model. In this framework,
they showed that the market satisfies the No Free Lunch with Vanishing Risk property if
and only if there exists an equivalent measure Q under which the marginal price process
is a Q-local martingale. The marginal price process is the price paid per unit of extra
infinitesimal stock. Under the existence of a unique equivalent measure Q that turns
the marginal price process into a Q-local martingale, one can approximate any claim
in L2-sense with continuous and finite variation strategies. This is important because
continuous and finite variation strategies incur no liquidity costs so that the price of a
contingent claim is the Black-Scholes value. A similar argument appears in Bank and
Baum (2004), where the large trader should use continuous and finite variation strategies
to avoid transaction costs and the attainable claims under a small investor model become
approximately attainable in the large trader setting.

Rogers and Singh (2010) consider also a temporary impact model. In their framework,
illiquidity affects the wealth process due to the depth of the limit order book but not the
price of the asset. This model, which uses only portfolio processes of finite variation, is
obtained as the formal limit of a discrete time setup.

Later Çetin and Rogers (2007) considered the utility maximization problem in discrete
time for an analog of the supply curve. In fact, this study leads to a nonzero liquidity
premium. This suggests that the absence of liquidity premium is related to the portfolio
processes considered in continuous time.

Çetin, Soner, and Touzi (2010) studied the same continuous-time model of
Çetin, Jarrow, and Protter (2004). To obtain liquidity premium, they introduced ad-
ditional conditions on the trading strategies similar to those in Soner and Touzi (2000)
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and Cheridito et al. (2007). This class of optimal portfolio processes contains in-
finite variation strategies in contrast to Bank and Baum (2004) and Çetin, Jarrow,
and Protter (2004). The infinite variation strategies are in the form of an integral
of the gamma of the portfolio with respect to the marginal stock price process,
whereas the finite variation part of the trading strategies involve an absolutely con-
tinuous process and a pure jump process. The integrand in the absolutely continu-
ous part is interpreted as the rate of change of the portfolio with respect to time.
On the other hand, the infinite variation part reflects the sensitivity of the portfolio
with respect to stock changes. Instead of a L2-sense replication, they consider a super-
replication argument to price claims. They show that there exists a liquidity premium;
a difference between the super-replicating cost and the Black–Scholes value. In fact,
Çetin, Soner, and Touzi (2010), characterize the super-replicating cost of the option
φ(t, s) via the following partial differential equation:

−φt − inf
β≥0

{
1
2

s2σ 2(φss + β) + �(t, s)s2σ 2(φss(t, s) + β)2
}

= 0,(1.1)

where the marginal price process evolves according to geometric Brownian motion and
the interest rate is taken to be zero by discounting. For a convex payoff, this PDE has the
form

0 = −φt − 1
2

s2σ̂ 2(t, s)φss,(1.2)

σ̂ 2(t, s) = σ 2(1 + 2�(t, s)φss(t, s)),(1.3)

where �(t, s) is the liquidity parameter associated with the market. Observe that for
� = 0, the above equation is simply the classical Black–Scholes equation. Moreover, the
hedge for an option with convex payoff is given as in the usual Black–Scholes model,
that is by φs(t, s). Also, in convex setting, (1.2) can be seen as the pricing in a model
with increased volatility (1.3). This representation has connections to Barles and Soner
(1998), Frey (1998), Frey (2000), Frey and Stremme (1997), Papanicolaou and Sircar
(1998), and Platen and Schweizer (1998).

In this paper, we analyze the discrete time version of the supply curve model
using the parameters derived in Çetin, Jarrow, and Protter (2004). We investi-
gate the super-replication problem without imposing any conditions on the port-
folio processes. Our first result, Theorem 3.1, is a solution technique through
dynamic programming (3.1). The main observation for this simple result is to introduce
the dependence of the minimal super-replication cost on the portfolio position as well as
the current stock price and time to maturity. Without this extra state variable (namely
the portfolio position) the dynamic programming is not valid. We use this method to
develop an algorithm for the computation of the super-replication cost. Results of the
implementations of this algorithm are reported in Section 6.

We then consider the continuous-time limit of our binomial model. We prove in
Theorem 5.4 that the discrete minimal super-replication cost of the option agrees, in the
continuous-time limit, with those obtained in the paper Çetin, Soner, and Touzi (2010).
This is proved by the theory of viscosity solutions. In Section 7, we prove that lower-
relaxed limit of the minimal super-replication cost is a viscosity super-solution of (1.1).
Then in Section 8 the upper-relaxed limit is shown to be a viscosity sub-solution of the
same equation. Then, the convergence is obtained by using a comparison result proved
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in Çetin, Soner, and Touzi (2010). Although this is a standard technique in the theory
of viscosity solutions, the sub- and super-solution properties of the limiting function are
difficult to derive. The difficulty in this derivation is due to the additional dependence on
the portfolio position. Furthermore, this dependence becomes irrelevant in the limit and
exactly this fact renders the problem difficult. We overcome this by using an appropriate
corrector function as in the applications of viscosity solutions to homogenization (Evans
1992). Our approach, although similar to Evans (1992), is further developed to analyze
convergence results of this type. We believe that a probabilistic analysis of the corrector
method in this context is also an interesting new question.

We also investigate the limit behavior of the super-replication cost numerically. Our
numerical results, reported in Section 6 agree with our conclusion that there exists a
nonzero liquidity premium. We also propose another algorithm for the continuous-time
limit that is computationally faster. This second algorithm calculates the super-replication
cost without introducing the additional variable. This reduction in the dimension enables
us to gain considerable computational time. Numerically, we demonstrate that the results
of both algorithms are very close for small time steps. Recently, a general numerical
study for partial differential equations of the type (1.1) based on backward stochastic
differential equations similar to our discrete model was obtained in Fahim, Touzi, and
Warin (2009). However, since their approach relies on a continuous-time model, they do
not need to increase the dimension by adding the portfolio variable in contrast to our
approach. Hence, their algorithms are closer to our faster one. Also a continuous-time
problem with large trader effects is analyzed both numerically and theoretically in Ly
Vath, Minf, and Pham (2007).

The paper is organized as follows. After introducing the model in Section 2, we state
the dynamic programming and the parameters of the problem in the next section. The in-
teresting simple liquidation problem is briefly studied in Section 4. The main convergence
result is stated in Section 5. Numerical methods and results are reported in Section 6.
The super- and the sub-viscosity properties that imply the convergence result are proved
in two following sections.

2. MODEL

We consider a market with one risk-free and one risky asset. By discounting, we take the
interest rate r = 0 and thus normalize the unit price of money market account to unity.
The price of the risky asset follows the supply curve model introduced by Çetin, Jarrow,
and Protter (2004) for a binomial market. In this setting, the price per share is given by
S(t, St, ν), where ν is the size of the transaction of the small investor. A positive order ν

> 0 is a buy, whereas ν < 0 represents a sale order. For ν = 0 we capture the spot price
St. We have a binomial tree structure for the marginal price process St. At any node of
the recombitant tree it goes up by a factor of u and goes down by a factor of d. Clearly,
to avoid arbitrage for the marginal price process, we need to assume that d < 1 < u.

We consider a European claim with maturityT. We assume that a Markovian claim
with nonnegative pay-off g(ST ) and the time step is a given h > 0. The up and down
factors u and d depend on h. All the processes are assumed to be constant on intervals
of the form (nh, (n + 1)h] for an integer n.

We let Zt be the number of shares in the portfolio and Xt be the money invested in the
money market account at time t. We assume that the portfolio process Zt is measurable
with respect to the filtration F = {Ft}t≥0 generated by the spot price process. Given such
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a process Z·, the marked to market value of this portfolio Yt is given by

Yt = Xt + Zt St.(2.1)

With an abuse of terminology we call Yt the wealth process. Now suppose that an investor
decides to make a transaction of �Zt+h = Zt+h − Zt shares at time t + h.

This transaction results in the following change in the money market account,

�Xt+h := Xt+h − Xt = −�Zt+hS(t + h, St+h, �Zt+h).

Under the usual self-financing assumption, the above implies the following system dy-
namics for the wealth process,

Yt+h = Yt + Zt�St+h − �Zt+h [S(t + h, St+h, �Zt+h) − St+h ] ,(2.2)

where �St+h = St+h − St. Observe that the liquidity effect appears as a positive penalty in
the system dynamics for the wealth process. It is clear that a portfolio process Z· adapted
to the filtration generated by the spot price process and an initial wealth y at time t,
generates an adapted wealth process Yt,y,Z·· . In particular, Yt,y,Z·

t = y.
We investigate the minimal super-replication cost of this European contingent claim

with a given payoff g( · ) at the time horizon T. Then, the minimal super-replicating cost
φh(t, s) at time t and St = s is given by

φh(t, s) := inf
{

y | ∃ F-adapted {Z·} so that Yt,y,Z·
T ≥ g

(
St,s

T

)
a.s.
}

,(2.3)

where St,s
· is the spot price process satisfying the initial condition St,s

t = s.
One may formulate the above problem as a convex program. However, since the number

of constraints increase exponentially with the number of steps to maturity, it is quite hard
to compute markets with many steps. To use dynamic programming, we need to introduce
the dependence of the minimal super-replication cost on the initial portfolio position.
Thus, we define

vh(t, s, z) := inf
{

y | ∃ F-adapted {Z·} so that Zt = z, and Yt,y,Z·
T ≥ g

(
St,s

T

)
a.s.
}

.

(2.4)

Clearly,

φh(t, s) = inf
z

vh(t, s, z).

REMARK 2.1. In (2.4) we never take the infimum over an empty set, because we can
always super-replicate by taking Z· = z and choosing a sufficiently large y.

3. DYNAMIC PROGRAMMING

The following result can be easily proved by standard techniques in Fleming and Soner
(1993) and Soner and Touzi (2002).
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THEOREM 3.1. (Dynamic Programming) For any t = nh < τ = mh ≤ T, the minimal
super-replicating cost vh(t, s, z) satisfies

vh(t, s, z) = inf
{

y | ∃ F-adapted {Z·} so that Zt = z, and Yt,y,Z·
τ ≥ vh(τ, St,s

τ , Zτ

)
a.s.
}
.

We take τ = t + h in the above to conclude that vh(t, s, z) = min y among all y
satisfying

Yt,y,Z·
t+h ≥ vh(t + h, St,s

t+h, Zt+h
)
,

both when the stock is up and down. We rewrite above inequality, using the wealth
equation (2.2). The result is

y + Zt�St+h − �Zt+hθt+h(�Zt+h) ≥ vh(t + h, St,s
t+h, Zt+h

)
,

where we use the notation

θt(ν) = S(t, St, ν) − St.

We choose Zt+h to zup or zdown, respectively, depending on whether the spot price is up
or down. Then, we have the representation,

vh(t, s, z) = min y,

among all y satisfying

y + zs(u − 1) − (zup − z)θup(zup − z) ≥ vh(t + h, su, zup),

y + zs(d − 1) − (zdown − z)θdown(zdown − z) ≥ vh(t + h, sd, zdown),

for some zup and zdown. From now on we will suppress the dependence of the function θ

on the up or down state. We compactly rewrite the above equation by using the notation
zup = z + a and zdown = z + b. The result is the following difference equation which we
call the dynamic programming equation.

vh(t, s, z) = max
(

min
a

{vh(t + h, su, a + z) − zs(u − 1) + aθ (a)},

min
b

{vh(t + h, sd, b + z) − zs(d − 1) + bθ (b)}).
(3.1)

This equation is complemented by the terminal data

vh(T, s, z) = g(s).(3.2)

REMARK 3.2. We take our portfolio processes to be adapted to the filtration F gener-
ated by the marginal price process St. If we were to take predictable portfolio processes,
this would definitely increase the associated liquidity premium in discrete-time, since then
in the dynamic programming we would choose only one control at time t for both the
up and down case. Therefore, the liquidity premium for predictable portfolio processes
in the continuous-time limit is at least as in the case of adapted trading strategies.
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REMARK 3.3. In the terminal data, we implicitly ignore the liquidity cost at final time.
One may also consider other ways of settlements for the option. For instance, if we
assume that the option is settled in cash, then the investor has to liquidate her stock
holdings at final time. This leads to the following formulation:

v̄ h(t, s, z) := inf
{

y | ∃ F-adapted {Z·} so that Zt = z, and

Yt,y,Z·
T − (−ZT)θT(−ZT) ≥ g(ST) a.s.

}
.

Still the value function v̄ h solves the same dynamic programming equation (3.1). But the
terminal data changes to

v̄ h(T, s, z) = g(s) + (−z)θT(−z).

For a call option (g(s) = (s − K)+), another formulation used in the literature requires
the investor to actually have physical delivery of the stock. This leads to a formulation
with terminal data

ṽ h(T, s, z) = (s − K)+ + (1 − z)θT(1 − z)χs≥K + (−z)θT(−z)χs<K .(3.3)

All these formulations lead to a larger liquidity premium. For that reason in our limit
analysis we use the simplest boundary condition g(s). However, numerically, all other
terminal conditions can be studied easily. Indeed, in Section 6 we report some calculations
with data given by (3.3).

3.1. Parameters

Although we can perform an analysis with a general loss function θn, to simplify
the presentation and the already technical proofs we make a specific choice. Also, our
choice is motivated by earlier results of Çetin et al. (2004, 2006, 2010). In particular,
analysis of Çetin, Soner, and Touzi (2010) shows that in continuous time the changes
in optimal portfolios are small. In particular, only the partial derivative of the demand
function S(t, s, ν) with respect to the ν-variable at the origin (i.e., Sν(t, s, 0)) is rele-
vant for the continuous-time solution. Moreover, the empirical analysis of Çetin et al.
(2006) indicates that this partial derivative is constant. This motivates the linear choice
θ t(ν) = �ν for some liquidity parameter� > 0. The positivity requirement for the demand
function forces us to modify this choice slightly and we choose

S(t, s, ν) =

⎧⎪⎨⎪⎩
s + �ν ν ≥ − s

�
,

0 ν ≤ − s
�

,

(3.4)

where s ∈ (0, ∞). In this case

θt(ν) = (s + �ν)+ − s ≥ θ̂ (ν) := �ν.

Since we expect portfolio changes to be small, we will see that formulations with θ and
θ̂ yield the same result.

Also for the up and down factors we make the standard choice,

u = 1 + σ
√

h, d = 1 − σ
√

h,(3.5)
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where σ > 0 is the given volatility of the marginal price. Recall that h > 0 is the time step.
Finally one can easily derive that with these choices the continuous-time equation (1.1)

takes the form

−φt − s2σ 2 H(φss) = 0,(3.6)

where

H(γ ) =

⎧⎪⎪⎨⎪⎪⎩
1
2
γ + �γ 2, for γ ≥ − 1

4�
,

− 1
16�

, for γ ≤ − 1
4�

,

where in (1.1) we take the derivative with respect to β and set it equal to zero and observe
that the optimizer β∗ has to be nonnegative.

4. SIMPLE BOUNDS AND LIQUIDATION COST

In this section, we gather a few properties of the minimal super-replicating cost vh .
Let lh(t, s, z) be the minimal super-replication cost with zero pay-off, that is, g ≡ 0.

Since the pay-off g is assumed to be nonnegative, vh ≥ lh . Thus, lh provides a lower bound
for vh . This lower bound will be useful to control the behavior of vh(t, s, z) for large
values of |z|. Also, lh is an interesting object to analyze apart from this lower bound,
since it is the minimal wealth required to be protected against liquidity losses and have
nonnegative value at the terminal time. Note that the below analysis shows that lh is
positive for nonzero portfolio values z.

It is clear that both vh and lh are continuous in all variables and nonnegative.

LEMMA 4.1. For all h ∈ (0, 1], t ≤ T, z ∈ R
1 and s > 0,

vh(t, s, z) ≥ lh(t, s, z) ≥ Lh(�(T − t)/h�, s, |z|),
where for z ≥ 0,

Lh(N + 1, s, z) := inf
a·={a1,...,aN+1}≥0

{
N∑

n=0

[
sdnza·

n σ
√

h − an+1θ (−an+1)
]

= ∣∣ za·
n+1 = za·

n − an+1 ≥ 0, za·
0 = z

}

Proof . Clearly we have

Lh(N + 1 s, z) = inf
0≤a≤z

{
Lh(N, sd, z − a) − aθdown(−a)

}+ szσ
√

h, for N ≥ 0.

Set

L̂h(N, s, z) := lh(T − Nh, s, z),

so that by dynamic programming

L̂h(N + 1, s, z) = max
{

inf
a

{
L̂h(N, sd, z − a) − aθ (−a)

}+ szσ
√

h,

inf
b

{
L̂h(N, su, z − b) − bθ (−b)

}− szσ
√

h,

}
.
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First assume that z ≥ 0. Then,

L̂h(N + 1, s, z) ≥ infa
{

L̂h(N, sd, z − a) − aθ (−a)
}+ szσ

√
h.

Since L̂h(N, s, z) ≥ 0 = L̂h(N, s, 0), we conclude that

L̂h(N + 1, s, z) ≥ inf
a≤z

{
L̂h(N, sd, z − a) − aθ (−a)

}+ szσ
√

h.

Since in the definition of Lh we only consider the down movements of the stock process,
it is clear that Lh(N, s, z′) ≥ Lh(N, s, z) for z′ ≥ z ≥ 0. This implies that

inf
a≤z

Lh(N, s, z − a) − aθ (−a) = inf
0≤a≤z

Lh(N, s, z − a) − aθ (−a).

Hence,

Lh(N + 1, s, z) = inf
a≤z

{
Lh(N, sd, z − a) − aθ (−a)

}+ szσ
√

h.

By iterating the above inequalities for L̂h and Lh , we conclude that L̂h(N, s, z) ≥
Lh(N, s, z).

Now assume that z ≤ 0. Then,

L̂h(N + 1, s, z) ≥ inf
b

{L̂h(N, su, z − b) − bθ (−b)} − szσ
√

h

= inf
a≤−z

{L̂h(N, su, z + a) + aθ (a)} − szσ
√

h.

By iterating the above inequality, we prove for z ≤ 0 that

L̂h(N + 1, s, z)

≥ inf
a·={a1,...,aN+1}≥0

{
N∑

n=0

[
− sun z̄a·

n σ
√

h + an+1θup(an+1)
]

| 0 ≥ z̄a·
n+1 = z̄a·

n + an+1, z̄a·
0 = z

}

≥ inf
a·={a1,...,aN+1}≥0

{
N∑

n=0

[
− sdn z̄a·

n σ
√

h + an+1θdown(an+1)
]

| 0 ≥ z̄a·
n+1 = z̄a·

n + an+1, z̄a·
0 = z

}

≥ inf
a·={a1,...,aN+1}≥0

{
N∑

n=0

[
− sdn z̄a·

n σ
√

h − an+1θdown(−an+1)
]

| 0 ≥ z̄a·
n+1 = z̄a·

n + an+1, z̄a·
0 = z

}
,

where in the last step we used to inequality aθ (a) ≥ −aθ ( − a) for a ≥ 0. We now set
zn = −z̄n , we obtain,

L̂h(N + 1, s, z) ≥ inf
a·={a1,...,aN+1}≥0

{
N∑

n=0

[
sdnza·

n σ
√

h − an+1θdown(−an+1)
]

= | za·
n+1 = za·

n − an+1 ≥ 0, za·
0 = −z

}
�

Therefore,

L̂h(N + 1, s, z) ≥ Lh(N + 1, s, −z) = Lh(N + 1, s, |z|).

We can now state the lower bound that will be useful in the next sections.



10 S. GÖKAY AND H. M. SONER

PROPOSITION 4.2. Given any 0 < α < 1 there exists an integer Nα > 0 and h∗(α), so that
for all h ∈ (0, h∗(α)], t ≤ T − Nαh and s > 0,

lim inf
|z|→∞,s ′→s

vh(t, s ′, z)
s ′|z| ≥ σ

√
h

2
√

α
.

Proof . For s > 0, N ≥ 0 set

Kh(N, s) := lim inf
z→∞,s ′→s

Lh(N, s ′, z)
s ′z

.

By using dynamic programming,

Kh(N + 1, s) = lim inf
z→∞,s ′→s

inf
0≤a≤z

{
Lh(N, ds ′, z − a)

s ′z
− aθ (−a)

s ′z

}
+ σ

√
h

= min{ lim inf
z→∞,s ′→s

Ac(N, s ′, z) , lim inf
z→∞,s ′→s

Bc(N, s ′, z)} + σ
√

h,

where 0 < c < 1 is arbitrary and

Ac(N, s, z) := inf
0≤a≤cz

{
Lh(N, sd, z − a)

sz
− aθ (−a)

sz

}
≥ inf

0≤a≤cz

{
d(1 − c)

Lh(N, sd, z − a)
(sd)(z − a)

}
Bc(N, s, z) := inf

cz≤a≤z

{
Lh(N, sd, z − a)

sz
− aθ (−a)

sz

}
≥ −cθdown(−cz)

s
= cd.

In the last step, we used the fact that for large values of z and positive c, θdown(−cz) =
−sd. Also,

lim inf
z→∞ Ac(N, s, z) ≥ lim inf

z→∞ inf
0≤a≤cz

{
d(1 − c)

Lh(N, sd, z − a)
(sd)(z − a)

}
≥ d(1 − c)Kh(N, sd).

Since the above holds for any c ∈ (0, 1),

Kh(N + 1, s) ≥ max
c∈(0,1)

{ min{d(1 − c)Kh(N, sd) , cd} } + σ
√

h

≥ d
Kh(N, sd)

1 + Kh(N, sd)
+ σ

√
h.

Define the sequence kα(N) for 0 < α < 1 by the difference equation

kα(N + 1) = (1 − α)
kα(N)

1 + kα(N)
+ α, N ≥ 0

with initial data kα(0) = 0. It follows by induction that Kh(N, s) ≥ kσ
√

h(N) for all s > 0
and N ≥ 0, since Kh(0, s) = 0 for any s > 0 and d = 1 − σ

√
h.
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Because kα(N) is an increasing sequence, we can easily obtain

lim
N↑∞

1
α

kα(N) = 1√
α

.

Therefore, given any α ∈ (0, 1), choose Nα so that

1
α

kα(N) ≥ 1
2
√

α
, ∀n ≥ Nα.

By induction on N, one can establish that kα(N)/α is nonincreasing in α for fixed N.
Therefore, for any h satisfying σ

√
h ≤ α

1

σ
√

h
kσ

√
h(N) ≥ 1

α
kα(N).

Therefore, for any 0 < α < 1, there exists an integer Nα > 0 and 0 < h∗(α) ≤ 1 ∧ α2

σ 2 so
that for all N ≥ Nα and 0 < h ≤ h∗(α)

1

σ
√

h
kσ

√
h(N) ≥ 1

2
√

α
.

Multiplying both sides with σ
√

h and observing that for any z ∈ R
1

vh(t, s, z)
s|z| ≥

Lh
(⌊

T − t
h

⌋
, s, |z|

)
s|z|

we prove the proposition. �

5. CONTINUOUS-TIME LIMIT

In this section, we state our main limit result. In the remainder of the paper, we use the
parameter choices (3.4) and (3.5). Recall that the option is European with pay-off g(ST )
and the minimal discrete super-replicating cost vh(t, s, z) is defined in (2.4). We assume
that g is continuous and there is a constant C > 0 so that

0 ≤ g(s) ≤ C(1 + s), ∀ s ≥ 0.(5.1)

The continuous-time minimal super-replicating cost φ(t, s) is given as the unique
solution of (3.6) with terminal data φ(T, s) = g(s).

We define the standard upper and lower relaxed limits in the theory of viscosity
solutions of Barles and Perthame (1988); and Fleming and Soner (1993),

φ∗(t, s, z) := lim sup
h↓0,(t′,s ′,z′)→(t,s,z)

vh(t′, s ′, z′),

φ∗(t, s) := inf
z

{
lim inf

h↓0,(t′,s ′,z′)→(t,s,z)
vh(t′, s ′, z′)

}
.

REMARK 5.1. Note that in the definition of φ∗ we take the infimum over all initial
portfolio values z. This is a technical choice consistent with the viscosity theory. This
choice also preserves the lower semi-continuity with respect to (t, s).
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PROPOSITION 5.2. φ∗ is independent of z.

Proof . Fix t < T, s > 0, z, z′ and an integer N. Assume that h is sufficiently small so
that t + Nh < T. Use �Zn = (z′ − z)/N for all n = t, . . . , t + (N − 1)h in the wealth
equation (2.2). Then, we obtain the following upper bound,

vh(t, s, z) ≤ Lh(N, s, z, z′) + sup
{
vh(t + Nh, s ′, z′) : d N ≤ |s ′/s| ≤ uN } ,

where

Lh(N, s, z, z′) := N max{|z|, |z′|} uNsσh1/2 + �
(z′ − z)2

N
.

Now we use the fact that there exists (th, sh, zh) → (t, s, z) as h↓0 such that

lim
h→0

vh(th, sh, zh) = φ∗(t, s, z).(5.2)

Moreover, if (th, sh, zh) is a sequence converging to (t, s, z) as h → 0, then

lim
h→0

vh(th, sh, zh) ≤ φ∗(t, s, z).

Observe that if zh → z then z′
h = zh + (z′ − z) → z′ so that

φ∗(t, s, z) ≤ �
(z′ − z)2

N
+ φ∗(t, s, z′)

for any N. Thus,

φ∗(t, s, z) ≤ φ∗(t, s, z′), ∀ z, z′,

and consequently φ∗ is independent of z. �

REMARK 5.3. The above proof shows that for any sequence zh → z, there exists (th,
sh, zh) → (t, s, z) as h↓0 such that (5.2) holds. In particular, we can take the constant
approximating sequence z and can find appropriate (th, sh, z) → (t, s, z) with the property
(5.2).

THEOREM 5.4. Assume (5.1). As h → 0 the discrete minimal super-replicating cost vh(t,
s, z) converges locally uniformly to φ(t, s).

We state two theorems that will be proved in the last two sections. Then we complete
the proof of theorem using these results. In these proofs we will make extensive use of the
theory of viscosity solutions. For information on viscosity solutions, we refer the reader
to the seminal paper of Crandall, Ishii, and Lions (1992) or to the book Fleming and
Soner (1993).

THEOREM 5.5. The lower semi-continuous relaxed limit φ∗ is a viscosity super-solution
of (3.6).

We relegate the proof of this theorem to Section 7. We also have the dual result whose
result is given in Section 8.

THEOREM 5.6. The upper semi-continuous relaxed limit φ∗ is a viscosity sub-solution of
(3.6).



LIQUIDITY IN A BINOMIAL MARKET 13

Proof of Theorem 5.4. A buy and hold strategy together with the estimate (5.1) show
that

0 ≤ φ∗(t, s) ≤ φ∗(t, s) ≤ C(1 + s).

Also, since g is continuous, we have that

φ∗(T, s) = φ∗(T, s) = g(s).

Hence the comparison theorem for (3.6) proved in Çetin, Soner, and Touzi (2010) implies
that φ∗ ≤ φ∗. Since the opposite inequality follows from their definitions we immediately
conclude that φ∗ = φ∗ and it is equal to the unique viscosity solution of (3.6). In view
of the results of Çetin, Soner, and Touzi (2010), this unique solution is the minimal
super-replication cost defined in that paper. Now the local uniform convergence of vh(t,
s, z) to φ(t, s) will follow from the definitions of φ∗ and φ∗. �

6. NUMERICAL METHODS

In this section we develop an algorithm that computes the discrete-time super-replicating
cost vh(t, s, z) and therefore

φh(t, s) = inf
z

vh(t, s, z).(6.1)

This algorithm is based on the dynamic programming approach (3.1) and on the intro-
duction of the extra state variable, namely the portfolio variable. One could approach
solving φh(t, s) by a convex program formulation. However, the disadvantage of this
approach is that the number of constraints increases exponentially with the time step.
Therefore, we believe that our method is more appropriate to compute large time steps.

The rest of this section is as follows. First we introduce an accurate algorithm, which we
use to approximate the continuous-time super-replicating value of a European call option
in the illiquid market setting. We exhibit with plots and data that liquidity premium does
not vanish, as our theoretical results indicate. Although no explicit expression is known
for the solution φ(t, s) of the partial differential equation (1.1), an asymptotic expansion
with respect to the liquidity parameter is obtained in a recent paper of Possamai, Soner,
and Touzi (2010). So we compute the value function φh(t, s) for a number of liquidity
parameters � in the vicinity of � = 0 and observe that the slope of the data is close to the
value of first order expansion term. This illustrates that the liquidity premium exists in
the limit and is equal to the solution φ(t, s) of the (1.1). Furthermore, we propose another
algorithm for the solution φ(t, s) of the continuous-time equation (3.6) derived in Çetin,
Soner, and Touzi (2010). This method has the advantage of not having the extra portfolio
variable. Thus, it is much faster. We justify this second faster algorithm by comparing it
to the slower but accurate numerical method based on dynamic programming.

The first method is to directly solve the dynamic programming equation (3.1). First
we discretize the continuous variable z. Then, the chief step is to efficiently compute a
minimization problem of the following type

F(ξ ) = vh(t + h, su, ξ ) − zsσ
√

h + �(ξ − z)2,(6.2)
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over the variable ξ . Once this is established, we compute vh(t, s, z) for each z using
the above minimization procedure and (3.1). Then, φh(t, s) is computed by taking the
infimum over z. As it is standard in dynamic programming, we work backwards in time.
We first set vh(T, s, z) = g(s) for all z, where g( · ) is the given payoff of the option. In
the recursion step, we assume that vh(t + h, s, z) for all z and s is computed. Then, we
minimize the two problems of the type F(ξ ) to calculate vh(t, s, z). In this method the
only error is due to the discretization of z. Thus, by decreasing the grid width for �z, we
can increase the accuracy of the algorithm. To minimize F(ξ ) we exploit the structure
of the value function vh(t, s, z). It is interesting to note that vh(t, s, z) is convex in the
portfolio variable z for any contingent claim. This fact follows by the definition of vh(t,
s, z) and the convexity of aθ (a) in a.

Therefore, F(ξ ) is convex in ξ , and the minimizer ξ ∗ satisfies the first-order condition

z = f (ξ ∗), where f (ξ ) := ξ + vξ (t + h, su, ξ )
2�

.

Therefore, the minimization problem reduces to finding ξ ∗ as a function of z. Observe
that since F is convex in ξ , we have

fξ (ξ ) = 1 + vξξ (t + h, su, ξ )
2�

= Fξξ (ξ )
2�

≥ 0,

and hence f is nondecreasing. So we find ξ ∗ numerically such that f (ξ ∗) ≤ z < f (ξ ∗ +
�z). To do so, we increase incrementally by �z until the value of the function f exceeds
z. The strength of the algorithm is that we do not have to start our search everytime
from the lowest portfolio value. In fact, given the minimizer ξ ∗(z) for z we can start the
search for ξ ∗(z + �z) from ξ ∗(z), because f is nondecreasing. This is why this procedure
provides a considerable decrease in the computational time.

We continue by summarizing several numerical results. In these experiments we use 150
time steps and the annual volatility is σ = 0.2. As in our analysis, up and down factors
are 1 ± σ/

√
150, respectively, since we divide a year into 150 time steps. We compute φ150

(t, s) given by (6.1) for a call option with 1-year maturity and strike K = 0.9 for different
liquidity parameters. All portfolio values lie in the interval [0, 1], we partition this interval
into three different intervals, [0, 0.8], [0.8, 0.95], and [0.95, 1] and use 0.00025, 0.000025,
and 0.00005 as the difference between any two consecutive z values in these intervals,
respectively.

The results of this numerical experiment are given in the table below and plotted in
Figure 6.1

� 0 0.1 0.2 0.3 0.4 0.5

φ150(1, 1) 0.135859 0.150109 0.159490 0.167005 0.173422 0.179097

� 0.6 0.7 0.8 0.9 1
φ150(1, 1) 0.184206 0.188886 0.193218 0.197257 0.201068

Notice that �= 0 corresponds to the classical Black–Scholes problem. The continuous-
time formula for a call option with strike K = 0.9, σ = 0.2 and 1 year to maturity is
equal to 0.135891. The above result differs from this value only 0.023%.

We analyze the behavior of φ150(1, 1) for small values of � near zero. This is a
perturbation around the Black–Scholes value. In a recent paper of Possamai, Soner,
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FIGURE 6.1. The dependence of φ150(1, 1) on the liquidity parameter �.

and Touzi (2010), an explicit expansion is obtained. They showed that for Sε(t, s, ν) =
S(t, s, εν), the continuous-time super-replicating cost φε has the following expansion.

φε = vBS + εφ(1) + · · · + εnφ(n) + o(εn),

where vBS is the Black–Scholes value. In fact, for a call option with constant volatility σ ,

φ(1)(t, s) =
∫ T

t

1
2π

1√
(T − x)(T + x − 2t)

exp
(

− d(s, T − 2x + t)2

σ 2(T + x − 2t)

)
dx,(6.3)

where d(s, t) = ln
( s

K

)+ 1
2σ 2t.

We calculated the numerical value of the integral in (6.3) for a call option with K =
0.9, T = 1, t = 0, s = 1, σ = 0.2. This value is 0.21168.

Figure 6.2 illustrates the dependence of the discrete-time super-replicating cost φ150(1,
1) given by (6.1) on liquidity parameters � near zero. The data has an almost linear
structure with slope 0.1939, which is a deviation from the theoretical value 0.21168
by 9%.

So far we exhibited our results with 150 time step discretizations a year. However, we
are not limited with this step size. The reason we chose this number is that it is sufficient
to obtain close results to continuous time. Moreover, we want to make the point that
increasing step size does not necessarily mean more accurate results. There is actually a
trade-off between the �z and the time step size. For obtaining more accurate results, as
the time step increases one should make the grid for portfolio values finer.

In Çetin, Soner, and Touzi (2010) it is established that for a convex payoff the optimal
portfolio position is given by the delta-hedge φs(t, s). Our second algorithm is based
on this observation to reduce the dimension by removing the dependence on the z-
variable. We construct a function v̂(t, s) again by backwards recursion. We start with
v̂(T, s, z) = g(s). The next step is calculated by

v̂(T − h, s, z) = max(g(su) − zsσ
√

h, g(sd) + zsσ
√

h).
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FIGURE 6.2. The behavior of φ150(1, 1) near � = 0.

We choose Z∗(T − h, s) that sets the two terms in the maximum equal to each other.
The result is

Z∗(T − h, s) = g(su) − g(sd)
s(u − d)

.

Then,

v̂(T − h, s) = v̂(T − h, s, Z∗(T − h, s)) = g(su) + g(sd)
s(u − d)

.

We march backwards in this way. Namely, we define

v̂(t, s, z) = max{v̂(t + h, su) − zsσ
√

h + �(Z∗(t + h, su) − z)2,

v̂(t + h, sd) + zsσ
√

h + �(Z∗(t + h, sd) − z)2}.
Again we choose Z∗(t, s) as the value that makes the two terms in the maximum equal
to each other. This yields

Z∗(t, s) = v̂(t + h, su) − v̂(t + h, sd) + �(Z∗(t + h, su)2 − Z∗(t + h, sd)2)

2sσ
√

h + 2�(Z∗(t + h, su) − Z∗(t + h, sd))
.(6.4)

Notice that, formally v̂(t + h, s) ≈ φ(t + h, s) and Z∗(t + h, s) ≈ φs(t + h, s). Then,
again formally, we arrive at

Z∗(t, s) ≈ 2φs(t, s)sσ
√

h + 4�φs(t, s)φss(t, s)sσ
√

h

sσ
√

h + 4�φss(t, s)sσ
√

h
≈ φs(t, s).

We formally expect that v̂ converges to φ. Indeed, our numerical results support this
fact. For numerical experimentation, we compare the two numerical values, previously
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FIGURE 6.3. The behavior of v̂(1, 1) near � near zero.

computed φ150(1, 1) and results from the second algorithm v̂(1, 1) with h = 1/4000 and
� ranges between 0 to 1. Results are reported in the table below.

� φ150(1, 1) v̂(1, 1) Relative error

0 0.135859 0.135887016 0.0206%
0.1 0.150109 0.149922028 0.1245%
0.2 0.159490 0.159906968 0.2614%
0.3 0.167005 0.168681241 1.0037%
0.4 0.173422 0.177011752 2.0699%
0.5 0.179097 0.185250108 3.4356%
0.6 0.184206 0.193584309 5.0912%
0.7 0.188886 0.202119364 7.0060%
0.8 0.193218 0.210911485 9.1572%
0.9 0.197257 0.219985383 11.522%
1 0.201068 0.229344430 14.063%

We also test the second algorithm for small � values and compare with the theoretical
value of the first-order term of the asymptotic expansion of φ(t, s). Again the plotted data
has a form of an affine function with slope 0.19108, which deviates from the theoretical
value 0.21168 by 9.73%. It is illustrated in Figure 6.3.

7. VISCOSITY SUPER-SOLUTION PROPERTY

In this section, we prove Theorem 5.5.

Proof of Theorem 5.5. We complete the proof in several steps.
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1. Let a smooth function ϕ and the point (t0, s0) ∈ [0, T) × (0, ∈ ∞) satisfy

0 = (φ∗ − ϕ)(t0, s0) = min{(φ∗ − ϕ)(t, s) | (t, s) ∈ [0, T] × [0, ∞)}.

In view of the definition of a viscosity super-solution, we need to show that

−ϕt(t0, s0) − s2
0σ 2 H(ϕss(t0, s0)) ≥ 0.(7.1)

2. For h > 0 set

ϕh(t, s, z) := ϕ(t, s) + sσ
√

h K(ϕss(t, s)) |ϕs(t, s) − z| ,

K(γ ) :=
{

1 + 2�γ, for γ ≥ −1/(4�),

1/2, for γ ≤ −1/(4�).

We claim that for sufficiently small h, the difference

Uh(t, s, z) := vh(t, s, z) − ϕh(t, s, z)

attains its minimum at (th, sh, zh). We showed that 0 ≤ φ∗(t, s) ≤ C(1 + s). Because only
local behavior of the test function around (t0, s0) is important, without loss of generality
we can modify the test function as

ϕ̃(t, s) = χϕ(t, s) − C(1 + s0)(1 − χ ),(7.2)

where χ is a C∞ function satisfying 0 ≤ χ ≤ 1, χ ≡ 1 on some neighborhood N of (t0,
s0) and χ ≡ 0 off another neighborhood Ñ of (t0, s0) such that N ⊂ Ñ . It is clear that

0 = (φ∗ − ϕ̃)(t0, s0) = min {(φ∗ − ϕ̃)(t, s) : (t, s) ∈ [0, T] × [0, ∞)}

and ϕ̃ and ϕ have the same local behavior around (t0, s0). By abuse of notation call ϕ̃ = ϕ.
Fix h > 0 sufficiently small and set

L = inf
{
Uh(t, s, z) : (t, s) ∈ Ñ , z ∈ R

1}.
We will show that L is attained for some (th, sh, zh). We can find (tn, sn, zn) such that

L + 1
n

≥ vh(tn, sn, zn) − ϕh(tn, sn, zn).(7.3)

Since (tn, sn) belong to the compact interval Ñ , by passing to a subsequence if necessary
(tn, sn) → (th, sh). If we can show that |zn| is uniformly bounded, zn will have a convergent
subsequence to zh, and so the infimum will be attained. Hence, for a contradiction assume
that |zn| → ∞. Now choose 0 < α < 1 sufficiently small that

1
4
√

α
≥ max

Ñ
K(ϕss(t, s)).
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By Proposition 4.2 there exists Nα ∈ N and h∗(α) such that for all h ≤ h∗(α) and t ≤ T
− Nαh∗(α),

lim inf
|z|→∞,s ′→sh

vh(t, s ′, |z|)
s ′|z| ≥ σ

√
h

2
√

α
.

If necessary we can decrease h∗(α) so that {t : (t, s) ∈ Ñ for some s} ⊂ [0, T − Nαh∗(α)].
Using these facts, if |zn| → ∞ we reach the contradiction that the right-hand side of (7.3)
becomes larger than the left-hand side. The next step is to show that

L = inf
{
Uh(t, s, z) : (t, s) ∈ [0, T] × [0, ∞), z ∈ R

1} .

Clearly

L = Uh(th, sh, zh) ≤ vh(t0, s0, C) − φ∗(t0, s0) ≤ C(1 + s0),

by a buy and hold argument. On the other side for (t, s) /∈ Ñ
Uh(t, s, z) ≥ lh(t, s, z) + C(1 + s0) − s|z|σ

√
h ≥ C(1 + s0)

so that the claim follows.
As it is standard in the theory of viscosity solutions (cf., Fleming and Soner 1993),

without loss of generality we may assume that (t0, s0) is a strict minimum. It will be
shown later in (7.7) that |zh| remains uniformly bounded. Then it is easy to establish that
as h↓0, (th, sh) → (t0, s0) and the minimum value Uh(th, sh, zh) converges to the minimum
value of the difference φ∗ − ϕ, which is equal to zero.

3. Set eh := Uh(th, sh, zh), so that

vh(t, s, z) ≥ ϕh(t, s, z) + eh, ∀ (t, s, z), and vh(th, sh, zh) = ϕh(th, sh, zh) + eh .

Hence, in view of dynamic programming (3.1),

ϕh(th, sh, zh) = ϕ(th, sh) + shσ
√

h K(ϕss(th, sh)) |ϕs(th, sh) − zh |
= −eh + vh(th, sh, zh)

= −eh + max{min
a

[vh(th + h, ush, zh + a) + aθ (a) + shzh(1 − u)],

min
b

[vh(th + h, dsh, zh + b) + bθ (b) + shzh(1 − d)]}

≥ max{min
a

[ϕh(th + h, ush, zh + a) + aθ (a) + shzh(1 − u)],

min
b

[ϕh(th + h, dsh, zh + b) + bθ (b) + shzh(1 − d)]}.

(7.4)

4. The following function will be used repeatedly in our analysis.

min
a

{a2 + B |ξ − a|} = B2ψ

(
ξ

B

)
,

where B > 0 is an arbitrary constant and

ψ(r ) =
{

r 2 |r | ≤ 1
2 ,

|r | − 1
4 |r | ≥ 1

2 .
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5. Let �∗ be the upper bound of ϕss in a neighborhood of (t0, s0). Set

h∗ := 4 (σ K(�∗))−2
,

so that for all h ≤ h∗ the following two minimizations are equivalent.

min
a

{
�a2 + |ξ − a|B} = min

a
{aθt(a) + |ξ − a|B} ,

where

B = sσ
√

h K (φss(t, s)) .

Indeed

θ (a) =

⎧⎪⎨⎪⎩
�a a ≥ − s

�

−s a ≤ − s
�

⇒ aθ (a) ≤ �a2,

and the equality holds for all a ≥ −(s/�). Moreover, the optimizer of the first term
satisfies |a∗| ≤ B/(2�). The above definition of B implies that for h ≤ h∗, |a∗| ≤ (s/�).
Therefore, a∗θ (a) = �(a∗)2.

In view of the definition of ϕh, we may apply this result in (7.4). We then conclude
that the terms aθ (a) and bθ (b) in the minimizations can be replaced by �a2 and �b2,
respectively. The result is

ϕh(th, sh, zh) = ϕ(th, sh) + η K(ϕss(th, sh)) |ϕs(th, sh) − zh | ≥ max{J1, J2},(7.5)

where

η := shσ
√

h,

J1 = ϕ(th + h, ush) − zhη + min
a

{
�a2 + uηK (ϕss(th + h, ush)) |ϕs(th + h, ush) − zh − a|},

J2 = ϕ(th + h, dsh) + zhη + min
b

{
�b2 + dηK (ϕss(th + h, dsh)) |ϕs(th + h, dsh) − zh − b|}.

6. Next we use the Taylor expansion of the terms ϕ(th + h, ush), ϕ(th + h, dsh), and
their first and second space derivatives around xh = (th, sh). In the sequel C denotes a
generic constant depending on the local sup-norm of the derivatives of the test function
ϕ. We introduce the notation

γ := ϕss(th, sh), ξ := ϕs(th, sh) − zh, xh := (th, sh), η := shσ
√

h.

For the following computations we observe that for B > 0 the minimization problem

min
a

�a2 + |ξ − a|B

is monotone increasing in B. Furthermore, also by definition of K(γ ) we have the
inequality

K(γ − Ch1/2) ≥ K(γ ) − 2�Ch1/2,
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where in the argument below we denote 2�C by C. These two statements along with the
triangle inequality brings us to

J1 = ϕ(th + h, ush) − zhη + min
a

{
�a2 + uηK (ϕss(th + h, ush)) |ϕs(th + h, ush) − zh − a|}

≥ ϕ(xh) + ϕt(xh)h + ξη + η2

2
γ + min

a

{
�a2 + η

(
K(γ ) − Ch1/2) |ξ + ηγ − a|} − Ch3/2

≥ ϕ(xh) + ϕt(xh)h + ξη+ η2

2
γ + η2(K(γ ) − Ch1/2)

�
ψ

(
�(ξ + ηγ )

η(K(γ ) − Ch1/2)

)
−Ch3/2.

In the last step we used the function ψ introduced in Step 4. We want to make a similar
analysis for J2; however, since d < 1 we cannot get rid of the d coefficient in front of K
immediately. However, for some C′

dηK(γ − Ch1/2) ≥ η(K(γ ) − C′h1/2),

where below we denote C′ by C. Hence, we obtain

J2 ≥ϕ(xh)−ξη + ϕt(xh)h+ η2

2
γ + η2

(
K(γ )−Ch1/2

)
�

ψ

(
�(ξ−ηγ )

η
(
K(γ )−Ch1/2

))− Ch3/2.

Using (7.5) and the above estimates we conclude that

0 ≥ ϕt(xh)h − ηK(γ )|ξ | + η2

2
γ + max{I1, I2} − Ch3/2,(7.6)

where

I1 = η2
((

K(γ ) − Ch1/2
))2

�
ψ

(
�(ξ + ηγ )

η
(
K(γ ) − Ch1/2

))+ ξη,

I2 = η2
((

K(γ ) − Ch1/2
))2

�
ψ

(
�(ξ − ηγ )

η
(
K(γ ) − Ch1/2

))− ξη.

7. In this step we show that

lim sup
h↓0

|zh | < ∞.(7.7)

Indeed, if this is not the case, then |ξ | converges to infinity. Without loss of generality
assume that this limit is +∞ then by (7.6),

0 ≥ ϕt(xh)h − ηK(γ )|ξ | + η2

2
γ + max{I1, I2} − Ch3/2

≥ ϕt(xh)h − ηK(γ )ξ + η2

2
γ + η

(
K(γ ) − Ch1/2) (ξ + ηγ )

− η2
((

K(γ ) − Ch1/2
))2

4�
+ ξη − Ch3/2

≥ −C∗h + ξη(1 − C
√

h),
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where C∗ is a constant depending on γ , ϕt, and others. Since η = sσh1/2, for small h the
above inequality can not hold. Hence this proves (7.7).

8. In (7.6), since ψ is even, max {I1, I2} is also symmetric in ξ . Therefore, it suffices to
consider the case ξ ≥ 0. Then, we may consider only I1 instead of max {I1, I2}. Thus, to
prove (7.1) it suffices to show that

I := η2

2
γ + η2

((
K(γ ) − Ch1/2

))2
�

ψ

⎛⎝ �(ξ + ηγ )

η
(

K(γ ) − C
√

h
)
⎞⎠

+ξη(1 − K(γ )) − η2 H(γ ) ≥ −Ch3/2,

(7.8)

since by (7.6)

− ϕt(xh)h ≥ η2

2
γ + η2

((
K(γ ) − Ch1/2

))2
�

ψ

⎛⎝ �(ξ + ηγ )

η
(

K(γ ) − C
√

h
)
⎞⎠

+ ξη(1 − K(γ )) − Ch3/2.

We first consider the case

2�|ξ + ηγ | ≤ η(K(γ ) − Ch1/2).

Since �x2 + Bx ≥ −B2/(4�) for all x,

I = �(ξ + ηγ )2 + ξη(1 − K(γ )) + η2

2
γ − η2 H(γ )

= �(ξ + ηγ )2 + η(1 − K(γ ))(ξ + ηγ ) − η2γ (1 − K(γ )) + η2

2
γ − η2 H(γ )

≥ η2

[
− (1 − K(γ ))2

4�
+ γ

(
K(γ ) − 1

2

)
− H(γ )

]
.

In the above, either γ ≤ −1/(4�) and therefore K(γ ) = 1/2, H(γ ) = −1/(16�), or γ

≥ −1/(4�) and therefore K(γ ) = 1 + 2�γ , H(γ ) = γ /2 + �γ 2. In both cases, the
right-hand side of the above inequality is exactly equal to zero.

In the following two cases, we assume that

2�|ξ + ηγ | ≥ η(K(γ ) − Ch1/2).(7.9)

9. We first consider the case γ ≥ C̄h1/2 − 1/(4�) where 2�C̄ ≥ C. Notice in this case

H(γ ) = 1
2
γ + �γ 2, K(γ ) = 1 + 2�γ.
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Since ξ ≥ 0, the inequality (7.9) implies that ξ + ηγ ≥ 0 and

I =η
(
K(γ ) − Ch1/2) (ξ+ηγ )− η2(K(γ )−Ch1/2)2

4�
+ξη(1−K(γ )) + η2

2
γ − η2 H(γ )

= η(1 − C
√

h)ξ + η2γ (1 + 2�γ − C
√

h) − 1
4�

η2(1 + 2�γ − C
√

h)2 − �η2γ 2

= η(1 − C
√

h)ξ + η2

4�
(1 + 2�γ − C

√
h)(4�γ − 1 − 2�γ + C

√
h) − �η2γ 2

= η(1 − C
√

h)ξ + η2

4�
(2�γ + (1 − C

√
h))(2�γ − (1 − C

√
h)) − �η2γ 2

= η(1 − C
√

h)ξ − 1
4�

η2(1 − C
√

h)2 .

Since in this subcase ξ ≥ η

2�
(1 − C

√
h),

I ≥ η2(1 − Ch1/2)2

4�
≥ 0.

10. The only remaining case is γ ≤ C̄h1/2 − 1/(4�).
First we assume that ξ + ηγ ≥ 0 so that ξ + ηγ ≥ η

2�
(K(γ ) − C

√
h)

I =η(K(γ )−C
√

h)(ξ+ηγ )− η2

4�
(K(γ )−C

√
h)2+ η2γ

2
+ (1 − K(γ ))ξη − η2 H(γ )

= η2γ

(
1
2

+ K(γ ) − C
√

h
)

+ (1 − C
√

h)ηξ − η2 H(γ ) − η2

4�
(K(γ ) − C

√
h)2.

Since K(γ ) ≥ 1
2 , we have

≥ (1 − C
√

h)η(ξ + ηγ ) − η2 H(γ ) − η2

4�
(K(γ ) − C

√
h)2

≥ η2

2�
(1 − C

√
h)(K(γ ) − C

√
h) − η2 H(γ ) − η2

4�
(K(γ ) − C

√
h)2

≥ η2

4�
(K(γ ) − C

√
h)(2 − C

√
h − K(γ )) − η2 H(γ )

≥ η2

4�
(1 − C′√h) ≥ 0.

In the last step, we used the fact that, since γ ≤ − 1
4�

+ C̄
√

h, it follows

K(γ ) ≤ 1
2

+ 2�C̄
√

h, H(γ ) ≤ − 1
16�

+ �C̄2h.

Next suppose that −ξ − ηγ ≥ 0, then

−ξ − ηγ ≥ η

2�
(K(γ ) − C

√
h) ≥ η

2�

(
1
2

− C
√

h
)

.

This implies

0 ≤ ξ ≤ − η

4�
(1 + 4�γ − 2C

√
h).
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Then using the same bounds for H(γ ) and K(γ ) as above, we obtain

I = η(K(γ ) − C
√

h)(−ξ − ηγ ) − 1
4�

η2(K(γ ) − C
√

h)2 + η2γ

2

+ (1 − K(γ ))ηξ − η2 H(γ )

≥ η

(
1
2

− C
√

h
)

(−ξ − ηγ ) − 1
4�

η2(K(γ ) − C
√

h)2 + η2γ

2

+ (1 − K(γ ))ηξ − η2 H(γ )

≥ ηξ (C − 2�C̄)
√

h + η2γ C
√

h − η2
(

− 1
16�

+ �C̄2h
)

− η2

4�

(
1
2

+ 2�C̄
√

h − C
√

h
)2

.

Since C − 2�C̄ ≤ 0,

≥ − η2

4�
(C − 2�C̄)(1 + 4�γ − 2C

√
h)

√
h + η2γ C

√
h

−η2
(

− 1
16�

+ �C̄2h
)

− η2

4�

(
1
2

+ 2�C̄
√

h − C
√

h
)2

≥ −Ch3/2.

11. In steps 8, 9, and 10 we proved the claim (7.8). This proves that φ∗ is a viscosity
super-solution of (3.6). �

8. VISCOSITY SUB-SOLUTION PROPERTY

In this section we prove Theorem 5.6.

Proof of Theorem 5.6. Again, we complete the proof in several steps.
1. Let a smooth function ϕ and the point (t0, s0) ∈ [0, T) × (0, ∞) satisfy

0 = (φ∗ − ϕ)(t0, s0) = max{(φ∗ − ϕ)(t, s) | (t, s) ∈ [0, T] × [0, ∞)}.
In view of the definition of a viscosity sub-solution, we need to show that

−ϕt(t0, s0) − s2
0σ 2 H(ϕss(t0, s0)) ≤ 0.(8.1)

As in the super-solution argument without loss of generality we modify the test function
as

ϕ̃(t, s) = χϕ(t, s) + (1 − χ )(C∗s + K),

where K is sufficiently large enough and C∗ ≥ C. As before, χ is a C∞ function satisfying
0 ≤ χ ≤ 1, χ ≡ 1 on some neighborhoodN of (t0, s0) and χ ≡ 0 on a larger neighborhood
Ñ of (t0, s0). Since 0 ≤ φ∗(t, s) ≤ C(1 + s),

0 = (φ∗ − ϕ̃)(t0, s0) = max{(φ∗ − ϕ̃)(t, s) | (t, s) ∈ [0, T] × [0, ∞)},
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and ϕ̃ and ϕ has the same local behavior. Therefore, by abuse of notation, call ϕ̃ = ϕ.
Also again without loss of generality we may assume that (t0, s0) is a strict maximum.

2. By the proposition (5.1) and the remark after it we can find (t′
h, s ′

h, ϕs(t′
h, s ′

h)) →
(t0, s0, ϕs(t0, s0)) as h↓0 such that

0 = (φ∗ − ϕ)(t0, s0) = lim
h↓0

vh(t′
h, s ′

h, ϕs(t′
h, s ′

h)) − ϕ(t′
h, s ′

h).

Denote by ψh(t, s) = vh(t, s, ϕs(t, s)). Then we claim

max{ψh(t, s) − ϕ(t, s) : (t, s) ∈ Ñ } = sup{ψh(t, s) − ϕ(t, s) : (t, s) ∈ [0, T] × [0, ∞)}.

By compactness of Ñ , ψh(t, s) − ϕ(t, s) attains its maximum at (th, sh) and

ψh(th, sh) − ϕ(th, sh) ≥ ψh(t0, s0) − ϕ(t0, s0) ≥ −φ∗(t0, s0) ≥ C(1 + s0).

On the other hand, for all (t, s) /∈ Ñ we have

ψh(t, s) − ϕ(t, s) = vh(t, s, C∗) − C∗s − K ≤ C∗s + C − C∗s − K ≤ −C(1 + s0),

by the fact that vh(t, s, z) ≤ sz + C for z ≥ C. Now by compactness of Ñ (th, sh) converges
to (t̄, s̄) by passing to a subsequence if necessary so that

0 ≤ lim
h↓0

ψh(th, sh) − ϕ(th, sh) = φ∗(t̄, s̄) − ϕ(t̄, s̄).

Since the maximum is strict we can conclude that (t̄, s̄) = (t0, s0) and

eh = ψh(th, sh) − ϕ(th, sh) → 0.

Furthermore,

ψh(t, s) ≤ ϕ(t, s) + eh, ∀ (t, s), and ψh(th, sh) = ϕ(th, sh) + eh .

In view of dynamic programming (3.1),

ϕ(th, sh) = −eh + ψh(th, sh) = −eh + vh(th, sh, ϕs(th, sh))

= −eh +max{min
a

[vh(th +h, ush, ϕs(th, sh)+a)+aθ (a)+shϕs(th, sh)(1 − u)],

min
b

[vh(th + h, dsh, ϕs(th, sh) + b) + bθ (b) + shϕs(th, sh)(1 − d)]}}.

Set

xh := (th, sh), η := shσh1/2, p := ϕs(xh), γ := ϕss(xh).

In dynamic programming, we choose

a := ah = ϕs(th + h, ush) − ϕs(th, sh), b := bh = ϕs(th + h, dsh) − ϕs(th, sh),

so that

vh(th + h, ush, ϕs(th, sh) + ah) = ψh(th + h, ush) ≤ ϕ(th + h, ush) + eh,

vh(th + h, dsh, ϕs(th, sh) + bh) = ψh(th + h, dsh) ≤ ϕ(th + h, dsh) + eh .



26 S. GÖKAY AND H. M. SONER

We use these choices in dynamic programming. The result is

ϕ(xh) ≤ max {(ϕ(th + h, ush) + ahθ (ah) − ηp) , (ϕ(th + h, dsh) + bhθ (bh) + ηp)} .

(8.2)

3. Since for an appropriate constant C,

ah ≤ γ η + Ch, ⇒ ahθ (ah) ≤ �(ah)2 ≤ �γ 2η2 + Ch3/2.

Similarly,

bhθ (bh) ≤ �γ 2η2 + Ch3/2.

These together with (8.2) imply that

ϕ(xh) ≤ max {(ϕ(th + h, ush) − ηp) , (ϕ(th + h, dsh) + ηp)} + �η2γ 2 + Ch3/2.

We directly estimate that

ϕ(th + h, ush) − ηp ≤ ϕt(xh)h + 1
2
η2γ + Ch3/2,

ϕ(th + h, dsh) + ηp ≤ ϕt(xh)h + 1
2
η2γ + Ch3/2.

We substitute these estimates into the previous inequality. The result is

0 ≤ h
[
ϕt(xh) + s2

hσ
2 H̃(ϕss(xh))

]+ Ch3/2 where H̃(γ ) = 1
2
γ + �γ 2.

Hence,

−ϕt(t0, s0) − s2
0σ 2 H̃(ϕss(t0, s0)) ≤ 0.

For any � ≥ 0, set ϕ̄(t, s) := ϕ(t, s) + �(s − s0)2/2. Clearly, φ∗ − ϕ̄ attains its maximum
at (t0, s0). Our argument implies that

0 ≥ −ϕ̄t(t0, s0) − s2
0σ 2 H̃(ϕ̄ss(t0, s0)) = ϕt(t0, s0) − s2

0σ 2 H̃(ϕss(t0, s0) + �).

Since,

H(γ ) = inf
�≥0

H̃(γ + �),

we conclude that (8.1) holds. Therefore, φ∗ is also a viscosity subsolution of (3.6). �
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