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Abstract

This paper considers the nonlinear theory of G-martingales as introduced by Peng (2007) in [16,17].
A martingale representation theorem for this theory is proved by using the techniques and the results
established in Soner et al. (2009) [20] for the second-order stochastic target problems and the second-order
backward stochastic differential equations. In particular, this representation provides a hedging strategy in
a market with an uncertain volatility.
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1. Introduction

The notion of a G-expectation as recently introduced by Peng [16,17] has several motivations
and applications. One of them is the study of financial problems with uncertainty about
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the volatility. This important problem was also considered earlier by Denis and Martini [4].
Motivated by this application, Denis and Martini developed an almost pathwise theory of
stochastic calculus. In this second approach, probabilistic statements are required to hold quasi-
surely: namely P-almost surely for all probability measures P from a large class of mutually
singular measures P . Denis and Martini employ functional analytic techniques while Peng’s
approach utilizes the theory of viscosity solutions of parabolic partial differential equations.

Indeed, the G-expectation is defined by Peng using the nonlinear heat equation,

−∂t u − G(D2u) = 0 on [0, 1),

where the time maturity is taken to be T = 1 and for given d × d symmetric matrices a > 0 and
0 ≤ a ≤ a, the nonlinearity G is defined by

G(γ ) :=
1
2

sup{tr [γ a] | a ≤ a ≤ a}, γ ∈ Rd×d . (1.1)

Then for “Markov-like” random variables, the G-expectation and conditional expectations are
defined through the solution of the above equation with this random variable as its terminal
condition at time T = 1. A G-martingale is then defined easily as a process which satisfies the
martingale property through this conditional expectation. A brief introduction to this theory is
provided in Section 2 below.

Denis and Martini [4] also construct a similar structure of quasi-sure stochastic analysis.
However, they use a quite different approach which utilizes the set P of all probability measures
P such that the canonical map in the Wiener space is a martingale under P and the quadratic
variation of this martingale lies between a ≤ a. Although the constructions of the quasi-sure
analysis and the G-expectations are substantially different, these theories are very closely related
as proved recently by Denis et al. [3]. The paper [3] also provides a dual representation of the
G-expectation as the supremum of expectations over P . This duality and, more generally, the
dynamic programming principle are generalized by Nutz [13] who considers lower and upper
bounds a, a that are random processes.

A probabilistic construction similar to quasi-sure stochastic analysis and G-expectations is
the theory of second-order backward stochastic differential equations (2BSDE). This theory
is developed in [1,2,18] as a generalization of BSDEs as initially introduced in [7,14]. In
particular, 2BSDEs provide a stochastic representation for fully nonlinear partial differential
equations. Since the G-expectation is defined through such a nonlinear equation, one expects
the G-expectations to be naturally connected to the 2BSDEs. Equivalently, 2BSDEs can be
viewed as the extension of G-expectations to more general nonlinearities. Indeed, recently the
authors developed such a generalization and a duality theory for 2BSDEs using probabilistic
constructions similar to those of quasi-sure analysis [19–21].

In this paper, we investigate the problem of representing an arbitrary G-martingale in terms of
stochastic integrals and other processes. Specifically, we fix a finite horizon, say T = 1. Since all
martingales can be seen as conditional expectations, we also fix the final value ξ . We then would
like to construct stochastic processes H and K such that

Yt := EG
t [ξ ] = ξ −

∫ 1

t
HsdBs + K1 − Kt = EG

[ξ ] +

∫ t

0
HsdBs − Kt ,

where EG
t is the G-conditional expectation and the process M := −K is a non-increasing

G-martingale. The stochastic integral that appears in the above is the regular Itô one. But it
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is also defined quasi-surely. More precisely, the above statement holds almost surely for all
probability measures in P . Equivalently, the above equation holds quasi-surely in the sense
of Denis and Martini. In particular, all the above processes as well as the stochastic integral
are defined on the support of all measures in the set P . This is an important property of this
martingale representation as P contains measures which are mutually singular. Moreover, there
is no measure that dominates all measures in P . Hence the above processes are defined on a large
subset of our probability space.

A partial answer to this question was already provided by Xu and Zhang [23] for the class
of symmetric G-martingales, i.e. a process N where both itself and −N are G-martingales.
Since the G-expectation is not linear, the class of symmetric martingales is a strict subset of all
G-martingales. In particular, the representations of symmetric martingales are obtained using
only the stochastic integrals. We obtain the martingale representation in Theorem 5.1 for almost
all square-integrable martingales. This result essentially provides a complete answer to the
question of representation for the integrable classes defined in [17].

Our analysis utilizes the already mentioned duality result of Denis et al. [3]. Like [3], we also
provide a dual characterization of G-martingales as an immediate consequence of the results
in [3,17]. This observation is one of the key ingredients of our representation proof. Moreover, it
can be used to extend the definition of G-martingales to a class larger than the integrability class
L1

G of Peng. Indeed, the above martingale representation result could also be proved for a larger
class of random variables. But this development also requires the extension of G-expectations
and conditional expectations to this larger class. These results are not pursued here. But in an
example, Example A.3, we show that the integrability class L1

G does not include all bounded
random variables. Thus it is desirable to extend the theory to a larger class of random variables
using the equivalent definitions that do not refer to partial differential equations. Indeed such a
theory is developed by the authors in [19–21].

After the completion and the submission of this manuscript, we became aware of the
manuscript of Song [22] which proves a decomposition result for random variables in Lp

G with
p > 1. He obtained this result after a preliminary version of this manuscript, without Lemma 4.1,
was circulated. In view of Lemma 4.1, our results hold for Lp

G with p > 2 and in contrast to that
of [22], we also consider the possibly degenerate case a ≥ 0; see Assumption (2.1).

The paper is organized as follows. In Section 2, we review the theory of G-expectations and
G-martingales. Section 3 defines the quasi-sure analysis of Denis and Martini and also provides
the dual formulation. The main ingredients for our approach, such as the norms and spaces, are
collected in Section 4. The main result is then stated and proved in Section 5. In the Appendix,
we provide an approximation argument for the solutions of the partial differential equation. Then
the connection between the integrability class of Peng and the spaces utilized in this paper is
given in Appendix A.2.

1.1. Notation and spaces

We collect all the spaces and the notation used in the paper with a reference to their definitions.
We always assume that a > 0, 0 ≤ a ≤ a.

• F = {F B
t , t ≥ 0} is the filtration generated by the canonical process B.

• EG is the G-expectation, defined in [17] and in Section 2.1.
• EG

t is the conditional G-expectation.
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• Li p is the space of random variables of the form ϕ(Bt1 , . . . , Btn ) with a bounded, Lipschitz
deterministic function ϕ and time points 0 ≤ t1 ≤ · · · ≤ tn ≤ 1.

• Lp
G is the integrability class defined in Section 2.1 as the closure of Li p.

• Hp,0
G is the space of piecewise constant G-stochastic integrands; see Section 2.2.

• Hp
G is the integrability class defined in Section 2.2 as the closure ofHp,0

G .
• P = PW

[a,a] are measures under which the canonical process is a martingale and satisfies (3.1).
• P(t,P) is defined in (3.3).
• Lp

P is the set of all p-integrable random variables; see (4.1).
• Lp

P is the closure of Li p under the norm Lp
P ; see (4.1).

• Hp
P is the set of all p-integrable, Rd -valued stochastic integrands; see (4.2).

• Hp
P is the closure ofHp,0

G under the norm ‖ · ‖Hp
P

; see Definition 4.2.
• Sp

P is the set of all p-integrable, continuous processes; see Definition 4.2.
• Ip
P is the subset of Sp

P that are non-decreasing with initial value 0; see Definition 4.2.
• Sd is the set of all d × d symmetric matrices with the usual ordering and identity Id .
• For ν, η ∈ Rd , A := ν ⊗ η ∈ Sd is defined by Ax = (η · x)ν for any x ∈ Rd .
• For A ∈ Sd , νk ∈ Rd are its orthonormal eigenvectors and λk are the corresponding

eigenvalues such that

A =

−
k

λk[νk ⊗ νk].

• For A ∈ Sd , and a real number, A ∨ cId ∈ Sd is defined by

A ∨ cId :=

−
k

(λk ∨ c) [νk ⊗ νk].

2. G-stochastic analysis of Peng [16,17]

We fix the time horizon T = 1. Let Ω := {ω ∈ C([0, 1],Rd) : ω(0) = 0} be the canonical
space, B the canonical process, and P0 the Wiener measure. F = {F B

t , t ∈ [0, 1]} is the filtration
generated by B. We note that F B

t− = F B
t ≠ F B

t+.
In what follows, we always use the space Ω together with the filtration F. We remark that we

do not augment the filtration, as is usually done in standard stochastic analysis literature. In fact,
for any probability measure P on (Ω ,F1), denoting by F̄P = {F̄Pt , 0 ≤ t ≤ 1} the augmented
filtration of F under P, we have the following straightforward result.

Lemma 2.1. For any F̄Pt -measurable random variable ξ , there exists a unique P-a.s. Ft -
measurable random variable ξ̃ such that ξ̃ = ξ , P-a.s.

Similarly, for every F̄P-progressively measurable process X, there exists a unique F-
progressively measurable process X̃ such that X̃ = X, dt × dP-a.s. Moreover, if X is P-almost
surely continuous, then one can choose X̃ to be P-almost surely continuous.

Proof. Lemma 2.4 in [19] proves the analogous result for the right continuous filtration F+
:=

{F B
t+, 0 ≤ t ≤ 1} and its augmentation, instead of F and its augmentation. However, the proof

does not change in this context and we prove the above result following the proof Lemma 2.4
in [19] line by line. �

In what follows, quite often we make use of the above result. Indeed, when a probability
measure P is given, we will consider any process in its F-progressively measurable version.
However, we emphasize that these versions, in general, may depend on P.
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2.1. G-expectation and G-martingales

Following Peng [16], let G be as in (1.1) with two given d × d symmetric matrices satisfying

0 ≤ a ≤ a, a > 0. (2.1)

Notice that we allow degenerate diffusion matrices as the only positivity assumption is placed on
the upper bound.

For a bounded Lipschitz continuous function ϕ on Rd , let u be the unique, bounded, Lipschitz
continuous viscosity solution of the following parabolic equation:

− ∂t u − G(D2u) = 0 on [0, 1), and u(1, x) = ϕ(x). (2.2)

Here, ∂t and D2 denote, respectively, the partial derivative with respect to t , and the partial
Hessian with respect to the space variable x . Then, the conditional G-expectation of the random
variable ϕ(B1) at time t is defined by

EG
t [ϕ(B1)] := u(t, Bt ).

In particular, the G-expectation of ϕ(B1) is given by

EG
[ϕ(B1)] := EG

0 [ϕ(B1)] = u(0, 0).

Next consider the random variables of the form ξ := ϕ(Bt1 , . . . , Btn−1 , Btn ) for some bounded
Lipschitz continuous function ϕ on Rd×n and 0 ≤ t1 < · · · < tn = 1. For ti−1 ≤ t < ti , let

EG
t [ξ ] = EG

t [ϕ(Bt1 , . . . , Btn )] := vi (t, Bt1 , . . . , Bti−1 , Bt ),

where {vi }i=1,...,n−1 is the unique, bounded, Lipschitz viscosity solution of the following
equation:

−∂tvi − G(D2vi ) = 0, ti−1 ≤ t < ti and (2.3)
vi (ti , x1, . . . , xi−1, x) = vi+1(ti , x1, . . . , xi−1, x, x),

and vn solves the above equation with final data vn(1, x1, . . . , xn−1, x) = ϕ(x1, . . . , xn−1, x).
Here, for vi , the variables (x1, . . . , xi−1) are (fixed) parameters and the Hessian D2 is the second-
order derivative on x . Moreover, if we set ui (x1, . . . , xi ) = vi+1(ti , x1, . . . , xi , xi ), then for
ti−1 ≤ t < ti we have the following additional identity:

EG
t [ϕ(Bt1 , . . . , Btn )] = vi (t, Bt1 , . . . , Bti−1 , Bt ) = EG

t [ui (Bt1 , . . . , Bti )].

Let Li p denote the space of all random variables of the form ϕ(Bt1 , . . . , Btn ) with a bounded
and Lipschitz function ϕ. For p ≥ 1, Lp

G is the closure of Li p under the norm

‖ξ‖
p
Lp

G
:= EG

[|ξ |p
].

We may then extend the definitions of the G-expectation and the conditional G-expectation to
all ξ ∈ L1

G . In particular, the important tower property of the conditional expectation still holds:

EG
[EG

t [ξ ]] = EG
[ξ ] for all ξ ∈ L1

G . (2.4)

A characterization of this space, in particular a Lusin type theorem, is obtained in [3]. However,
since these integrability classes are defined through the closure of a rather smooth space Li p,
they require substantial “smoothness”. Indeed, in the Appendix, we construct a bounded random
variable which is not in L1

G (see Example A.3).
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We can now define G-martingales.

Definition 2.2. An F-progressively measurable L1
G-valued process M is called a G-martingale

if and only if for any 0 ≤ s < t , Ms = EG
s [Mt ].

M is called a symmetric G-martingale if both M and −M are G-martingales.

A G-stochastic integral (as will be defined in the next subsection) is an example of a
symmetric G-martingale. In particular, the canonical process B is a symmetric G-martingale.
But not all G-martingales are stochastic integrals and not all of them are symmetric.

2.2. The stochastic integral and quadratic variation

For p ∈ [1,∞), we letHp,0
G be the space of F-progressively measurable, Rd -valued piecewise

constant processes H =
∑

i≥0 Hti 1[ti ,ti+1) such that Hti ∈ Lp
G . For H ∈ Hp,0

G , the G-stochastic
integral is easily defined by∫ t

0
HsdG Bs :=

−
i≥0

Hti [Bt∧ti+1 − Bt∧ti ].

Notice that this definition is completely universal in the sense that it is pointwise and independent
of G. LetHp

G be the closure ofHp,0
G under the norm

‖H‖
p
Hp

G
:=

∫ 1

0
EG

[|Ht |
p
]dt.

By a closure argument the stochastic integral is defined for all H ∈ Hp
G .

It is clear that the set of G-martingales does not form a linear space (unless a = a). However,
for any H ∈ Hp,0

G , one may directly verify that the stochastic integral process M :=


·

0 HsdG Bs
is a G-martingale and so is −M . Hence, any G-stochastic integral is a symmetric G-martingale.

This notion of the stochastic integral can be used to define the quadratic variation process
⟨B⟩

G
t as well. Indeed, the Sd -valued process is defined by the identity

⟨B⟩
G
t :=

1
2

Bt ⊗ Bt −

∫ t

0
Bs ⊗ dG Bs, ∀0 ≤ t ≤ 1, (2.5)

where the tensor product ⊗ is as in the Notation 1.1. We can directly check that the integrand Bt
is in the integration classHp

G . Therefore, ⟨B⟩
G
t is well-defined.

3. The quasi-sure stochastic analysis of Denis and Martini [4]

Let P be a probability measure on (Ω ,F) such that the canonical process B is a martingale.
Then, the quadratic variation process ⟨B⟩t of B under P exists. We consider the subset P :=

PW
[a,a] of such measures P that ⟨B⟩t satisfies the following for some deterministic constant

c = c(P) > 0:

0 <

cId ∨ a


≤

d⟨B⟩t

dt
≤ a, ∀t ∈ [0, 1], P-a.s., (3.1)

where Id is the identity matrix in Sd . Notice that when a is positive definite, as required in Denis
and Martini [4], we do not need cId in the lower bound. Also, the constant c = c(P) may be
different for each measure. Denis and Martini [4] give the following definition.
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Definition 3.1. We say that a property holds P-quasi-surely, abbreviated as q.s., if it holds
P-almost surely for all P ∈ P .

Remark 3.2. All the results in this paper will also hold true if we let P := P S
[a,a] be the set of

all probability measures Pα given by

Pα := P0 ◦ (Xα)−1 where Xαt :=

∫ t

0
α

1/2
s dBs, t ∈ [0, 1],P0 − a.s.

for some F-progressively measurable process α taking values in Sd and satisfying
c(α)Id ∨ a


≤ αt ≤ a, ∀t ∈ [0, 1], P0 − a.s.,

where the constant c(α) > 0 may depend on α. We note that P S
[a,a] is a strict subset of PW

[a,a]

and each P ∈ P S
[a,a] satisfies the Blumenthal zero–one law and the martingale representation

property. We remark that Denis and Martini [4] uses the space PW
[a,a]. But Denis et al. [3] and

our subsequent work [21] essentially use P S
[a,a]. �

The following are immediate consequences of the definition of G-expectations.

Proposition 3.3. Let H ∈ H2
G . Then, H is Itô-integrable for every P ∈ P . Moreover,∫

HsdG Bs =

∫
HsdBs, P-a.s. for every P ∈ P, (3.2)

where the right hand side is the usual Itô integral. Consequently, the quadratic variation process
⟨B⟩

G defined in (2.5) agrees with the usual quadratic variation process quasi-surely.

Proof. The above statements clearly hold for the integrands H ∈ H2,0
G (i.e. the piecewise

constant processes). For H ∈ H2
G , there exist Hn

∈ H2,0
G such that limn→∞ ‖Hn

− H‖H2
G

= 0.

For any fixed P ∈ P , since EP[
 1

0 |Hn
t − Ht |

2dt] ≤ ‖Hn
− H‖

2
H2

G
, the equality (3.2) holds. The

statement about the quadratic variation follows from the general statement about the stochastic
integrals and the formula (2.5). �

Next we recall a dual characterization of the G-expectation as proved in [3]. We will then
generalize that characterization to the G-conditional expectations. Like the previous result, this
generalization is also an immediate consequence of the previous results. We need the following
notation, for t ∈ [0, 1] and P ∈ P:

P(t,P) := {P′
∈ P : P′

= P on Ft }. (3.3)

Notice that for any P′
∈ P(t,P) and ξ ∈ L1

G , the random variable EP′

[ξ |Ft ] is defined both
P-almost surely and P′-almost surely. Also recall that ess sup = ess supP is the essential
supremum of a class of P-almost surely defined random variables. Clearly, it is also defined
P-almost surely (see Definition A.1 on page 323 in [10]). In particular, for t ∈ [0, 1], we may
define

ess sup
P′∈P(t,P)

EP
′

[ξ | Ft ] (3.4)
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as a P-almost sure random variable. We remark that, for given P, the above random variable can
be first defined as FPt -measurable. However, in view of Lemma 2.1, we will always consider its
Ft -measurable version.

We now have the following characterization of the G-conditional expectation.

Proposition 3.4. For any ξ ∈ L1
G , t ∈ [0, 1], and P ∈ P ,

EG
t [ξ ] = ess sup

P′∈P(t,P)
EP

′

[ξ | Ft ], P-a.s.

Moreover, an F-progressively measurable L1
G valued process M is a G-martingale if and only if

it satisfies the following dynamic programming principle for all 0 ≤ s ≤ t ≤ 1 and P ∈ P:

Ms = ess sup
P′∈P(s,P)

EP
′

[Mt | Fs], P-a.s. (3.5)

Proof. The characterization of the conditional expectation follows from [3] for ξ ∈ Li p. Indeed,

[3] proves this result when the set of probability measures is P S
[a,a] as defined in Remark 3.2.

Moreover when ξ = g(B1), we can use the dynamic programming equation (2.2) and classical
verification arguments as in [8] to conclude the claimed representation in our formulation. Then,
a simple induction argument extends the result to all ξ ∈ Li p.

For ξ ∈ L1
G , there exist ξn ∈ Li p such that limn→∞ EG

[|ξn − ξ |] = 0. Then, for every
t ∈ [0, 1], by the definition of EG

t [ξ ],

lim
n→∞

EG
[|EG

t [ξn] − EG
t [ξ ]|] = 0.

Moreover, for any t ∈ [0, 1] and P ∈ P ,

EP[|EG
t [ξn] − EG

t [ξ ]|] ≤ EG
[|EG

t [ξn] − EG
t [ξ ]|].

Using these and (2.4), we directly estimate that

EP[| ess sup
P′∈P(t,P)

EP
′

t [ξn] − ess sup
P′∈P(t,P)

EP
′

t [ξ ]|] ≤ EP[ ess sup
P′∈P(t,P)

EP
′

t [|ξn − ξ |]]

≤ EP[ ess sup
P′∈P(t,P)

EG
t [|ξn − ξ |]] = EP[EG

t [|ξn − ξ |]]

≤ EG
[EG

t [|ξn − ξ |]] = EG
[|ξn − ξ |].

Therefore,

EG
t [ξ ] = lim

n→∞
EG

t [ξn] = lim
n→∞

ess sup
P′∈P(t,P)

EP
′

t [ξn] = ess sup
P′∈P(t,P)

EP
′

t [ξ ], P-a.s.

The martingale property is a direct consequence of the tower property of the G-conditional
expectation as proved in [16] and the above formula for the conditional expectation. �

Remark 3.5. In their classical paper [5], El Karoui and Jeanblanc consider a very general
stochastic optimal control problem. Their results in our context imply that

MPs := ess sup
P′∈P(s,P)

EP
′

[ξ | Fs]

is a P-supermartingale for all P ∈ P . Moreover P∗ is a maximizer if and only if MP
∗

is a
P∗-martingale. While this result provides a characterization of the optimal measure P∗, it does
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not provide a “universal” hedge. More precisely their approach provides an optimal control which
is defined only for the optimal measure and on its support. Indeed, the supermartingale property
of MP implies that there are an increasing process KP and an integrand HP such that

MPt =

∫ t

0
HPs dBs − KPt .

However, aggregation of these processes into one universally defined K and one universally
defined H is not immediate. In the standard Markovian context, this problem can be solved
directly. However, it is exactly the non-Markovian generalization that motivates this paper and
[4,17,16]. This interesting question of aggregation is further discussed in Remark 4.3. �

4. Spaces and norms

The particular case of t = 0 in (3.5) gives the following dual characterization proved in [3]:

EG
[ξ ] = sup

P∈P
EP[ξ ].

The above results enable us to extend the definitions of G-expectation and G-martingales to a
possibly larger class of random variables. In particular, this extension has the advantage of not
referring to the partial differential equation (2.2). We will not develop this theory here. However,
in view of the results and the norms used in the theory of BSDEs, we introduce the following
function spaces.

For p ≥ 1, and an F1-measurable, non-negative random variable ξ , we set

‖ξ‖
p
Lp
P

:= sup
P∈P

EP[ess sup
t∈[0,1]

(MPt (ξ))
p
], where MPt (ξ) := ess sup

P′∈P(t,P)
EP

′

[ξ |Ft ].

In the above definition, a priori we do not have any information on the time regularity of
MPt (ξ). That is the reason for defining the norm through the random variable
ess supt∈[0,1](M

P
t (ξ)), which is, in view of Lemma 2.1, F1-measurable. Alternatively, one

may first prove that MPt (ξ) is a P-supermartingale and that it admits a càdlàg version. Then,
supt∈[0,1](M

P
t (ξ))

p would be measurable and we could use it in the definition. However, we
believe that this issue is tangential to the main thrust of the paper and we prefer to give the above
quicker definition.

We next define

Lp
P := {ξ : F1-measurable and ‖ξ‖Lp

P
:= ‖|ξ |‖Lp

P
< ∞}, (4.1)

Lp
P := closure of Li p under the normLp

P .

Notice that if ξ ∈ L1
G , then MPt (ξ) = EG

t [ξ ] for every P ∈ P . Moreover, for every ξ ∈ Li p,
‖ξ‖Lp

P
= ‖ξ∗

‖Lp
G

, where ξ∗
:= supt∈[0,1] EG

t [|ξ |].
In the Appendix, we compare the integrability classes defined by Peng [17] and the above

spaces. The connection is related to the Doob maximal inequalities in the setting of G-
expectations. In particular, we prove the following.

Lemma 4.1. ∪p>2 Lp
G ⊂ L2

P ⊂ L2
P ∩ L2

G ⊂ L2
P . Moreover, the final inclusion is strict.
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We also define the following norms for the processes. As usual 1 ≤ p < ∞. For an F-
progressively measurable integrand H and a stochastic process Y , we set

‖H‖
p
Hp
P

:= sup
P∈P

EP
∫ 1

0
(d⟨B⟩t Ht · Ht )

 p
2
 , (4.2)

‖Y‖
p
Sp
P

:= sup
P∈P

EP[ess sup
0≤t≤1

|Yt |
p
]. (4.3)

If Yt = EG
t [|ξ |] for some ξ ∈ L1

G , then ‖Y‖
p
Sp
P

= ‖ξ‖
p
Lp
P

. This identity also motivates the

definition of the norm Lp
P . Moreover, when the lower bound a in (3.1) is non-degenerate, then

the Hp
P norm is equivalent to the norm used in [3,16]:

sup
P∈P

EP
∫ 1

0
|Ht |

2dt

 p
2
 .

By analogy with the standard notation in stochastic calculus, we define the following spaces.

Definition 4.2. Let p ∈ [1,∞) and P be as in Section 3.

• Hp
P is the set of all F-progressively measurable integrands with a finite ‖ · ‖Hp

P
-norm.

• Hp
P is the closure ofHp,0

G under the norm ‖ · ‖Hp
P

.

• Sp
P is the set of all F-progressively measurable processes with quasi-surely continuous paths

and finite ‖ · ‖Sp
P

-norm.

• Ip
P is the subset of Sp

P of non-decreasing processes with X0 = 0. �

Clearly all of the above spaces are defined as quasi-sure equivalence classes. As such, they are
complete and therefore Banach spaces. Also ‖H‖Hp

P
≤ ‖H‖Hp

G
for H ∈ Hp,0

G ; then it is clear

thatHp
G ⊂ Hp

P . ThereforeHp
P is the closure ofHp

G under the norm ‖ · ‖Hp
P

.

Remark 4.3. Given ξ ∈ L1
P (but not necessarily in L1

G) and an F-stopping time τ , it is not
straightforward to define the conditional GP -expectation EPτ [ξ ] as in (3.4). Indeed, set

MPτ := ess sup
P′∈P(τ,P)

EP
′

τ [ξ ], P-a.s.

Then, to define the conditional expectation, we need to aggregate this family of random variables
{MPτ ,P ∈ P} into one “universally” defined random variable. A similar problem arises in the
definition of a stochastic integral for a given integrand H ∈ H2

P . Again, for P ∈ P , we set
MPt :=

 t
0 HsdBs . Then, to define the G-stochastic integral of H we need to aggregate this

family of stochastic processes.
The issue of aggregation is an interesting technical question. Generally, a solution to this

technical issue is given by imposing regularity on the random variables. Indeed, for all random
variables which are in Lp

G , one can define the universal version through a closure argument.
However, there are other alternatives and a comprehensive study of this question is given in our
accompanying paper [19].



Author's personal copy

H.M. Soner et al. / Stochastic Processes and their Applications 121 (2011) 265–287 275

Finally we recall that, when the integrand H has the additional regularity that it is a càdlàg
process, then Karandikar [9] defines the stochastic integral MPt :=

 t
0 HsdBs pointwise. This

definition can then be used as the aggregating process. �

5. The martingale representation theorem

To motivate the main result of this paper, we first consider the case ξ = ϕ(B1) for some
smooth, bounded function ϕ. In this case, as in [15,16], a formal construction can be derived
by simply using the Itô’s formula. Now suppose that the solution u(t, x) of (2.2) is smooth.
Indeed, we can approximate the eqaution (2.2) such that the approximating equation admits
smooth solutions as proved by Krylov [11]. This is done in the Appendix. Then, we set
Yt := u(t, Bt ) = EG

t [ξ ], Ht := ∇u(t, Bt ) and

Kt :=

∫ t

0


G(D2u(s, Bs))−

1
2

tr [âs D2u(s, Bs)]


ds, ât :=

d⟨B⟩t

dt
, q.s.

Using (2.2), (3.1) and the definition of the nonlinearity G, one may directly check that

Yt = ξ −

∫ 1

t
HsdBs + K1 − Kt , and dKt ≥ 0 q.s.

Also, the characterization of G-martingales in Proposition 3.4 and the definition of the
nonlinearity G imply that −K is a G-martingale. Hence for the random variable ξ = ϕ(B1), we
have the martingale representation. More importantly, this example also shows that in general a
non-decreasing process K is always present in this representation. The above construction is also
the basic step in our construction. Indeed essentially for almost all random variables in Li p the
above construction proves the result. We then prove that stochastic integrals and non-decreasing
martingales are closed subsets under the appropriate norms as defined in the preceding section.
Finally, these results allow us to prove the result by a closure argument.

5.1. Main results

We first state the main result. Recall that function spaces are defined in Definition 4.2.

Theorem 5.1. Assume that a and a satisfy (2.1). Then, for every ξ ∈ L2
P , the conditional G-

expectation process Yt := EG
t [ξ ] is in S2

P , and there exist unique H ∈ H2
P , K ∈ I2

P such that
N := −K is a G-martingale and for every t ∈ [0, T ],

Yt = ξ −

∫ 1

t
HsdBs + K1 − Kt = EG

[ξ ] +

∫ t

0
HsdBs − Kt , q.s. (5.1)

In particular, the stochastic integrals are defined both as G-stochastic integrals and also quasi-
surely. Moreover the following estimate is also satisfied with a universal constant C∗:

‖Y‖S2
P

+ ‖H‖H2
P

+ ‖K‖S2
P

≤ C∗
‖ξ‖L2

P
. (5.2)

The proof of the above theorem will be completed in several lemmas below.
In the above theorem the integrand H is not only in the class H2

P but also in the closure of
H2,0

G under the norm ‖ · ‖H2
P

. Indeed this fact implies that stochastic integral is well-defined
quasi-surely as is shown in the next subsection.
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The following is an immediate corollary of the above martingale representation.

Corollary 5.2. A G-martingale M with M1 ∈ L2
P is symmetric if and only if the process K in

the representation (5.1) is identically equal to zero.

In addition to the estimate (5.2), an estimate of the differences of the solutions is known
to be an important tool. Let ξ1, ξ2 ∈ L2

P and (Y i , H i , K i ) be the processes in the martingale
representation. We set δξ := ξ1

− ξ2, δY := Y 1
− Y 2, δZ := Z1

− Z2 and δK := K 1
− K 2.

Theorem 5.3. There exists a universal constant C∗ such that

‖δY‖S2
P

≤ ‖δξ‖L2
P
,

‖δH‖H2
P

+ ‖δK‖S2
P

≤ C∗
[‖δξ‖L2

P
+ (‖ξ1

‖

1
2
L2
P

+ ‖ξ2
‖

1
2
L2
P
) ‖δξ‖

1
2
L2
P

].

5.2. The stochastic integral and symmetric G-martingales

As discussed in Remark 4.3, for an integrand H ∈ H2
P it is not immediate to define the

stochastic integral


·

0 HsdBs quasi-surely. However, the stochastic integral is defined in [17] for
integrands H ∈ H2,0

G . Then, for integrands inH2
P a closure argument can be used to construct the

stochastic integral quasi-surely. (Recall thatH2
P is the closure ofH2,0

G under the norm ‖ · ‖H2
P

.)

Theorem 5.4. For any H ∈ H2
P , the stochastic integral


·

0 HsdBs exists quasi-surely. Moreover,
the stochastic integral satisfies the Burkholder–Davis–Gundy inequality

‖H‖H2
P

≤

∫ ·

0
HsdBs


S2
P

≤ 2‖H‖H2
P
. (5.3)

Proof. Let H ∈ H2
P . Then, there is a sequence {Hn

}n ⊂ H2,0
G such that ‖Hn

− H‖H2
P

converges
to zero as n tends to infinity. By relabeling the sequence we may assume that ‖Hn

−H‖H2
P

≤ 2−n

for every n. Moreover, since H ∈ H2
P , for every P ∈ P ,

MPt :=

∫ t

0
HsdBs, t ∈ [0, 1],

is P-almost surely well-defined. Since Hn
∈ H2,0

G , the G-stochastic integral

Mn
t :=

∫ t

0
Hn

s dBs, t ∈ [0, 1],

is also defined pointwise.
We now have to prove that the family {MP, P ∈ P} can be aggregated into a universal F-

progressively measurable process. For this, we define

M t := lim
n→∞

Mn
t , t ∈ [0, 1].

Notice that M is pointwise defined and F-progressively measurable. We continue by showing
that M = MP, P-almost surely, for every P ∈ P . Indeed for any P ∈ P , we use the
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Burkholder–Davis–Gundy inequality to obtain

EP


sup
0≤t≤1

Mn
t − MPt

2 = EP


sup
0≤t≤1

∫ t

0
(Hn

s − Hs)dBs

2


≤ 4EP

∫ 1

0
(Hn

s − Hs)dBs


2


= 4EP
∫ 1

0
|â1/2

s (Hn
s − Hs)|

2ds


≤ 4‖Hn

− H‖
2
H2
P

≤ 22−2n .

We then directly estimate that
∞−

n=1

P[ sup
0≤t≤1

|Mn
t − MPt | ≥ n−2

] ≤

∞−
n=1

n2EP[ sup
0≤t≤1

|Mn
t − MPt |

2
]

1
2 < ∞.

By the Borel–Cantelli Lemma,

lim
n→∞

sup
0≤t≤T

|Mn
t − MPt | = 0, P-a.s.

This implies that MP = M , P-almost surely. Since this holds for every P ∈ P , we conclude that
the process M is an aggregating process. Hence the stochastic integral is defined.

The Burkholder–Davis–Gundy inequalities follow directly from the definitions. �

We close this subsection by stating the following result for symmetric G-martingales, which
is an immediate consequence of the main results.

Theorem 5.5. Let M be a G-martingale with M1 ∈ L2
P . The following are equivalent:

(i) M is a P-martingale for every P ∈ P .
(ii) M is a symmetric G-martingale.

(iii) For any G-martingale N, both N + M and N − M are also G-martingales.
(iv) EG

{−Mt } = −EG
{Mt } for any t ≥ 0.

(v) There exists H ∈ H2
P such that Mt := M0 +

 t
0 HsdBs .

Remark 5.6. The main reason for the requirements ξ ∈ L2
P and H ∈ H2

P is to ensure the
existence of the universal version of the conditional G-expectation EG

t [ξ ] and the stochastic
integral

 t
0 HsdBs . However, if we were given a G-martingale M with M1 ∈ L2

P , then there
would be no aggregation issue. Then, following the same arguments, one can easily show that
Theorem 5.5 still holds true under the weaker assumption M1 ∈ L2

P . Moreover, (v) requires only
H ∈ H2

P .

Recall that I2
P is defined in Definition 4.2 as the set of all F-progressively measurable, non-

decreasing, continuous processes with finite ‖ · ‖Sp
P

. For (H, K ) ∈ H2
P × I2

P , define a process by

Mt := M0 +

∫ t

0
HsdBs − Kt . (5.4)
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An immediate corollary of the above result is the following.

Corollary 5.7. The process M defined in (5.4) is a G-martingale if and only if the non-increasing
process −K is a G-martingale.

5.3. Increasing G-martingales

In this section we show that the set of non-decreasing G-martingales is a closed set. Indeed,
let M I 2

P be the set of all processes K ∈ I2
P such that −K is a G-martingale. Then we have the

following closure result which is similar to Theorem 5.4.

Theorem 5.8. The space M I 2
P is closed in S2

P under norm ‖ · ‖S2
P

.

Proof. Consider a sequence K n
∈ M I 2

P converging to a process K ∈ I2
P in the norm ‖ · ‖S2

P
.

We claim that the limit −K is also a G-martingale and therefore K ∈ M I 2
P . Indeed, for every

0 ≤ s ≤ t ≤ 1, set At := Kt − Ks and An
t := K n

t − K n
s . Then, by the martingale property of the

sequence, for every n and P ∈ P , we have

ess inf
P′∈P(s,P)

EP
′

s [An
t ] = 0, P-a.s.

Moreover, P-a.s.,

ess inf
P′∈P(s,P)

EP
′

s [At ] ≤ ess sup
P′∈P(s,P)

EP
′

s |At − An
t | + ess inf

P′∈P(s,P)
EP

′

s [An
t ]

= ess sup
P′∈P(s,P)

EP
′

s |At − An
t |.

The following can be shown directly from the definitions:

sup
P∈P

EP[ ess sup
P′∈P(s,P)

EP
′

s |At − An
t |] ≤ ‖A − An

‖S2
P
.

Hence by the convergence of ‖A − An
‖S2
P

to zero as n tends to infinity, we conclude that

lim
n→∞

ess sup
P′∈P(s,P)

EP
′

s |At − An
t | = 0, P-a.s.

Since 0 ≤ s ≤ t ≤ 1 and P ∈ P are arbitrary, the limit process −K is also a G-martingale. �

5.4. Estimates

For (H, K ) ∈ H2
P × I2

P , let M be defined as in (5.4). In this subsection, we prove certain
estimates for H and K in terms of the process M . These estimates are similar to those obtained
for reflected backward stochastic differential equations in [6].

Proposition 5.9. Let H, K ,M be as in (5.4). There exists a constant C depending only on the
dimension such that

‖H‖H2
P

+ ‖K‖S2
P

≤ C‖M‖S2
P
.
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Proof. We directly calculate that

d|Mt |
2

= 2Mt Ht dBt − 2Mt dKt + d⟨B⟩t Ht · Ht .

We integrate over [t, 1] to obtain

|Mt |
2
+

∫ 1

t
d⟨B⟩s Hs · Hs = |M1|

2
+ 2

∫ 1

t
MsdKs − 2

∫ 1

t
Ms HsdBs .

We then take the expected value under an arbitrary P ∈ P to arrive at

EP

|Mt |

2
+

∫ 1

0
d⟨B⟩t Ht · Ht


≤ EP


|M1|

2
+ 2

∫ 1

0
|Mt |dKt


.

Since dKt ≥ 0, for any ε > 0, we have the following estimate:

EP

|Mt |

2
+

∫ 1

0
d⟨B⟩t Ht · Ht


≤ EP[|M1|

2
+ 2( sup

t∈[0,1]

|Mt |)K1]

≤ (1 + ε−1)EP[ sup
t∈[0,1]

|Mt |
2
] + εEP[K 2

1 ]. (5.5)

Next we estimate K . Recall that 0 = K0 ≤ Kt . By the definition of Mt ,

K 2
1 =


M1 − M0 −

∫ 1

0
HsdBs

2

≤ 3|M1|
2
+ 3|M0|

2
+ 3

∫ 1

0
HsdBs

2

.

We now use (5.5) with ε =
1
6 . The result is

EP[K 2
1 ] ≤ EP


3|M1|

2
+ 3|M0|

2
+ 3

∫ 1

0
d⟨B⟩t Ht · Ht



≤ 27 EP[ sup
t∈[0,1]

|Mt |
2
] +

1
2

EP[K 2
1 ].

Hence,

EP[K 2
1 ] ≤ 54 EP[ sup

t∈[0,1]

|Mt |
2
].

This, together with (5.5) and the definitions of the norms, implies the result. �

Next we prove an estimate for differences. So for any (H i , K i ) ∈ H2
P × I2

P , i = 1, 2, let M i

be defined as in (5.4). As before, let δM := M1
− M2, δH := H1

− H2, δK := K 1
− K 2.

Proposition 5.10. There exists a constant C depending only on the dimension such that

‖δH‖
2
H2
P

+ ‖δK‖
2
S2
P

≤ C[‖δM‖
2
S2
P

+ ‖δM‖S2
P
(‖K 1

‖S2
P

+ ‖K 2
‖S2
P
)]. (5.6)

The terms ‖K i
‖S2
P

in the above inequality can be estimated using Proposition 5.9.
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Proof. The arguments are very similar to those in the proof of Proposition 5.9. The only
difference is the fact that δK is no longer a monotone function. We directly compute that

δMt = δM0 +

∫ t

0
δHsdBs − δKt .

Then we proceed as in the proof of the previous proposition to arrive at

EP

|δMt |

2
+

∫ 1

0
d⟨B⟩tδHt · δHt


≤ EP[|δM1|

2
] + EP

∫ 1

0
|δMs |d|δK |s


.

The last integral term is directly estimated as follows:

EP
∫ 1

0
|δMs |d|δK |s


≤ EP[( sup

t∈[0,1]

|δMt |) ( sup
t∈[0,1]

[|K 1
t | + |K 2

t |])]

≤ 2[EP sup
t∈[0,1]

|δMt |
2
]
1/2


2−

i=1

[EP sup
t∈[0,1]

|K i
t |

2
]
1/2


≤ 2‖δM‖S2

P
(‖K 1

‖S2
P

+ ‖K 2
‖S2
P
).

The estimate of ‖δK‖S2
P

is obtained exactly as in the proof of Proposition 5.9. �

5.5. Proof of Theorem 5.1

We prove uniqueness first. Suppose that there are two pairs (H i , K i ) satisfying (5.1). Then,
we can use Proposition 5.10 with M i

t = Yt = EG
t [ξ ]. In particular, δM ≡ 0. By (5.6), we

conclude that ‖δH‖H2
P

= ‖δK‖S2
P

= 0.

For the existence, let M be the subset of L2
P such that the martingale representation (5.1)

holds for all ξ ∈ M. We will prove the result by showing that M is closed in L2
P and that

Li p ⊂ M. The second statement is proved in the Appendix, by an approximation argument.
This is Proposition A.1. Then for ξ ∈ L2

P these two statements imply the existence of (H, K ) as
L2
P is in the closure of Li p under the norm L2

P .
To show that M is closed, consider a sequence ξn

∈ M converging to ξ ∈ L2
P . Since

ξn
∈ M, there are Hn

∈ H2
P and K n

∈ I2
P such that (5.1) holds for each n and N n

:= −K n is
a continuous, non-increasing G-martingale. We now use the estimate (5.6) with M1

= Y n and
M2

= Y m for arbitrary n and m. The identity Y n
t = EG

t [ξn
], together with the definition of the

conditional expectation EG
t , implies that for every t ∈ [0, 1],

|Y n
t − Y m

t |
2

≤ EG
t [|ξn

− ξm
|
2
].

Hence the definition of the norm ‖ · ‖L2
P

yields

‖Y n
− Y m

‖S2
P

≤ ‖ξn
− ξm

‖L2
P
.

We now use the results of Propositions 5.9 and 5.10 with M1
= Y n and M2

= Y m .
Proposition 5.9 yields, for each n,

‖K n
‖S2
P

≤ ‖ξn
‖L2
P

≤ c0 := sup
m

‖ξm
‖L2
P
< ∞.
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We use this in (5.6). The result is

‖Hn
− Hm

‖
2
H2
P

+ ‖K n
− K m

‖
2
S2
P

≤ C∗
[‖ξn

− ξm
‖

2
L2
P

+ 2c0‖ξ
n

− ξm
‖L2
P

].

Hence {Hn
}n is a Cauchy sequence in H2

P . Therefore by the definition of H2
P , we know that

there is a limit H ∈ H2
P . Moreover, by (5.3) the corresponding stochastic integrals converge in

S2
P . Also {K n

}n is a Cauchy sequence in S2
P . By Theorem 5.8, we conclude that there is a limit

K ∈ I2
P such that N := −K is a G-martingale. Since (Y n, Hn, K n) satisfies (5.1) with final data

Y n
1 = ξn , we conclude that the limit process (Y, H, K ) also satisfies (5.1) with final data Y1 = ξ .

HenceM is closed under the norm L2
P . �

5.6. Proof of Theorem 5.3

Since Y i
t = EG

t [ξ i
], the dual representation of the G-conditional expectation yields that for

each t ∈ [0, 1],

|δYt | = |EG
t [ξ1

] − EG
t [ξ2

]| ≤ EG
t [|ξ1

− ξ2
|].

Hence,

‖δY‖S2
P

≤ ‖δξ‖L2
P
.

We now use Proposition 5.10. The result is

‖δH‖H2
P

+ ‖δK‖S2
P

≤ C∗
[‖δY‖S2

P
+ ‖δY‖

1
2
S2
P
(‖K 1

‖

1
2
S2
P

+ ‖K 2
‖

1
2
S2
P
)].

We now use the estimate (5.2) in the above inequality, together with the fact that |‖ξ2
‖S2
P

−

‖ξ1
‖S2
P

| ≤ ‖δξ‖S2
P

, to complete the proof of the Theorem. �

Acknowledgements

The first author’s research was partly supported by the European Research Council under
the grant 228053-FiRM. Financial support from the ETH Foundation is also gratefully
acknowledged. The second author’s research was supported by the Chair Financial Risks of the
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Appendix

In this Appendix, we construct smooth approximations of the partial differential equations
(2.2), (2.3) and study the properties of the integrability class L2

P .

A.1. Approximation

The main goal of this subsection is to construct a smooth approximation of solutions of (2.3).
We require smoothness of these solutions in order to be able to apply the Itô rule. The first
obstacle to regularity is the possible degeneracy of the nonlinearity G or equivalently the possible
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degeneracy of the lower bound a. Therefore, we do not expect the equation to regularize the final
data. However, even in this case the solution remains twice differentiable provided the final data
have this regularity. But the second difficulty in proving smoothness emanates from the fact that
Eq. (2.3) is solved in several time intervals and in each interval (ti , ti+1) and the value Bti enters
into the equation as a parameter. Differentiability with respect to parameters of these types is
harder to prove. Given these difficulties, we approximate the equation as follows.

For ϵ ∈ (0, 1], set aϵ := a ∨ ϵ I so that we have

Ḡϵ(γ ) := sup


1
2

tr [aγ ] | aϵ ≤ a ≤ a

.

We then mollify Ḡϵ . Indeed, let η : Sd
→ [0, 1] be a regular bump function, i.e., the support of

η is the unitary ball O1 and


O1
η(γ )dγ = 1. We then define

Gϵ(γ ) :=

∫
O1

Ḡϵ(γ + ϵγ ′) η(γ ′) dγ ′.

It can be shown that
1
2

tr [aϵγ ′
] ≤ Gϵ(γ + γ ′)− Gϵ(γ ) ≤

1
2

tr [aγ ′
],

and that there is a constant C∗ satisfying

0 ≤ Gϵ(γ )− Ḡϵ(γ ) ≤ C∗ϵ,

where the left inequality is due to the fact that Ḡε is convex. Moreover Gϵ is smooth and convex.
Thus, we can define the Legendre transform of Gϵ by

Lϵ(a) := sup
γ∈Sd


1
2

tr [aγ ] − Gϵ(γ )


.

Then Lϵ(a) is finite only if aϵ ≤ a ≤ a. Also, −C∗ϵ ≤ Lε(a) ≤ 0 for all aϵ ≤ a ≤ a and

Gϵ(γ ) := sup
aϵ≤a≤a


1
2

tr [aγ ] − Lϵ(a)

.

We are now ready to prove the approximation result. Recall thatM ⊂ L2
P is the subset for which

the representation (5.1) holds.

Proposition A.1. Assume that a and a satisfy (2.1). Then, Li p ⊂ M.

Proof. Let ξ ∈ Li p. Then ξ = ϕ(Bt1 , . . . , Btn ) for some bounded Lipschitz function ϕ and
0 ≤ t1 ≤ · · · ≤ tn = 1. Let {vi }

n
i=1 be the solutions of (2.3). Then, the vi ’s are bounded and

Lipschitz continuous. Moreover, by the definition of the G-expectations

EG
t [ξ ] = vi (t, Bt1 , . . . , Bti−1 , Bt ), t ∈ [ti−1, ti ).

We approximate vi as follows. Let ϕϵ be a smooth, bounded approximation of ϕ such that
‖ϕϵ − ϕ‖∞ tends to zero and ‖∇ϕϵ‖∞ ≤ ‖∇ϕ‖∞. Define vϵi (t, x1, . . . , xi , x) recursively as in
the definition of G-expectations in Section 2 with data ϕϵ(Bt1 , . . . , Btn ) and the nonlinearity Gϵ .
Indeed, vϵi is the solution of

−
∂

∂t
vϵi (t, x1, . . . , xi−1, x)− Gϵ(D2

xv
ϵ
i (t, x1, . . . , xi−1, x)) = 0, (A.1)
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on the interval [ti−1, ti ) with final data vϵi (ti , x1, . . . , xi−1, x) = vϵi+1(ti , x1, . . . , xi−1, x, x).
In the interval [tn−1, 1), vϵn(t, x1, . . . , xn−1, x) solves (A.1) with data vϵn(1, x1, . . . , xn−1, x) =

ϕϵ(x1, . . . , xn−1, x).
We claim that the celebrated regularity result of [11] (Theorem 1, Section 6.3, page 292)

applies and that vϵi (t, x1, . . . , xi−1, x) is a smooth function of (t, x) ∈ (ti , ti+1) × Rd . Indeed,
the nonlinearity Gϵ depends only on the Hessian variable. Moreover, it is constructed in such
a way that all of its derivatives with respect to γ are bounded on all of the space. Hence this
nonlinearity Gϵ can be directly shown to belong to the class of functions considered in the
Definition 5.5.1 of [11]. Moreover, in the notation of Theorem 1 of Section 6.3 in [11] (page
292), the domain Q = (0, 1) × Rd . Therefore, this theorem applies, to yield existence and
interior regularity. To obtain regularity up to the terminal condition, we use Theorem 2(b) in [11]
(Section 6.3, page 295). We may then use the stochastic control representation of this smooth
and classical solution to obtain bounds. Indeed, the boundedness and the Lipschitz estimate are
immediate consequences of the fact that the equation is translation invariant (or equivalently, the
nonlinearity Gϵ depends only on the Hessian). Hence the solution is bounded and Lipschitz in
all variables. Moreover the uniform Lipschitz constant of ϕ is preserved and for each i , we have

lim
ε→0

‖vϵi − vi‖∞ = 0, sup
0<ϵ≤1

‖∇vϵi ‖∞ ≤ ‖∇ϕ‖∞. (A.2)

For t ∈ (ti , ti+1), we set

Mϵ
t := vϵi (t, Bt1 , . . . , Bti−1 , Bt ),

H ϵ
t := ∇xv

ϵ
i (t, Bt1 , . . . , Bti−1 , Bt ),

K ϵ
t := Gϵ(D2

xv
ϵ
i (t, Bt1 , . . . , Bti−1 , Bt ))−

1
2

tr [ât D2
xv
ϵ
i (t, Bt1 , . . . , Bti−1 , Bt )],

and so

dMϵ
t = H ϵ

· dBt − dK ϵ
t .

Let Pϵ be defined exactly as P but with lower bound aϵ in (3.1). Then, by the definition of Gϵ

and Pϵ , we have that K ϵ is non-decreasing P-almost surely for every P ∈ Pϵ . But also since
Lϵ ≥ −C∗ϵ, we have

− C∗ϵ ≤ sup
P∈Pϵ

EP[−Kϵ
1] ≤ 0. (A.3)

It follows from (A.2) that Mϵ
t converges to Mt := EG

t [ξ ]. Also, |H ϵ
t | is uniformly bounded in

ϵ due to the Lipschitz estimate on vϵi . Hence H ϵ
∈ H2

G . Also Proposition 5.9 (applied with Pϵ
instead of P) yields

‖K ϵ
‖S2
Pϵ

≤ C‖Mϵ
‖S2
Pϵ

≤ C‖ξ‖∞.

Moreover, noting that Pε is decreasing as ε increases, by Proposition 5.10 we obtain the
following estimate:

‖H ϵ
− H ϵ′

‖H2
Pϵ0

+ ‖K ϵ
− K ϵ′

‖S2
Pϵ0

≤ C(ϵ0), 0 < ϵ, ϵ′
≤ ϵ0,

where

C(ϵ0) := sup
0<ϵ,ϵ′≤ϵ0

(‖Mϵ
− Mϵ′

‖S2
Pϵ0

+ ‖Mϵ
− Mϵ′

‖
1/2
S2
Pϵ0
(‖K ϵ

‖S2
Pϵ0

+ ‖K ϵ′
‖S2
Pϵ0
))

≤ sup
0<ϵ,ϵ′≤ϵ0

(‖Mϵ
− Mϵ′

‖S2
Pϵ0

+ ‖Mϵ
− Mϵ′

‖
1/2
S2
Pϵ0
(2‖ξ‖∞)).
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Since Mϵ converges uniformly to Mt , C(ϵ0) tends to zero with ϵ0. Therefore {(H ϵ, K ϵ)}ϵ is a
Cauchy sequence in H2

Pϵ0 × S2
Pϵ0 for every ϵ0.

By the closure results, Theorems 5.4 and 5.8, we conclude that there are H ∈ H2
Pϵ and

K ∈ I2
Pϵ for every ϵ > 0 and that (M, H, K ) satisfies (5.4) and

‖H‖S2
Pε

+ ‖K‖S2
Pε

≤ C‖ξ‖∞. (A.4)

Clearly H and K are independent of ε. Since by definition and by (3.1)

P =


ϵ>0

Pϵ,

we conclude from the uniform estimates (A.4) that H ∈ H2
P , K ∈ I2

P . Moreover, this yields that
H ∈ H2

P and also −K is a G-martingale by (A.3). Since Mt = EG
t [ξ ], we have shown that there

is a martingale representation for the arbitrary random variable ξ ∈ Li p. Hence ξ ∈ M. �

A.2. Lp
P -spaces

In this section we study the properties of the L2
P space. The following result, together with

the example that follows it, implies Lemma 4.1.

Lemma A.2. For every p > 2, there exists C p such that for ξ ∈ Li p,

‖ξ‖L2
P

≤ C p‖ξ‖Lp
G
.

Proof. Since ξ ∈ Li p, by its definition in Section 2.1, Mt := EG
t [ξ ] is continuous. Moreover,

for each P ∈ P , by Proposition 3.4 we have Mt = ess supP′∈P(t,P)EP
′

t [ξ ], P-a.s. Set M∗
t :=

sup0≤s≤t Mt . It suffices to show that

EP[|M∗

1 |
2
] ≤ C p‖ξ‖

2
Lp

G
for all P ∈ P.

Now fix P ∈ P . Without loss of generality we may assume ξ ≥ 0.
For any λ > 0, set τ̂ := τ̂λ := inf{t : Mt ≥ λ}. Since M is continuous, τ̂ is an F-stopping

time and

P(M∗

1 ≥ λ) = P(τ̂ ≤ 1) ≤
1
λ

EP[Mτ̂1{τ̂≤1}].

By Neveu [12, Proposition VI-1-1], there exists a sequence {P j , j ≥ 1} ⊂ P(τ̂ ,P) defined in
(3.3) such that

Mτ̂ = sup
j≥1

EP j
τ̂

[ξ ], P-a.s.

For each n ≥ 1, define

Mn
τ̂

:= sup
1≤ j≤n

EP j
τ̂

[ξ ].

Then Mn
τ̂

↑ Mτ̂ , P-a.s. Fix n. Set A j := {Mn
τ̂

= EP j
τ̂

[ξ ]}, 1 ≤ j ≤ n, and Ã1 := A1,
Ã j := A j \ ∪1≤i< j Ai , j = 2, . . . , n. Then { Ã j , 1 ≤ j ≤ n} ⊂ F B

τ̂
form a partition of Ω .
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Define P̂n by

P̂n(E) :=

n−
j=1

P j (E ∩ Ã j ).

We claim that

P̂n
∈ P(τ̂ ,P) and Mn

τ̂
= EP̂

n

τ̂
[ξ ], P̂na.s. (A.5)

In fact, P̂n is obviously a probability measure and, since P j ∈ P(τ̂ ,P), P̂n
= P on F B

τ̂
. Then

B is a P̂-martingale on [0, τ̂ ]. Moreover, for any stopping time τ ≥ τ̂ and any bounded F B
τ -

measurable random variable η, since B is a P j -martingale and Ã j ∈ F B
τ̂

⊂ F B
τ , we have

EP̂
n
[B1η] =

n−
j=1

EP̂
n
[B1η1 Ã j

] =

n−
j=1

EP j [B1η1 Ã j
]

=

n−
j=1

EP j [B1η1 Ã j
] =

n−
j=1

EP j [Bτη1 Ã j
] = EP̂

n
[Bτη].

Therefore, EP̂n
[B1|F B

τ ] = Bτ , P̂n-a.s. Hence B is a P̂n-martingale on [τ̂ , 1]. So P̂n is a
martingale measure. By (3.1), for each j there exists a constant c j > 0 such that B BT

− a
and B BT

− (c j Id ∨ a) are a P j -supermartingale and a P j -submartingale, respectively. Set
c := min1≤ j≤n c j > 0. Similarly one can show that B BT

− a and B BT
− (cId ∨ a) are a

P̂n-supermartingale and a P̂n-submartingale, respectively. This implies that P̂n satisfies (3.1)
and therefore P̂n

∈ P(τ̂ ,P). Finally, for any bounded F B
τ̂

-measurable random variable η, since
Ã j ⊂ A j , we have

EP̂
n
[ξη] =

n−
j=1

EP̂
n
[ξη1 Ã j

] =

n−
j=1

EP j [EP j
τ̂

[ξ ]η1 Ã j
]

=

n−
j=1

EP j [Mτ̂η1 Ã j
] =

n−
j=1

EP[Mτ̂η1 Ã j
] = EP[Mτ̂η] = EP̂

n
[Mτ̂η].

Hence Mn
τ̂

= EP̂n

τ̂
[ξ ], P̂n-a.s. and this proves the claim (A.5).

Now let q := p/(p − 1) be the conjugate of p. We directly estimate that

EP[Mn
τ̂

1{τ̂≤1}] = EP̂
n
[Mn

τ̂
1{τ̂≤1}] = EP̂

n
[EP̂

n

τ̂
[ξ ]1{τ̂≤1}] = EP̂

n
[ξ1{τ̂≤1}]

≤ [EP̂
n
(|ξ |p)]

1
p [P̂n(τ̂ ≤ 1)]

1
q = [EP̂

n
(|ξ |p)]

1
p [P(M∗

1 ≥ λ)]
1
q

≤ ‖ξ‖Lp
G
[P(M∗

1 ≥ λ)]
1
q .

We let n → ∞ to arrive at

P(M∗

1 ≥ λ) ≤
1
λ

EP[M∗

τ̂
1{τ̂≤1}] ≤ lim

n→∞

1
λ

EP[Mn
τ̂

1{τ̂≤1}] ≤
1
λ

‖ξ‖Lp
G
[P(M∗

1 ≥ λ)]
1
q .

Therefore,

P(M∗

1 ≥ λ) ≤
1
λp ‖ξ‖

p
Lp

G
,
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and so for any fixed λ0,

EP[|M∗

1 |
2
] = 2

∫
∞

0
λP(M∗

1 ≥ λ)dλ ≤ 2
∫ λ0

0
λdλ+ 2

∫
∞

λ0

λP(M∗

T ≥ λ)dλ

≤ λ2
0 + 2‖ξ‖

p
Lp

G

∫
∞

λ0

dλ
λp−1 = λ2

0 +
2

p − 2
‖ξ‖

p
Lp

G
λ

2−p
0 .

We choose λ0 := ‖ξ‖Lp
G

to conclude that

EP[|M∗

1 |
2
] ≤ C p‖ξ‖

2
Lp

G
. �

We next construct a bounded random variable which is not in L1
G .

Example A.3. Let d = 1, a = 1, a = 2, E := {limt↓0 Bt/


2t ln ln 1

t = 1}. We claim that

1E ∉ L1
G . Indeed, assume that 1E ∈ L1

G . Then there exists ξn = ϕ(Bt1 , . . . , Btn ) ∈ Li p such
that EG

[|ξn − 1E |] < 1
3 . For θ ∈ [0, 1], define aθt := 1 + θ1[0,t1)(t) and Pθ := Paθ . Define

ψ(x) := EP0 [ϕ(x, x + Bt2−t1 , . . . , x + Btn−t1)]. Since E ∈ F0+ ⊂ Ft1 , for any θ ∈ [0, 1], we
have the following inequality:

EP
θ

[|ψ(Bt1)− 1E |] = EP
θ

[|EP
θ

t1 [ϕ(Bt1 , . . . , Btn )] − 1E |]

≤ EP
θ

[|ϕ(Bt1 , . . . , Btn )− 1E |] <
1
3
.

Note that P0(E) = 1 and Pθ (E) = 0 for all θ > 0. Then

EP0 [|ψ(Bt1)− 1|] <
1
3

and EP
θ

[|ψ(Bt1)|] <
1
3

for all θ > 0.

The latter implies that

EP0 [|ψ(Bt1)|] = lim
θ↓0

EP0 [|ψ((1 + θ)
1
2 Bt1)|] = lim

θ↓0
EP

θ

[|ψ(Bt1)|] ≤
1
3
.

Thus

1 ≤ EP0 [|ψ(Bt1)− 1|] + EP0 [|ψ(Bt1)|] ≤
1
3

+
1
3

=
2
3
,

yielding a contradiction. Hence 1E ∉ L1
G . �
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