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Abstract

This paper is on developing stochastic analysis simultaneously under a general family of prob-

ability measures that are not dominated by a single probability measure. The interest in this
question originates from the probabilistic representations of fully nonlinear partial differential
equations and applications to mathematical finance. The existing literature relies either on the
capacity theory (Denis and Martini [[5]]), or on the underlying nonlinear partial differential equa-
tion (Peng [[13]]). In both approaches, the resulting theory requires certain smoothness, the so
called quasi-sure continuity, of the corresponding processes and random variables in terms of
the underlying canonical process. In this paper, we investigate this question for a larger class
of “non-smooth" processes, but with a restricted family of non-dominated probability measures.
For smooth processes, our approach leads to similar results as in previous literature, provided
the restricted family satisfies an additional density property. .
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1 Introduction

It is well known that all probabilistic constructions crucially depend on the underlying probability
measure. In particular, all random variables and stochastic processes are defined up to null sets of
this measure. If, however, one needs to develop stochastic analysis simultaneously under a family
of probability measures, then careful constructions are needed as the null sets of different measures
do not necessarily coincide. Of course, when this family of measures is dominated by a single
measure this question trivializes as we can simply work with the null sets of the dominating measure.
However, we are interested exactly in the cases where there is no such dominating measure. An
interesting example of this situation is provided in the study of financial markets with uncertain
volatility. Then, essentially all measures are orthogonal to each other.

Since for each probability measure we have a well developed theory, for simultaneous stochastic
analysis, we are naturally led to the following problem of aggregation. Given a family of random
variables or stochastic processes, X¥ , indexed by probability measures PP, can one find an aggregator
X that satisfies X = X¥, P—almost surely for every probability measure P? This paper studies
exactly this abstract problem. Once aggregation is achieved, then essentially all classical results of
stochastic analysis generalize as shown in Section [6] below.

This probabilistic question is also closely related to the theory of second order backward stochastic
differential equations (2BSDE) introduced in [3]]. These type of stochastic equations have several
applications in stochastic optimal control, risk measures and in the Markovian case, they provide
probabilistic representations for fully nonlinear partial differential equations. A uniqueness result
is also available in the Markovian context as proved in [3]] using the theory of viscosity solutions.
Although the definition given in [3]] does not require a special structure, the non-Markovian case,
however, is better understood only recently. Indeed, [17] further develops the theory and proves
a general existence and uniqueness result by probabilistic techniques. The aggregation result is
a central tool for this result and in our accompanying papers [[15} (16, [17]]. Our new approach to
2BSDE is related to the quasi sure analysis introduced by Denis and Martini [[5] and the G-stochastic
analysis of Peng [[13]]. These papers are motivated by the volatility uncertainty in mathematical
finance. In such financial models the volatility of the underlying stock process is only known to
stay between two given bounds 0 < a < a. Hence, in this context one needs to define probabilistic
objects simultaneously for all probability measures under which the canonical process B is a square
integrable martingale with absolutely continuous quadratic variation process satisfying

adt <d(B), <adt.

Here d(B), is the quadratic variation process of the canonical map B. We denote the set of all such
measures by &, but without requiring the bounds a and a, see subsection

As argued above, stochastic analysis under a family of measures naturally leads us to the problem of
aggregation. This question, which is also outlined above, is stated precisely in Section (3} Definition
The main difficulty in aggregation originates from the fact that the above family of probabil-
ity measures are not dominated by one single probability measure. Hence the classical stochastic
analysis tools can not be applied simultaneously under all probability measures in this family. As a
specific example, let us consider the case of the stochastic integrals. Given an appropriate integrand
H, the stochastic integral I gP = fot H,dB, can be defined classically under each probability measure
IP. However, these processes may depend on the underlying probability measure. On the other hand

1845



we are free to redefine this integral outside the support of IP. So, if for example, we have two proba-
bility measures P, P? that are orthogonal to each other, see e.g. Example then the integrals are
immediately aggregated since the supports are disjoint. However, for uncountably many probability
measures, conditions on H or probability measures are needed. Indeed, in order to aggregate these
integrals, we need to construct a stochastic process I, defined on all of the probability space so that
I, =1 F for all t, IP—almost surely. Under smoothness assumptions on the integrand H this aggrega-
tion is possible and a pointwise definition is provided by Karandikar [[10] for cadlag integrands H.
Denis and Martini [5] uses the theory of capacities and construct the integral for quasi-continuous
integrands, as defined in that paper. A different approach based on the underlying partial differen-
tial equation was introduced by Peng [[13] yielding essentially the same results as in [5]. In Section
[6] below, we also provide a construction without any restrictions on H but in a slightly smaller class
than 2.

For general stochastic processes or random variables, an obvious consistency condition (see Defini-
tion below) is clearly needed for aggregation. But Example also shows that this condition
is in general not sufficient. So to obtain aggregation under this minimal condition, we have two
alternatives. First is to restrict the family of processes by requiring smoothness. Indeed the previ-
ous results of Karandikar [[10]], Denis-Martini [|5]], and Peng [[13]] all belong to this case. A precise
statement is given in Section [3| below. The second approach is to slightly restrict the class of non-
dominated measures. The main goal of this paper is to specify these restrictions on the probability
measures that allows us to prove aggregation under only the consistency condition (3.4).

Our main result, Theorem is proved in Section |5 For this main aggregation result, we assume
that the class of probability measures are constructed from a separable class of diffusion processes as
defined in subsection Definition This class of diffusion processes is somehow natural and
the conditions are motivated from stochastic optimal control. Several simple examples of such sets
are also provided. Indeed, the processes obtained by a straightforward concatenation of determin-
istic piece-wise constant processes forms a separable class. For most applications, this set would be
sufficient. However, we believe that working with general separable class helps our understanding
of quasi-sure stochastic analysis.

The construction of a probability measure corresponding to a given diffusion process, however,
contains interesting technical details. Indeed, given an IF-progressively measurable process a, we
would like to construct a unique measure IP*. For such a construction, we start with the Wiener
measure P, and assume that a takes values in SZO (symmetric, positive definite matrices) and also

. t . i
satisfy f o 1aslds < oo for all t > 0, Py-almost surely. We then consider the PP; stochastic integral

t
X ::f al’?dB;. (1.1)
0

Classically, the quadratic variation density of X* under PP, is equal to a. We then set Pg := Py o
(X*)™! (here the subscript S is for the strong formulation). It is clear that B under IPS has the same
distribution as X under IP,. One can show that the quadratic variation density of B under P is
equal to a satisfying a(X*(w)) = a(w) (see Lemma below for the existence of such a). Hence,
Ps e P . Let P C P, be the collection of all such local martingale measures IPS. Barlow [[I]] has
observed that this inclusion is strict. Moreover, this procedure changes the density of the quadratic
variation process to the above defined process a. Therefore to be able to specify the quadratic
variation a priori, in subsection we consider the weak solutions of a stochastic differential
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equation ((4.4) below) which is closely related to (1.I). This class of measures obtained as weak
solutions almost provides the necessary structure for aggregation. The only additional structure
we need is the uniqueness of the map from the diffusion process to the corresponding probability
measure. Clearly, in general, there is no uniqueness. So we further restrict ourselves into the class
with uniqueness which we denote by .. This set and the probability measures generated by them,
Py, are defined in subsection [4.2]

The implications of our aggregation result for quasi-sure stochastic analysis are given in Section [6]
In particular, for a separable class of probability measures, we first construct a quasi sure stochastic
integral and then prove all classical results such as Kolmogrov continuity criterion, martingale rep-
resentation, Ito’s formula, Doob-Meyer decomposition and the Girsanov theorem. All of them are
proved as a straightforward application of our main aggregation result.

If in addition the family of probability measures is dense in an appropriate sense, then our aggrega-
tion approach provides the same result as the quasi-sure analysis. These type of results, of course,
require continuity of all the maps in an appropriate sense. The details of this approach are investi-
gated in our paper [[16]], see also Remark(7.5|in the context of the application to the hedging problem
under uncertain volatility. Notice that, in contrast with [5], our approach provides existence of an
optimal hedging strategy, but at the price of slightly restricting the family of probability measures.

The paper is organized as follows. The local martingale measures 2, and a universal filtration
are studied in Section |2l The question of aggregation is defined in Section (3| In the next section,
we define &, &, and then the separable class of diffusion processes. The main aggregation
result, Theorem is proved in Section [5| The next section generalizes several classical results
of stochastic analysis to the quasi-sure setting. Section [/ studies the application to the hedging
problem under uncertain volatility. In Section [8| we investigate the class 25 of mutually singular
measures induced from strong formulation. Finally, several examples concerning weak solutions
and the proofs of several technical results are provided in the Appendix.

Notations. We close this introduction with a list of notations introduced in the paper.

e Q:={weC(Ry, R%) : w(0) = 0}, B is the canonical process, PP, is the Wiener measure on .

e For a given stochastic process X, IFX is the filtration generated by X.

IF :=F? = {Z,},5 is the filtration generated by B.

F*:={Z ,t >0}, where Z" :=Z,, :=( .., Z

gF =2 v 4T (Z)and ?lf =F v AP (F,), where

NP (9) = {E C Q: there exists E € ¢ such that ECc £ and P[E] = 0}.

N is the class of 2 —polar sets defined in Definition [2.2]

F2 = (\pewp (FF V A ) is the universal filtration defined in (2.3).

T is the set of all IF—stopping times 7 taking values in R, U {oo}.

F? is set of all ¥ —stopping times.
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e (B) is the universally defined quadratic variation of B, defined in subsection

a is the density of the quadratic variation (B), also defined in subsection[2.1]

e 5, is the set of d X d symmetric matrices.

. S;O is the set of positive definite symmetric matrices.

e P, is the set of measures defined in subsection

o P C Py is defined in the Introduction, see also Lemma

o P ., C P, are the measures with the martingale representation property, see .

o Sets Py, P, Py are defined in subsection and section as the subsets of 2y, P g, P s
with the additional requirement of weak uniqueness.

e .o is the set of integrable, progressively measurable processes with values in S;O.

o oy = U]Peﬁw o (P) and .o/, (IP) is the set of diffusion matrices satisfying .
o .y, A, dyy are defined as above using Py, Ps, Py, see section[8]

e Sets O, Q‘Tf’b and the stopping time 0¢° are defined in subsection

e Function spaces I.°, LP(PP), L?, and the integrand spaces H°, HP(IP%), H? (P%), HP, H? are
defined in Section[6l

2 Non-dominated mutually singular probability measures

Let Q:=C(R,, R?) be as above and IF = I'® be the filtration generated by the canonical process B.
Then it is well known that this natural filtration I is left-continuous, but is not right-continuous. This
paper makes use of the right-limiting filtration I, the P—completed filtration F¥ := {ﬂtIP ,t >0},

—P —
and the P—augmented filtration ' := {& ItP, t > 0}, which are all right continuous.

2.1 Local martingale measures

We say a probability measure PP is a local martingale measure if the canonical process B is a local
martingale under P. It follows from Karandikar [[10] that there exists an IF—progressively measur-
able process, denoted as f Ot B.dB,, which coincides with the It&’s integral, IP—almost surely for all
local martingale measure IP. In particular, this provides a pathwise definition of

t

—1
(B) = BtBZ - Zf BidB; and a;:= 1,;1{{)1;[<B>t —(B)¢—¢]-
0

Clearly, (B) coincides with the IP—quadratic variation of B, IP—almost surely for all local martingale
measure IP.
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Let 2, denote the set of all local martingale measures P such that
IP-almost surely, (B), is absolutely continuous in ¢t and @ takes values in S>O, 2.1)

where S;O denotes the space of all d x d real valued positive definite matrices. We note that, for

different P;,IP, € &, in general P; and IP, are mutually singular, as we see in the next simple
example. Moreover, there is no dominating measure for &, .

Example 2.1. Letd =1, P; :=Pjo (vV2B)™!, and Q; := {(B), = (1 +i)t,t > 0}, i = 0,1. Then,
]Po, ]Pl S ‘@W3 ]Po(ﬂo) = ]PI(QI) = 1, ]PO(Ql) = ]PI(QO) = O, and QO and Ql are dlSJOlnt That iS, ]PO
and P, are mutually singular.

In many applications, it is important that P € 2, has martingale representation property (MRE

—P =P
for short), i.e. for any (I ,IP)-local martingale M, there exists a unique (IP-almost surely) I -
progressively measurable RY valued process H such that

t t
J |a}/*H,|*ds < oo and M, =Mo+J H,dB,, t>0, P-almost surely.
0 0

We thus define
B o 1= {IP € @ : B has MRP under ]P}. (2.2)

The inclusion @ ,,, € @, is strict as shown in Example below.

Another interesting subclass is the set ¢ defined in the Introduction. Since in this paper it is not
directly used, we postpone its discussion to Section [8]

2.2 A universal filtration

We now fix an arbitrary subset # C #,. By a slight abuse of terminology, we define the following
notions introduced by Denis and Martini [5]].

Definition 2.2. (i) We say that a property holds & -quasi-surely, abbreviated as #-q.s., if it holds
IP-almost surely for all P € &.

(ii) Denote Np := Npeop N T (Z ) and we call P-polar sets the elements of .

(iii) A probability measure P is called absolutely continuous with respect to & if IP(E) = 0 for all
E € Np.

In the stochastic analysis theory, it is usually assumed that the filtered probability space satisfies
the usual hypotheses. However, the key issue in the present paper is to develop stochastic analysis
tools simultaneously for non-dominated mutually singular measures. In this case, we do not have
a good filtration satisfying the usual hypotheses under all the measures. In this paper, we shall use
the following universal filtration '¥ for the mutually singular probability measures {P,P € 2}:

F?:={2%},59 where F7 := m (FF v Ap) for t > 0. (2.3)
Pez

Moreover, we denote by & (resp. 77) the set of all IF-stopping times 7 (resp., 'Z -stopping times
1) taking values in R, U {oo}.
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—P
Remark 2.3. Notice that F* ¢ F¥ c T . The reason for the choice of this completed filtration F¥
is as follows. If we use the small filtration IF", then the crucial aggregation result of Theorem

below will not hold true. On the other hand, if we use the augmented filtrations FP, then Lemma
[5.2]below does not hold. Consequently, in applications one will not be able to check the consistency
condition in Theorem and thus will not be able to apply the aggregation result. See also
Remarks and below. However, this choice of the completed filtration does not cause any
problems in the applications.

We note that ¥ is right continuous and all #-polar sets are contained in 9(? . But '? is not
complete under each P € &. However, thanks to the Lemma [2.4 below, all the properties we need
still hold under this filtration.

For any sub-o—algebra ¢ of Z,, and any probability measure P, it is well-known that an §;PO-
measurable random variable X is [¢ V AT (Z,,)]—measurable if and only if there exists a ¥-
measurable random variable X such that X = X, P-almost surely. The following result ex-
tends this property to processes and states that one can always consider any process in its -
progressively measurable version. Since F* c ¥, the F*-progressively measurable version is also
['? -progressively measurable. This important result will be used throughout our analysis so as to
consider any process in its I'Z -progressively measurable version. However, we emphasize that the
['? -progressively measurable version depends on the underlying probability measure P.

Lemma 2.4. Let P be an arbitrary probability measure on the canonical space (2, #.,), and let X be

—P
an IF" -progressively measurable process. Then, there exists a unique (IP-almost surely) T -progressively
measurable process X such that X = X, P—almost surely. If in addition, X is cadlag P-almost surely,
then we can choose X to be cadlag P-almost surely.

The proof is rather standard but it is provided in Appendix for completeness. We note that, the
identity X = X, IP-almost surely, is equivalent to that they are equal dt x dIP-almost surely. However,
if both of them are cadlag, then clearly X, = X,, 0 < t < 1, P-almost surely.

3 Aggregation

We are now in a position to define the problem.

Definition 3.1. Let # C @, and let {X* P € #} be a family of I"?-progressively measur-
able processes. An I'? -progressively measurable process X is called a 2-aggregator of the family
{XP, P e 2} if X =X, P-almost surely for every P € 2.

Clearly, for any family {X*, P € 22} which can be aggregated, the following consistency condition
must hold.

Definition 3.2. We say that a family {X¥,P € @} satisfies the consistency condition if, for any
P,,P, € 2, and © € 7 satisfying P; = P, on ﬁ'? we have

x®1 =xP20n [0, %], IP; — almost surely. (3.4)

Example below shows that the above condition is in general not sufficient. Therefore, we are
left with following two alternatives.
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e Restrict the range of aggregating processes by requiring that there exists a sequence of ¥ -
progressively measurable processes {X"},>; such that X" — X¥ P-almost surely as n — oo

for all P € &. In this case, the #-aggregator is X := H,Hoox ". Moreover, the class &
can be taken to be the largest possible class 2,,. We observe that the aggregation results
of Karandikar [[10]], Denis-Martini [5]], and Peng [[13]] all belong to this case. Under some
regularity on the processes, this condition holds.

e Restrict the class & of mutually singular measures so that the consistency condition (3.4) is
sufficient for the largest possible family of processes {X*, P € #}. This is the main goal of the
present paper.

We close this section by constructing an example in which the consistency condition is not sufficient
for aggregation.

Example 3.3. Let d = 2. First, for each x,y € [1,2], let P := P, o (v/xB?,,/yB?)! and
Qyy = {(BY), = xt,(B?), = yt,t > 0}. Cleary for each (x,y), P € 2, and P[0, ] =1.
Next, for each a € [1, 2], we define

2
1
P,[E] = Ef (P%*[E] + P*“[E])dz forall EecZ,.
1

We claim that P, € ;. Indeed, for any t; < t, and any bounded ., -measurable random variable
7, we have

2
2P [(Btz - Brl)n] = J {E]Pa’z [(sz —Bfl)n] +EP” [(sz - Btl)n]}dz =0.
1

Hence P, is a martingale measure. Similarly, one can easily show that I,dt < d(B), < 2I,dt,
P,-almost surely, where I, is the 2 x 2 identity matrix.

Fora € [1,2] set
Qg :={(B"); =at,t 20 U{(B*), =at,t >0} 2 Use(19) [z U]
so that IP,[Q,] = 1. Also for a # b, we have Q, N Q) = Q, , U, , and thus
P[22, NQ2] =P, [2,NQ] =0.
Now let & := {P,,a € [1,2]} and set X{(w) = a for all t,w. Notice that, for a # b, P, and P,
disagree on 9‘6L C ﬁ(‘? . Then the consistency condition holds trivially. However, we claim that

there is no #-aggregator X of the family {X“,a € [1,2]}. Indeed, if there is X such that X = X9,
P ,-almost surely for all a € [1, 2], then for any a € [1, 2],

2
1=P,[X=a] =P,[X =d] = %J (PG:Z[X, = a] + P> [X =a])dz.
1

Let A, the Lebesgue measure on [1,2]" for integer n > 1. Then, we have
2\ ({z PY[X =q] = 1}) = ({z PPUX =a] = 1}) —1, forallae[1,2].

Set A; :={(a,2) : P¥*[X =a] =1}, Ay :={(z,a) : P*?[X = a] =1} so that A,(A;) = A,(A,) = 1.
Moreover, A; NA;, C {(a,a) : a € (0,1]} and A,(A; NA,) = 0. Now we directly calculate that
1> A5(A; UAy) = A9(A1) + A5(A5) — A5(A; NA,) = 2. This contradiction implies that there is no
aggregator.
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4 Separable classes of mutually singular measures

The main goal of this section is to identify a condition on the probability measures that yields aggre-
gation as defined in the previous section. It is more convenient to specify this restriction through the
diffusion processes. However, as we discussed in the Introduction there are technical difficulties in
the connection between the diffusion processes and the probability measures. Therefore, in the first
two subsections we will discuss the issue of uniqueness of the mapping from the diffusion process to
a martingale measure. The separable class of mutually singular measures are defined in subsection
after a short discussion of the supports of these measures in subsection [4.3]

4.1 Classes of diffusion matrices

Let

t
o = {a Ry — S;O | IF-progressively measurable and J lag|ds < oo, for all t > 0}.
0

For a given P € &, let
o y(P) = {a €./ :a=a, P-almost surely}. 4.1)
Recall that a is the density of the quadratic variation of (B) and is defined pointwise. We also define

IPE?W
A subtle technical point is that .¢fy, is strictly included in .¢/. In fact, the process

a; = 1gg,593 +31g4,<23 is clearly in o \ EW.

For any P € &, and a € ./, (P), by the Lévy characterization, the following Itd’s stochastic
integral under IP is a IP-Brownian motion:

t t
wr = J a;'/2dB, = J a;?dB;, t>0. P-as. (4.2)
0 0

t

Also since B is the canonical process, a = a(B.) and thus

dB, = a}/ 2(B,)th]P, IP-almost surely, and Wt]P is a IP-Brownian motion. 4.3)

4.2 Characterization by diffusion matrices

In view of (4.3)), to construct a measure with a given quadratic variation a € .o/, we consider the
stochastic differential equation,

dX, = ag/Z(X.)dBt, Py-almost surely. (4.4)

In this generality, we consider only weak solutions IP which we define next. Although the following
definition is standard (see for example Stroock & Varadhan [[18]]), we provide it for specificity.
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Definition 4.1. Let a be an element of .¢f ;.

(i) For IF—stopping times 7; < T, € & and a probability measure P! on F;,, we say that P is a
weak solution of (4.4) on [71, T5] with initial condition P!, denoted as P € (7,75, P!, a), if the
followings hold:

L.P=P'onZ, ;

2. The canonical process B, is a IP-local martingale on [7{, T5];

3. The process W, := f; as_l/z(B_)st, defined IP—almost surely for all t € [T, T,], is a IP-Brownian
Motion.

(i) We say that the equation has weak uniqueness on [T, T,] with initial condition P! if any
two weak solutions IP and P’ in (7, 7,, P!, a) satisfy P =P’ on F .

(iii) We say that has weak uniqueness if (ii) holds for any 7,7, € & and any initial condition
P! on Z, .

We emphasize that the stopping times in this definition are IF-stopping times.
Note that, for each P € 2, and a € ./, (P), P is a weak solution of li on R, with initial value
P(By = 0) = 1. We also need uniqueness of this map to characterize the measure IP in terms of the
diffusion matrix a. Indeed, if li with a has weak uniqueness, we let P € &, be the unique
weak solution of (4.4) on R, with initial condition IP*(B, = 0) = 1, and define,

Ay = {a € .o/ : (@.4) has weak uniqueness} , By ={P%:a e .oy} (4.5)
We also define

P =P NPy, Ay =1a€ .oy PPy} (4.6)

For notational simplicity, we denote
a a

Fe.=F T =T, forall ac.dy. 4.7)

It is clear that, for each P € &, the weak uniqueness of the equation (4.4) may depend on the
version of a € .o/, (IP). This is indeed the case and the following example illustrates this observation.

Example 4.2. Let ag(t) :=1, ay(t) :=2 and

_  B,-B,
a;(t) =1+ 11 (t), where E:=qlim——

{hlo V2hInlnh!
Then clearly both a, and a, belong to ./y. Also a; = ay, Py-almost surely and a; = a,, P*2-almost
surely. Hence, a; € ./ (Py) N .o/, (P%). Therefore the equation (4.4) with coefficient a; has two
weak solutions P, and P%2. Thus a; ¢ ..

;él}egr‘gr.

Remark 4.3. In this paper, we shall consider only those P € 2, ¢ #,. However, we do not know
whether this inclusion is strict or not. In other words, given an arbitrary IP € &, can we always
find one version a € ./, (IP) such that a € .&/?

It is easy to construct examples in ., in the Markovian context. Below, we provide two classes of
path dependent diffusion processes in .¢#}y,. These sets are in fact subsets of .«/s C ., which is
defined in (8.11]) below. We also construct some counter-examples in the Appendix. Denote

Q:= {(t,x) : tZO,XGC([O,t],IRd)}. (4.8)
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Example 4.4. (Lipschitz coefficients) Let
a, :=0%(t,B.) where 0:Q— Sjo

is Lebesgue measurable, uniformly Lipschitz continuous in x under the uniform norm, and o2(-,0) €
/. Then |i has a unique strong solution and consequently a € .« .

Example 4.5. (Piecewise constant coefficients) Let a = Z;io:o anli;, .. where {7, },50 C T isa
nondecreasing sequence of I'—stopping times with 7o =0, 7, T 00 as n — o0, and a, € &, with
values in S;O for all n. Again ID has a unique strong solution and a € .o},

This example is in fact more involved than it looks like, mainly due to the presence of the stopping
times. We relegate its proof to the Appendix.

4.3 Support of P¢

In this subsection, we collect some properties of measures that are constructed in the previous
subsection. We fix a subset ./ C ¢y, and denote by & := {IP? : a € ./} the corresponding subset
of ;. In the sequel, we may also say

a property holds ./ —quasi surely if it holds & —quasi surely.

For any a € . and any I'? —stopping time © € 77, let

t t
1
Q: = U {J a,ds =f ads, forall t € [0, T + ;]} 4.9)
n>1 0 0
It is clear that
Qe jf’, Q; is non-increasing in t, Q7. =03, and PY(Q])=1. (4.10)

We next introduce the first disagreement time of any a, b € ./, which plays a central role in Section

533
t t
gab ::inf{tZO:J asds;éJ bsds},
0

0
and, for any ' —stopping time © € 77, the agreement set of a and b up to %:
ab._ ¢~ a,b ~ _ pnab _
Q. ={T <0%}u {1 =0% =oo}.
Here we use the convention that inf@ = co. It is obvious that

00t e 7?, 0%’ eF? and QinQlca?’. (4.11)

Remark 4.6. The above notations can be extended to all diffusion processes a, b € .«/. This will be
important in Lemma below.
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4.4 Separability

We are now in a position to state the restrictions needed for the main aggregation result Theorem
Definition 4.7. A subset .o/, C .o}y is called a generating class of diffusion coefficients if
(i) .o/, satisfies the concatenation property: alp )+ b1y, ) € @ fora,b € .o, t = 0.

(ii) %, has constant disagreement times: for all a,b € ., 6% is a constant or, equivalently,
Q%" =@ or Q forall t > 0.

We note that the concatenation property is standard in the stochastic control theory in order to
establish the dynamic programming principle, see, e.g. page 5 in [[14]. The constant disagreement
times property is important for both Lemma below and the aggregation result of Theorem
below. We will provide two examples of sets with these properties, after stating the main restriction
for the aggregation result.

Definition 4.8. We say .« is a separable class of diffusion coefficients generated by ., if ./, C .oy, is
a generating class of diffusion coefficients and .«/ consists of all processes a of the form,

o0 o0
a= ZZ ailglpz o (4.12)

n=0i=1
where (a}'); , C @, (T,), C 7 is nondecreasing with 7o = 0 and

e inf{n: 7, =00} <00, 7, < T,;; whenever 7, < 0o, and each 7, takes at most countably many
values,

e foreachn, {E,i > 1} Cc #, form a partition of Q.

We emphasize that in the previous definition the 7,’s are IF—stopping times and E;' € & . The
following are two examples of generating classes of diffusion coefficients.

Example 4.9. Let ./, C ./ be the class of all deterministic mappings. Then clearly .¢/, C ./, and
satisfies both properties (the concatenation and the constant disagreement times properties) of a
generating class.

Example 4.10. Recall the set Q defined in (4.8). Let 9, be a set of deterministic Lebesgue measur-
able functions o : Q — S;O satisfying,

- 0 is uniformly Lipschitz continuous in x under L.®-norm, and o2(-,0) € ./ and

- for each x € C(R,,RY) and different 0,04 € 9, the Lebesgue measure of the set A(0, 05, X) is
equal to 0, where

A(o1,09,X) = {f 1o1(t,X[o,) = Uz(f,X|[o,t])}-
Let 2 be the class of all possible concatenations of %, i.e. o € 9 takes the following form:
o0
o(t,x) = Y 0(t, 01,1, (LX) EQ,
i=0
for some sequence t; T 0o and 0; € 9, i > 0. Let .o, := {0?(t,B.) : 0 € 9}. It is immediate to check
that .¢/, C ./} and satisfies the concatenation and the constant disagreement times properties. Thus

it is also a generating class.
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We next prove several important properties of separable classes.

Proposition 4.11. Let .«/ be a separable class of diffusion coefficients generated by .«fy. Then .o/ C .oy,
and .of -quasi surely is equivalent to .ofy-quasi surely. Moreover, if .ofy C g, then o C .o,y

We need the following two lemmas to prove this result. The first one provides a convenient structure
for the elements of .&/.

Lemma 4.12. Let ./ be a separable class of diffusion coefficients generated by .«f,. For any a € .«f
and TF-stopping time T € J, there exist T < © € J, a sequence {a,,n > 1} C .o, and a partition
{E,,n>1} C &, of Q, such that T > 7 on {T < o0} and

a, = Zan(t)lEn forall t<*.

n>1

In particular; E, € Q7™ and consequently U,Q7"" = Q. Moreover, if a takes the form (4.12) and
T > T, then one can choose T > T, 1.

The proof of this lemma is straightforward, but with technical notations. Thus we postpone it to the
Appendix.

We remark that at this point we do not know whether a € .«#,,. But the notations %% and Q7"

are well defined as discussed in Remark[4.6] We recall from Definition [4.1|that P € 2 (74,75, P!, a)
means IP is a weak solution of (4.4) on [%;, ¥,] with coefficient a and initial condition P!

Lemma 4.13. Let T,,7, € J with T, < T,, and {a',i > 1} C .}, (not necessarily in .oy

and let {E;,i = 1} C Z. be a partition of Q. Let P° be a probability measure on I, and

Pl € 2 (14,75, P° a') for i > 1. Define

P(E) := Z]Pi(EﬂEi) forall E€ ., and aq, ::ZailEi, te[Ty,7T,].

i>1 i>1

Then P € 2 (71,75, P° a).

Proof. Clearly, P = P° on Z, . It suffices to show that both B, and B,B; — f; a,ds are IP-local
1

martingales on [T, T5].

By a standard localization argument, we may assume without loss of generality that all the random

variables below are integrable. Now for any 7; < 73 < 74 < 7, and any bounded random variable
n € #.,, we have

EP[(B,, ~Bon] = 3 EF[(B.,~B.)nly ]

i>1

SE” [E]Pi (BT4 ~B., I%Jnla] ~0.

i>1

Therefore B is a IP-local martingale on [T, T,]. Similarly one can show that BtBtT - th a,ds is also
1
a IP-local martingale on [7,, T5]. O
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Proof of Proposition Let a € ./ be given as in (4.12)).

(i) We first show that a € .. Fix 6;,0, € 7 with 6; < 6, and a probability measure PP° on T, -
Set

T9:=06; and 7,:=(t,V6;)A60,, n>1.

We shall show that (6, 0,,1P°, a) is a singleton, that is, the on [0y, 0,] with coefficient a
and initial condition IP° has a unique weak solution. To do this we prove by induction on n that
P (%, %, P0, a) is a singleton.

First, let n = 1. We apply Lemmawith T = 7, and choose T = %;. Then, a, = )., a;(t)1g,
for all t < ©,, where a; € ./, and {E;,i > 1} C Z; form a partition of Q. Fori > 1, let P%! be the
unique weak solution in 2 (%, t1,IP°,a;) and set

P%Y(E) := ZIPO’i(E NE;) forall E€ZF; .

i>1

We use Lemma to conclude that P%¢ € 2 (%, %,,PP° a). On the o_ther hand, suppose P €
P (%9, %1, PY, a) is an arbitrary weak solution. For each i > 1, we define P! by

PY(E) :=P(ENE)+P*(EN(E)) forall E€Z: .

We again use Lemma and notice that alg + a;1z) = a;. The result is that Pl e
P (%9,%1,P% a;). Now by the uniqueness in & (%, %;,IP%,a;) we conclude that P! = P% on
F%,. This , in turn, implies that P(E N E;) = PO (ENE,) for all E € Fz and i = 1. Therefore,
P(E) = Zi21 PY(ENE;)=P%(E)forall E € F%,. Hence 2 (%, T4, IP°, a) is a singleton.

We continue with the induction step. Assume that 2 (%, %,,]P°,a) is a singleton, and denote its
unique element by P". Without loss of generality, we assume 7, < 7,,;. Following the same
arguments as above we know that (1, 7,41, P", a) contains a unique weak solution, denoted by
P"*1. Then both B, and B,B] — fot a,ds are P"*1-local martingales on [%,, %,] and on [%,, %,41].
This implies that P"™! € # (%, %,,1, P°, ). On the other hand, let P € 2 (%, %,,1,P° a) be an
arbitrary weak solution. Since we also have P € 2 (%, %,,, P°, a), by the uniqueness in the induction
assumption we must have the equality P = P" on &; . Therefore, P € #(%,, 7,41, P", a). Thus by

uniqueness P = P"*! on .., This proves the induction claim for n + 1.
Finally, note that P™'(E) = P"(E) for all E € #; and m > n. Hence, we may define P*(E) := P"(E)
for E € Z; . Since inf{n : 7, = 0o} < 00, theninf{n : 7, = 6,} < oo and thus Fp, = V;;>1F; . Sowe

can uniquely extend P to Fy,. Now we directly check that P € #(0,, 0, P° @) and is unique.

(ii) We next show that IP*(E) = O for all ./;—polar set E. Once again we apply Lemma with
T = 00. Therefore a, = Y}, a;(t)1g, for all t > 0, where {a;,i > 1} C .o and {E;,i > 1} C F,
form a partition of Q2. Now for any .¢/,-polar set E,

PYE) = Z]P“(EﬂEi) = Z]Pai(E NE;)=0.

i>1 i>1

This clearly implies the equivalence between .«/-quasi surely and .«/,-quasi surely.
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(iii) We now assume ., C .o, and show that a € .. Let M be a IP%-local martingale. We
prove by induction on n again that M has a martingale representation on [0, 7, ] under P for each
n > 1. This, together with the assumption that inf{n : 7,, = 0o} < oo, implies that M has martingale
representation on R, under P, and thus proves that P¢ € .o,

Since T = 0, there is nothing to prove in the case of n = 0. Assume the result holds on [0, 7,].
Apply Lemma [4.12| with T = 7,, and recall that in this case we can choose the 7 to be 7,,;. Hence
A = Doy a;(t)1g, t < Tp4q, where {a;,i > 1} C .o, and {E;,i > 1} C &, form a partition of Q.
For each i > 1, define

M} = [Mnr,,, —M; 1151 o)(t) forall ¢>0.

Then one can directly check that M' is a P%-local martlngale Since a; € .y C ., there exists H'
such that dMl HldBt, P%-almost surely. Now define H, 2121H 1g, Tp <t < Tpyq. Then we
have d M, H +dB;, T, <t < T,yq1, P%almost surely. O

We close this subsection by the following important example.

Example 4.14. Assume ./, consists of all deterministic functions a : R, — S;O taking the form

a, = Z?_Ol it T A, e, 00) Where t; € Q and a,, has rational entries. This is a special case
of Example and thus 4270 C .y. In this case .« is countable. Let .« = {a;};>; and define
P:= ZOO lIPal Then P is a dominating probability measure of all P?, a € .«f, where .« is the

L
separable class of diffusion coefficients generated by .«/,. Therefore, .«/-quasi surely is equivalent to

IP-almost surely. Notice however that .¢/ is not countable.

5 Quasi-sure aggregation

In this section, we fix
a separable class . of diffusion coefficients generated by .</, .1

and denote & := {P%, a € .&/}. Then we prove the main aggregation result of this paper.

For this we recall that the notion of aggregation is defined in Definition and the notations O%?
and Q‘;’b are introduced in subsection

Theorem 5.1 (Quasi sure aggregation). For ./ satisfying (5.1)), let {X%, a € .«/} be a family of 17 -
progressively measurable processes. Then there exists a unique (% —q.s.) @ -aggregator X if and only if
{X% a € .} satisfies the consistency condition

X =xb, P®— almost surely on [0,0%?) foranya € .oy and b€ .o. (5.2)

Moreover, if X¢ is cadlag IP*-almost surely for all a € .o/, then we can choose a #-q.s. cadlag version
of the & -aggregator X.

We note that the consistency condition is slightly different from the condition before. The
condition is more natural in this framework and is more convenient to check in applications.
Before the proof of the theorem, we first show that, for any a, b € ./, the corresponding probability
measures P? and IP? agree as long as a and b agree.
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Lemma 5.2. For .o/ satisfying (5.1) and a, b € .«f, % is an F-stopping time taking countably many
values and

PUENQLY) =P (ENQLY) forall t€F? andEe Z7. (5.3)

Proof. (i) We first show that 6%? is an IF-stopping time. Fix an arbitrary time t,. In view of Lemma
[4.12|with T = ty, we assume without loss of generality that

a, :Zan(t)lEn and b, :an(t)lEn forall t <7,

n>1 n>1

where T > tg, a,, b, € .9, and {E,,n > 1} C &, form a partition of Q2. Then

(0% <oy ={J [0 <o} N E, ] .

n

By the constant disagreement times property of .e%,, 6% is a constant. This implies that {§%b <
to} is equal to either @ or Q. Since E, € Z, , we conclude that {620 <t} e I, for all ¢y = 0. That
is, 0%? is an IF-stopping time.

(ii) We next show that 6%? takes only countable many values. In fact, by (i) we may now apply
Lemma with T = %P, So we may write

a, ZZ&n(t)lﬁn and b, =ZBn(t)1En forall t <8,

n>1 n>1

where 6 > 8% or § = 9% = 0, d,, b, € ., and {E,,n > 1} C Fyas form a partition of Q. Then
it is clear that 0%? = @%wbn on E,, for all n > 1. For each n, by the constant disagreement times
property of .o/, 8%Pn is constant. Hence 6% takes only countable many values.

(iii) We now prove (5.3)). We first claim that,
Enat’ e [%a,b vJV]P”(goo)] forany Ee 22, (5.4)
Indeed, for any ¢t > 0,
,b b _ - ,b b
ENQY’Nn{6*" <t} = En{t<0%’}In{6*" <t}

~ a, 2 __;h a,
= U [Entz<oinfe<e-—jn{et <.

m>1

By (i) above, {6%? < t} € &,. For each m > 1,
]- <o a a
En{t <0%}n{z < t——} €37, T VAT (FR) C TN AN (F),

and (5.4) follows.
By (5.4), there exist E%{, E> € Zyas, i = 1,2, such that

E*' c EnQ2P c E%?, EM c ENQ®P c EP2, and PY(E“?\E®Y) = PP(EP2\E>) = 0.
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Define E! := E®1 UEP! and E? := E*%2 N EP2, then
ELE?>€ Zyus, E'CECE? and PYE2\E')=P°(E2\E))=0.

Thus P*(E N Qg’b) = P%(E?) and P?(E N Qaf’b) = PP(E?). Finally, since E? € Zyas, following the
definition of P® and IP?, in particular the uniqueness of weak solution of (4.4) on the interval
[0,0%], we conclude that PY(E?) = P?(E?). This implies (5.3) immediately. O

Remark 5.3. The property (5.3)) is crucial for checking the consistency conditions in our aggregation
result in Theorem We note that (5.3) does not hold if we replace the completed o —algebra
. —a —b .
ﬂfr‘lﬁf with the augmented o —algebra 9’309}. To see this,letd =1, a, := 1, b, := 141 «)(t).
In this case, 0% = 1. Let 7 := 0, E := Q. One can easily check that Qg’b =Q, PYE) =1,
—a _—b

P®(E) = 0. This implies that E € 98 NZ,and E C Qg’b. However, P4(E) = 1 # 0 = P?(E). See
also Remark [2.3]

Proof of Theorem[5.1} The uniqueness of & —aggregator is immediate. By Lemma and the
uniqueness of weak solutions of on [0,0%"], we know P* = PP on Fgab. Then the exis-
tence of the & -aggregator obviously implies (5.2). We now assume that the condition holds
and prove the existence of the & -aggregator.

We first claim that, without loss of generality, we may assume that X¢ is cadlag. Indeed, suppose that
the theorem holds for cadlag processes. Then we construct a & -aggregator for a family {X¢,a € .&/},
not necessarily cadlag, as follows:

- If X < R for some constant R > 0 and for all a € &/, set Y? := fot Xlds. Then, the family
{Y?, a € .} inherits the consistency condition (5.2)). Since Y¢ is continuous for every a € .«¢, this
family admits a #-aggregator Y. Define X, := lim,_,, %[YHE —Y,]. Then one can verify directly
that X satisfies all the requirements.

- In the general case, set X®9 := (—=R) VX% AR. By the previous arguments there exists & -aggregator
XR of the family {X®% a € .&/} and it is immediate that X := limp_,,, X satisfies all the require-
ments.

We now assume that X? is cadlag, IP*-almost surely for all a € .. In this case, the consistency
condition (5.2)) is equivalent to

X7 :Xf’, 0<t< 6%, Palmost surely foranyae€ .o, and b e .«. (5.5)

Step 1. We first introduce the following quotient sets of .¢f,. For each t, and a,b € .«/,, we say
a~;bif Q?’b = Q (or, equivalently, the constant disagreement time %% > t). Then ~, is an
equivalence relationship in .«/,. Thus one can form a partition of ./, based on ~,. Pick an element

from each partition set to construct a quotient set .«/,(t) C ./,. That is, for any a € .«), there exists
a unique b € .#,(t) such that Q‘tl’b = Q. Recall the notation Qf defined in ll By |l and the

constant disagreement times property of ./, we know that {Qf,a € .¢/;(t)} are disjoint.
Step 2. For fixed t € R, define

E(w) = Z X (@)1ge(w) forall wen. (5.6)
ac.oy(t)
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The above uncountable sum is well defined because the sets {Qf,a € .#/(t)} are disjoint. In this
step, we show that

& is 9‘? -measurable and &, =X, P“-almost surely for all a € .«¢. (5.7)

We prove this claim in the following three sub-cases.

2.1. For each a € .¢/(t), by definition £, = X{ on Qf. Equivalently {&, # X{'} C (7). Moreover,
by ll P((Q27)°) = 0. Since Qf € 9’? and Z/ is complete under P?, &, is #;-measurable and
P&, =X1)=1.

2.2. Also, for each a € ., there exists a unique b € .o/, (t) such that a ~, b. Then &, = Xg’ on
Qlt’. Since Q?’b = Q, it follows from Lemmathat P = P’ on 9’? and IP“(Q?) = ]Pb(QIt’) =1.
Hence PY(&, = X g’ ) = 1. Now by the same argument as in the first case, we can prove that &, is
Z/-measurable. Moreover, by the consistency condition ll PiX =X f’ ) = 1. This implies that
P, =X1)=1.

2.3. Now consider a € ./. We apply Lemma with 7 = t. This implies that there exist a

,a

sequence {a;,j > 1} C .o, such that Q = szlﬂ? 7. Then

EAxy = [J[E#xanal®].
j>1
Now for each j > 1,
€ AXINO!Y e [{g £ Xl || [&x? #xapnal®].
Applying Lemma and using the consistency condition (5.5)), we obtain
P(x? #x3nal®) = Po(ix) £xnal”)
= Pu(x] #£Xn 1t <6%}) =0,

Moreover, for a; € .o, by the previous sub-case, {£, # ij} e Y (ﬁ':r ). Hence there exists

De 5‘7t+ such that P%(D) =0 and {&, #X;Zj} C D. Therefore
(£, #£XInQ Y cpnQl” and PYDNQ;Y)=PYDnQ;Y)=0.
This means that {&, # ij} N Qf’aj e N (9’;). All of these together imply that {£, # X{'} €
NTP(FT). Therefore, £, € F& and PY(E, =X9) = 1.
Finally, since &, € #/ for all a € .o/, we conclude that £, € ff’ . This completes the proof of |l

Step 3. For eachn > 1, set t}' := Lr;’i > 0 and define
o0 o0
Xon .= Xgl{o} +ZX?{1 l(t{l—l’t?] forallae . and X":= 601{0} + thlrz l(t?—l’t{l]’
i=1 i=1
where &£, is defined by (5.6). Let " := {jzy t > 0}. By Step 2, X%", X" are I""-progressively
measurable and P*(X] = X,”",t > 0) =1 for all a € ./. We now define

X := lim X".

n—o00

1861



Since " is decreasing to I'” and I'? is right continuous, X is ' -progressively measurable. More-
ovet, for each a € .«¢,

X, =X%,t >0} ﬂ{x is cadlag} 2 [ ﬂ{xg =X ¢ > o}] ﬂ{xa is cadlag}.
n>1

Therefore X = X® and X is cadlag, IP%-almost surely for all a € .. In particular, X is cadlag,
P -quasi surely. O

Let + € 97 and {£% a € &/} be a family of ﬁf -measurable random variables. We say an ff‘? -
measurable random variable £ is a & -aggregator of the family {£%,a € .&} if £ = &9, P?-almost
surely for all a € ./. Note that we may 1dent1fy any 4 72 -measurable random variable & with the
['? -progressively measurable process X, := & 112 00)- Then a direct consequence of Theorem H is
the following.

Corollary 5.4. Let ./ be satisfying |l and © € §2. Then the family of ?? -measurable random
variables {£%,a € .} has a unique (#-q.s.) P-aggregator & if and only if the following consistency
condition holds:

£1=¢bon Q‘fl’b, P%-almost surely for any a € .o, and b € .o/ . (5.8)

For the next result, we recall that the P-Brownian motion W¥ is defined in (4.2). As a direct
consequence of Theorem the following result defines the £ -Brownian motion.

Corollary 5.5. For .« satisfying ll the family {W"",a € ./} admits a unique P-aggregator W.
Since WF* is a P%-Brownian motion for every a € .o/, we call W a @ -universal Brownian motion.

Proof. Leta,b € .¢/. For each n, denote
t
= inf{t >0: f |ag|ds > n} N
0

ThenB.,; isa IP?-square integrable martingale. By standard construction of stochastic integral, see
e.g. [11]] Proposition 2.6, there exist IF-adapted simple processes %™ such that

m—00

lim EPb{f |as(/5bm A_%)|2ds}=0. (5.9)
0

Define the universal process

t
wpm = f pbmdB.
0
Then

lim E]Pb{ sup 2} =0. (5.10)

m—00 0<t<t,




By Lemma all the processes in (5.9) and (5.10) can be viewed as F-adapted. Since 7, < 6%?,
applying Lemma [5.2| we obtain from (5.9) and (5.10) that

Th g 1 .
lim EPG{J lag (ﬁsb’m — d; 2)|2ds} =0, lim EF { sup
0 0<t<7t,

m—00 m—-00

b
wom —wp

2}zo.

The first limit above implies that

2
j=o

which, together with the second limit above, in turn leads to

lim EY* { sup

m—00 0<t<t,

a
whm —wr

a b
WtIP :Wt]P, 0<t<rt, P*'—as.

Clearly 7, T 8%? as n — co. Then

b
wF=wF', 0<t<6%, P?-as.

That is, the family {W'" a € .o/} satisfies the consistency condition (5.2). We then apply Theorem
directly to obtain the & —aggregator W. O

The & —Brownian motion W is our first example of a stochastic integral defined simultaneously
under all P4, a € «/:

t
w, = fa;l/Zst, t>0, P —aq.s. (5.11)
0

We will investigate in detail the universal integration in Section [6]

Remark 5.6. Although a and WF* are IF-progressively measurable, from Theorem We can only

deduce that @ and W are " -progressively measurable. On the other hand, if we take a version of
a —a

WP that is progressively measurable to the augmented filtration I, then in general the consistency

condition (5.2) does not hold. For example, let d =1, a, := 1, and b, := 1+ 13 )(t), t = 0, as in

Remark|5.3 Set W' (w) 1= B,(w) + 1(as (@) and WP’ () := B () + [Bi() — By ()] 1[1,00)(t).

a —a _—=b
Then both WP’ and WP are ' N T -progressively measurable. However, 0%? = 1, but
PPWE =wE) =Pb(ad) =0,

so we do not have WF* = W]Pb, Pb-almost surely on [0, 1].

6 Quasi-sure stochastic analysis

In this section, we fix again a separable class .« of diffusion coefficients generated by .«,, and set
P .= {P?: a € .o/}. We shall develop the & -quasi sure stochastic analysis. We emphasize again
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that, when a probability measure P € & is fixed, by Lemma there is no need to distinguish the
—P

filtrations F*,F¥ and F .

We first introduce several spaces. Denote by IL° the collection of all ?f: -measurable random vari-

ables with appropriate dimension. For each p € [1,00] and P € &, we denote by IL?(IP) the
corresponding ILP space under the measure IP and

r o= () LP(P).

Pe®

Similarly, H® := H°(IR?) denotes the collection of all R¢ valued I¥? -progressively measurable pro-
cesses. HP(IP%) is the subset of all H € H° satisfying

T

a p/2
||H||§"]H}7(IP(1) :=EP [(J |a51/2HS|2ds) ] <oo forall T >0,
' 0

and H? (P?) is the subset of H° whose elements satisfy fOT |la}/2H,|*ds < oo, P?-almost surely, for
all T > 0. Finally, we define

0P .= () HP(P) and W2 := () HZ (P).

loc loc
Pe® ez

The following two results are direct applications of Theorem Similar results were also proved
in [5, /6], see e.g. Theorem 2.1 in [5], Theorem 36 in [|6]] and the Kolmogorov criterion of Theorem
31 in [6].

Proposition 6.1 (Completeness). Fix p > 1, and let .«/ be satisfying (5.1).

(i) Let (X,), C IL? be a Cauchy sequence under each P%, a € .f. Then there exists a unique random
variable X € P such that X,, — X in LP(P%, #2) for every a € o .

(i) Let (X,,),, € HP be a Cauchy sequence under the norm || - ll7mepey for all T > 0 and a € .f. Then
there exists a unique process X € HP such that X, — X under the norm || - ||.pgp(pey for all T > 0 and
aE€ .d.

Proof. (i) By the completeness of L? (P, #2), we may find X* € L?(P%, #2) such that X, — X in
LP (P, Z fg ). The consistency condition of Theorem is obviously satisfied by the family {X“,a €
-/}, and the result follows. (ii) can be proved by a similar argument. O

Proposition 6.2 (Kolmogorov continuity criteria). Let .«/ be satisfying (5.1), and X be an I?-
progressively measurable process with values in R". We further assume that for some p > 1, X, € I.P
for all t > 0 and satisfy

EX [1X, — X,|P] < ¢ |t —s|"*%  for some constants c,, &, > O.

Then X admits an T2 -progressively measurable version X which is Holder continuous, #-q.s. (with
Hélder exponent a, < g,/p, IP*-almost surely for every a € .o/).
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Proof. We apply the Kolmogorov continuity criterion under each P, a € .«¢. This yields a family of
—Jpa

I -progressively measurable processes {X“,a € ./} such that X¢ = X, P%-almost surely, and X is
Holder continuous with Holder exponent a, < ¢,/p, P?-almost surely for every a € .«/. Also in view
of Lemma we may assume without loss of generality that X¢ is I'¥ -progressively measurable
for every a € ./. Since each X is a IP?-modification of X for every a € ./, the consistency condition
of Theorem is immediately satisfied by the family {X¢,a € .«/}. Then, the aggregated process X
constructed in that theorem has the desired properties. O

Remark 6.3. The statements of Propositions[6.1]and [6.2] can be weakened further by allowing p to
depend on a.

We next construct the stochastic integral with respect to the canonical process B which is simul-
taneously defined under all the mutually singular measures IP?, a € .&/. Such constructions have
been given in the literature but under regularity assumptions on the integrand. Here we only place
standard conditions on the integrand but not regularity.

Theorem 6.4 (StochasticAintegration). For .o/ satisfying ll let H € 1131120C be given. Then, there
exists a unique (@-q.s.) 7 -progressively measurable process M such that M is a local martingale
under each P* and

t
M, = J H,dB,, t >0, IP%almostsurely forall ac€ .«.
0

If in addition H € H?, then for every a € .o/, M is a square integrable IP*-martingale. Moreover
EP [M?] = EP'[ [ |al/?H,|ds) for all t > 0.

Proof. For every a € .¢/, the stochastic integral M/ := f Ot H,dB, is well-defined P¢-almost surely as

a F]Pa-progressively measurable process. By Lemma we may assume without loss of generality
that M¢ is ' -adapted. Following the arguments in Corollary in particular by applying Lemma
it is clear that the consistency condition of Theorem [5.1]is satisfied by the family {M?,a €
/}. Hence, there exists an aggregating process M. The remaining statements in the theorem
follows from classical results for standard stochastic integration under each P¢. O

We next study the martingale representation.

Theorem 6.5 (Martingale representation). Let .« be a separable class of diffusion coefficients gener-
ated by .ofy C o, Let M be an 1'% -progressively measurable process which is a @ —quasi sure local
martingale, that is, M is a local martingale under P for all P € &. Then there exists a unique (#-q.s.)
process H € ]leoc such that

t
Mt=M0+f H,dB,, t>0, P —q.s..
0

Proof. By Proposition|4.11} .« C .o,. Then for each P € &, all P—martingales can be represented
as stochastic integrals with respect to the canonical process. Hence, there exists unique (IP—almost
surely) process H” € H? (PP) such that

loc
t

M, = M, +J HSIPdBS, t >0, IPP-almost surely.
0
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Then the quadratic covariation under P? satisfies
t
b .
(M,B)ItP = f Hs]Pans, t >0, IP— almost surely. (6.1)
0

Now for any a, b € ./, from the construction of quadratic covariation and that of Lebesgue integrals,
following similar arguments as in Corollary[5.5/one can easily check that

t t
f HS]Pades = (M,B)Itpa = (M,B)Ifb =J HS]Pbdsds, 0<t<6% P?—almost surely.
0 0

This implies that
pe _ ryP? a_
H" 1pggaby=H" 1j gaby, dt x dP®—almost surely.

That is, the family {H”,]P € #} satisfies the consistency condition (5.2). Therefore, we may aggre-
gate them into a process H. Then one may directly check that H satisfies all the requirements. [

There is also & -quasi sure decomposition of super-martingales.

Proposition 6.6 (Doob-Meyer decomposition). For .&/ satisfying , assume an 7 -progressively
measurable process X is a & -quasi sure supermartingale, i.e., X is a P*-supermartingale for all a € .« .
Then there exist a unique (2-q.s.) 2 -progressively measurable processes M and K such that M is a
P -quasi sure local martingale and K is predictable and increasing, #-q.s., with My = K, = 0, and
X, =Xy+M,; —K, t >0, P-quasi surely.

If further X is in class (D), @ -quasi surely, i.e. the family {X.,% € Z} is P-uniformly integrable, for
all P € 2, then M is a & -quasi surely uniformly integrable martingale.

Proof. For every IP € ./, we apply Doob-Meyer decomposition theorem (see e.g. Dellacherie-Meyer
[4] Theorem VII-12). Hence there exist a IP-local martingale M* and a P-almost surely increasing
process K such that MéP = K(])P = 0, PP-almost surely. The consistency condition of Theorem
follows from the uniqueness of the Doob-Meyer decomposition. Then, the aggregated processes
provide the universal decomposition. O

The following results also follow from similar applications of our main result.

Proposition 6.7 (Itd’s formula). For .of satisfying (5.1), let A,H be I'Z-progressively measurable
processes with values in R and RY, respectively. Assume that A has finite variation over each time

interval [0,t] and H € ]leoc' Fort >0, set X; :=A; +f0t H,dB,. Then for any C? function f : R — R,
we have

fxX,) = f(AO)+f f’(XS)(dAS+HsdBS)+%f HlaHf"(X,)ds, t >0, @-q.s..
0 0

Proof. Apply It6’s formula under each IP € &2, and proceed as in the proof of Theorem O
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Proposition 6.8 (local time). For .« satisfying (5.1)), let A, H and X be as in Proposition Then
for any x € R, the local time {L}, t > 0} exists -quasi surely and is given by,

t
2L = X, —x|—|Xo— x| - J sgn(X, — x)(dA; + H,dB;), t >0, & —q.s..
0

Proof. Apply Tanaka’s formula under each P € # and proceed as in the proof of Theorem O

Following exactly as in the previous results, we obtain a Girsanov theorem in this context as well.

Proposition 6.9 (Girsanov). For .« satisfying (5.1), let ¢ be F'?-progressively measurable and
fot |¢ps|*ds < oo for all t > 0, P-quasi surely. Let

t t t
1 ~
Z, :=exp (f ¢, dW, — EJ |¢s|2ds) and W,:=W, —f ¢p.ds, t >0,
0 0 0

where W is the @ -Brownian motion of (5.11). Suppose that for each P € &, E¥[Z;] = 1 for some
T > 0. On 1 we define the probability measure Q¥ by dQ¥ = Z;dP. Then,

QP oW l=PoW™! forevery Pe2,

i.e. W is a Q¥-Brownian motion on [0, T, ] for every P € &.

We finally discuss stochastic differential equations in this framework. Set Q™ := {(¢t,x): t > 0,x €
C[0,t]™}. Let b, o be two functions from 2 x Q™ to R™ and ./, 4(IR), respectively. Here, %, 4(IR)
is the space of m x d matrices with real entries. We are interested in the problem of solving the
following stochastic differential equation simultaneously under all IP € &,

t t
X, =X, +J by(X,)ds +J oy(X.)dB;, t>0, @ —qs., (6.2)
0 0

where X, := (X;,s < t).

Proposition 6.10. Let .« be satisfying (5.1), and assume that, for every P € & and v € J, the
equation (6.2) has a unique " -progressively measurable strong solution on interval [0, T]. Then there
is a #-quasi surely aggregated solution to (6.2).

Proof. For each P € .o, there is a P-solution X¥ on [0, 00), which we may consider in its -

progressively measurable version by Lemma [2.4] The uniqueness on each [0, 7],7 € 7 implies that
the family {X¥, P € #} satisfies the consistency condition of Theorem 5.1 O

1867



7 An application

As an application of our theory, we consider the problem of super-hedging contingent claims under
volatility uncertainty, which was studied by Denis and Martini [5]]. In contrast with their approach,
our framework allows to obtain the existence of the optimal hedging strategy. However, this is
achieved at the price of restricting the non-dominated family of probability measures.

We also mention a related recent paper by Fernholz and Karatzas [[8] whose existence results are
obtained in the Markov case with a continuity assumption on the corresponding value function.

Let .« be a separable class of diffusion coefficients generated by .«,, and & := {IP? : a € .¢/} be
the corresponding family of measures. We consider a fixed time horizon, say T = 1. Clearly all the
results in previous sections can be extended to this setting, after some obvious modifications. Fix a
nonnegative #; —measurable real-valued random variable £. The superhedging cost of & is defined
by

1
v(E) = inf{x: x+f H,dB, > &, #-q.s. for some He%’},
0

where the stochastic integral fo H,dB; is defined in the sense of Theorem and H € H° belongs
to & if and only if

1 :
J HtTdthdt <00 #-q.s. and J H,dB; is a £ -q.s. supermartingale.
0 0

We shall provide a dual formulation of the problem v(&) in terms of the following dynamic opti-
mization problem,

VE' = ess supIPaE]Pb [£|Z:], Pas., ac o, 2 €T, (7.1)
be./(%,a)

where
d(t,a):={be.d:0% >% or 00 =% =1}.

Theorem 7.1. Let .&f be a separable class of diffusion coefficients generated by .y C &g Assume
that the family of random variables {Vf]P ,% € J} is uniformly integrable under all P € #. Then

v(E)=V(E) = sup IVE oo pay- (7.2)

Moreover; if v(§) < oo, then there exists H € 5¢ such that v(§) + fol H,dB, > &, 2-q.s..

To prove the theorem, we need the following (partial) dynamic programming principle.

Lemma 7.2. Let .of be satisfying (5.1), and assume V(&) < oo. Then, for any %1,%, € J with
T1 <%y,
Vga > EF’ [ %ﬂ:b |7, ], P-almost surely for all a € .o/ and b € .9/ (a, ;).
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Proof. By the definition of essential supremum, see e.g. Neveu [[12]] (Proposition VI-1-1), there
b; <
exist a sequence {b;,j > 1} C .&/(b, T,) such that anzb = Supj>q EF” [E1F%, ], IP®-almost surely. For
bi Y
n > 1, denote Vsz’” '=SUpj<j<y EY"[£]Z:,]. Then Vsz’” 7 Vf]zb, Pb-almost surely as n — co. By the
monotone convergence theorem, we also have EF’ [Vsz’"lﬂ}l] 1 EF’ [Vf]z blﬁfl], P®-almost surely,

as n — oo. Since b € /(a, %), P’ =P on ;. Then EF’ [Vsz’nlg}l] 7 ]E]Pb[Vf]zblg}l], P4-almost
surely, as n — oo. Thus it suffices to show that

Vga > P’ [Vsz’nlﬁ'fl], P%-almost surely for all n > 1. (7.3)

Fix n and define

9: := min 0P,
1<j<n

By Lemma 6P are F-stopping times taking only countably many values, then so is 9:. More-
over, since b; € .o/(b,%,), we have either 9;’ > 7, or 9;’ = 7, = 1. Following exactly the same
arguments as in the proof of (5.4)), we arrive at

P, < (For v AT (D).

Since P% = P® on 55}2, without loss of generality we may assume the random variables EP” (& |52f2]
b, b; < b, ~ ~

and szn are 99£-measu~rable. Set A; := {EV"[£|Z:,] = szn} and A; := Ay, Aj 1= A\ U A;,

2<j<n.ThenA,,---,A, are Zgs-measurable and form a partition of Q2. Now set

b(6) := b()1gg,2,) () + Y, b;(0)15 11z, 1(0).

j=1

We claim that b € .«/. Equivalently, we need to show that b takes the form (4.12). We know that b
and b; have the form

b(t):iibn Lpomlpo o ) and bj(t)—ZZme gl oy

m=0i=1 m=0 i=

with the stopping times and sets as before. Since b;(t) = b(t) for t < 975’ and j=1,---,n,

n
b(t)l[o’grlly) + Z ].A] b](t)l[ef,l](t)
j=1

b(t)

o0
Zbl Lgomageo <02y Le9n08,20,,1008)

0i=
n o o0 .
Zzb!’ jm 51 b by
— i Ey ﬂAﬁ{Tm+1>9n} (7] v9n T VO
J = =

Il
SMS

+

By Deﬁnition it is clear that ’L'?n A 9}1’ and T{n v 9: are IF-stopping times and take only countably
many values, forallm > 0and 1 <j <n. Form > 0 and 1 < j < n, one can easily see that
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El.o’m N {TS1 < 9:} is ET%AQT{,-measurable and that El.J’m ﬂAj N {'z,'fnJrl > QTII’} is ,ﬂ'ﬂnvgf-measurable. By

ordering the stopping times T?n A 9}1’ and 7}, v 95 we prove our claim that b € .¢/.

7., ]

It is now clear that b € ./ (b, 1,) C #(a, ;). Thus,

v = EP[E12.) = BY (BT (812,

:XH]E]P"’[mjl%Z] 7., ]
j=1

n
b[ b; < <
= EF [ Y B[ 19,07 |
=1
B n
= E° _ZVsz’nlfij
=1

Finally, since P? = P® on Z:, and P? =P? on F+,, We prove |l and hence the lemma. O

{tfj%l] = EPb[Vsz’” ], P%-almost surely.

Proof of Theorem We first prove that v(&) > V(&). If v(§) = oo, then the inequality is obvious.
If v(&) < 00, there are x € R and H € # such that the process X, := x + fot H,dB; satisfies X; > &,
2@ —quasi surely. Notice that the process X is a IP?-supermartingale for every b € .«/. Hence

x =X, > EP' [X,|%,] = EP'[£]F,], P’—as. Vbe.d.
By Lemma we know that P? = P’ on &, whenever a € .« and b € ./(0, a). Therefore,
x> EF [E1F], P-as..

The definition of VF* and the above inequality imply that x > VOIPH, P%-almost surely. This implies
that x > ||VOIPH||]L00(IPH) for all a € .. Therefore, x > V(&). Since this holds for any initial data x
that is super-replicating &, we conclude that v(&) > V(§).

We next prove the opposite inequality. Again, we may assume that V(&) < oo. Then £ € IL!. For
each P € #, by Lemma the family {V;P, % € J} satisfies the (partial) dynamic programming
principle. Then following standard arguments (see e.g. [[7] Appendix A2), we construct from this
family a cadlag (', P)-supermartingale V' defined by,

vEP = lim VP, tel0,1]. (7.4)
Qarlt

Also for each £ € 7, it is clear that the family {V%]P ,IP € &} satisfies the consistency condition
|D Then it follows immediately from tb that {Vt]P, IP € 21} satisfies the consistency condition
(5.8) for all t € [0,1]. Since P-almost surely V' is cadlag, the family of processes {VF, P € 2}
also satisfy the consistency condition (5.2). We then conclude from Theorem [5.1] that there exists a
unique aggregating process V.

Note that V is a & -quasi sure supermartingale. Then it follows from the Doob-Meyer decomposition
of Proposition that there exist a #-quasi sure local martingale M and a #-quasi sure increasing
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process K such that My = K, = 0 and V, = V, + M, — K,, t € [0,1), 2-quasi surely. Using the
uniform integrability hypothesis of this theorem, we conclude that the previous decomposition holds
on [0, 1] and the process M is a & -quasi sure martingale on [0, 1].

In view of the martingale representation Theorem there exists an I'? -progressively measurable
process H such that fol H'a.H,dt < oo and V, =V + fot H,dB, — K,, t > 0, #-quasi surely. Notice
that V; = & and K; > K, = 0. Hence V, + f 01 H,dB; > &, 2 -quasi surely. Moreover, by the definition
of V(&), it is clear that V(&) > V,, -quasi surely. Thus V(&) + fol H,dB, > &, #-quasi surely.

Finally, since & is nonnegative, V > 0. Therefore,
H,dB, >V, +J HdB,>V,>0, & —qs..

V(&) + J
0 0
This implies that H € 5#, and thus V(&) > v(&). O

t t

Remark 7.3. Denis and Martini [[5] require
a<a<a forall ae v, (7.5)

for some given constant matrices a < a in S;O. We do not impose this constraint. In other words,
we may allow a = 0 and a = co. Such a relaxation is important in problems of static hedging in
finance, see e.g. [[2] and the references therein. However, we still require that each a € .« takes
values in $;°.

We shall introduce the set .&/s C .o, induced from strong formulation in Section[8] When .o/, C ./,
we have the following additional interesting properties.

Remark 7.4. If each P € & satisfies the Blumenthal zero-one law (e.g. if .oy C .o/s by Lemma (8.2
below), then VOIPa is a constant for all a € ./, and thus Il becomes

v(E)=V(E):=sup V)"
ac.d

Remark 7.5. In general, the value V(&) depends on ./, then so does v(&). However, when & is
uniformly continuous in w under the uniform norm, we show in [[16]] that

1
sup EF[&] = inf{x DX +J H,dB, > &, P-as. forallP € &g, for some H e%} , (7.6)
Pepg 0

and the optimal superhedging strategy H exists, where . is the space of IF-progressively mea-

— .
surable H such that, for all P € &g, fo HtTdthdt < 00, P-almost surely and fOHsst is a IP-
supermartingale. Moreover, if ./ C .of; is dense in some sense, then

V(&) =v(&) = the P g-superhedging cost in (7.6).

In particular, all functions are independent of the choice of .o/. This issue is discussed in details
in our accompanying paper [[16] (Theorem 5.3 and Proposition 5.4), where we establish a duality
result for a more general setting called the second order target problem. However, the set-up in
[[16] is more general and this independence can be proved by the above arguments under suitable
assumptions.
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8 Mutually singular measures induced by strong formulation

We recall the set & ¢ introduced in the Introduction as

5= {IP? = E} where Pg:=Pgjo xH™1, (8.7)

and X“ is given in . Clearly 25 C 2,,. Although we do not use it in the present paper, this
class is important both in theory and in applications. We remark that Denis-Martini [[5] and our
paper [[15] consider the class 2, while Denis-Hu-Peng [6] and our paper [17] consider the class
P, up to some technical restriction of the diffusion coefficients.

We start the analysis of this set by noting that
a is the quadratic variation density of X% and dB, = as_l/ 2dx ', under Py, (8.8)
Since B under IPg has the same distribution as X* under PPy, it is clear that
the P¢-distribution of (B, a, wrs)is equal to the P-distribution of (X%, a, B). (8.9)
In particular, this implies that

a(X*) = a(B), Py-as., a(B)=a(WFs), Pg-a.s.,

— 1
and for any a € .o/, (IPg), X“ is a strong solution to SDE (4.4} with coefficient a. (8.10)

Moreover we have the following characterization of 2 ¢ in terms of the filtrations.

— — P _
Lemma 8.1. ?}”SZ{IPE??WZFWP :IF]P}.

—P
Proof. By ll a and B are FX* O-progressively measurable. Since IF is generated by B, we con-
—xal . o . =Py _ —xal
clude that F ¢ FX* °. By completing the filtration we next obtain that I ° ¢ FX ‘. Moreover, for
— a =P —a P —P .
any a € .o/, it is clear that FX“ ¢ F °. Thus, FX* ' =T °. Now, we invoke and conclude

W]P]P = a-~op
F =T forany P =17 € Z;.

— P _
Conversely, suppose P € @, be such that FV* = T . Then B = B(WF) for some measurable

mapping f: Q — S;O. Set a := 3(B.), we conclude that IP = P¢. O

The following result shows that the measures P € % ¢ satisfy MRP and the Blumental zero-one law.

Lemma 8.2. P C P,,, and every P € P ¢ satisfies the Blumenthal zero-one law.

Proof. Fix P € #5. We first show that P € @,,,. Indeed, for any (F]P,IP)-local martingale M,

—P
Lemmaimplies that M is a (FW" ,P)-local martingale. Recall that WY is a IP Brownian motion.
Hence, we now can use the standard martingale representation theorem. Therefore, there exists a

unique FW" -progressively measurable process H such that

t t
f |H,|*ds < 00 and M, = M, —|—f HSdWS]P, t >0, P-as..
0 0
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Since @ > 0, dW® = a~/2dB. So one can check directly that the process H := a~/2H satisfies all
the requirements.

We next prove the Blumenthal zero-one law. For this purpose fix E € &,,. By Lemma E e
P

9‘3"’ o Again we recall that WY is a IP Brownian motion and use the standard Blumenthal zero-one
law for the Brownian motion. Hence IP(E) € {0, 1}. O

We now define analogously the following spaces of measures and diffusion processes.
P =PsNPy, As:={ac.dy: P e}. (8.11)
Then it is clear that
P C P C Py and s C dyp C Ay

The conclusion &5 C &, is strict, see Barlow [1]]. We remark that one can easily check that the
diffusion process a in Examples [4.4] and [4.5|and the generating class .« in Examples 4.10], and
[4.14]are all in .of.

Our final result extends Proposition

Proposition 8.3. Let .of be a separable class of diffusion coefficients generated by .<f. If .ofy C s,
then & C kas.

Proof. Let a be given in the form (4.12)) and, by Proposition 4.11} IP be the unique weak solution to
SDE (4.4) on [0, 00) with coefficient a and initial condition P(B, = 0) = 1. By Lemma [8.1] and its

P
proof, it suffices to show that a is FW" -adapted. Recall (4.12). We prove by induction on n that

P

ailyery IS ?XX;PH — measurable for all t > 0. (8.12)

Since 7¢ = 0, a, is Fy-measurable, and P(B; = 0) = 1, (8.12) holds when n = 0. Assume (8.12))
holds true for n. Now we consider n + 1. Note that
A licr, 3 = @lper,y T alie <t<r, )

By the induction assumption it suffices to show that

—— P
alger, 3 IS ﬁr‘;"’i};tm o measurable for all t > 0. (8.13)
Apply Lemma 4.12} we have a, = ), -, a,,(t)1g for t < 7,1, where a,, € ./, and {E,,,m > 1} C
F ., form a partition of Q. Let P™ denote the unique weak solution to SDE (4.4) on [0, c0) with
coefficient a,, and initial condition P™(B, = 0) = 1. Then by Lemma 5.2 we have, for each m > 1,

P(ENE,)=P"(ENE,), YE€Z. . (8.14)
Morover, by (4.2) it is clear that
WtIP = Wt]Pm, 0<t<71, ,P—as.on E, (and P" —as. on E,). (8.15)
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m

Now since a, € .o, C .o, we know ap(t)lg e 3 is gWt —measurable. This, to-

tATh1
E)m
gether with the fact that E,, € & , implies that a,,(t)1g <, ,;31g, is 9y5tAT B —measurable.
By (8.14), (8.15) and that a, = a(t) for t < 7,4, on E,, we see that a1y, ;15 fis
—— P
W]P _ . . .
ﬁTth ATy measurable. Since m is arbitrary, we get
atl{t<7n+1} = Z atl{t<7n+1}1Em
m=>1
. P P . o e
is FW, ne B —measurable. This proves (8.13)), and hence the proposition. O

9 Appendix

In this Appendix we provide a few more examples concerning weak solutions of (4.4) and complete
the remaining technical proofs.

9.1 Examples

Example 9.1. (No weak solution) Let ay =1, and for t > 0,

__  B,-B,
a,:=1+4+1;, where E::{lim—;é2}.
MO y/2hInInh~?
Then E € Fy,. A P i k solution to (4.4). On E, a = 2, then limyjy ———2— = 2,
en Zo.. Assume P is a weak solution to 1 nB ,;1 , then limy, |, NeYE
- =0. Ca= i —hi=0 = - 1 h
IP-almost surely, thus IP(E) = 0. On E¢, a = 1, then lim, o 1, IP-almost surely and thus

IP(E®) = 0. Hence there can not be any weak solutions.

Example 9.2 (Martingale measure without Blumenthal 0-1 law). Let Q" := {1,2} and

1
Py(1) =Py (2) = 5>

Let {2 := Q x Q' and PP, the product of P, and P. Define
Bi(w,1):=w,, B, (w,2):=20w,.
Then P := Py 0 (B)™! is in 2. Denote
— B,—-B,

E:={lim———=1

tl0 /2hInlnh~1

Then E € 5

oy and Po(E)=Py(1) = 1

5
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Example 9.3. (Martingale measure without MRP) Let ) := (C[0,1])?, (W, W’) the canonical pro-
cess, and IP, the Wiener measure so that W and W’ are independent Brownian motions under IP,.
Let ¢ : R — [0, 1] be a measurable function, and

t
B, :=J a,dW, where @a,:=[1+ (p(Wt’)]%, t>0,
0

This induces the following probability measure IP on Q with d =1,
P = ]NPO o B_l

Then P is a square integrable martingale measure with d(B),/dt € [1,2], IP-almost surely.

We claim thgt B has no MRP under ]P.~Indeed, if B has MRP under PP, then so does B under 1130.
Let & := EPo[W/|ZE]. Since = FP and is obviously IP,-square integrable, then there exists
H? € #%(Py, F?) such that

1 1
E =T [&] +J A%dB, = EF[£] +J A% dW,, Py-—as.
0 0
Since W and W' are independent under P, we get 0 = ]E]?O[gwl’] = EPo[|£]2]. Then & = 0,
dPy-almost surely, and thus
ER[W1B, 7] = EMEIB*] = o. 9.1
However, it follows from It6’s formula, together with the independence of W and W', that
) ) 1 ) 1
EPo[W/|B,12] = B [W{f ZBt&tth] +EPo [W{J dfdt]
0 0
) 1 ) 1
- EPo[J W/ (1+ (W) dt | =1E]Po{f W/o(W)de},
0 0
and we obtain a contradiction to (9.1) by observing that the latter expectation is non-zero for
p(x) = 1g, (x).

We note that, however, we are not able to find a good example such that a € .« (so that (4.4) has
unique weak solution) but B has no MRP under IP? (and consequently (4.4) has no strong solution).

9.2 Some technical proofs

Proof of Lemma The uniqueness is obvious. We now prove the existence.

(i) Assume X is cadlag, IP-almost surely. Let E; := {w : X.(w) is not cadlag}. For each r € QN(0, 00),
there exists X, € " such that E, := {X, #X,} € /T (Z). Let E := E;U(U,E,). Then P(E) =0
For integers n > 1 k > 0, set t; := k/n, and define

X7 =X fort € (t;,ty,,], and X := (,}LIEOXH)I{HMOOX%R}'
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Then forany t € (t,t}, 1, X! € Z; andX"|;) € B([0,t])xF; . Since F* is right continuous,
k+1 k+1

we get X, € ;" and X| (o, € B([0,t]) x F;". That is, X € F". Moreover, for any w ¢ E and n > 1,

if t € (g, tp,,], we get

lim X"(w)= lim X;» (0)= lim X;» (w)=X,(w).
n—o0 t n—o0 k+1 n—oo k+1

So {w : there exists t > 0 such that X,(w) # X,(w)} C E. Then, X is P-indistinguishable from X
and thus X also has cadlag paths, P-almost surely.

—P
(ii) Assume X is ' -progressively measurable and is bounded. Let Y, := fot X,ds. Then Y is contin-
uous. By (i), there exists F"-progressively measurable continuous process ¥ such that ¥ and Y are

P-indistinguishable. Let E, := {there exists t > 0 such that ¥, # Y}, then P(E,) = 0 and ¥.(w) is
continuous for each w ¢ E,. Define,

for n>1.

Xn = n[?t - ?[—l]; X = (nli»n;.loxn)l{mnﬁooxneR}

t n
As in (i), we see X € F™. Moreover, for each w ¢ E,, X (w) = nf:_le(o))ds. Then X .(w) =

X.(w), dt-almost surely. Therefore, X = X, IP-almost surely.

—P
(iii) For general I -progressively measurable X, let X7" := (—m) V (X A m), for any m > 1. By (ii),
X™ has an F*-adapted modification X™. Then obviously the following process X satisfies all the

requirements: X := (lim,,_,,, X™)1 dm . ZmeR)- O

To prove Example 4.5 we need a simple lemma.

Lemma 9.4. Let T be an IF-stopping time and X is an IF-progressively measurable process. Then T(X.)
is also an ¥ —stopping time.

Moreover, if Y is IF-progressively measurable and Y, = X, for all t < ©(X.), then ©(Y.) = 7(X.).

Proof. Since T is an FF-stopping time, we have {7(X.) < t} € th for all t > 0. Moreover, since X
is IF-progressively measurable, we know ,?QX c 9}3. Then {7(X.) <t} 37}3 and thus 7(X.)) is an
IF—stopping time.

Now assume Y, = X, for all t < 7(X.). For any t > 0, on {7(X.) = t}, we have Y, = X, for all
s <t. Since {t(X.) =t} e 95( and by definition 9’;’( = 0(X,,s < t}, then 7(Y.) = t on the event
{t(X.) = t}. Therefore, 7(Y.) = 7(X.). O

Proof of Example Without loss of generality we prove only that (4.4) on R, with X, =0 has a
unique strong solution. In this case the stochastic differential equation becomes

00
dXt = Zan(X')l[Tn(X»)aTnH(X))dBt’ t=>0, IPO —a.s..
n=0
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We prove the result by induction on n. Let X° be the solution to SDE:

t

t
X0 = f 1/2(X0)ng, t>0 ,IPy— almost surely
0

Note that q, is a constant, thus X, 0= aOB and is unique. Denote %, := 0 and %, := 7,(X°). By
Lemma 7, is an F—stopping tlme Now let th .—X? fort <1, and

t
X}:X%+J a*(x1dB,, t=%,, P,—as.
%

Note that a; € Z; , that is, forany y € R and t > 0, {a;(B.) < y,71(B.) < t} € Z,. Thus, for any
x,% € C(Ry,RY), if x, = %,,0 < s < t, then a1 (X)L, <y = a1(X) 17 ()<}~ In particular, noting
that 7;(X!) = 7,(X°) = %,, for each w by choosing t = % we obtain that a;(X!) = a;(X°). Thus
X} :X(f)l +a;(X°)[B, — Bz, ], t > %1, and is unique. Now repeat the procedure for n =1,2,--- we
obtain the unique strong solution X in [0, T, ), where T, :=lim,_,, T,(X.). Since a is bounded, it is
obvious that X; :=lim; X, exists IPy-almost surely. Then, by setting X, :=X:_ for t € (T, 00)
we complete the construction. O

Proof of Lemma[4.12] Let a be given as in (4.12) and 7 € 7 be fixed. First, since {E[',i > 1} is a
partition of 2, then for any n > 0,

{ﬂ El » (ij)o<j<n € ]N”H} also form a partition of Q.

Next, assume 7, takes values t; (possibly including the value 00), k > 1. Then {{7, = t;'},k = 1}
form a partition of Q. Similarly we have, for any n > 0,

{ ”H{T = t] } (kj)o<j<n+1 € ]N”+2} form a partition of Q.
These in turn form another partition of 2 given by,
{[ Mo (B nim; =) | iFwn =6 Gk osyn €N, kg €N (92)

Denote by .¢ the family of all finite sequence of indexes I := (i, kj)o<j<n for some n such that
0= tgo <.+ <t; <oo. Then .# is countable. For each I € .#, denote by |I| the corresponding n,
and define

E; = ( Al [EJO{T —tJ <T}])ﬂ({f|l|+1>T}U{T|I|+1=T=oo}),

-1
=L E — § i1 Il
T = T|I|+11E1’ and arp = aij k ’ti-%—l ) + all ll[tLﬂ 100)"
Iey j=0 s o

It is clear that E; is &, —measurable. Then, in view of the concatenation property of .«,, a; € .«,.
In light of (9.2)), we see that {E;,I € .#} are disjoint. Moreover, since 7,, = oo for n large enough,
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we know {E;,I € £} form a partition of . Then 7 is an IF—stopping time and either ¥ > 7 or
T = 7 = 00. We now show that

a, =) q(t)1y forall t<% (9.3)

Iey

]J
j<nand 7,;(w) = T(w) > t. Let jo = jo(t,w) < n be such that 7; (w) < t < 7j 41(w). Then
l[Tjo(w)’Tj0+1(w))(t) =1and l[Tj(w),Tj_H(cu))(t) =0 fOI'j #* Jo» and thus

In fact, for each I = (ij,kj)o<j<n € &, w € Ej, and t < T(w), we have 7;(w) = t{;_ < 7(w) for
- ]

o0 o0 o0
a(w) = YD al(te)l()1E e @0 = D a6 )l (w) = af (t,0),
j=0i=1 ' i=1 !

where the last equality is due to the fact that w € E; C EIJ0 and that {Eij", i > 1} is a partition of Q2. On
Jo

the other hand, by the definition of q;, it is also straightforward to check that a;(t,w) = a{‘? (t, w).
Jo
This proves (9.3)). Now since .# is countable, by numerating the elements of .# we prove the lemma.

Finally, we should point out that, if T = 7,, then we can choose T = 7, 1. O
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