
SIAM J. CONTROL OPTIM. c© 2012 Society for Industrial and Applied Mathematics
Vol. 50, No. 4, pp. 2065–2089

SUPERHEDGING AND DYNAMIC RISK MEASURES UNDER
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MARCEL NUTZ† AND H. METE SONER‡

Abstract. We consider dynamic sublinear expectations (i.e., time-consistent coherent risk mea-
sures) whose scenario sets consist of singular measures corresponding to a general form of volatility
uncertainty. We derive a càdlàg nonlinear martingale which is also the value process of a superhedg-
ing problem. The superhedging strategy is obtained from a representation similar to the optional
decomposition. Furthermore, we prove an optional sampling theorem for the nonlinear martingale
and characterize it as the solution of a second order backward SDE. The uniqueness of dynamic
extensions of static sublinear expectations is also studied.
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1. Introduction. Coherent risk measures were introduced in [1] as a way to
quantify the risk associated with a financial position. Since then, coherent risk mea-
sures and sublinear expectations (which are the same up to the sign convention)
have been studied by numerous authors; see [15, 29, 30] for extensive references.
Most of these works consider the case where scenarios are probability measures ab-
solutely continuous with respect to a given reference probability. (Important early
exceptions are [14, 26].) The present paper studies dynamic sublinear expectations
and superhedging under volatility uncertainty, which is naturally related to singular
measures. The concept of volatility uncertainty was introduced in financial math-
ematics by [2, 11, 21] and has recently received considerable attention due to its
relation to G-expectations [27, 28] and second order backward stochastic differential
equations [6, 32], called 2BSDEs for brevity.

Any (static) sublinear expectation E◦
0 , defined on the set of bounded measurable

functions on a measurable space (Ω,F), has a convex-dual representation

(1.1) E◦
0 (X) = sup

P∈P
EP [X ]

for a certain set P of measures which are σ-additive as soon as E◦
0 satisfies certain

continuity properties (cf. [15, section 4]). The elements of P can be seen as possible
scenarios in the presence of uncertainty and hence (1.1) corresponds to the worst-
case expectation. In this paper, we take Ω to be the canonical space of continuous
paths and P to be a set of martingale laws for the canonical process, corresponding
to different scenarios of volatilities. For this case, P is typically not dominated by
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a finite measure and (1.1) was studied in [5, 10, 11] by capacity-theoretic methods.
We remark that from the pricing point of view, the restriction to the martingale case
entails no loss of generality in an arbitrage-free setting. An example with arbitrage
was studied in [13].

While any set of martingale laws gives rise to a static sublinear expectation
via (1.1), we are interested in dynamic sublinear expectations, i.e., conditional versions
of (1.1) satisfying a time-consistency property. If P is dominated by a probability P∗,
a natural extension of (1.1) is given by

E◦,P∗
t (X) = ess supP∗

P ′∈P(F◦
t ,P∗)

EP ′
[X |F◦

t ] P∗-a.s.,

where P(F◦
t , P∗) = {P ′ ∈ P : P ′ = P∗ on F◦

t } and F
◦ = {F◦

t } is the filtration
generated by the canonical process. Such dynamic expectations are well studied;
in particular, time consistency of E◦,P∗ can be characterized by a stability property
of P (see [7]). In the nondominated case, we can similarly consider the family of

random variables {E◦,P
t (X), P ∈ P}. Since a reference measure is lacking, it is not

straightforward to construct a single random variable E◦
t (X) such that

(1.2) E◦
t (X) = E◦,P

t (X) := ess supP

P ′∈P(F◦
t ,P )

EP ′
[X |F◦

t ] P -a.s. for all P ∈ P .

This problem of aggregation has been solved in several examples. In particular, the
G-expectations and random G-expectations [23] (recalled in section 2) correspond to
special cases of (1.2). The construction of G-expectations is based on a PDE, which
directly yields random variables defined for all ω ∈ Ω. The randomG-expectations are
defined pathwise using regular conditional probability distributions. A general study
of aggregation problems is presented in [31]; see also [4]. However, the study of aggre-
gation is not an object of the present paper. In view of the diverse approaches, we shall
proceed axiomatically and start with a given aggregated family {E◦

t (X), t ∈ [0, T ]}.
Having in mind the example of (random) G-expectations, this family is assumed to
be given in the raw filtration F

◦ and without any regularity in the time variable.
The main goal of the present paper is to provide basic technology for the study of

dynamic sublinear expectations under volatility uncertainty as stochastic processes.
Given the family {E◦

t (X), t ∈ [0, T ]}, we construct a corresponding càdlàg process
E(X), called the E-martingale associated with X , in a suitably enlarged filtration F

(Proposition 4.5). We use this process to define the sublinear expectation at stop-
ping times and prove an optional sampling theorem for E-martingales (Theorem 4.10).
Furthermore, we obtain a decomposition of E(X) into an integral of the canonical pro-
cess and an increasing process (Proposition 4.11), similarly as in the classical optional
decomposition [19]. In particular, the E-martingale yields the dynamic superhedging
price of the financial claim X and the integrand ZX yields the superhedging strategy.
We also provide a connection between E-martingales and 2BSDEs by characterizing
(E(X), ZX) as the minimal solution of such a backward equation (Theorem 4.16). Our
last result concerns the uniqueness of time-consistent extensions and gives conditions
under which (1.2) is indeed the only possible extension of the static expectation (1.1).
In particular, we introduce the notion of local strict monotonicity to deal with the
singularity of the measures (Proposition 5.3).

To obtain our results, we rely on methods from stochastic optimal control and
the general theory of stochastic processes. Indeed, from the point of view of dynamic
programming, E◦

t (X) is the value process of a control problem defined over a set
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of measures, and time consistency corresponds to Bellman’s principle. Taking the
control representation (1.2) as our starting point allows us to consider the measures
P ∈ P separately in many arguments and therefore to apply standard arguments of
the general theory.

The remainder of this paper is organized as follows. In section 2 we detail the
setting and notation. Section 3 relates time consistency to a pasting property. In
section 4 we construct the E-martingale and provide the optional sampling theo-
rem, the decomposition, and the characterization by a 2BSDE. Section 5 studies the
uniqueness of time-consistent extensions.

2. Preliminaries. We fix a constant T > 0 and let Ω = {ω ∈ C([0, T ]; IRd) :
ω0 = 0} be the canonical space of continuous paths equipped with the uniform topol-
ogy. We denote by B the canonical process Bt(ω) = ωt, by P0 the Wiener measure,
and by F

◦ = {F◦
t }0≤t≤T , F◦

t = σ(Bs, s ≤ t) the raw filtration generated by B. As in
[10, 23, 32, 33] we shall use the so-called strong formulation of volatility uncertainty
in this paper; i.e., we consider martingale laws induced by stochastic integrals of B
under P0. More precisely, we define PS to be the set of laws

(2.1) Pα := P0 ◦ (Xα)−1, where Xα
t :=

(P0)∫ t

0

α1/2
s dBs, t ∈ [0, T ]

and α ranges over all F◦-progressively measurable processes with values in S
>0
d sat-

isfying
∫ T

0 |αt| dt < ∞ P0-a.s. Here S
>0
d ⊂ R

d×d denotes the set of strictly positive
definite matrices and the stochastic integral in (2.1) is the Itô integral under P0, con-
structed in F

◦ (cf. [36, p. 97]). We remark that PS coincides with the set denoted by
PS in [31].

The basic object in this paper is a nonempty set P ⊆ PS which represents the
possible scenarios for the volatility. For t ∈ [0, T ], we define L1

P(F◦
t ) to be the space

of F◦
t -measurable random variables X satisfying

‖X‖L1
P
:= sup

P∈P
‖X‖L1(P ) < ∞,

where ‖X‖L1(P ) := E[|X |]. More precisely, we take equivalences classes with respect
to P-quasi-sure equality so that L1

P(F◦
t ) becomes a Banach space. (Two functions

are equal P-quasi-surely (P-q.s.) if they are equal up to a P-polar set. A set is called
P-polar if it is a P -nullset for all P ∈ P .) We also fix a nonempty subset H of
L1
P := L1

P(F◦
T ) whose elements play the role of financial claims. We emphasize that

in applications, H is typically smaller than L1
P . The following is a motivating example

for many of the considerations in this paper.
Example 2.1. (i) Given real numbers 0 ≤ a ≤ a < ∞, the associated G-

expectation (for dimension d = 1) corresponds to the choice

(2.2) P =
{
Pα ∈ PS : a ≤ α ≤ a P0 × dt-a.e.

}
,

cf. [10, section 3]. Here the symbol G refers to the function

G(γ) :=
1

2
sup

a≤a≤a
aγ.

If X = f(BT ) for a sufficiently regular function f , then E◦,G
t (X) is defined via the

solution of the nonlinear heat equation −∂tu−G(uxx) = 0 with boundary condition

u|t=T = f . In [27], the mapping E◦,G
t is extended to random variables of the form
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X = f(Bt1 , . . . , Btn) by a stepwise evaluation of the PDE and finally to the ‖ · ‖L1
P
-

completion H of the set of all such random variables. For X ∈ H, the G-expectation
then satisfies

E◦,G
t (X) = ess supP

P ′∈P(F◦
t ,P )

EP ′
[X |F◦

t ] P -a.s. for all P ∈ P ,

which is of the form (1.2). The space H coincides with the ‖ · ‖L1
P
-completion of

Cb(Ω), the set of bounded continuous functions on Ω, and is strictly smaller than L1
P

as soon as a 	= a.
(ii) The random G-expectation corresponds to the case where a, a are random

processes instead of constants and is directly constructed from a set P of measures
(cf. [23]). In this case the space H is the ‖ · ‖L1

P
-completion of UCb(Ω), the set of

bounded uniformly continuous functions on Ω. If a is finite-valued and uniformly
bounded, H coincides with the space from (i).

3. Time consistency and pasting. In this section, we consider time consis-
tency as a property of the set P ⊆ PS and obtain some auxiliary results for later
use. The set H ⊆ L1

P is fixed throughout. Moreover, we let T (F◦) be the set of all
F
◦-stopping times taking finitely many values; this choice is motivated by the appli-

cations in the subsequent section. However, the results of this section hold true also
if T (F◦) is replaced by an arbitrary set of F◦-stopping times containing σ ≡ 0, in
particular, the set of all stopping times and the set of all deterministic times. Given
A ⊆ F◦

T and P ∈ P , we use the standard notation

P(A, P ) = {P ′ ∈ P : P ′ = P on A}.

At the level of measures, time consistency can then be defined as follows.
Definition 3.1. The set P is F

◦-time-consistent on H if
(3.1)

ess supP

P ′∈P(F◦
σ ,P )

EP ′
[

ess supP
′

P ′′∈P(F◦
τ ,P

′)
EP ′′

[X |F◦
τ ]

∣∣∣∣F◦
σ

]
= ess supP

P ′∈P(F◦
σ,P )

EP ′
[X |F◦

σ ] P -a.s.

for all P ∈ P, X ∈ H, and σ ≤ τ in T (F◦).
This property embodies the principle of dynamic programming (e.g., [12]). We

shall relate it to the following notion of stability, also called m-stability, fork-convexity,
stability under concatenation, etc.

Definition 3.2. The set P is stable under F
◦-pasting if for all P ∈ P, τ ∈

T (F◦), Λ ∈ F◦
τ , and P1, P2 ∈ P(F◦

τ , P ), the measure P̄ defined by

(3.2) P̄ (A) := EP
[
P1(A|F◦

τ )1Λ + P2(A|F◦
τ )1Λc

]
, A ∈ F◦

T ,

is again an element of P.
As F

◦ is the only filtration considered in this section, we shall sometimes omit
the qualifier “F◦.”

Lemma 3.3. The set PS is stable under pasting.
Proof. Let P, P1, P2, τ,Λ, P̄ be as in Definition 3.2. Using the notation (2.1), let

α, αi be such that Pα = P and Pαi

= Pi for i = 1, 2. Setting

ᾱu(ω) :=

1[[0,τ(Xα)]](u)αu(ω) + 1]]τ(Xα),T ]](u)
[
α1
u(ω)1Λ(X

α(ω)) + α2
u(ω)1Λc(Xα(ω))

]
,

we have P̄ = P ᾱ ∈ PS by the arguments in [33, appendix].
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The previous proof also shows that the set appearing in (2.2) is stable under
pasting. The following result is classical.

Lemma 3.4. Let τ ∈ T (F◦), X ∈ L1
P , and P ∈ P. If P is stable under pasting,

then there exists a sequence Pn ∈ P(F◦
τ , P ) such that

ess supP

P ′∈P(F◦
τ ,P )

EP ′
[X |F◦

τ ] = lim
n→∞EPn [X |F◦

τ ] P -a.s.,

where the limit is increasing P -a.s.

Proof. It suffices to show that the family {EP ′
[X |F◦

τ ] : P
′ ∈ P(F◦

τ , P )} is P -a.s.
upward filtering (cf. [22, Proposition VI-1-1]). Given P1, P2 ∈ P(F◦

τ , P ), we set

Λ :=
{
EP1 [X |F◦

τ ] > EP2 [X |F◦
τ ]
}
∈ F◦

τ

and define P̄ (A) := EP
[
P1(A|F◦

τ )1Λ+P2(A|F◦
τ )1Λc

]
. Then P̄ = P on F◦

τ and P̄ ∈ P
by the stability. Moreover,

EP̄ [X |F◦
τ ] = EP1 [X |F◦

τ ] ∨EP2 [X |F◦
τ ] P -a.s.,

showing that the family is upward filtering.

To relate time consistency to stability under pasting, we introduce the following
closedness property.

Definition 3.5. We say that P is maximally chosen for H if P contains all
P ∈ PS satisfying EP [X ] ≤ supP ′∈P EP ′

[X ] for all X ∈ H.

If P is dominated by a reference probability P∗, then P can be identified with a
subset of L1(P∗) by the Radon–Nikodym theorem. If furthermore H = L∞(P∗), the
Hahn–Banach theorem implies that P is maximally chosen if and only if P is convex
and closed for weak topology of L1(P∗). Along these lines, the following result can
be seen as a generalization of [7, Theorem 12]; in fact, we merely replace functional-
analytic arguments with algebraic ones.

Proposition 3.6. With respect to the filtration F
◦, we have the following:

(i) If P is stable under pasting, then P is time-consistent on L1
P .

(ii) If P is time-consistent on H and maximally chosen for H, then P is stable
under pasting.

Proof. (i) This implication is standard; we provide the argument for later refer-
ence. The inequality “≥” in (3.1) follows by considering P ′′ := P ′ on the left-hand
side. To see the converse inequality, fix an arbitrary P ∈ P and choose a sequence
Pn ∈ P(F◦

τ , P ) ⊆ P(F◦
σ , P ) as in Lemma 3.4. Then monotone convergence yields

EP

[
ess supP

P ′∈P(F◦
τ ,P )

EP ′
[X |F◦

τ ]

∣∣∣∣F◦
σ

]
= lim

n→∞EPn [X |F◦
σ]

≤ ess supP

P ′∈P(F◦
σ ,P )

EP ′
[X |F◦

σ ] P -a.s.

(ii) Let P be time-consistent and let P, P1, P2, τ,Λ, P̄ be as in Definition 3.2. For
any X ∈ H, we have
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EP̄ [X ] = EP
[
EP1 [X |F◦

τ ]1Λ + EP2 [X |F◦
τ ]1Λc

]
≤ EP

[
ess supP

P ′′∈P(F◦
τ ,P )

EP ′′
[X |F◦

τ ]

]
≤ sup

P ′∈P
EP ′

[
ess supP

′

P ′′∈P(F◦
τ ,P

′)
EP ′′

[X |F◦
τ ]

]
= sup

P ′∈P
EP ′

[X ],

where the last equality uses (3.1) with σ ≡ 0. Since P is maximally chosen and
P̄ ∈ PS by Lemma 3.3, we conclude that P̄ ∈ P .

4. E-martingales. As discussed in the introduction, our starting point in this
section is a given family {E◦

t (X), t ∈ [0, T ]} of random variables which will serve as
a raw version of the E-martingale to be constructed. We recall that the sets P ⊆ PS

and H ⊆ L1
P are fixed.

Assumption 4.1. Throughout section 4, we assume that

(i) for all X ∈ H and t ∈ [0, T ], there exists an F◦
t -measurable random variable

E◦
t (X) such that

(4.1) E◦
t (X) = ess supP

P ′∈P(F◦
t ,P )

EP ′
[X |F◦

t ] P -a.s. for all P ∈ P ,

(ii) the set P is stable under F◦-pasting.
The first assumption was discussed in the introduction; cf. (1.2). With the moti-

vating Example 2.1 in mind, we ask for (4.1) to hold at deterministic times rather than
at stopping times. The second assumption is clearly motivated by Proposition 3.6(ii),
and Proposition 3.6(i) shows that P is time-consistent in the sense of Definition 3.1.
(We could assume the latter property directly, but stability under pasting is more
suitable for applications.) In particular, we have

(4.2) E◦
s (X) = ess supP

P ′∈P(F◦
s ,P )

EP ′
[E◦

t (X)|F◦
s ] P -a.s. for all P ∈ P ,

0 ≤ s ≤ t ≤ T , and X ∈ H. If we assume that E◦
t (X) is again an element of the

domain H, this amounts to {E◦
t } being time-consistent (at deterministic times) in the

sense that the semigroup property E◦
s ◦E◦

t = E◦
s is satisfied. However, E◦

t (X) need not
be in H in general, e.g., for certain random G-expectations. Inspired by the theory
of viscosity solutions, we introduce the following extended notion of time consistency,
which is clearly implied by (4.2).

Definition 4.2. A family (Et)0≤t≤T of mappings Et : H → L1
P(F◦

t ) is called
F
◦-time-consistent at deterministic times if for all 0 ≤ s ≤ t ≤ T and X ∈ H,

Es(X) ≤ (≥)Es(ϕ) for all ϕ ∈ L1
P(F◦

t ) ∩H such that Et(X) ≤ (≥)ϕ.

One can give a similar definition for stopping times taking countably many values.
(Note that Eτ (X) is not necessarily well defined for a general stopping time τ .)

Remark 4.3. If Assumption 4.1 is weakened by requiring P to be stable only
under F◦-pastings at deterministic times (i.e., Definition 3.1 holds with T (F◦) replaced
by the set of deterministic times), then all results in this section remain true with
the same proofs, except for Theorem 4.10, Lemma 4.15, and the last statement in
Theorem 4.16.
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4.1. Construction of the E-martingale. Our first task is to turn the collec-
tion {E◦

t (X), t ∈ [0, T ]} of random variables into a reasonable stochastic process. As
usual, this requires an extension of the filtration. We denote by

F
+ = {F+

t }0≤t≤T , F+
t := F◦

t+,

the minimal right continuous filtration containing F
◦; that is, F◦

t+ :=
⋂

s>t F◦
s for

0 ≤ t < T and F◦
T+ := F◦

T . We augment F
+ by the collection NP of (P ,F◦

T )-polar
sets to obtain the filtration

F = {Ft}0≤t≤T , Ft := F◦
t+ ∨ NP .

Then F is right continuous and a natural analogue of the “usual augmentation” that
is standard in the case where a reference probability is given. More precisely, if
P is dominated by some probability measure, one can find a minimal dominating
measure P∗ (such that every P-polar set is a P∗-nullset) and then F coincides with
the P∗-augmentation of F+. We remark that F is in general strictly smaller than the

P-universal augmentation
⋂

P∈P F◦P , which seems to be too large for our purposes.

Here F◦P denotes the P -augmentation of F◦.
Since F and F

+ differ only by P-polar sets, they can be identified for most pur-
poses; note in particular that FT = F+

T = F◦
T P-q.s. We also recall the following

result (e.g., [17, Theorem 1.5], [31, Lemma 8.2]), which shows that F and F
◦ differ

only by P -nullsets for each P ∈ P .

Lemma 4.4. Let P ∈ P. Then F◦P is right continuous and in particular contains
F. Moreover, (P,B) has the predictable representation property; i.e., for any right

continuous (F◦P , P )-local martingale M there exists an F◦P -predictable process Z such
that M = M0 +

(P )
∫
Z dB, P -a.s.

Proof. We sketch the argument for the convenience of the reader. We define a
predictable process ât = d〈B〉t/dt taking values in S

>0
d P×dt-a.e., note that (â)−1/2 is

square-integrable for B by its very definition, and consider Wt :=
(P )
∫ t

0
(âu)

−1/2 dBu.
Let F

W be the raw filtration generated by W . Since W is a P -Brownian motion

by Lévy’s characterization, the P -augmentation FW
P

is right continuous and W has
the representation property. Moreover, as P ∈ PS , [31, Lemma 8.1] yields that

FW
P
= F◦P . Thus F◦P is also right continuous and B has the representation property

since any integral of W is also an integral of B.
We deduce from Lemma 4.4 that for P ∈ P , any (local) (F◦, P )-martingale is

a (local) (F, P )-martingale. In particular, this applies to the canonical process B.
Note that Lemma 4.4 does not imply that F and F

◦ coincide up to P-polar sets. For
example, consider the set

(4.3) A :=
{
lim sup

t→0
t−1〈B〉t = lim inf

t→0
t−1〈B〉t = 1

}
∈ F◦

0+.

Then the lemma asserts that P (A) ∈ {0, 1} for all P ∈ P but not that this number is
the same for all P . Indeed, Pα(A) = 1 for α ≡ 1, but Pα(A) = 0 for α ≡ 2.

We can now state the existence and uniqueness of the stochastic process derived
from {E◦

t (X), t ∈ [0, T ]}. For brevity, we shall say that Y is an (F,P)-supermartingale
if Y is an (F, P )-supermartingale for all P ∈ P ; analogous notation will be used in
similar situations.

Proposition 4.5. Let X ∈ H. There exists an F-optional process (Yt)0≤t≤T

such that all paths of Y are càdlàg and the following hold:
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(i) Y is the minimal (F,P)-supermartingale with YT = X; i.e., if S is a càdlàg
(F,P)-supermartingale with ST = X, then S ≥ Y up to a P-polar set.

(ii) Yt = E◦
t+(X) := limr↓t E◦

r (X) P-q.s. for all 0 ≤ t < T , and YT = X.

(iii) Y has the representation

(4.4) Yt = ess supP

P ′∈P(Ft,P )

EP ′
[X |Ft] P -a.s. for all P ∈ P .

Any of the properties (i), (ii), (iii) characterizes Y uniquely up to P-polar sets. The
process Y is denoted by E(X) and called the (càdlàg) E-martingale associated with X.

Proof. We choose and fix representatives for the classes E◦
t (X) ∈ L1

P(F◦
t ) and

define the R ∪ {±∞}-valued process Y by

Yt(ω) := lim sup
r∈(t,T ]∩Q, r→t

E◦
r (X)(ω) for 0 ≤ t < T and YT (ω) := X(ω)

for all ω ∈ Ω. Since each E◦
r (X) is F◦

r -measurable, Y is adapted to F
+ and in

particular to F. Let N be the set of ω ∈ Ω for which there exists t ∈ [0, T ) such that
limr∈(t,T ]∩Q, r→t E◦

r (X)(ω) does not exist as a finite real number. For any P ∈ P , (4.2)
implies the (F◦, P )-supermartingale property

E◦
s (X) ≥ EP [E◦

t (X)|F◦
s ] P -a.s., 0 ≤ s ≤ t ≤ T.

Thus the standard modification argument for supermartingales (see [9, Theorem VI.2])
yields that P (N) = 0. As this holds for all P ∈ P , the set N is P-polar and thus
N ∈ F0. We redefine Y := 0 on N . Then all paths of Y are finite-valued and càdlàg.
Moreover, the resulting process is F-adapted and therefore F-optional by the càdlàg
property. Of course, redefining Y on N does not affect the P -almost sure properties
of Y . In particular, [9, Theorem VI.2] shows that Y is an (F, P )-supermartingale.

Let P ′ ∈ P(Ft, P ). Using the above observation with P ′ instead of P , we also
have that Y is an (F, P ′)-supermartingale. As X = YT , this yields that

EP ′
[X |Ft] = EP ′

[YT |Ft] ≤ Yt P ′-a.s.,

and also P -a.s. because P ′ = P on Ft. Since P
′ ∈ P(Ft, P ) was arbitrary, we conclude

that

(4.5) Yt ≥ ess supP

P ′∈P(Ft,P )

EP ′
[X |Ft] P -a.s.

To see the converse inequality, consider a strictly decreasing sequence tn ↓ t of ratio-
nals. Then E◦

tn(X) → Yt P -a.s. by the definition of Yt, but as

EP [E◦
tn(X)] ≤ E◦

0 (X) < ∞,

the backward supermartingale convergence theorem [9, Theorem V.30] shows that
this convergence holds also in L1(P ) and hence

(4.6) Yt = lim
n→∞EP [E◦

tn(X)|Ft] in L1(P ) and P -a.s.

Here the convergence in L1(P ) holds by the L1(P )-continuity of EP [ · |Ft] and then
the convergence P -a.s. follows since the sequence on the right-hand side is monotone
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by the supermartingale property. For fixed n, let Pn
k ∈ P(F◦

tn , P ) be a sequence as in
Lemma 3.4. Then monotone convergence yields

EP [E◦
tn(X)|Ft] = EP

[
ess supP

P ′∈P(F◦
tn

,P )

EP ′
[X |F◦

tn ]

∣∣∣∣Ft

]
= lim

k→∞
EPn

k [X |Ft]

≤ ess supP

P ′∈P(Ft,P )

EP ′
[X |Ft] P -a.s.,

since Pn
k ∈ P(Ft, P ) for all k and n; indeed, we have Pn

k ∈ P(F◦
tn , P ) and P(F◦

tn , P ) ⊆
P(F◦

t+, P ) since tn > t; moreover, P(F◦
t+, P ) = P(Ft, P ) since F◦

t+ and Ft coincide
up to P-polar sets. In view of (4.6), the inequality converse to (4.5) follows and (iii)
is proved.

To see the minimality property in (i), let S be an (F,P)-supermartingale with
ST = X . Exactly as in (4.5), we deduce that

St ≥ ess supP

P ′∈P(Ft,P )

EP ′
[X |Ft] P -a.s. for all P ∈ P .

By (iii) the right-hand side is P -a.s. equal to Yt. Hence St ≥ Yt P-q.s. for all t and
S ≥ Y P-q.s. when S is càdlàg

Finally, if Y and Y ′ are processes satisfying (i) or (ii) or (iii), then they are P -
modifications of each other for all P ∈ P and thus coincide up to a P-polar set as
soon as they are càdlàg.

One can ask whether E(X) is a P-modification of {E◦
t (X), t ∈ [0, T ]}, i.e., whether

Et(X) = E◦
t (X) P-q.s. for all 0 ≤ t ≤ T.

It is easy to see that E(X) is a P-modification as soon as there exists some càdlàg
P-modification of the family {E◦

t (X), t ∈ [0, T ]}, and this is the case if and only if
t �→ EP [E◦

t (X)] is right continuous for all P ∈ P . We also remark that Lemma 4.4
and the argument given for (4.5) yield

(4.7) Et(X) ≤ E◦
t (X) P-q.s. for all 0 ≤ t ≤ T,

and so the question is only whether the converse inequality holds true as well. The
answer is positive in several important cases, e.g., for the G-expectation when X is
sufficiently regular [35, Theorem 5.3] and the sublinear expectation generated by a
controlled stochastic differential equation [24, Theorem 5.1]. The proof of the lat-
ter result yields a general technique to approach this problem in a given example.
However, the following (admittedly degenerate) example shows that the answer is
negative in a very general case; this reflects the fact that the set P(Ft, P ) in the
representation (4.4) is smaller than the set P(F◦

t , P ) in (4.1).

Example 4.6. We shall consider a G-expectation defined on a set of irregular
random variables. Let a = 1, a = 2 and let P be as in (2.2). We take H = L1

P(F◦
0+)

and define

E◦
t (X) :=

{
supP∈P EP [X ], t = 0,

X, 0 < t ≤ T
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for X ∈ H. Then {E◦
t } trivially satisfies (4.1) since X is F◦

t -measurable for all
t > 0. As noted after Lemma 3.3, the second part of Assumption 4.1 is also satisfied.
Moreover, the càdlàg E-martingale is given by

Et(X) = X, t ∈ [0, T ].

Consider X := 1A, where A is defined as in (4.3). Then E◦
0 (X) = 1 and E0(X) = 1A

are not equal P 2-a.s. (i.e., the measure Pα for α ≡ 2). In fact, there is no càdlàg
P-modification because {E◦

t (X)} coincides P 2-a.s. with the deterministic function
t �→ 1{0}(t).

We remark that the phenomenon appearing in the previous example is due to the
presence of singular measures rather than the fact that P is not dominated. In fact,
one can give a similar example involving only two measures.

Finally, let us mention that the situation is quite different if we assume that the
given sublinear expectation is already placed in the larger filtration F (i.e., Assump-
tion 4.1 holds with F

◦ replaced by F), which would be in line with the paradigm of the
“usual assumptions” in standard stochastic analysis. In this case, the arguments in
the proof of Proposition 4.5 show that E(X) is always a P-modification. This result
is neat, but not very useful, since the examples are typically constructed in F

◦.

4.2. Stopping times. The direct construction of G-expectations at stopping
times is an unsolved problem. Indeed, stopping times are typically fairly irregular
functions and it is unclear how to deal with this in the existing constructions (see
also [20]). On the other hand, we can easily evaluate the càdlàg process E(X) at a
stopping time τ and therefore define the corresponding sublinear expectation at τ . In
particular, this leads to a definition of G-expectations at general stopping times. We
show in this section that the resulting random variable Eτ (X) indeed has the expected
properties and that the time consistency extends to arbitrary F-stopping times; in
other words, we prove an optional sampling theorem for E-martingales. Besides the
obvious theoretical interest, the study of E(X) at stopping times will allow us to verify
integrability conditions of the type “class (D)”; cf. Lemma 4.15 below. We start by
explaining the relations between the stopping times of the different filtrations.

Lemma 4.7.

(i) Let P ∈ P and let τ be an F-stopping time taking countably many values.
Then there exists an F

◦-stopping time τ◦ (depending on P ) such that τ = τ◦

P -a.s. Moreover, for any such τ◦, the σ-fields Fτ and F◦
τ◦ differ only by

P -nullsets.
(ii) Let τ be an F-stopping time. Then there exists an F

+-stopping time τ+ such
that τ = τ+ P-q.s. Moreover, for any such τ+, the σ-fields Fτ and F+

τ+ differ
only by P-polar sets.

Proof. (i) Note that τ is of the form τ =
∑

i ti1Λi for Λi = {τ = ti} ∈ Fti

forming a partition of Ω. Since F ⊆ F◦P by Lemma 4.4, we can find Λ◦
i ∈ F◦

ti such
that Λi = Λ◦

i P -a.s. and the first assertion follows by taking

τ◦ := T1(∪iΛ◦
i )

c +
∑
i

ti1Λ◦
i
.

Let A ∈ Fτ . By the first part, there exists an F
◦-stopping time (τA)

◦ such that
(τA)

◦ = τA := τ1A + T1Ac P -a.s. Moreover, we choose A′ ∈ F◦
T such that A = A′

P -a.s. Then

A◦ :=
(
A′ ∩ {τ◦ = T }

)
∪ {(τA)◦ = τ◦ < T }



SUPERHEDGING UNDER VOLATILITY UNCERTAINTY 2075

satisfies A◦ ∈ F◦
τ◦ and A = A◦ P -a.s. A similar but simpler argument shows that for

given Λ ∈ F◦
τ◦ we can find Λ′ ∈ Fτ such that Λ = Λ′ P -a.s.

(ii) If τ is an F- (resp., F+-) stopping time, we can find τn taking countably many
values such that τn decreases to τ and since F (F+) is right continuous, Fτn (F+

τn)
decreases to Fτ (F+

τ ). As a result, we may assume without loss of generality that τ
takes countably many values.

Let τ =
∑

i ti1Λi , where Λi ∈ Fti . The definition of F shows that there exist
Λ+
i ∈ F+

ti such that Λi = Λ+
i P-q.s. and the first part follows. The proof of the

second part is as in (i); we now have quasi-sure instead of almost-sure relations.
If σ is a stopping time taking finitely many values (ti)1≤i≤N , we can define

E◦
σ(X) :=

∑N
i=1 E◦

ti(X)1{σ=ti}. We have the following generalization of (4.1).
Lemma 4.8. Let σ be an F

◦-stopping time taking finitely many values. Then

E◦
σ(X) = ess supP

P ′∈P(F◦
σ ,P )

EP ′
[X |F◦

σ] P -a.s. for all P ∈ P .

Proof. Let P ∈ P and Y ◦
t := E◦

t (X). Moreover, let (ti)1≤i≤N be the values of σ
and Λi := {σ = ti} ∈ F◦

ti .
(i) We first prove the inequality “≥.” Given P ′ ∈ P , it follows from (4.2) that

{Y ◦
ti}1≤i≤N is a P ′-supermartingale in (F◦

ti)1≤i≤N and so the (discrete-time) optional

sampling theorem [9, Theorem V.11] implies Y ◦
σ ≥ EP ′

[X |F◦
σ ] P

′-a.s. In particular,
this also holds P -a.s. for all P ′ ∈ P(F◦

σ , P ), hence the claim follows.

(ii) We now show the inequality “≤.” Note that σ =
∑N

i=1 ti1Λi and that
(Λi)1≤i≤N form an F◦

σ -measurable partition of Ω. It suffices to show that

Y ◦
ti1Λi ≤ ess supP

P ′∈P(F◦
σ ,P )

EP ′
[X |F◦

σ]1Λi P -a.s. for 1 ≤ i ≤ N.

In what follows, we fix i and show that for each P ′ ∈ P(F◦
ti , P ) there exists P̄ ∈

P(F◦
σ , P ) such that

(4.8) P̄ (A ∩ Λi) = P ′(A ∩ Λi) for all A ∈ F◦
T .

In view of (4.1) and EP ′
[X |F◦

σ]1Λi = EP ′
[X |F◦

ti]1Λi P ′-a.s., it will then follow that

Y ◦
ti1Λi = ess supP

P ′∈P(F◦
ti
,P )

EP ′
[X1Λi |F◦

ti ] ≤ ess supP

P̄∈P(F◦
σ ,P )

EP̄ [X1Λi |F◦
σ ] P -a.s.

as claimed. Indeed, given P ′ ∈ P(F◦
ti , P ), we define

(4.9) P̄ (A) := P ′(A ∩ Λi) + P (A \ Λi), A ∈ F◦
T

then (4.8) is obviously satisfied. If Λ ∈ F◦
σ , then Λ ∩ Λi = Λ ∩ {σ = ti} ∈ F◦

ti and
P ′ ∈ P(F◦

ti , P ) yields P ′(Λ ∩ Λi) = P (Λ ∩ Λi). Hence P̄ = P on F◦
σ . Moreover, we

observe that (4.9) can be stated as

P̄ (A) = EP
[
P ′(A|F◦

ti)1Λi + P (A|F◦
ti)1Λc

i

]
, A ∈ F◦

T ,

which is a special case of the pasting (3.2) applied with P2 := P . Hence P̄ ∈ P by
Assumption 4.1 and we have P̄ ∈ P(F◦

σ , P ) as desired.
For the next result, we recall that stability under pasting refers to stopping times

with finitely many values rather than general ones (Definition 3.2).
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Lemma 4.9. The set P is stable under F-pasting.
Proof. Let τ ∈ T (F); then τ is of the form

τ =
∑
i

ti1Λi , Λi := {τ = ti} ∈ Fti ,

where ti ∈ [0, T ] are distinct and the sets Λi form a partition of Ω. Moreover, let Λ ∈
Fτ and P1, P2 ∈ P(Fτ , P ); then we have to show that the measure EP

[
P1( · |Fτ )1Λ+

P2( · |Fτ )1Λc

]
is an element of P .

(i) We start by proving that for any A ∈ Fτ there exists A′ ∈ F◦
T ∩ Fτ such that

A = A′ holds P(Fτ , P )-q.s. Consider the disjoint union

A =
⋃
i

(A ∩ Λi).

Here A∩Λi ∈ Fti since A ∈ Fτ . As F ⊆ F◦P by Lemma 4.4, there exist a set Ai ∈ F◦
ti

and a P -nullset Ni, disjoint from Ai, such that

(4.10) A ∩ Λi = Ai ∪Ni.

(It is not necessary to subtract another nullset on the right-hand side.) We define
A′ := ∪iAi; then A′ ∈ F◦

T and clearly A = A′ P -a.s. Let us check that the latter
also holds P(Fτ , P )-q.s. For this, it suffices to show that A′ ∈ Fτ . Indeed, by the
construction of (4.10),

Ai ∩ {τ = tj} =

{
Ai ∈ F◦

ti ⊆ Fti , i = j,

∅ ∈ Ftj , j 	= i;

i.e., each set Ai is in Fτ . Hence, A
′ ∈ Fτ , which completes the proof of (i).

For later use, we define the F
◦-stopping time

(τA)
◦ := T1(A′)c +

∑
i

ti1Ai

and note that (τA)
◦ = τA holds P(Fτ , P )-q.s.

(ii) Using the previous construction for A = Ω, we see in particular that there
exist Λ◦

i ∈ F◦
ti such that Λ◦

i = Λi holds P(Fτ , P )-q.s. We also define the F
◦-stopping

time

τ◦ := T1(∪iΛ◦
i )

c +
∑
i

ti1Λ◦
i

which P(Fτ , P )-q.s. satisfies τ◦ = τ .
(iii) We can now show that F◦

τ◦ and Fτ may be identified (when P, P1, P2 are
fixed). Indeed, if A ∈ Fτ , we let A′ be as in (i) and set

A◦ :=
(
A′ ∩ {τ◦ = T }

)
∪ {(τA)◦ = τ◦ < T }.

Then A◦ ∈ F◦
τ◦ and A = A◦ holds P(Fτ , P )-q.s. Conversely, given A◦ ∈ F◦

τ◦, we find
A ∈ Fτ such that A = A◦ holds P(Fτ , P )-q.s. We conclude that

EP
[
P1( · |Fτ )1Λ + P2( · |Fτ )1Λc

]
= EP

[
P1( · |F◦

τ◦)1Λ◦ + P2( · |F◦
τ◦)1(Λ◦)c

]
.

The right-hand side is an element of P by the stability under F◦-pasting.
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We can now prove the optional sampling theorem for E-martingales; in particular,
this establishes the F-time-consistency of {Et} along general F-stopping times.

Theorem 4.10. Let 0 ≤ σ ≤ τ ≤ T be stopping times, X ∈ H, and E(X) be the
càdlàg E-martingale associated with X. Then

(4.11) Eσ(X) = ess supP

P ′∈P(Fσ,P )

EP ′
[Eτ (X)|Fσ] P -a.s. for all P ∈ P

and in particular

(4.12) Eσ(X) = ess supP

P ′∈P(Fσ,P )

EP ′
[X |Fσ] P -a.s. for all P ∈ P .

Moreover, there exists for each P ∈ P a sequence Pn ∈ P(Fσ, P ) such that

(4.13) Eσ(X) = lim
n→∞EPn [X |Fσ] P -a.s.

with an increasing limit.
Proof. Fix P ∈ P and let Y := E(X).
(i) We first show the inequality “≥” in (4.12). By Proposition 4.5(i), Y is an

(F, P ′)-supermartingale for all P ′ ∈ P(Fσ, P ). Hence the (usual) optional sampling
theorem implies the claim.

(ii) In the next two steps, we show the inequality “≤” in (4.12). In view of
Lemma 4.7(ii) we may assume that σ is an F

+-stopping time, and then (σ+1/n)∧T
is an F

◦-stopping time for each n ≥ 1. For the time being, we also assume that σ
takes finitely many values. Let

Dn := {k2−n : k = 0, 1, . . .} ∪ {T }

and define

σn(ω) := inf{t ∈ Dn : t ≥ σ(ω) + 1/n} ∧ T.

Each σn is an F
◦-stopping time taking finitely many values and σn(ω) decreases

to σ(ω) for all ω ∈ Ω. Since the range of {σ, (σn)n} is countable, it follows from
Proposition 4.5(ii) that E◦

σn(X) → Yσ P -a.s. Since ‖X‖L1
P

< ∞, the backward

supermartingale convergence theorem [9, Theorem V.30] implies that this convergence
holds also in L1(P ) and that

(4.14) Yσ = lim
n→∞EP [E◦

σn(X)|Fσ] P -a.s.,

where, by monotonicity, the P -a.s. convergence holds without passing to a subse-
quence. By Lemma 4.8 and Lemma 3.4, there exists for each n a sequence (Pn

k )k≥1

in P(F◦
σn , P ) such that

E◦
σn(X) = ess supP

P ′∈P(F◦
σn ,P )

EP ′
[X |F◦

σn ] = lim
k→∞

EPn
k [X |F◦

σn ] P -a.s.,

where the limit is increasing. Moreover, using that

F+
σn+1 =

{
A ∈ F◦

T : A ∩ {σn+1 < t} ∈ F◦
t for 0 ≤ t ≤ T

}
,

the fact that σn > σn+1 on {σn < T } is seen to imply that F+
σn+1 ⊆ F◦

σn . Together
with σ ≤ σn+1 and Lemma 4.7(ii) we conclude that

(4.15) Fσ ⊆ Fσn+1
P-q.s.
= F+

σn+1 ⊆ F◦
σn and hence P(Fσ, P ) ⊇ P(F◦

σn , P )
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for all n. Now monotone convergence yields

EP [E◦
σn(X)|Fσ] = lim

k→∞
EPn

k [X |Fσ] ≤ ess supP

P ′∈P(Fσ,P )

EP ′
[X |Fσ] P -a.s.

In view of (4.14), this ends the proof of (4.12) for σ taking finitely many values.
(ii’) Now let σ be general. We first approximate σ by the decreasing sequence

σn := inf{t ∈ Dn : t ≥ σ} ∧ T of stopping times with finitely many values. Then
Eσn(X) ≡ Yσn → Yσ P -a.s. since Y is càdlàg. The same arguments as for (4.14) show
that

(4.16) Yσ = lim
n→∞EP [Eσn(X)|Fσ] P -a.s.

By the two previous steps we have the representation (4.12) for σn. As in Lemma 3.4,
it follows from the stability under F-pasting (Lemma 4.9) that there exists for each n
a sequence (Pn

k )k≥1 in P(Fσn , P ) ⊆ P(Fσ, P ) such that

Eσn(X) = ess supP

P ′∈P(Fσn ,P )

EP ′
[X |Fσn ] = lim

k→∞
EPn

k [X |Fσn ] P -a.s.,

where the limit is increasing and hence

EP [Eσn(X)|Fσ] = lim
k→∞

EPn
k [X |Fσ] ≤ ess supP

P ′∈P(Fσ,P )

EP ′
[X |Fσ] P -a.s.

Together with (4.16), this completes the proof of (4.12).
(iii) We now prove (4.13). Since σ is general, the claim does not follow from the

stability under pasting. Instead, we use the construction of (ii’). Indeed, we have
obtained Pn

k ∈ P(Fσn , P ) such that

Yσ = lim
n→∞ lim

k→∞
EPn

k [X |Fσ] P -a.s.

Fix n. Since σn is an F-stopping time taking finitely many values and since Fσ ⊆ Fσn ,
it follows from the stability under F-pasting (applied to σn), exactly as in the proof
of Lemma 3.4, that the set {EP ′

[X |Fσ] : P
′ ∈ P(Fσn , P )} is P -a.s. upward filtering.

In view of P(Fσn , P ) ⊆ P(Fσn+1 , P ), it follows that for each N ≥ 1 there exists
P (N) ∈ P(FσN , P ) such that

EP (N)

[X |Fσ] = max
1≤n≤N

max
1≤k≤n

EPn
k [X |Fσ] P -a.s.

Since P(FσN , P ) ⊆ P(Fσ, P ), this yields the claim.
(iv) To prove (4.11), we first express Eσ(X) and Eτ (X) as essential suprema by

using (4.12) both for σ and for τ . The inequality “≤” is then immediate. The converse
inequality follows by a monotone convergence argument exactly as in the proof of
Proposition 3.6(i), except that the increasing sequence is now obtained from (4.13)
instead of Lemma 3.4.

4.3. Decomposition and 2BSDE for E-martingales. The next result con-
tains the semimartingale decomposition of E(X) under each P ∈ P and can be seen as
an analogue of the optional decomposition [19] used in mathematical finance. In the
context of G-expectations, such a result has also been referred to as “G-martingale
representation theorem”; see [16, 34, 35, 37]. Those results are ultimately based on
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the PDE description of the G-expectation and are more precise than ours; in partic-
ular, they provide a single increasing process K rather than a family (KP )P∈P (but
see Remark 4.17). On the other hand, we obtain an L1-theory whereas those results
require more integrability for X .

Proposition 4.11. Let X ∈ H. There exist

(i) an F-predictable process ZX with
∫ T

0
|ZX

s |2 d〈B〉s < ∞ P-q.s.,

(ii) a family (KP )P∈P of F
P
-predictable processes such that all paths of KP are

càdlàg nondecreasing and EP [|KP
T |] < ∞

such that

(4.17) Et(X) = E0(X) +

(P )∫ t

0

ZX
s dBs −KP

t for all 0 ≤ t ≤ T, P -a.s.

for all P ∈ P. The process ZX is unique up to {ds× P, P ∈ P}-polar sets and KP

is unique up to P -evanescence.
Proof. We shall use arguments similar to the proof of [33, Theorem 4.5].

Let P ∈ P . It follows from Proposition 4.5(i) that Y := E(X) is an (F
P
, P )-

supermartingale. We apply the Doob–Meyer decomposition in the filtered space

(Ω,F
P
, P ) which satisfies the usual conditions of right continuity and completeness.

Thus we obtain an (F
P
, P )-local martingale MP and an F

P
-predictable increasing

integrable process KP , càdlàg and satisfying MP
0 = KP

0 = 0, such that

Y = Y0 +MP −KP .

By Lemma 4.4, (P,B) has the predictable representation property in F
P
. Hence there

exists an F
P
-predictable process ZP such that

Y = Y0 +
(P )∫

ZP dB −KP .

The next step is to replace ZP by a process ZX independent of P . Recalling that
B is a continuous local martingale under each P , we have

(4.18)

∫
ZP d〈B〉P = 〈Y,B〉P = BY −

(P )∫
B dY −

(P )∫
Y− dB P -a.s.

(Here and below, the statements should be read componentwise.) The last two in-
tegrals are Itô integrals under P , but they can also be defined pathwise since the
integrands are left limits of càdlàg processes which are bounded path by path. This
is a classical construction from [3, Theorem 7.14]; see also [18] for the same result in
modern notation. To make explicit that the resulting process is F-adapted, we recall
the procedure for the example

∫
Y− dB. One first defines for each n ≥ 1 the sequence

of F-stopping times τn0 := 0 and τni+1 := inf{t ≥ τni : |Yt − Yτn
i
| ≥ 2−n}. Then one

defines In by

Int := Yτn
k
(Bt −Bτn

k
) +

k−1∑
i=0

Yτn
i
(Bτn

i+1
−Bτn

i
) for τnk < t ≤ τnk+1, k ≥ 0;

clearly In is again F-adapted and all its paths are càdlàg. Finally, we define

It := lim sup
n→∞

Int , 0 ≤ t ≤ T.
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Then I is again F-adapted, and it is a consequence of the Burkholder–Davis–Gundy
inequalities that

sup
0≤t≤T

∣∣∣∣Int −
(P )∫ t

0

Y− dB

∣∣∣∣ → 0 P -a.s.

for each P . Thus, outside a P-polar set, the limsup in the definition of I exists as
a limit uniformly in t and I has càdlàg paths. Since P-polar sets are contained in
F0, we may redefine I := 0 on the exceptional set. Now I is càdlàg F-adapted and
coincides with the Itô integral (P )

∫
Y− dB up to P -evanescence for all P ∈ P .

We proceed similarly with the integral (P )
∫
B dY and obtain a definition for the

right-hand side of (4.18) which is F-adapted, continuous, and independent of P . Thus
we have defined 〈Y,B〉 simultaneously for all P ∈ P , and we do the same for 〈B〉. Let
â = d〈B〉/dt be the (left) derivative in time of 〈B〉; then â is F◦-predictable and S

>0
d -

valued P ×dt-a.e. for all P ∈ P by the definition of PS . Finally, Z
X := â−1d〈Y,B〉/dt

is an F-predictable process such that

Y = Y0 +
(P )∫

ZX dB −KP P -a.s. for all P ∈ P .

We note that the integral is taken under P ; see also Remark 4.17 for a way to define
it for all P ∈ P simultaneously.

The previous proof shows that a decomposition of the type (4.17) exists for all
càdlàg (F,P)-supermartingales and not just for E-martingales. As a special case of
Proposition 4.11, we obtain a representation for symmetric E-martingales. The fol-
lowing can be seen as a generalization of the corresponding results for G-expectations
given in [34, 35, 37].

Corollary 4.12. Let X ∈ H be such that −X ∈ H. The following are
equivalent:

(i) E(X) is a symmetric E-martingale; i.e., E(−X) = −E(X) P-q.s.

(ii) There exists an F-predictable process ZX with
∫ T

0
|ZX

s |2 d〈B〉s < ∞ P-q.s.
such that

Et(X) = E0(X) +

∫ t

0

ZX
s dBs for all 0 ≤ t ≤ T, P-q.s.,

where the integral can be defined universally for all P and
∫
ZX dB is an

(F, P )-martingale for all P ∈ P.

In particular, any symmetric E-martingale has continuous trajectories P-q.s.
Proof. The implication (ii)⇒(i) is clear from Proposition 4.5(iii). Conversely,

given (i), Proposition 4.5(i) yields that both E(X) and−E(X) are P-supermartingales,
hence E(X) is a (true) P-martingale. It follows that the increasing processes
KP have to satisfy KP ≡ 0 and (4.17) becomes E(X) = E0(X) + (P )

∫
ZX dB.

In particular, the stochastic integral can be defined universally by setting∫
ZX dB := E(X)− E0(X).
Remark 4.13. (a) Without the martingale condition in Corollary 4.12(ii), the

implication (ii)⇒(i) would fail even for P = {P0}, in which case Corollary 4.12 is
simply the Brownian martingale representation theorem.

(b) Even if it is symmetric, E(X) need not be a P-modification of the family
{E◦

t (X), t ∈ [0, T ]}; in fact, the E-martingale in Example 4.6 is symmetric. However,
the situation changes if the symmetry assumption is imposed directly on {E◦

t (X)}.
We call {E◦

t (X)} symmetric if E◦
t (−X) = −E◦

t (X) P-q.s. for all t ∈ [0, T ].
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• If {E◦
t (X)} is symmetric, then E(X) is a symmetric E-martingale and a P-

modification of {E◦
t (X)}.

Indeed, the assumption implies that {E◦
t (X)} is an (F◦, P )-martingale for each

P ∈ P and so the process E(X) of right limits (cf. Proposition 4.5(ii)) is the usual
càdlàg P -modification of {E◦

t (X)} for all P .
Next, we represent the pair (E(X), ZX) from Proposition 4.11 as the solution of

a 2BSDE. The following definition is essentially from [32].
Definition 4.14. Let X ∈ L1

P and consider a pair (Y, Z) of processes with
values in R × R

d such that Y is càdlàg F-adapted while Z is F-predictable and∫ T

0 |Zs|2 d〈B〉s < ∞ P-q.s. Then (Y, Z) is called a solution of the 2BSDE (4.19) if

there exists a family (KP )P∈P of F
P
-adapted increasing processes with EP [|KP

T |] < ∞
such that

(4.19) Yt = X −
(P )∫ T

t

Zs dBs +KP
T −KP

t , 0 ≤ t ≤ T, P -a.s. for all P ∈ P

and such that the following minimality condition holds for all 0 ≤ t ≤ T :

(4.20) ess infP
P ′∈P(Ft,P )

EP ′[
KP ′

T −KP ′
t

∣∣Ft

]
= 0 P -a.s. for all P ∈ P .

We note that (4.20) is essentially the E-martingale condition (4.4): if the processes
KP can be aggregated into a single process K and KT ∈ H, then −K = E(−KT ).
Regarding the aggregation of (KP ), see also Remark 4.17.

A second notion is needed to state the main result. A càdlàg process Y is said
to be of class (D,P) if the family {Yσ}σ is uniformly integrable under P for all
P ∈ P , where σ runs through all F-stopping times. As an example, we have seen in
Corollary 4.12 that all symmetric E-martingales are of class (D,P). (Of course, it is
important here that we work with a finite time horizon T .) For p ∈ [1,∞), we define
‖X‖Lp

P
=: supP∈P E[|X |p]1/p as well as Hp := {X ∈ H : |X |p ∈ H}.

Lemma 4.15. If X ∈ Hp for some p ∈ (1,∞), then E(X) is of class (D,P).
Proof. Let P ∈ P . If σ is an F-stopping time, Jensen’s inequality and (4.12) yield

that

|Eσ(X)|p ≤ ess supP

P ′∈P(Fσ,P )

EP ′
[|X |p|Fσ] = Eσ(|X |p) P -a.s.

In particular, ‖Eσ(X)‖pLp(P ) ≤ EP [Eσ(|X |p)] and thus Lemma 4.4 yields

‖Eσ(X)‖pLp(P ) ≤ EP [Eσ(|X |p)|F0] ≤ ess supP

P ′∈P(F0,P )

EP ′
[Eσ(|X |p)|F0] P -a.s.

The right-hand side P -a.s. equals E0(|X |p) by (4.11), so we conclude with (4.7) that

‖Eσ(X)‖pLp(P ) ≤ E0(|X |p) ≤ sup
P ′∈P

EP ′
[|X |p] = ‖X‖p

Lp
P
< ∞ P -a.s.

Therefore, the family {Eσ(X)}σ is bounded in Lp(P ) and in particular uniformly
integrable under P . This holds for all P ∈ P .

We can now state the main result of this section.
Theorem 4.16. Let X ∈ H.

(i) The pair (E(X), ZX) is the minimal solution of the 2BSDE (4.19); i.e., if
(Y, Z) is another solution, then E(X) ≤ Y P-q.s.
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(ii) If (Y, Z) is a solution of (4.19) such that Y is of class (D,P), then (Y, Z) =
(E(X), ZX).

In particular, if X ∈ Hp for some p > 1, then (E(X), ZX) is the unique solution
of (4.19) in the class (D,P).

Proof. (i) Let P ∈ P . To show that (E(X), ZX) is a solution, we only have to
show that KP from the decomposition (4.17) satisfies the minimality condition (4.20).
We denote this decomposition by E(X) = E0(X)+MP −KP . It follows from Propo-

sition 4.5(i) that E(X) is an (F
P
, P )-supermartingale. As KP ≥ 0, we deduce that

E0(X) +MP ≥ E(X) ≥ EP [X |FP
] P -a.s.,

where EP [X |FP
] denotes the càdlàg (F

P
, P )-martingale with terminal valueX . Hence

MP is a local P -martingale bounded from below by a P -martingale and thus MP is
an (F, P )-supermartingale by a standard argument using Fatou’s lemma. This holds
for all P ∈ P . Therefore, (4.4) yields

0 = Et(X)− ess supP

P ′∈P(Ft,P )

EP ′
[X |Ft]

= ess infP
P ′∈P(Ft,P )

EP ′[
Et(X)− ET (X)

∣∣Ft

]
= ess infP

P ′∈P(Ft,P )
EP ′[

MP ′
t −MP ′

T +KP ′
T −KP ′

t

∣∣Ft

]
≥ ess infP

P ′∈P(Ft,P )
EP ′[

KP ′
T −KP ′

t

∣∣Ft

]
P -a.s. for all P ∈ P .

Since KP ′
is nondecreasing, the last expression is also nonnegative and (4.20) follows.

Thus (E(X), ZX) is a solution.
To prove the minimality, let (Y, Z) be another solution of (4.19). It follows

from (4.19) that Y is a local (F, P )-supermartingale for all P ∈ P . As above, the
integrability of X implies that Y0 +

(P )
∫
Z dB is bounded below by a P -martingale.

Noting also that Y0 is P -a.s. equal to a constant by Lemma 4.4, we deduce that
(P )
∫
Z dB and Y are (F, P )-supermartingales. Since Y is càdlàg and YT = X , the

minimality property in Proposition 4.5(i) shows that Y ≥ E(X) P-q.s.
(ii) If in addition Y is of class (D,P), then (P )

∫
Z dB is a true P -martingale by

the Doob–Meyer theorem and we have

0 = ess infP
P ′∈P(Ft,P )

EP ′[
KP ′

T −KP ′
t

∣∣Ft

]
= Yt − ess supP

P ′∈P(Ft,P )

EP ′
[X |Ft]

= Yt − Et(X) P -a.s. for all P ∈ P .

The last statement in the theorem follows from Lemma 4.15.
Remark 4.17. If we use axioms of set theory stronger than the usual ZFC, such

as the Continuum Hypothesis, then the integrals {(P )
∫
Z dB}P∈P can be aggregated

into a single (universally measurable) continuous process, denoted by
∫
Z dB, for

any Z which is B-integrable under all P ∈ P . This follows from a recent result on
pathwise stochastic integration; cf. [25]. In Proposition 4.11, we can then aggregate
the family (KP )P∈P of increasing processes into a single process K by simply setting
K := E0(X)−E(X)+

∫
ZX dB. Moreover, we can strengthen Theorem 4.16 by asking

for a universal process K the Definition 4.14 of the 2BSDE.
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4.4. Application to superhedging and replication. We now turn to the
interpretation of the previous results for the superhedging problem. Let H be an R

d-

valued F-predictable process satisfying
∫ T

0
|Hs|2 d〈B〉s < ∞P-q.s. ThenH is called an

admissible trading strategy if (P )
∫
H dB is a P -supermartingale for all P ∈ P . (We do

not insist that the integral be defined without reference to P , since this is not necessary
economically. But see also Remark 4.17.) As usual in continuous-time finance, this
definition excludes “doubling strategies.” We have seen in the proof of Theorem 4.16
that ZX is admissible for X ∈ H. The minimality property in Proposition 4.5(i) and
the existence of the decomposition (4.17) yield the following conclusion: E0(X) is the
minimal F0-measurable initial capital which allows one to superhedge X ; i.e., E0(X)
is the P-q.s. minimal F0-measurable random variable ξ0 such that there exists an
admissible strategy H satisfying

ξ0 +

(P )∫ T

0

Hs dBs ≥ X P -a.s. for all P ∈ P .

Moreover, the “overshoot” KP for the strategy ZX satisfies the minimality condi-
tion (4.20).

As seen in Example 4.6, the F0-superhedging price E0(X) need not be a constant,
and therefore it is debatable whether it is a good choice for a conservative price, in
particular if the raw filtration F

◦ is seen as the initial information structure for the
model. Indeed, the following illustration shows that knowledge of F0 can be quite
significant. Let (ai) be positive constants and P = {Pα : α ≡ ai for some i}. (Such
a set P can indeed satisfy the assumptions of this section.) In this model, knowledge
of F0 completely removes the volatility uncertainty since F0 contains the sets

Ai :=
{
lim sup

t→0
t−1〈B〉t = lim inf

t→0
t−1〈B〉t = ai

}
∈ F◦

0+

which form a P-q.s. partition of Ω. Hence, one may want to use the more conservative
choice

x = E◦
0 (X) = sup

P∈P
EP [X ] = inf{y ∈ R : y ≥ E0(X)}

as the price. This value can be embedded into the E-martingale as follows. Let F0−
be the smallest σ-field containing the P-polar sets; then F0− is trivial P-q.s. If we
adjoin F0− as a new initial state to the filtration F, we can extend E(X) by setting

E0−(X) := sup
P∈P

EP [X ], X ∈ H.

The resulting process {Et(X)}t∈[−0,T ] satisfies the properties from Proposition 4.5
in the extended filtration, and in particular the constant x = E0−(X) is the F0−-
superhedging price of X . (Of course, all this becomes superfluous in the case where
E(X) is a P-modification of {E◦

t (X)}.)
In the remainder of the section, we discuss replicable claims and adopt the pre-

viously mentioned conservative choice.
Definition 4.18. A random variable X ∈ H is called replicable if there exist a

constant x ∈ R and an F-predictable process H with
∫ T

0 |Hs|2 d〈B〉s < ∞ P-q.s. such
that

(4.21) X = x+

(P )∫ T

0

Ht dBt P -a.s. for all P ∈ P

and such that (P )
∫
H dB is an (F, P )-martingale for all P ∈ P.
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The martingale assumption is needed to avoid strategies which “throw away”
money. Moreover, as in Corollary 4.12, the stochastic integral can necessarily be
defined without reference to P by setting

∫
H dB := E(X)− x. The following result

is an analogue of the standard characterization of replicable claims in incomplete
markets (e.g., [8, p. 182]).

Proposition 4.19. Let X ∈ H be such that −X ∈ H. The following are
equivalent:

(i) E(X) is a symmetric E-martingale and E0(X) is constant P-q.s.

(ii) X is replicable.

(iii) There exists x ∈ R such that EP [X ] = x for all P ∈ P.

Proof. The equivalence (i)⇔(ii) is immediate from Corollary 4.12 and the impli-
cation (ii)⇒(iii) follows by taking expectations in (4.21). Hence we prove (iii)⇒(ii).
By (4.7) we have E0(−X) ≤ supP∈P EP [−X ] = −x and similarly E(X) ≤ x. Thus,
given P ∈ P , the decompositions (4.17) of E(−X) and E(X) show that

(4.22) −X ≤ −x+

(P )∫ T

0

Z−X dB and X ≤ x+

(P )∫ T

0

ZX dB P -a.s.

Adding the inequalities yields 0 ≤ (P )
∫ T

0
(Z−X + ZX) dB P -a.s. We know from the

proof of Theorem 4.16 that the integrals of ZX and Z−X are supermartingales, so

it follows that (P )
∫ T

0 Z−X dB = −(P )
∫ T

0 ZX dB P -a.s. Therefore, (4.22) yields that

X = x+ (P )
∫ T

0 ZX dB. In view of (iii), this integral is a supermartingale with constant
expectation, hence a martingale.

5. Uniqueness of time-consistent extensions. In the introduction, we have
claimed that {E◦

t (X)} as in (1.2) is the natural dynamic extension of the static sub-
linear expectation X �→ supP∈P EP [X ]. In this section, we add some substance to
this claim by showing that the extension is unique under suitable assumptions. (We
note that by Proposition 3.6, the question of existence is essentially reduced to the
technical problem of aggregation.)

The setup is as follows. We fix a nonempty set P of probability measures on
(Ω,F◦

T ); it is not important whether P consists of martingale laws. On the other
hand, we impose additional structure on the set of random variables. In this section,
we consider a chain of vector spaces (Ht)0≤t≤T satisfying

R = H0 ⊆ Hs ⊆ Ht ⊆ HT =: H ⊆ L1
P , 0 ≤ s ≤ t ≤ T.

We assume that X,Y ∈ Ht implies X ∧ Y,X ∨ Y ∈ Ht, and XY ∈ Ht if in addition
Y is bounded. As before, H should be seen as the set of financial claims. The
elements of Ht will serve as “test functions”; the main example to have in mind is
Ht = H ∩ L1

P(F◦
t ). We consider a family (Et)0≤t≤T of mappings

Et : H → L1
P(F◦

t )

and think of (Et) as a dynamic extension of E0. Our aim is to find conditions under
which E0 already determines the whole family (Et) or, more precisely, determines
Et(X) up to a P-polar set for all X ∈ H and 0 ≤ t ≤ T .

Definition 5.1. The family (Et)0≤t≤T is called (Ht)-positively homogeneous if
for all t ∈ [0, T ] and X ∈ H,

Et(Xϕ) = Et(X)ϕ P-q.s. for all bounded nonnegative ϕ ∈ Ht.
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Note that this property excludes trivial extensions of E0. Indeed, given E0, we
can always define the (time-consistent) extension

Et(X) :=

{
E0(X), 0 ≤ t < T,

X, t = T,

but this family (Et) is not (Ht)-positively homogeneous for nondegenerate choices of
(Ht).

To motivate the next definition, we first recall that in the classical setup under a
reference measure P∗, strict monotonicity of E0 is the crucial condition for uniqueness
of extensions; i.e., X ≥ Y P∗-a.s. and P∗{X > Y } > 0 should imply that E0(X) >
E0(Y ). In our setup with singular measures, the corresponding condition is too strong.
For example, for E0(·) = supP∈P EP [ · ], it is completely reasonable to have random
variables X ≥ Y satisfying E0(X) = E0(Y ) and P1{X > Y } > 0 for some P1 ∈ P ,
since the suprema can be attained at some P2 ∈ P whose support is disjoint from
{X > Y }. In the following definition, we allow for an additional localization by a test
function.

Definition 5.2. We say that E0 is (Ht)-locally strictly monotone if for every
t ∈ [0, T ] and any X,Y ∈ Ht satisfying X ≥ Y P-q.s. and P (X > Y ) > 0 for some
P ∈ P, there exists f ∈ Ht such that 0 ≤ f ≤ 1 and

E0(Xf) > E0(Y f).

Here the delicate point is the regularity required for f . Indeed, one is tempted to
try f := 1{X>Y+δ} (for some constant δ > 0), but in applications the definition of Ht

may exclude this choice and require a more refined construction. We defer this task
to Proposition 5.5 and first show how local strict monotonicity yields uniqueness.

Proposition 5.3. Let E0 be (Ht)-locally strictly monotone. Then there exists at
most one extension of E0 to a family (Et)0≤t≤T which is (Ht)-positively homogeneous
and satisfies Et(H) ⊆ Ht and E0 ◦ Et = E0 on H.

Proof. Let (Et) and (Ẽt) be two such extensions and suppose for contradiction

that Et(X) 	= Ẽt(X) for some X ∈ H; i.e., there exists P ∈ P such that either

P{Et(X) > Ẽt(X)} > 0 or P{Et(X) < Ẽt(X)} > 0. Without loss of generality, we
focus on the first case. Define

ϕ :=
([
Et(X)− Ẽt(X)

]
∨ 0

)
∧ 1.

Then ϕ ∈ Ht, since Ht is a lattice containing the constant functions; moreover,
0 ≤ ϕ ≤ 1 and {ϕ = 0} = {Et(X) ≤ Ẽt(X)}. Setting X ′ := Xϕ and using the
positive homogeneity, we arrive at

Et(X
′) ≥ Ẽt(X

′) and P
{
Et(X

′) > Ẽt(X
′)
}
> 0.

By local strict monotonicity there exists f ∈ Ht such that 0 ≤ f ≤ 1 and

E0

(
Et(X

′)f
)
> E0

(
Ẽt(X

′)f
)
.

Now E0 = E0 ◦ Et yields that

E0(X
′f) = E0

(
Et(X

′)f
)
> E0

(
Ẽt(X

′)f
)
= Ẽ0(X

′f),

which contradicts E0 = Ẽ0.
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We can extend the previous result by applying it on dense subspaces. This relaxes
the assumption that Et(H) ⊆ Ht and simplifies the verification of local strict mono-
tonicity since one can choose convenient spaces of test functions. Consider a chain of
spaces (Ĥt)0≤t≤T satisfying the same assumptions as (Ht)0≤t≤T and such that ĤT is
a ‖ · ‖L1

P
-dense subspace of H. We say that (Et)0≤t≤T is L1

P -continuous if

Et :
(
H, ‖ · ‖L1

P

)
→

(
L1
P(F◦

t ), ‖ · ‖L1
P

)
is continuous for every t. We remark that the motivating example (E◦

t ) from Assump-
tion 4.1 satisfies this property. (It is even Lipschitz continuous.)

Corollary 5.4. Let E0 be (Ĥt)-locally strictly monotone. Then there exists
at most one extension of E0 to an L1

P -continuous family (Et)0≤t≤T on H which is

(Ĥt)-positively homogeneous and satisfies Et(ĤT ) ⊆ Ĥt and E0 ◦ Et = E0 on ĤT .

Proof. Proposition 5.3 shows that Et(X) is uniquely determined for X ∈ ĤT .
Since ĤT ⊆ H is dense and Et is continuous, Et is also determined on H.

In our last result, we show that E0(·) = supP∈P EP [ · ] is (Ht)-locally strictly
monotone in certain cases. The idea here is that we already have an extension (Et)
(as in Assumption 4.1), whose uniqueness we try to establish. We denote by Cb(Ω) the
set of bounded continuous functions on Ω and by Cb(Ωt) the F◦

t -measurable functions
in Cb(Ω) or equivalently the bounded functions which are continuous with respect to
‖ω‖t := sup0≤s≤t |ωs|. Similarly, UCb(Ω) and UCb(Ωt) denote the sets of bounded
uniformly continuous functions. We also define L

1
c,P to be the closure of Cb(Ω) in

L1
P , while L

∞
c,P denotes the P-q.s. bounded elements of L1

c,P . Finally, L∞
c,P(F◦

t ) is
obtained similarly from Cb(Ωt), while L

∞
uc,P(F◦

t ) is the space obtained when starting
from UCb(Ωt) instead of Cb(Ωt).

Proposition 5.5. Let E0(·) = supP∈P EP [ · ]. Then E0 is (Ht)-locally strictly
monotone for each of the cases

(i) Ht = Cb(Ωt),

(ii) Ht = UCb(Ωt),

(iii) Ht = L
∞
c,P(F◦

t ),

(iv) Ht = L
∞
uc,P(F◦

t ).

Together with Corollary 5.4, this yields a uniqueness result for extensions. Before
giving the proof, we indicate some examples covered by this result; see also Exam-
ple 2.1. The domain of (Et) is H = L

1
uc,P in both cases. (This statement implicitly

uses the fact that L1
uc,P = L

1
c,P when P is tight; cf. the proof of [23, Proposition 5.2].)

(a) Let (Et) be the G-expectation as introduced in [27, 28]. Then Corollary 5.4
applies: if Ĥt is any of the spaces in (i)–(iv), the invariance property Et(ĤT ) ⊆ Ĥt is
satisfied and ĤT is dense in H.

(b) Using the construction given in [23], the G-expectation can be extended to
the case when there is no finite upper bound for the volatility. This corresponds to
a possibly infinite function G (and then P need not be tight). Here Corollary 5.4
applies with Ĥt = UCb(Ωt) since Et(ĤT ) ⊆ Ĥt is satisfied by the remark stated after
[23, Corollary 3.6], or also with Ht = L

∞
uc,P(F◦

t ).

Proof. Fix t ∈ [0, T ]. All topological notions in this proof are expressed with
respect to d(ω, ω′) := ‖ω − ω′‖t. Let X,Y ∈ Ht be such that X ≥ Y P-q.s. and
P∗(X > Y ) > 0 for some P∗ ∈ P . By translating and multiplying with positive
constants, we may assume that 1 ≥ X ≥ Y ≥ 0. We prove the cases (i)–(iv) separately.
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(i) Choose δ > 0 small enough so that P∗{X ≥ Y + 2δ} > 0 and let

A1 := {X ≥ Y + 2δ}, A2 := {X ≤ Y + δ}.

Then A1 and A2 are disjoint closed sets and

(5.1) f(ω) :=
d(ω,A2)

d(ω,A1) + d(ω,A2)

is a continuous function satisfying 0 ≤ f ≤ 1 as well as f = 0 on A2 and f = 1 on
A1. It remains to check that

E0(Xf) > E0(Y f), i.e., sup
P∈P

EP [Xf ] > sup
P∈P

EP [Y f ].

If E0(Y f) = 0, the observation that E0(Xf) ≥ EP∗ [Xf ] ≥ 2δP∗(A1) > 0 already
yields the proof.

Hence, we may assume that E0(Y f) > 0. For ε > 0, let Pε ∈ P be such that
EPε [Y f ] ≥ E0(Y f)− ε. Since X > Y + δ on {f > 0} and since 0 ≤ Y ≤ 1, we have
Xf ≥ (Y + δ)f ≥ (Y + δY )f and therefore

E0(Xf) ≥ lim sup
ε→0

EPε [(Y + δY )f ]

= lim sup
ε→0

(1 + δ)EPε [Y f ]

= (1 + δ)E0(Y f).

As δ > 0 and E0(Y f) > 0, this ends the proof of (i).
(ii) The proof for this case is the same; we merely have to check that the function

f defined in (5.1) is uniformly continuous. Indeed, Z := X−Y is uniformly continuous
since X and Y are. Thus there exists ε > 0 such that |Z(ω) − Z(ω′)| < δ whenever
d(ω, ω′) ≤ ε. We observe that d(A1, A2) ≥ ε and hence that the denominator in (5.1)
is bounded away from zero. One then checks by direct calculation that f is Lipschitz
continuous.

(iii) We recall that L
∞
P (F◦

t ) coincides with the set of bounded P-quasi contin-
uous functions (up to modification); cf. [10, Theorem 25]. That is, a bounded F◦

t -
measurable function h is in L

∞
P (F◦

t ) if and only if for all ε > 0 there exists a closed
set Λ ⊆ Ω such that P (Λ) > 1 − ε for all P ∈ P and such that the restriction h|Λ is
continuous.

For δ > 0 small enough, we have P∗({X ≥ Y + 2δ}) > 0. Then, we can find a
closed set Λ ⊆ Ω such that X and Y are continuous on Λ and

(5.2) (1 + δ)E0(1Λc) < δ2E0(1{X≥Y+2δ}∩Λ).

Define the disjoint closed sets

A1 := {X ≥ Y + 2δ} ∩ Λ, A2 := {X ≤ Y + δ} ∩ Λ,

and let f be the continuous function (5.1). We distinguish two cases. Suppose first
that δE0(Y f) ≤ (1 + δ)E0(1Λc); then, using (5.2),

E0(Xf) ≥ 2δE0(1A1) > (1 + δ)δ−1
E0(1Λc) ≥ E0(Y f)
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and we are done. Otherwise, we have δE0(Y f) > (1 + δ)E0(1Λc). Moreover,

E0(Xf1Λ) ≥ (1 + δ)E0(Y f1Λ)

can be shown as in (i); we simply replace f by f1Λ in that argument. Using the
subadditivity of E0, we deduce that

E0(Xf) + (1 + δ)E0(Y f1Λc) ≥ E0(Xf1Λ) + (1 + δ)E0(Y f1Λc)

≥ (1 + δ)E0(Y f1Λ) + (1 + δ)E0(Y f1Λc)

≥ (1 + δ)E0(Y f)

and hence

E0(Xf)− E0(Y f) ≥ δE0(Y f)− (1 + δ)E0(Y f1Λc) ≥ δE0(Y f)− (1 + δ)E0(1Λc).

The right-hand side is strictly positive by assumption.
(iv) The proof is similar to the one for (iii): we use [23, Proposition 5.2] instead of

[10, Theorem 25] to find Λ, and then the observation made in the proof of (ii) shows
that the resulting function f is uniformly continuous.

Acknowledgments. The authors thank the two anonymous referees for helpful
comments.
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[15] H. Föllmer and A. Schied, Stochastic Finance: An Introduction in Discrete Time, 2nd ed.,

W. de Gruyter, Berlin, 2004.
[16] Y. Hu and S. Peng, Some Estimates for Martingale Representation under G-expectation,

preprint, arXiv:1004.1098v1, 2010.



SUPERHEDGING UNDER VOLATILITY UNCERTAINTY 2089

[17] J. Jacod and M. Yor, Étude des solutions extrémales et représentation intégrale des solutions
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