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On the Hamil ton~acobi-Bel lman 
Equations in Banach Spaces la 

H .  M E T E  S O N E R  3 

Communicated by R. l~shel 

Abstract. This paper is concerned with a certain class of distributed 
parameter control problems. The value function of these problems is 
shown to be the unique viscosity solution of the corresponding Hamil- 
tonian-Jacobi-Bellman equation. The main assumption is the existence 
of an increasing sequence of compact invariant subsets of the state 
space. In particular, this assumption is satisfied by a class of controlled 
delay equations. 
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I. Introduction 

The purpose of this paper is to characterize the value function of a 
certain class of infinite-dimensional deterministic control problems as the 
only solution of  the corresponding Hamilton-Jacobi-Bellman equations. A 
more general class of equations (with nonconvex Hamiltonians) in infinite- 
dimensional spaces was studied extensively by Crandall and Lions (Refs. 
1-2, see also Ref. 3). They have shown that, as in the finite-dimensional 
case (see Refs. 4-5), the notion of viscosity solutions provides a natural 
uniqueness class for these equations. But the definition of  viscosity solutions 
needs to be modified to accommodate certain difficulties that arise only in 
the infinite-dimensional case. In this paper, by using the special structure 
of  a class of  control problems, we shall develop a notion of viscosity 
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solutions, which is more restrictive than the one utilized by Crandall and 
Lions in Refs. 1-2. 

We continue by defining a control problem, with a reflexive Banach 
space E as its state space. Let the control set ~¢ be a metric space, and let 
SJad be the set of all piecewise constant maps w( . )  of  [0, oo) into sO. For 
each (x, t) ~ E x [0, T], w(. ) ~ ~ad, controlled trajectories y(s; x, t, w(. )) 
are given as the only solution of  the following equation 

(d /ds )y (s ;  x, t, w(.  )) = A(w(s) )y(s;  x, t, w(.  )) 

+ f ( y ( s ; x , t , w ( ' ) ) , s , w ( s ) ) ,  s 6 ( t , T ) ,  ( la)  

y(t;  x, t, w(.  )) = x, ( lb)  

where A(w)  is a (possibly unbounded) operator on D ( A ( w ) ) C E  and 
f (x ,  t, w) is an E-valued function on E x [0, T] x ~.  Under Assumptions 
(A2)-(A4), see Section 2, there is a unique mild solution to ( l a ) - ( l b )  
(Theorem 1.2, page 184, Ref. 6). Then, the value function u(x, t) is given by 

u(x, t) = inf exp A (y(~-; x, t, w(-)) ,  r, w(v)) dr  
~"c~.d I. 3 t t -- 

x I(y(s; x, t, w(" )), s, w(s)) ds 

+ exp - A  (y(r ;  x, t, w(. )), r, w(r))dr  
t 

x g(y(T; x, t, w(.)))}, (2) 

where l(x, t, w), A(x, t, w), g(x)  are real-valued functions. The correspond- 
ing Hamil ton-Jacobi-Bel lman equation has the following form: 

-(O/Ot)u(x, t)+ H(x ,  t, u(x, t), Dxu(x, t)) =0,  

(x, t) 6 E x [0, T), (3) 

x e E, (4) u(x, T) = g(x), 

where H is given by 

H(x, t, u, p) 

= sup{- / (x ,  t, w)+A(x,  t, w)u - ( p , f ( x ,  t, w)+A(w)x)} ,  (5) 

for t ~ [0, T], u ~ R, x ~ ("]w~ D(A(w)) ,  p ~ E*, the dual of E, and (p, x) 
is the value of p at x c E. 
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When A(w) is an unbounded operator, due to the term 
(Dxu(x, t), A(w)x), the notion of viscosity solutions needs modification. A 
resolution to this problem is given by Crandall and Lions (personal com- 
munication), if the unbounded operator is dissipative and is independent 
of w. Our approach differs from that of Crandall and Lions at this point. 
We make use of the following assumption together with the dissipativeness 
of A(w). 

Assumption (A1). (i) E = F x Z, Z is finite dimensional; (ii) there is 
an increasing sequence of  E. C E satisfying 

E. C N D(A(w)), 
w ~ . ~  

Vx c E,, y(s; x, t, w(. ))~ E~, (s, t, w(') )  ¢ [0, T]2x sd~a, 

closure ( U  En) = E, 

{x = (7, z) ~ Eo :tzl-< K} is compact for each n, K > 0. 

Basically, the motivation for the above condition comes from the 
optimal control of delay equations; see Section 3. 

The organization of  the paper is simple; in Section 2, the definition of 
viscosity solutions is given, and u(x, t) is characterized as the only solution 
of (3) and (4); in Section 3, two examples are discussed. 

2. Main Result 

Let BUC(E x[0, T]), Ct(E x[0, T]) denote the set of bounded uni- 
formly continuous functions on E x[0, T] and continuously Frech& 
ditterentiable functions on E x [0, T], respectively. 

Definition 2.1. (a) Any u ~ BUC(E x [0, T]) is a viscosity subsol- 
ution to (3) if, for all ~ ~ CI(E x [0, T]), 

-(O/Ot)q~(x, t)+ H(x, t, u(x, t), Dx~(x, t))<-O, 

whenever 

(u - ~)(x, t) = max{(u - ~)(y, x): (y, s) ~ E, x [0, T]}, 

for some n -> 1 and (x, t) ~ E, x [0, r ) .  
(b) Any u c BUC(E x [0, T]) is a viscosity supersolution to (3) if, for 

all ~ ~ C~(E x [0, T]), 

-(O/Ot)q~(x, t)+ H(x, t, u(x, t), D~p(x, t))-> O, 
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whenever 

(u - ~)(x, t) = min{(u - ~)(y, x): (y, s) ~ En x [0, T]}, 

for some n - 1 and (x, t) ~ E~ × [0, T). 
(c) u is a viscosity solution to (3) if it is both a subsolution and 

supersolution. 

Note that H(x, t, u(x, t), Dx~(x, t)) is defined for any x ~  En and ~ 
C~(E × [0, T]),  on account of  (A1)(ii). At this point, we add that the above 
notion of viscosity solutions is more restrictive than the one used by Crandall 
and Lions in Refs. 1-2. Once again, we emphasize that this restriction is 
caused by the unboundedness of  the Hamiltonian. 

In addition (A1), we assume the following. 

Assumption (A2). f,  l, A, g are Lipschitz continuous in x and t, 
uniformly with respect to w and A(x, t, w ) > A 0 > 0 .  

Assumption (A3). For each w ~ M, A(w) is the infinitesimal generator 
of  a C0-semigroup. 

Assumption (A4). There is a ~ R such that A(w) - od is dissipative; 
i.e., for x~  E, 

(x*, A(w)x) <- a Ilx 1[ 2, 

for some 

x* ~ f ( x )  = {x* c E*: (x*, x> = [Ixll 2 = [Ix*ll }, 
where Ii" II and II" II, are the norms on E and E*,  respectively. Since E is 
reflexive, there is an equivalent norm on E such that F(x) is a singleton 
for each x e E. We assume that we are using that norm on E;  i.e., see the 
assumption below. 

Assumption (A5). F(x) is a singleton for each x c E. 

Theorem 2.1. The value function u(x, t) is the only viscosity solution of 
(3) and (4). 

Proof. Observe that, due to Lipschitz continuity of y(s; x, t, w( . ) )  in 
x uniformly with respect to other variables (Theorem 1.2, page 184, Ref. 6), 
u c BUC(E x [0, T]). Also, the proof  of  the finite-dimensional analogue of  
the existence part of this theorem is applicable to the problem under 
investigation, due to (A1). 
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To prove the uniqueness of solutions to (3) and (4), assume that v is 
another viscosity solution. For e > 0, define ~b" by 

c~'(x, y, t, s ) =  u(x,  t ) -  v(y, t ) -  e - ' [Hx-y l [2+ l t - s l2 ] ,  

for (x, y, t, x)~ E 2 x  [0, T] 2. Suppose that ~b" achieves its maximum on 
EZ. × [0, T] 2 at (x., y. ,  t., s.) ~ E 2 x [0, T] 2. Since E. c~ (F  × Bk) is compact 
for every ball Bk C X,  and since X is finite dimensional, we can always 
obtain such points by slightly perturbing the functions u and v, as in Theorem 
4.1 in Ref. 4. 

In view of (A5), the function d ( x )  = IIxtl 2 is Frech6t differentiabte on 
E. and D~ d ( x )  ~ F ( x ) ,  for each x E E. Now, the viscosity property of  u and 
v implies the following, if t., s. < T: 

- 2 • - l ( t n - s . ) + H ( x . ,  t., u (x . ,  t .),  2 e - l D x d ( x ~ - y . ) ) ~ O ,  

- 2 e - l (  t. - s . )  + H (y. ,  sn, v (y . ,  sn), 2e- l  Dxd ( x~ - y . )  ) .>- O. 

Proceed by using (5) and (A2). We have 

Ao(U(X., t,,) - v ( y . ,  s . )  

-< K(  e-lllx. -Y .  fl + 1)(J[m - y .  It + It. - s.l) 

+2e  -~ s u p ( a ( w ) ( x .  - y . ) ,  D x d ( x .  - y . ) ) .  (6) 
w 

where K is a suitable constant. Also, an account of (A4) and (A5), 

( A ( w ) ( x .  - y . ) ,  D x d ( x .  - y . ) )  ~ a]lx. - y .  ][2 

Hence, (6) yields 

ao(U(X., t . )  - v ( y . ,  s . ) )  

--< K ( e - '  ltx. - y .  It + 1)(lfx. - y .  !t +It .  - s. 1)- (7) 

Now, one finishes the proof as in the finite-dimensional case. But, for 
completeness, we give the proof. 

Let ff~(.) be a modulus of continuity for u and v. It is easy to verify 
the following: 

Hx. - Y .  !1 +It .  - s. ! ~ Kel /2rh(Ke' /2) .  (8) 

So, for each (x, t) ~ E. x [0, T], 

u(x,  t ) -  v(x,  t) <--- O ' ( x . ,  y . ,  t. ,  s . )  

<-- K(e -~ l lx .  -Y, ,  11 + l)(ttx. -Y.  II + jr. - s.l). 

Using (8) and then passing to the limit as s tends to zero, we conclude that 

u(x,  t) _< v(x, t), V(x, t3 e U e .  x [0, r] .  
t l  
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In view of (A1) (ii), 

u - v, on E x [0, T], if t,, s, < T. 

But, if 

max(t, ,  s,) = T, 

elementary considerations imply the same result. Hence, u - v .  Since the 
argument is symmetric, the proof of the theorem is now complete. [] 

Remark 2.1. Suppose that u • CI(E x [0, T]) and satisfies (3) at every 
x • Ow D(A(w)) .  Then, we claim that it is a viscosity solution to (3). Let 

• CI(E x [0, T]) and 

(u - ~)(x, t) = max{(u - qQ(y, s): (y, s) • E, x [0, t]}, 

at some (x, t) • En x [0, T). On account of the differentiability of u, 

(O/Ot)~(x, t) >- (O/Ot)u(x, t), 

(Dx~o (x, t), y) >- (D~u(x, t), y), Vy • E.(x) ,  

where 

En (x) = closure{y • E : x + ey • E, for all 0 - E -< co(y)}. 

Since y(s; x, t, w(. )) • E, ,  for all s, t, w(. ), we conclude that 

A(w)x  + f (x ,  t, w) • E,(x) .  

Hence, 

-(O/Ot)q~(x, t)+ H(x,  t, u(x, t), D~o(x, t)) 

<- -(O/Ot)u(x, t)+ H(x,  t, u(x, t), D~u(x, t))=0. 

3. Examples 

Example 3.1. Optimal Control of  Delay Equations. Consider the fol- 
lowing controlled functional differential equation 

(d /d s ) z ( s )=g( r l ( s ) , z ( s ) , s ,w ( s ) ) ,  s e ( t ,  T], (9) 

where z(s) • R", w(s) is the control process taking values in a metric space 
~¢, ~(s) • L2((-1, 0); R ' )  represents the delay term, and it is defined by 

r l ( s ) ( r )=z ( s+r ) ,  r • [ - 1 , 0 ) .  (10) 

For a given control process and an initial condition 

(77(t), z(t)) = (~7, z) • L2((-1, 0); R") x R", (11) 
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Eqs. (9) and (10) have a unique solution, provided that the function 
g(~7, z, s, w) with domain L2((-1, 0); R ' )  x R" x [0, T] x ~ is Lipschitz con- 
tinuous in 7, z and is continuous in s, uniformly with respect to w (Ref. 7). 

The finite-horizon optimal control of these equations was studied by 
several authors. The reader may refer to the survey of Banks and Manitius 
(Ref. 8) and to the references therein. 

In this example, E = L2((-1, 0); R ' )  x R";  and, for x = (~7, z) e E, A x  
is defined by 

D ( A )  = {x = (rl, z) ~ E: r l ~ H1((-1,  0): R ~) and ~7(0) = z}, 

Ax = (~7', 0), f o r x = ( n , z ) 6 D ( A ) ,  

where 

n'(,~) = ( d l d,~)n( ~-). 

The operator A is the infinitesimal generator of the shift semigroup T,x = 
(~7,, z,), given by 

jz,  max{- 1, - t}  -< ~- <- 0, r/t(~-) [ rt(~'+ t), 0> - t ->max{-1 , - t } ,  

Zt  -~- Z.  

The norm 

l l(n, z)ll 2= II~ l l b+ Iz l  2 
satisfies (A5) with F ( x ) = { x } ,  and (A4) holds due to the following 
inequality: 

,! (x,  A x )  = n(~.) . ( d / c l r ) n ( 7 )  dr  
1 

-<~Izl~-<~lixll ~. 
Finally, let 

f ( x ,  s, w) = (0, g(x ,  s, w)).  

Define the invariant sets E, as follows: 

E, ={x = ('q, z)~ D(A): II~'II~_< n}. 

For n ~ IIgll~, Assumption (A1)is satisfied. 

Example 3.2. Optimal Control o f  a Parabolic Equation. In this example, 
the state variable satisfies a parabolic equation controlled through the 
diffusion constant. Again, this is a special case of an extensively studied 
problem. We refer to Ahmed and Teo (Ref. 9) and the references therein. 
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Let 1-1 be a bounded domain in R n, E = L2(I-~; R), and ~ = [m, M].  
Define A(w) by 

O(A(w)) = H2(O), 

(A(w)x)(z)=w ~ (O/Oxi)(ao(.)(O/Oxj)x(.))(z), z r l ) ,  
i , j  = 1 

where Ho 2 is the Sobolev space of  functions which are L 2, along with their 
derivatives of  order less than equal to two, and whose trace along 0f~ is 
zero. I f  the matrix a(z) = (ag(z)) is uniformly elliptic and is continuous on 
fi, A(w) satisfies (A3)-(A4).  Take f - 0 .  

Now define E,  by 

E . = { z ~  H~:'[x['~<-n, I~ (Vx(z) • a(z)Vx(z)) dz < - n, 

IalV " (a(z)Vx(z)lZ dz<-n}. 

Due to the energy estimates, (A1) is satisfied. 
In this example,  y(s, z) = y ( s ;  x, t, w(- ) ) (z )  solves 

(d /d t )y (s , z )=w(s)V. (a(z )Vy(s , z ) ) ,  s~( t ,T)z~f~,  

y(t, z ) =  x(z) ,  z c f i ,  

y(s, z ) = 0 ,  (s, z) ~ [0, T]+Ofl. 
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