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We continue our study of the functional

1 1
E. — - 2 (1= 2\2
)= [ SV g 1=

for u € H'(U; R?), where U is a bounded, open subset of R?. Compactness results for the
scaled Jacobian of u* are proved under the assumption that E.(x¢) is bounded uniformly
by a function of ¢. In addition, the Gamma limit of [E,(x*)/(In &)* is shown to be

Ev) = llollz + 11V x vll 4,

where v is the limit of j(u®)/|In¢|, j(u®) = u* x Du, and || - || , is the total variation of a
Radon measure. These results are applied to the Ginzburg—Landau functional

1 1 1
Folut, A hexy) = / 3Vl + 15 (1= Y + 31V x A — heu s,
Ju € 2

with external magnetic field 4ex &~ H|ln ¢|. The Gamma limit of [, /(In ¢)? is calculated to
be

F,a;H) = 4fllo = al3 + IV x vll 4 + IV x a = HI3],

where v is as before, and a is the limit of 4°/|In¢|. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

The functional
1 1
E(u) = / ey ds, W) =2 VuP + (1 — P,
U 2 48

for ue H'(U;R?), is an important model problem in the Calculus of
Variations as it contains different length scales such as the vortex core,
vortex spacing, and its solution has a rich topological structure. As pointed
out by Bethuel er al [4] this functional can be considered as a simplified
version of a functional proposed by Ginzburg and Landau [29] as a
phenomenological model for superconductivity.

In their book, Bethuel ef al. [4] obtain a complete description of the
asymptotic behavior of the minimizers of this functional with given Dirichlet
data. They prove that asymptotically the minimizers have finitely many
singularities called vortices. Each of these vortices carries 7|ln ¢] amount of
energy and the number of the vortices is determined by the winding number
of the Dirichlet data. These results indicate that a natural scaling for this
functional is |In ¢|. Motivated by this, in [17] the authors studied the Gamma
limit of E, divided by the scaling factor [In ¢] and proved the following results
for this scaling: suppose that for a sequence {u‘}, E.(u*)/[In¢| is uniformly
bounded in ¢. Then, the Jacobian

Jut =V x ju®)/2, JjW®) = u® x Vut,

of these functions is precompact in the dual of Holder continuous functions,
and any limit J is an atomic Radon measure with weights equal to an integer
multiple of #. The support of J is the asymptotic location of the vortices and
the weights of J at these points are related to the limiting degree of u°.
Moreover, for any sequence u converging to u in Wh!,

Eq(u)

lim inf
im in ng

=14

where |lJ]|, is the total variation of the measure J and the energy
concentrates on small balls around the vortices [17]. Also for any atomic
measure J with weights equal to an integer multiple of =, there exists a
sequence whose limit Jacobian is J and the above limit is achieved with an
equality.

Important earlier work on Jacobians in a similar setting includes the
paper of Brezis et al [8] that demonstrated the relevance of Jacobians in
studying harmonic maps with singularities. The Jacobian was subsequently
used by Bethuel [2] to characterize the class of maps B> — S which can be
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approximated by smooth §2-valued maps. More recently, the authors in
[18,19] proved, as a special case of more general results, that if ue
W A L°(R?, S") and the distributional Jacobian of u is a Radon measure,
then this measure must be atomic. Similar results are found in the work of
Giaquinta, Modica, and Sooucek on Cartesian currents [15] and analog of
this result in the space H'/? is proven by Bourgain et al. [7].

In this paper, we continue this analysis with different scalings. Suppose
that for a sequence of functions {u},

E.(u)<Kg,, |nel<g,<e? (1.1)

Since £%g, tends to zero by assumption, the potential term in [, forces |uf| to
be close to one in most of the domain. However, |#f| is still close to zero
around vortices. In view of the results of [17], this contributes to the energy
at least by an amount of |In ¢| ||[/(4°)|| ,. Moreover, mentioned before, this
“vortex energy’’ concentrates near the vortices: on the union of balls with
small radii. We call this “vortex set” V;. Then, on this set, the energy E.(u°) is
approximately bounded from below by

/ ) de>In e G-

Ve

A precise mathematical statement of this fact is demonstrated in Section 5 as
a sharp lower bound of the energy in terms of the Jacobian.

Away from the vortices only the gradient term is active. Since for
u= pe’,

VuP = [Vl +1pVel,  j)=ux Vu=p*Ve,
and since away from the vortices [u°| is near one, in this region
Vi & [j)) = |u* x Vil

Hence, approximately

/ (1) di > / Vi d> / UG dx.
VA u\v, u\v,

This reasoning indicates that the functional E,(x®) is approximately
bounded from below by

Y70, 1B + 10 el ]y

The excess energy between [, and the above expression is due to the extra
winding around the vortices.
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To examine possible scalings, set

J(u®) . [In ¢ [In ¢
vt = , = jW®), wt = J( ). (1.2)
\V9e ge
Then,
Jut =\ /g.V x v° /2 = b /2
and

W=V x /2, ﬂﬂ_Md

So approximately,

[In g|

715,13 + TV “n./ﬂ]

[E(u)>

or equivalently

9ge| 9 - .
Eo(u’)> {“LFW%MME+HVXUWﬁ}

[2“ 2B + I 4

Therefore, the critical scaling is g, = (In 8)2 . In this case, v* = ©° and both
expressions are identical. For g, > (In¢)®, however, the first lower bound
indicates that ||vs||§ is the dominating term. On the other hand, for
g: < (Ing)?, from the second estimate we see that the important term is
[[w®]] 4. Indeed, this is consistent with the results of [17] which studies the
case g, = |In ¢] and proves that the Gamma limit is given by the limit of w*.
Since in the critical case both terms appear in the limit behavior, we need to
show that the contribution of |[w*|| , is localized near the vortices. This fact
is mathematically verified in a “sharp” Jacobian estimate in Section 5. This
separation of energy renders the analysis of the critical case more difficult
than the others and that is the only reason we study the case g, = (In¢)’ in
detail. All the ingredients of other cases are included in our analysis.

This formal expansion of E, together with (1.1) suggest that v* and w* are
compact in appropriate spaces. Let v and w be the limits of v® w®,
respectively.

In this paper, we prove the compactness of v* and w®, and study the
Gamma limit in the critical case g, = (In¢)’. Compactness results follow
from the formal lower bounds of [E, together with (1.1). Indeed, a
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compactness result for v* follows easily from the energy bound (1.1). For w®,
we follow the techniques developed in [17].

THEOREM 1.1 (Compactness). Assume (1.1). Then, the scaled Jacobians
w* defined in (1.2) are precompact in C%*" for all o> 0.
Further assume that g, <& " for some y<2. Then, v* defined in (1.2) satisfies

2
sup [lo*/Ju| 3 < oo.
&

Also, for every bounded open set V < R and every 1< p<(2+7)/(1+7)
there exists some constant C = C(p,V,v,K) such that

Wl Lory < C Ve € (0, 1].

Finally, {v*/|u’|} converges weakly to some limit in L* if and only if v*
converges weakly in L{ . for all p as above, and the weak limits are equal.

For g, = [In¢], the first assertion in the above theorem is proved in [17].

In general, we do not expect the strong convergence of v* in L? even for
the minimizers. Also, note that depending on the scaling either v or w is zero,
except in the critical case g, = (In ¢)°.

We now specialize to the case g, = (In¢)>. In view of the compactness
result, on a subsequence, denoted by ¢ again, (v, w*) converge to some limit
(v,w) in appropriate spaces. Moreover, due to the choice of the scaling

) . e
& — & — & 2 — :
me Y T VU2

Hence w =V x v/2.

THEOREM 1.2 (Gamma Limit). Assume (1.1) with g(¢) = (In¢)*. Let v and
w be as above. Then, ve L*, w =V X v/2 is a Radon measure and belongs to
H~'. Moreover,

E(u?
| (u)g|>[E(v) = !

lim inf ol + 11V x ¢°1l.)

|

Ine

Finally, if U is smooth and bounded, then for any given v € L* such that w =
V x v/2 is a Radon measure, there exists a sequence {u®} in H'(U) such that v*,
w defined as in (1.2) converge to v and w, respectively, weakly in L* and in C***
for every o> 0, and for this sequence the above limit is achieved with an equality.

The above result says that the Gamma limit of E, /g, is E. This theorem is
proved in two steps: the lower bound is proved in Section 6, while the
sequence achieving equality is constructed in Section 7.
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We have only stated the result for the most interesting case g, = (In &),
but we have given a nearly complete analysis in other scalings as well.
Indeed, the Gamma limit for g, < (In g)* is ||w|| ,, while for (In¢)* < g, <& 2
the limit is ||U||% /2. The lower bound in the latter case is nearly trivial, and in
the former case it follows from an easy modification of arguments in
Sections 5 and 6, and the construction in Section 7 establishes the upper
bound for general g, < &2

The above result is proved by a localization and a lower bound result of
[17]. The main technical tool is a covering argument devised by the first
author in [16] and by Sandier [23].

1.1. Applications to Superconductivity

A closely related functional is the Ginzburg-Landau functional for
superconductivity. It is a phenomenological model for a complex-valued
order parameter u and an R*-valued vector potential A. After an appropriate
rescaling, the Ginzburg-Landau functional takes the form

1 1 1
Folut, Az hew) 1= / 31Vl 5 (1= PP 4 51V % A = hew di,
U & 2

where A 1s the applied magnetic field, and the covariant derivative
V4 u = Vu — idu. We refer to the book by Tinkham [29] and the surveys of
Rubinstein [22], and Chapman [10] for information.

Although the functional E, does not have some of the physical
complexities of the Ginzburg—Landau functional, its analysis and the
behavior of the minimizers are surprisingly similar. A complete analysis of
the minimizers of this functional is recently carried out in a series of papers
by Serfaty and Sandier—Serfaty; see [25-27] and the references therein. In
particular, the vortex structure and the connection between the magnitude
of the applied magnetic field and the number of vortices is proved through
hard analysis. Compactness results for nonminimizers are also obtained in
these papers.

In this paper, we obtain a Gamma limit for [F, by using our results on [E..
The starting point of our analysis is the following decomposition of [F, by
Bethuel and Riviere [3]:

(1t A hoxt) = o) — / JwA dx
U
1
s / AP + 1V x A — hol? d, (13)
U

which clearly indicates the important role played by E, in the asymptotic
behavior of [,.
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As in the analysis of [E,, suppose that a sequence (1%, 4%) and the external
magnetic field Ay satisfy

[Fs(ugaAg;hext)Snga hext ~ K\/i, (14)

for some function g, satisfying |Ine|<g, < ¢ 2. Indeed, given the above
behavior of the external magnetic field, the energy upper bound is satisfied
by the minimizers. We simplify the presentation, we assume the following
limit exists:

hext

N

Then, |uf| tends to one and in view of our results on E, we have the formal
approximate lower bound

H = lim

(1.5)

[In g|

NG

+lafll3 + IV x a* — H|3 ],

o, A% hox) 25 (107201115 +

IV x o)l = 20%,a%),

where v* is as in (1.2), (-, ), is the L? inner product and

& =4 /\/ge. (1.6)

Again, the interesting case is g, = (Ing)* which corresponds to e =
Hlln(g)|. In this scaling, we rewrite the above approximate lower bound as

ﬂ:c(”syAs; hext) = ga”:(uga ag; H)s
where

F(v,a; H) = 3I[oll3 + IV % vll 4 = 2(v,), + llally + IV x a — HI|}5]
=3lllo = all3 + IV x vll 4 + IV x a — H|l5]. (1.7)

As well known [F, has a gauge invariance:
Fe(u, A4; hex) = l]:e(ueiX,A + Vi hext),

for any smooth y; see [22,29]. This invariance is inherited by F as well.
Indeed,

Fv,a; H) = F(v+ Vy,a+ Vy; H).
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This is natural as (v,a) is the scaled limit of (j(u),A4), and for a complex-
valued function u = pe'®, j(u) = p>*V . Note that v — a is the scaled limit of
the superconducting current

Jaeu) = X Vg = ) — A

Due to the gauge invariance, we expect compactness results only for the
quantities that are gauge invariant. Important gauge invariant quantities are
the superconducting current j, and the induced magnetic field V x 4°. It
turns out that the limit functional is described by the scaled limits of these
quantities.

THEOREM 1.3 (Gamma Limit). Assume (1.4) with g, = [In &]*. Let v* be as
in (1.2) and a® be as in (1.6). Further assume that H in (1.5) is finite. Then,
V x a* is weakly compact in L> and we have the same compactness for

8‘ o jAa;(ul;) _
@7 lnegl

o — |us|2as
as in Theorem 1.1. Any limit of (v2., V x a®) can be expressed as (v — a,V X a)
by a pair (v,a) € L* x H'(U,R?). Moreover, V x a € L*, V x v is a Radon
measure, and

Fo(u®, 4% hext)

lim inf 5
ne)

=>F(v,a; H).

Finally, given (v, a) as above there exists a sequence (u*, A°) so that the above
limit is achieved with an equality, and vi., a® are compact in the above spaces.

Results of this type is already obtained by Serfaty and Sandier [26]. In
particular, the upper bound and a compactness result is proved in [25, 26].

Several asymptotic results of interest can be obtained from the Gamma
limit result. Here, we outline the derivation of the first critical threshold H,,:
the largest value of H below.

Although the asymptotic formula for H,, is formally known for sometime,
a rigorous derivation of it is only given recently by Serfaty [27] and Serfaty
and Sandier [25]. Our derivation is similar to the proof given in these papers.

A quick formal calculation of H,, using the limit functional [ in (1.7) is
this. We expect for small H, the minimizers of F(v,a;H) to be gauge
equivalent to (v*,a*) where V x a* = 0, and a* is the minimizer of the last
two terms in (1.7):

&(a) = Yllall3 + IV x a — H|j3].
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The question is how small A has to be for this pair to be the minimizer. This
is a rather straightforward calculation.
We first observe that the minimizer a* of & solves

Vx[Vxa*—H]4+a*=0 in U, Vxa*—H=0 on0U. (1.8)

By taking the curl of this equation we see that [V x a* — H] = HZ, where 2
is the unique solution of

—A24+42=-1 in U, £2=0 on 0U. (1.9)
For any pair (v, a), set b .= a — a* so that

F(v,a; H) =3lla* |15 + [Ibll3 + 2(a*, b),
+ IV xa* —H|}p 4+ IV x bll3 +2(V x a* — H,V x b),
+ 2wv,a*); 4+ 2(0,6), + IV x o]l 4 + [[Wl3]:

Equations (1.8) and (1.9) imply that

(v,a*), = —(v,V X[V xa*—H]),=—-H0V x2),=—-H(\V xv,2%),
and

(a*,b), +(V xa* —H,V xb), =(a*+V x|V xa* —H]b), =0.
Hence, for any (v, a),

H:(U: aoH) = ﬂ:](U, b) + [FQ(U,CZ*),

where
Fi(v,5) =3IV x b3 + [IBIl5 + 2(v, b), + |[o]l3]
=3IV x b3 + 16 = vl51=0
and
Fa(v,a*) = &(a*) — H(V X v,2), + 3}V x vl| 4
> 6(a*)+ 4V x ol 45— H max |Z1]-
So the minimizer satisfies V x v* =0, if and only if the term in the

brackets is negative or equivalently when

1

H<H, =———.
T 2 maxy |2

(1.10)
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Clearly, the above argument is a statement about the limit, but with some
extra effort this can be used for the minimizers with small ¢, showing that
the minimizer u of [, never vanishes if and only if H <H,,.

In fact, this and more is proved by Serfaty and Sandier [26].

The second consequence of the Gamma limit result is the derivation of a
mean field equation which is the Euler—Lagrange equation for F. It turns out
that this is a variational inequality closely related to London’s equation. A
rigorous derivation of this equation from the Ginzburg-Landau functional
is first given by Sandier and Serfaty [25]. Later Brezis and Serfaty [6] used
convex duality and earlier results of Brezis [5] on the convex dual of
variational problems to obtain an alternate derivation.

A formal derivation of the dynamic version of this mean field equation is
obtained by Chapman et al. [9].

We finish this introduction with related variational and dynamic
problems. A related functional with the additional constraint u = V¢ is
an important model problem in phase transitions. Recently, compactness
results for this functional is proved in [1, 12]. The properties of the Jacobians
of S'-valued functions is studied by the authors in [18, 19]. Related higher
dimensional problems are studied in [20, 21, 24].

The paper is organized as follows. After recalling the notation and the results
of [17], we first prove the compactness theorem in Section 4. A sharper Jacobian
estimate is proved in Section 5, and the lower limit of E, is proved in Section 6.
An upper bound of the energy is obtained in Section 7 by constructing a
sequence of functions with certain asymptotic-properties. Last two sections are
devoted to the derivation of the Gamma limit of F, and the mean field
equations. Finally the proof of a technical lemma is given in the appendix.

2. NOTATION

We need to recall some of the notation of [17].
Set

, 1 1
&) = 3 IDuP’ + = W (JuP),

so that

E.(u) = /U e*(u) dx.

If S = R?, we will write y5 to denote the characteristic function of S, so that

() = 1 if xes,
BSYZY0 0 if xds.
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Given ¢ € C»!(U), we use the notation

Q) ={xeU|dx) >t}, 2.1

Reg(¢) = {1 €[0,T]: 0Q(t) = ¢~ (1), 0Q(¢) rectifiable,
HN(0Q(1)) < 00} (2.2)

The co-area formula implies that Reg(¢) is a set of full measure. For every
t € Reg(¢), 0Q(¢) is a union of finite Jordan curves I';(?), i.e.,

0Q() = I'(r), Ve Reg(¢).

In particular, this holds for almost every ¢. For t € Reg(¢), we define

Ire = U{components I'i(t) of 0Q(1)] rr}i{l) [u(x)] > 1 /2}. (2.3)
xeli(t
Given any function ¢ € C%!(U) such that ¢ = 0 in U, we define

Dy(¢p) = {t € Reg(¢) : I'(t) is nonempty, and |deg(u; ['(¢))|=d}, (2.4)

Dy(d) = Da($p) N it : 12Vl 2.5)

We will normally write simply D,; when there is no possibility of confusion. Of
course, |D,| depends on u as well as on ¢.

Note that if u € H' is fixed, then the ratio [Dy(¢)|/||}||, is scale-invariant
in that it is not changed when we multiply ¢ by a scalar, so that
IDa(P)I/ 19l = 1Da(2)I/ 14|l The same remark holds for [D%(¢)|/[IV |-

3. PREVIOUS RESULTS

In this section, we recall and restate two results of [17].
The first one is a localization and a lower energy bound result. It is
essentially proved in [17] by a covering argument of the first author [16].

THEOREM 3.1.  Suppose that ue H' (U;R?) and ¢e(0,1]. Then, there
exists o* = a*(u,e)>0 and C >0 (independent of ¢ and u) such that for
every o=a* there is a collection of pairwise disjoint closed balls
B(o,u,e) = HB° = {Bf}k(a) such that for any ¢ € Cg’l(U) and for any positive

i=1>
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integer d,
1D5(9)
<2R(0), 3.1
2 G
whenever either do > R(c) or
, R
/ e*(u) dx<md <ln (@) + C> . (3.2)
spt(qﬁ)r\( /B;’) ed
Moreover,
o - R(o) = Zr:’ is continuous and nondecreasing on [6*,0),  (3.3)

where r{ is the radius of Bf. Finally, 6* also satisfies

R(a*)g%E"(u). (3.4)

This result is essentially a restatement of Proposition 6.4 and Remark 6.5
of [17]. For the reader’s convenience, we give its short proof in the
appendix. The second result is a Jacobian estimate proved in [17, Theorem
2.2]. The version stated below is slightly different than the statement of
that theorem but the version below is actually proved in Step 5 of Theorem
2.2 in [17].

THEOREM 3.2.  Suppose that u € H'(U;R?). There exists some constant
C > 0 such that for any ¢ € Cg’l(U), positive integer d and ¢ € (0, 1],

’/U ¢Ju dx

< (d + C\/ol¢lls + IDas1|E“(u)

+ Ce' BVl (Eu) + (E°(u))*). (3.5)

Finally, we recall a compactness result which is proved by interpolation
techniques; see [17, Remark 3.7].

THEOREM 3.3.  Suppose V¢ is any sequence of measures on a bounded open
set U = R™, and there exists some o > 0 such that

VI(U)<KlIn g, /fﬁ dv' <Clloll + CFlIVPll

forall ¢ € Cg’l(U). Then, {V*} is precompact in (Cg’ﬁ(U))* for all B e€(0,1].
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4. COMPACTNESS

In this section, we prove Theorem 1.1. The compactness of the Jacobian is
proved exactly as in [17] by using Theorem 3.1. The compactness of j(u) is
more of a direct consequence of (1.1) and straigtforward estimates.

We start with v°.

THEOREM 4.1.  Suppose that u* € UN(U;R?) satisfies (1.1) with g, <& for
some 0<y<2. Let v* be as in (1.2). Then,

2
<2k Vee(0,1],
2

&

Ju|

where K is the constant in (1.1). Also, for every bounded open set V < R* and
every 1 < p<(2+y)/(1 + y) there exists some constant C = C(p,V,7,K) such
that

1l <C Vee (0,1]. 4.1)

Finally, for any subsequence {¢,} tending to zero, {v* [\u®|} converges weakly
to some limit in L? if and only if v’ converges weakly in L _ for all p as above,
and the weak limits are equal.

Remark 4.2. 1If we consider a nonlinearity of the form W(|u|) such that
W(l)=0, W(s)>0 for s#1, and W(s)>=s" — C for some r>2, then similar
results are true, for a different range of p.

Proof. Since |Duf* = |D|u||2:[j(u)|2/|u|2, the first conclusion of the
theorem is obvious.

1. Because v* <|u|(|Duf|//yg.), HOlder’s inequality implies that

1 p/2 2-p/p
Jwrsc(s [ew) ([uwerer)
v 9ge Jv v
@2-p/p
< C(/ |u8|2p/(2p)> )
v

So to prove (4.1), it suffices to show that (1.1) implies that |[u*||, <C for

g=2p/2— p), with 1< p<2+7y)/(1+7).
First, note that

1 < (ju'l = DT 4 Clg).
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Because V' is bounded, it suffices to prove that [[u’] — ]|, is uniformly
bounded for ¢ as above. This is immediate if ¢<4, since
(] — D*<(u’]* — 1), and so

/ (] — 1Y < / (P = 1)’ <Cig,.
V V

For ¢ >4, we interpolate as follows: writing A° = |[uf| — 1, we see that
\Dh?| <|Dw’|, and so ||DA*||3 < Cg,. This implies || D/’|[},;,, <C(V)g, for all
r<2. Using the Sobolev—Nirchberg—Gagliardo inequality

||hz:||q < C||h1||g||th||i70 < C(8g8)9/4g5176)/2 < Cgfy/2+0/4(y+l)

where 1 =24 (1 — 0)(1 — 1), one finds by taking r arbitrarily close to 2 that

in fact ||A*|,<C forr all ¢ less than some number g*(y)>4. A short
computation shows that g¢*(y) =2(1 +7y)/y, and after another short
calculation one finds that (4.1) holds for all 1<p<(+7)/(1+7) as
claimed.

2. Now suppose that v*/lu*| — v weakly in L?. Note that
(lu| — D* < (|u)* — 1)%, so (1.1) implies that |uf| — 1 strongly in L*. Thus,
the product |u®|(v™ /lu*]) = v* converges weakly in L*/> to the product of
the strong limit of |u®| and the weak limit of j(u®)/|u*| which is equal to v. It
follows that, in fact, v — v weakly in L , for the entire range of p for
which {v™} is weakly precompact.

Finally, if v* — v, then the above argument shows that any weakly
convergent subsequence of {v* /|u®|} must also converge to v. However,
since {v* /|u®|} is weakly precompact in L?, in fact it must be the case that
vé [lutr| — vin L2, 1

Proof of Theorem 1.1. The compactness of the rescaled Jacobian w® is
the only part that remains to be proved. From the definition and the
assumed energy bound (1.1) it is clear that ||w’||; <K, so in view of Theorem
5.1, we only need to prove that [ ¢(x)w’(x)dx<Cll¢lly, + Ce"||V¢ll, for
Lipschitz test functions ¢ with compact support in U. This is proved for
g: = (In¢)? in Theorem 5.1. The general case follows the argument of Step 3
of the proof of Theorem 5.1, by using Theorem 3.1 to show that if d = d, is
chosen to be sufficiently large (for example d. >Ky./|In ¢| is good enough),
then |Dj ,|<Ce¢” for some a a € (0,1). The estimate then follows from
Theorem 5.2. In applying Theorem 3.1 one can take ¢ = 1 say; the more
careful choice of ¢ as in the proof of Theorem 5.1 is not necessary here. 1
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5. JACOBIAN ESTIMATE

The main result of this section is a sharp Jacobian estimate in terms of the
Ginzburg—Landau energy. It also states that the vortex energy as measured
by the Jacobian concentrates near the vortices. This allows us to separate the
contributions of j(u%) and Ju® to the energy. Since in the scaling g, = (In &)
both of these contributions are of the same size, this decomposition is
essential in the limit analysis.

THEOREM 5.1.  For any o € (0,1) and K > 0 there exists gy(a, K) > 0 such
that u e H'(U;R?) is any function satisfying

E.(u) <K(In )’ (5.1)

Jor some & € (0,&), then there exists a collection of balls B, u,e) = B =
{B; }k | such that

R=Yr<s, (52)

where F; is the radius of By, and such that for every nomnegative Lipschitz
function ¢,

1911 o
Ju ef(u?)dx + Cé' 01, 53
/(’b ‘ 1- \/_) ltn e Jspron (1, 2) (") € llPllc (5.3)

where y(a) = min{1/3,0}.

Proof. (1) Fix some o € (0, 1) and K > 0, and suppose that u € H'(U;R?)
satisfies (5.1) for ¢ smaller than some small constant g (o, K). We will give
conditions on ¢&y(a, K) in the course of the proof.

We first construct a collection of balls, and in later steps we will show that
it has the desired properties.

Consider the collection of balls Z(c*,u,&) = {B?" }, produced in Theorem
3.1. Note that by (3.4) and (5.1),

R(a*)ggEﬂ(u)g%KuneP.

By taking &(e, K) sufficiently small, we can arrange that the right-hand side
is less than ¢*. Because ¢ — R(o) = Y 77 is continuous and nondecreasing
on [o*,00), it follows that for e<g, either

(1) there exists some 6 =¢* such that R(¢) = &*; or
(i) R(o)<e*forallg=0o*.
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For the time being we assume that (i) holds, and we take our collection %
to be the collection Z(&,u,&) = #° guaranteed by Theorem 3.1. Clearly,
(5.2) is satisfied, so we only need to show that (5.3) holds.

Case (ii) is simpler and in some sense merely technical, and we will discuss
it at the end of the proof.

(2) Now fix any function ¢ € C'(U) and set

1
= E(ub) dx , 54
Lunaa—ﬁ)z wion(Up) J GH

where lal is the integer part of a.
For any nonnegative integer d, define as before

D, = {t € Reg(¢) : I'(¢) is nonempty, and |deg(u; ['(¢))|=d}.

From (3.5), we have
/ ¢Ju dx
U

for every d, and in particular for d*. We will write d* = d* 4+ 1. Note from
(5.4) that

< d + C\/o) bl + 1Das1|E*(u)

+ Ce' PVl (B W) + (Ew))) (5.5)

1
n|lng|(1 — \/&)2 st (U, B:)

Define as before DY = Dy n {t|t>t,}, where ¢, == ¢||V ||, so that

es(u’)dx<d* <K|lng|. (5.6)

IDa| <1Dgl + €IV ¢l (5.7)

(3) From (5.6) and the choice of &, it is clear that R(G)/d* =

e /d* >¢eV* 1 if gy(a, K) is chosen to be sufficiently small. So

nd* (m (8§*> - c> =nd* (In(eV*") = C)
> nd* ((1 - Va)|lngl - C).

Again using (5.6), the right-hand side is greater than

1 C
(4,6 dx 71 I
</spt<¢>m(ui&) < ) ((1 —a T \/&)2>
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As a result,

£, 8 * R _
/Spl(¢)m(UfB’)e(u)dx<7rd <ln(8d*> C)

for ¢ sufficiently small (depending on K, o). Because the collection % = (&)
of balls satisfies the conclusions of Theorem 3.1 for some 6 > 0, and because
the above inequality is exactly (3.2), we conclude that

1DG- |
IVl

<2R(6) = 2¢%. (5.8)

Then (5.5), (5.7), and (5.8) imply that for all ¢ € (0, &),

/U ‘i’J“dx‘ Sd” + C\/o)l$lloe + CEPNV DI (E W) + (E*w)°),

where y(o) = min{o, 1/3},

(4) Finally, suppose that (ii) holds, and consider the collection of balls
2° given by Theorem 3.1 for some fairly large value of g, say ¢ =1 for
example. Then for any positive integer d,

do =d> & =R(0)
by the assumption of case (ii)), and so Theorem 3.1 implies that
|D4| <2R(0)IVl <26V, s0 (5.3) follows as before. In fact, more is

true: since in particular |Dj|<2¢%||V ||, taking d = 0 in (5.5), we find that
if (i) holds, then

[ o

Remark 5.2. In the above proof, we actually proved a slightly stronger
version of (5.3) than stated. Indeed, we proved that

<CVellgllo + CE DNV Il (B u) + (E*w)>). 1

‘/U PJu dX‘ < d* + CV/o)lPlloe + CEPNV DIl (E () + (E*())°)

< (d* + C\/e)l|glls + CeP2V .,

where d* is as in (5.4).
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6. LOWER BOUNDS

In this section, we prove the lower bound in the Gamma limit. The upper
bound will be proved in the next section, completing the proof of Theorem
1.2.

We consider a sequence of functions u* € U'(U;R?) satisfying (1.1) with
g: = [In¢]*. Then,

. JW®) . Jut 1 .
. e — _v 3
e " Tqng 2 "

and by the compactness results of the previous sections, v*, v*/|uf| and w* are
compact in appropriate spaces. In the following theorem, we assume
convergence in these spaces and prove a lower bound.

THEOREM 6.1.  Suppose that

v luf| — v L? weak, v —ov L weak Vp<2. (6.1)
Then, w =V x v/2 is a measure, and
L E@®) 1
lim inf == 3 [l + 1V x vl (62)

Proof. (1) Fix « €(0,1), and for e<egy(a, K) let B = B(o, &,u) denote
the collection of balls that is shown to exist in Theorem 5.1. We will write B¢
to denote a generic ball in # .

For each ¢ € (0, &) define

) — { 1 ifxel; B,

if not.

Note that by Holder’s inequality, for any fixed % e L?,

(frir) <

The first integral on the right-hand side vanishes as ¢ — 0 by the dominated
convergence theorem, and the second is uniformly bounded. It follows
that (v*/|uf|)y* — 0 weakly in L? and hence that (v*/[u®|)(1 — 7°) — v weakly

2 &
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in L?. As a result,

2
lim inf [In &2 / ¢(u) dv> liminf / Ve
£—0 U\(U[ ) 2llne
1] o |?
> liminf —|—
P S ) 2l
1| v* 2
zliminf/—f(l— 9| dv
v 2|l
1 2
> 5 lloll dx. (6.3)

(2) Since v* — v, it is clear that w* = V x v°/2 converges in the sense of
distributions to w = V x v/2. For any ¢ € C2°(U), Theorem 5.1 implies that

/d)vadx
U

lim |In ¢! / qﬁJu"dx‘
e—0 U

llPllo
(1_\/’2

By taking the supremum over all ¢ as above such that ||¢||,, <1, we find
that

/\

llm 1nf [Inel™ e (u®) dx.

/ sot@)n (U, B:)

1
IV x| 4, < \ hm 1nf [Ing|™ 2/ e (u®) dx.
2 4 \/‘ T 2 Ur\( "

U2)

Adding this to (6.3), we find that
1 1
timinf finel > [ 6 dv>3 (1= VIV ol + 5
&E— U

for all o € (0,1). Letting o tend to zero, we obtain (6.2). |1

7. UPPER BOUNDS

In this section, we construct sequences of functions to prove that
the lower bounds established earlier are essentially sharp. This construction
is very similar to a construction given by Sandier and Serfaty [25] for the
functional with the applied magnetic field. Here, we present this construc-
tion in a way that would be easier to generalize to higher dimensions.

We will prove:
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ProrosITION 7.1.  Suppose that U a bounded domain with a smooth
boundary. Fix any ve C®(U;R?). Let {d:} sc01) be an increasing sequence
such that d;, — oo and e¢d, - 0 as ¢ - 0. Then, there exists a sequence of
Sunctions {u} .oy = H'(U;C) such that

v = jw®)/d, — v in LP for all p<2, (7.1)

W= JufJd, =V xv/2=:w in WP for all p<?2 (7.2)
and

d2
Eg(ug)Sjs [o][3 + delln ] [[wll; + o(d;) (7.3)

as ¢ — 0.

For the scaling d, = O(1), essentially the same estimate is obtained in [17].

Note that (7.2) follows immediately from (7.1). Also, if g, <[In ¢, then,
the compactness results and (7.3) imply that w* — w in C%*" for all o> 0.
However, this does not add much since C%*" is in a sense not much stronger
than Ww—1r.

The upper bound in Theorem 1.2 follows from Proposition 7.1 (with
d, = |In¢|]) and an approximation argument. These sorts of approximation
arguments are standard in the theory of Gamma convergence; see for
example the book of Dal Maso [11]. To obtain a Gamma limit upper bound
for the scaling 1<g,<[In¢f, one would use Proposition 7.1 with
d, = ¢./|lln¢|, and for the scaling |In ¢ < g. <& 2, Proposition 7.1 with
d; = \/a

We can write L2(U;R?) as a direct sum

LPURY=Z 9@,

where
F={w:0=Vxf, feH(U), f=0 on dU},
G ={v:v=Vyg, g H(U)},
H ={v:Av=01in U, v-v=0 on oU}.

Note that as a consequence of our assumption on U, # is a finite-
dimensional real vector space; see for instance, the lecture notes by Schwartz
[28]. These also prove that if v is smooth, then its projections into &, 4, #
are also smooth.
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We first consider the case v € #(U). Note that for such functions, one can
recover v from its curl via the formula

v=-Vx4,'V x 0,

where Ap denotes the Laplace operator with zero Dirichlet boundary data
on oU.
We now prove

LEMMA 7.2. If ve F, then there exists a sequence u® satisfying the
conclusions of Proposition 7.1. In addition, v* = j(u®)/d, has the form

v = (Yo" with e F and |(p°)* — Uy > 0 Vi<g<oo (7.4)
as ¢ - 0.

Proof 1. Construction of auxilliary function: We will use an auxilliary
function ¢° that we define as follows.

First, fix a nonnegative smooth, rotationally symmetric function 5 : R> —
R with support in the unit ball, such that [ dx = 1. Define 7°(x) = ne) /&%,
and note that the symmetry of 5 implies that

if AH =0 in B,(x), then n°xH(x) = H(x). (7.5)

Define also v(x) =V X In x| = %, so that

V x v=—Alnx| = 21d,, V-v=0 onR%

In particular v, is harmonic away from the origin. We define ¢° by requiring
that

4" (x)v(x) = n°*v(x) (7.6)

for all x. We will need some properties of g°, summarized in the following
lemma. The proof is deferred to the end of this section.

LemwmA 7.3.  ¢° is well-defined, smooth and radial and has the following
properties:

0<q¢°<1, ¢°(x) =1 whenever |x|>e, (1.7)

7@ = q' ()EC) (7.8)
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C
[lg°0|| <o / I () o(x)|> dx<C  for C independent of &.  (7.9)
g B,

2. Construction of u®: We start by selecting points {af}fi , and integers
of = +1 such that

w’ ::dE Z 070 — w(x)dx weakly in .# and strongly in wLp
Vp<2, (7.10)

W :zg Z dq — [w(x)|dx  weakly in .# and strongly in wp
Vp<2, (7.11)

laf — di|=cod; P Vi),  dist(@,0U)=cod; ' Vi, (1.12)

where ¢y is some small constant that depends on [|w||,,. We indicate in
Lemma 7.5 how this can be done. Define #* € W-2(U; R?) by

" = -2V x A,

Next define a function 2°: U — S! satisfying

J@)/d, =, (7.13)

and therefore

Jif [d, = w.

This is done by defining #° = %", where ¢° is a multivalued function
satisfying V¢° = d,0°. To fix an otherwise free constant we can select some
point xg € U and specify that ¢°(xo) = 0. The definition of &° implies that ¢°
is a well-defined modulo 2x, and thus that #° is well defined. The definitions
also imply that j(@°) = V¢° and thus that (7.13) holds.

We finally define

u’ = p*it’, pi(x) = Hqs(x —al), (7.14)



546 JERRARD AND SONER

where ¢° is defined in (7.6). Thus, v* = j(u®)/d, = (p*)*#*. The definition of p
easily implies that

(p*)?” =1, = 0 as ¢ —» 0 for all i< p, g<o0. (7.15)

In particular, (7.4) holds.
3. Convergence of j(u®) and Ju': We use the notation (Vx) 'y =
-V x A[_,lx//. Then for every p<?2

[18° = oll, = 2I(V>) ' w" = w)ll,
< CIw* = w1 = 0 as ¢ > 0

standard elliptic theory. Given p<?2 fix some p € (p,2) and define § by

y
45 = %. Then,

- gt

1
7
0" — &Il , <I1°lll1p° — 1l

and (7.16) and (7.15) imply that the right-hand side tends to zero, and thus
that

llp*0° —ull, = 0

as ¢ — 0, for all p<2. Exactly the same argument shows that

-0 as e — 0
P

(o) 8" — vll, = ' SJ) =

for every p<?2. This is exactly (7.1).
4. Decomposition of E.(u°): Note that

|vu£|2 _ |vp1;|2 + (p::)2|vaz:|2 — |vpél|2 + df(p1)|65|2

One easily verifies that |[Vpf><e 2y - 1t 1s similarly clear that
S*ZW(|u"|2)<C3’ZXU - From (7.11), we'seé that
i

T .
N = Wl = 1wl (7.16)
€

From these, we deduce that

. d2 L d2 .
R <ON+ % [ et acscaiil, + % [ it
2 Ju 2 Ju
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And

1 1
E/VWWZf/wWh+/v(ﬁ“ v dv+ 2 /m“
U
/|v| dx +o(1) + = /|pw vf? dx.

So to complete the estimate of E.(u°), it suffices to show that

|ln g

o — i<

po ||V X vl 4 + o(1).

It is clear that when d, > |In ¢|, the right-hand side of the above estimate can
be simply replaced by o(1).
We define

5 =08(e) = cod; /3,

where ¢ is the constant in (7.12). For r<J, this choice of § implies that
UB,(af) is a distance at least 2r from oU. Due to (7.5) we see that " v* = ¢
away from UB,(a?), and in particular in the set {x € U : r<dist(x, 0U) <2r}.
Motivated by this, we use the convention that #"*v°(x) = v°(x) for
xe{xeU:dist(x,0U)<r}. If r<6 this makes n"=v° well defined and
smooth in all of U, and indeed harmonic away from UB,(a?).

Using the triangle inequality,

PN 2 ~e ~el12 N O, nel2 o, 2
Np0° — vll3 < Nlp°0° — n® %15 + [In° + 8° — ° = 0%||5 + [In® *0° — vll3
=A%+ B + C°.

5. Estimate of C*: We first show that C* - 0 as ¢ — 0. Since (7.16)
easily implies that #°*9° — v in LP(U) for all p<2, it suffices to show that
{nd % ° — U} se(0,1) (Or more simply {n° #0°} ,(0,17)» 1S precompact in L*(U). We
do this as follows:

From the definition of w*, in particular (7.12), and from the choice of ¢
one can see that at any x € U, there is at most one point @’ in B;(x), and so

5 wm’(x — a?)/d, if 3a¢ € B5(x),
n°xw'(x) = :
0 if not.
(We are using essentially the same convention as above for extending the
convolution near the boundary.) In particular, since |#°| — #° <C/52 <(d,,
this implies that [’ *w?|<C in U for C independent of ¢. Interior regularity
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estimates then imply that
||ABI’75 # W2y < C
for every p<oo. So
I llyroer = IV % 45" 0% % Wl <C (7.17)

for every p<oo. This gives more than enough compactness to conclude that
C*>0ase—0.

6. Estimate of B: Recall that for any »> 0,5 «9°(x) = 9°(x) unless
B.(x) N {af.}ﬁil is nonempty. Thus n°*9° — y°* 9 is supported in UBs(a?).
Consider one such ball, say with center a; , which for simplicity we take to
be the origin. Then in a neighborhood of the origin, we can write ©° in the
form ¢ = (v/d;)+H where H is a harmonic and as above
v(x) = (x2, —x1)/|x*. This follows from the definitions of #* and v, which
imply that &° — (v/d,) is harmonic away from {aj},_; i In particular,
this neighborhood contains the ball of radius 36, by our choice of 6. Thus,

) ~e g v & 3 5y U
(n° —n°)=0° = (n —n‘s)*d—+(n —n’)xH = (q —qo)j

using the definition of ¢ and (7.5). Since iy was arbitrary,

1

: 1 :
BN [ PP = N [P e
4 Js0 ;" Jsy0)

Lemma 7.3 implies that 0<g* — ¢° <1 when &< |x| <, and with (7.9), (7.16)
this gives the estimate

B£<n2’3<ln(i) N c) <”Zs” (Ine + C).

7. Estimate of A°: Finally, note that p®0° — 9" is supported in
UB;(a;). As above we fix some iy, and we assume for simplicity that a; is the
origin. In this ball, we write as before H =" — (v/d,), so that H is
harmonic. In this ball p?(x) = ¢%(x), so

ene & nE & v & v
- =¢(=+H) - —+H
pit —apit =g (ot ) ot (5 411

= (0" = DH = (p" = D’ < H.
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However, n° «H = n° +9° — n° x(v/d,), so (7.9) implies that

%" — % 8°|< (1 — p*) (I %8| + C(3d,) ")
< (1= p*)(n® | + Cd; /).

As a result,

S C
Aﬂgc/ (1- p8)2<|nb*ﬁﬁ|2 +—) db.
U d.t:
Applying Holder’s inequality and using (7.15) and (7.17), we infer that
A* > 0ase— 0. 1

We next prove

LemMA 74, If ve C* N (9 @ ), then there exists functions {u}.cq
c HY(U;S") such that

Jj@W®)d, =:v* > v in CX(U) for all k, E.(u®)/d? — |[v][3/2.
Also, v € G @ A for every e.

We remark that the assumptions imply that V x v =0; this is why
||V x v||; does not appear in the upper bound.

Proof. The functions we will construct satisfy |u’| =1 a.e. As a result
[Vui? = |j(uf)]* a.e., and so the stated convergence of d2E*(u®) will follow
immediately once we establish the convergence of j(u*)/d..

Recall that U has the form G\(U;":1 P), where G,P,,...,P, are open,
connected and simply connected, and the P, are pairwise disjoint subsets
compactly contained in G. We assert that there exist functions H;, i =
1,...,m in J# characterized by

H; -t =21
oP;

ij>

and moreover every function H € # has the representation

- 1
H = E H;| — H-t|.
i=1 (275 /61% T)

The constant 27 is a convenient normalization. These claims follow from the
Hodge theorem, see again Schwarz [28]. This can also be established by
elementary arguments in this setting. An efficient way to do this is to use the
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fact that every function in J# can be written as the curl of a scalar function
W. A quick proof of this fact is sketched in [4, Lemma 1.1].
Soif ve% @ A, then it can be written in the form

v:VngciH,-

for certain constants c'.

For each Hy, we define a functions vy : U — S! such that j(v;) = H;. To do
this we define v; == €%, where ¢, is a multivalued function satisfying
V¢, = Hr. As above, we fix an otherwise free constant by selecting some
point xy € U and specifying that ¢, (xo) = 0. The definition of H; implies that
¢, 1s well-defined modulo 2, and thus that vy is well defined. The definitions
also imply that j(vy) = V¢, = Hy as desired.

If we now define a function v by

mn \E
By — H UI_P,-
k=1

for integers pf,..., p%, then one checks that
V¥ = o) = Vg + Z E;H
' dS d}l "

Taking p¢ such that (d,/ p?) — c;, we immediately find that v* — v in C¥(U)
for all k. It is also clear that v* € 4 @ # for every e. |

At the end of the section, we will prove the auxiliary lemmas used above.
We first give the

Proof of Proposition 7.1.  Suppose v e C*(U,; Rz), and write v = v; + vy,
where vj € 7 and v, € 9 @ A Let {uf}, o and {u5},0 ) be sequences
satisfying the conclusions of Lemmas 7.2 and 7.4, respectively. Define ° to
be the product, ujui. We verify that {u°} satisfies the conclusions of
Proposition 7.1.

First, of = j(u)/d, = |[ui*v5 + 305 = o§ + o5 + (ué]* — Dvs.  From
(7.15) we know that || [uj P — 1|, = 0 in /7 for all g<oo, and this implies
that (7.1) holds.

It follows that w* = V x v¥/2 — w in W17 for all p<?2.

Finally, to prove (7.3), we use the fact that |[u§|| = 1 to compute

\Du* = |Duts P + [ P1Dus P + jus) - () < |Dut P + 1D + jul) - ju).

Again using the fact that [¥|=1, we infer [E,(u)<E.(u})+
E.(u5) + ij(u‘i) - j(u§). In view of Lemmas 7.2 and 7.4 it suffices to show
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that
/v‘}v‘édx—»O as ¢ - 0.
U

To do this, we use (7.4) to write v} in the form (p")zﬁ’{, where (p?)> — 1 - 0in
L7 for all g<oo, and #} € #. Then,

[ tesac= [ desaes [ @ - i
U U U

But # and v} are orthogonal in L2, and since |[v§||,, <C, llvill, < C) for all
p <2, we easily conclude that the right-hand side tends to zero as ¢ — 0.

LEMMA 7.5. There exists families {aL}N‘1 of points, satisfying (7.10)—
(7.12).

Proof. Write U = LU}, where for eachz U? is a set of the form U n 0,
and Q¢ is a cube of side length d; "%, For each i, let Nf =ld, fU, || dx! if
dist(Uf,0U) > 0, and let N} = 0 otherw1se Also let ¢} sgn(fU, wdx). In
each U} select N} })omts {a } i that are roughly equally distributed. Note
that N8 <||w||o d;'” for all z ThlS implies that the points can be chosen so
that the dlstances are bounded below as in (7.12). Finally, define

N
€ . &
w' = E E ;0 -
=

Upon relabelling, this collection of points has the same form as in (7.10)-
(7.12).

It is easy to see that this sequence of measures has uniformly bounded
mass, so weak convergence in .# will follow from strong convergence in
W=Lr p<2. For the latter, since functions in W', g>2 are Holder
continuous, it suffices to verify that for every o >0,

-0

/U dav [ pomo s

lldllcoq <1

as ¢ — 0. To verify this, note that if dist(Uf,0U) > 0 and ||¢||co- <1, then

< Cd;(l/z)*(i/“)_

” ¢ dw’ — / P (x)w(x) dx
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Also, the number of sets U satisfying such that dist(U;,0U) > 0 is bounded
by Cd,*. A different but equally straightforward argument is needed to

show that the error at the boundary vanishes in the limit. [

We complete the above proof by verifying the properties of the function ¢*
stated in Step 1.

Proof of Lemma 7.3. Since 5 is rotationally symmetric

x[? ||2
o /n(x—y)| 7 o /V/(x—y)|—|dy

Set ¢'(x) to be the above expression, and ¢°(x) = ¢'(x/¢). Then, (7.6) holds
by definition. To prove the other properties, we first observe that for any
#>0 and x e R%,

/ x—y o |OB, |I)T‘ if x| <r,
24V = .
o8, |x — ¥ 0 if x| >r.

Therefore,
X—y
pe o) = / 1) 2" ay
By |x_y|
1
- / 00y [ 1) 2= avar
0 o8, [x — yl
AN
=5 [ woves.
Px|* Jo
Since

1
/ n(IOB, dr = 1,
0

(7.7) follows. To obtain (7.9), observe that
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lg* (e)u(x)| = 7" *v(x)|
|\ x=y
= ‘/B 82n(y/a) P dy

1 e x| 1
ZM/O 3 1(/¢)|0B,| dr

1 1 Alxl/e
— /0 1(p)1oB,| dp

C
< —
&
The L? inequality follows easily from the above and the fact that
1B, = ne?. 1

8. GINZBURG-LANDAU FUNCTIONAL FOR
SUPERCONDUCTIVITY

In this section, we examine the asymptotic behavior of the functional

(lul* — 1)

4¢2 &,

1
[Fs(u,A;hext) = E/ |VAM|2 + |v XA - hext|2 +
U

where the order parameter u is C-valued, the magnetic potential 4 is R*-
valued, and

Vu = Vu—idu.

The applied magnetic field /.y is assumed to be a constant that may depend
on e.
We will use the results of the previous sections to prove Theorem 1.3.
We recall that F, has a gauge invariance

[Fs(”aA; hext) = l]:e(ueixaA + Vi hext)a

for any smooth y; see [22,29]. Due to this invariance, and because the
statement of Theorem 1.3 is gauge-invariant, it suffices to prove the theorem
for a fixed gauge. We find it convenient to work with the Coloumb gauge: by
an appropriate choice of y and by relabelling (ue'””, 4 — Vy) — (u, A) we can
arrange that

V-4=0 1in U, A-v=0 on oU, /Adsz.
U
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We will henceforth assume this to be the case. Our assumptions in Theorem
1.3 imply that ke = H|In ¢|, where H, converges to a finite limit H as ¢ — 0.
We assume for simplicity that H, = H; this simplifies the notation a bit and
otherwise does not affect the proof. Our method easily extends to cover /gy
of the form p(x)|lne|, where p(x) is some nonnegative square integrable
function. We could also consider other scalings.

Proof. (1) First, let (u*, 4°) be a sequence such that
Fo(u®, A%; hey) <K|In gf*. (8.1)
To establish compactness, note that
IV x a® — H|} = [Ine] 2|V X 4° = heg|* <[In €] 2Fo(u?, 4% hex) <K.

Also by the choice of the Coulomb gauge, V - a° = 0. These imply that {a°}
is uniformly bounded in H!, and we immediately get weak compactness in
H'.

We obtain compactness for u° by Theorem 1.1. For this, we need to verify
(1.1). By (1.3)

Eo(u’) <Fo(u’, A% hex) — (i), A%),. (8.2)

We estimate the unsigned term (j(u°), 4%), = [ A®- j(u°) dx by noting that

1j(u))?
|A8 ](u8)|< 7|J( )2| + |us|2|A8|2
4
< IV 4 (P = DA + 4P
1 g2 1 g2 2 21 4614 g2
<Z|Vu| +@(|u| — )"+ 2e7|4°%" + A7),

Thus,
@), A% B () + 2671 4°11§ + [14°I 5.
This together with (8.1) and (8.2) imply
E.(u") < Cl(ne)* + [|4°013 + l4°I13]- (8.3)
But for any p< oo, the Sobolev embedding theorem informs us that
14°11, = CpllA°lln < Cllncg].

With (8.3) this implies the energy upper bound (1.1). The remaining
compactness assertions for v then follow from Theorem 1.1.
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(2) Now suppose that (v%, a®) are functions such that converge to (v, a)
along the full sequence ¢ — 0. We write the functional as a sum of terms,

Fo(u, A% hey) = FL(uf, A7) + F2(u', A°) + B (uf, A°) + FA(u?, 4°),
where
Fo(0', 4%) = Ey(u),

(Ing)’
2

F2(uf, 4%) = [IV x a — H|5 + [la°| 3],

In &)’
) = S [ - e a
U

Fi(uf, 4%) = —(Ing)? / at - v° dx.
U

It is an immediate consequence of our earlier results that

lim inf [In &5, @, 4°) > 013 + IV x ol ).

Also, the H' weak convergence of 4 implies that

lim inf IIn e *F2(u’, A) =V x a — HI; + lall3].
E—

The third term is estimated (similar to Step 2) by noting that
IF3 @, A9 <P = 1M%< CI P = 1l [14°0 70 < Celln g

Finally, since a® converges to a weakly in H', it converges strongly in L? for
all p<oo. The weak LY convergence of %, g <2, is good enough to guarantee
that

lim nf [In g 2FHut, 4%) = —(a,v),,

thus proving the Gamma limit lower bound

l}:s(uS:Aﬁ; hexl)

lim inf 5
(Ine)

=>F(v,a; H). (8.4)

(3) Finally, the upper bound is a very easy consequence of our earlier
results. Given (v,a) as stated, we define 4° .= |In ¢la, and we let u® be the
sequence constructed in the proof of Proposition 7.1 with d; = |[In¢|. One
then can easily check that in (8.4) equality holds for (uf,4°). |
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9. MEAN FIELD EQUATIONS AND THE FIRST CRITICAL
THRESHOLD

In this section, we derive a variational inequality as the Euler—Lagrange
equations for the functional [, and obtain a formula for H,, as a corollary of
it. These derivations were given in [25]. We provide the short computation
for completeness.

The Euler-Lagrange equations of F is a variational inequality, (9.1)
below, and they are interpreted as the mean field equations of super-
conductivity. Indeed, the variational problem (9.1) is derived by Serfaty and
Sandier [25] as the equation satisfied by the limit of the minimizers of [,.
Equation (9.1) is related to the London-type evolution equations for
superconductivity. A formal derivation of the time-dependent mean field
equations is given in [9].

Since the functional

F(v,a; H) = Yllv — all3 + IV x vll 4 + IV x a — H|}5]

is convex, the existence of a minimizer v* € L?, a* € H' with V x v* a Radon
measure is straightforward. Indeed, using the Coloumb gauge V-a =0, a
minimizer is easily constructed by lower semicontinuity arguments.

Next theorem gives a characterization of the minimizers as solutions of a
variational inequality.

THEOREM 9.1 (Sandier—Serfaty [25]). Let a*,v* be a minimizer of F.
Then, z* = [V x a* — H] is the unique minimizer of the functional

inf Dz H), DG H) =4IVl + |zl + G B, ©O.1)

where
H = {zeHOl 1zz —1/2 ael,
and v* is computed by the equation
Vx[Vxa*—H]l+a*"=v* inU, Vxa*—H=0 onodoU. (9.2)
Moreover, —5<z* <0,
u* =V xv*>20 and support u* < {z* =—1/2}.
This proof is a combination of Lemmas II1.3 and I11.4 in [25]. Also, see a

recent paper of Brezis and Serfaty [6] and a paper by Brezis [5] for the use of
convex duality in this context.
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Proof. A direct variation in a yields (9.2).

1. To obtain a second equation, we need to do variations in v. For this,
we find it convenient to vary the curl of v, instead of varying v. Indeed, for
any Radon measure e H~!, the vector field vy = —V X Aglu is in L? and
V X v, = .

We write ¢ + u*"¢ = u for, respectively, the absolutely continuous and
the singular parts of p with respect to u*, and for any Radon measure
sign(u) gives Hahn decomposition of p into its positive and negative parts by

sign(u) = £1, p—ae, sign(p) dp = d||ull.

See [13] for an introduction.
Recall that u* =V xv*, and for any Radon measure pu, set
S = F@* + 1y H),
2. Using (9.2), definitions of z*, v,, and integration by parts we see that
(v* —a*,vy), = (z*, 1),. Therefore,

S w— 0w

< DT 1(0; n) =i
0 SO 1) im .

1 . I
0t~y 5 [ sien(e) dp )

1. ac 1. »
= /(z* +551gn(,u*)> du®® —|—/(z* —|—551gn(,u)> dpme.

Similarly,

0= D f(0: ) = lim w

1 . I
0t~y 5 [ sign(et) dp )

= /(z* +%sign(,u*)> du® +/(z* %sign(,u)) dpsne,

Since we can choose ;¢ and p*™¢ independently, we immediately conclude
that

rl<h <2 dpt =il
The second identity is equivalent to z* = —1/2 sign(u*) on the support of

T
3. In this step, we show that u* is nonnegative. Set

p = (sign(u*)) p*
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to be the negative part of p*. Then by the previous step, for any function f,
with f(z) = 0 for z<0, we have

/ FE)dt = — £/ (U),

Let f be such a function, which is smooth and nondecreasing. By taking the
curl of (9.2), we see that u* = —Az* 4+ z* + H. Hence, noting that f(z*) =0
on oU,

/ FEtydut = / PP+ / FEE + H]>0.

Since we could take f(1/2)> 0, we conclude that p*(U) = 0. Hence u* is
nonnegative.

4. We next verify (9.1). Indeed, by the inequality |o]* — |w]*
>2(v — w) - w, we have the following for any z € #":

D(zH) — DE* 5 H)> (Vi — 25, Va2 )y + (2~ 2*12%) + (F— 2° L H),
=(z— 214" +2* + )],
=(z - 2L u*)s.

In the final step, we used the curl of (9.2).
Since u* is a nonnegative measure whose support is included in
{z* = —1/2}, we conclude that for any z=> — 1/2,([z — z*], u*), >0.
5. By the theory of variational problems like (9.1), z* is the unique
solution of the variational inequality

—Az* +z*+H>0, z*>=—1/2,

(—dz* +z* + H)(z* +1/2)=0 in U, (9.3)

with zero boundary conditions; see for instance [14]. Then, by maximum
principle z* <0. |1

We obtain a quick formulation of H,, as a corollary of the variational
formulation of z*.

COROLLARY 9.2. Let (v*,a*) be a minimizer of [F(-,-,H). Then the
limiting vorticity V x v* is identically equal to zero, if H <H,,, where H,, is as
in (1.10). Moreover, V x v* is nonzero for H > H,,.



GINZBURG-LANDAU FUNCTIONAL 559

Proof. First suppose that H <H,,. Let Z be the solution of (1.9). Then,
HZ is a solution of (9.3), and therefore z* = HZ. Moreover, z* > —1/2, and
the support of V x v* is empty.

For H > H,,. The obstacle is active in the variational inequality (9.3), and
by the theory of obstacle problems we see that —Az* +z* + H =V X v* is
a nonzero measure. |

APPENDIX
In the section, we provide the proof of Theorem 3.1.

Proof of Theorem 3.1. In Proposition 6.4 of [17], a collection of disjoint,
closed balls #(s) = {B] ],i(:“]) satisfying r{ >¢,

g
/ E(u) de =5 A4%(0), (10.1)
UnB; o

] =old]| whenever B] noU =0, (10.2)

where df is the essential degree as defined in [17] and it has the same additive
properties as the usual degree. In particular, for ¢t € Reg(¢) dg(u, I'(¢)) =
deg(u; I'(¢)). A® is an additive function satisfying

s — A%(s)/s is nonincreasing (10.3)
and
A¥(s)=nln(s/ep) + co, for s>e,

for some constant ¢y. Define

C = {re(0,||¢||go>|r(t) N [UBZ} 7&0}.
k
The definition implies that C = |J, ¢(BY), and as a consequence

ICI<2Vlle Y 7f = 20Vl R(0).
k

Thus if |D%| > 2R(0)||V¢ll,, then Df,\C;é(Z), and we may select some
to € D{\C. The definition of D% and the essential degree imply that
|deg(u; I'(ty))| = |deg(u; I'(ty))|=d. On the other hand, the definition of C
implies that I'()) N (U, BS) = 0. Since the balls covers essential zero set of
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u,

the additivity of the degree yield

d<|degreew: ()< > ldil< > ldfl.
{k:BS =Q(10)} {k:Bf noU=0}

So (10.2) implies that do <R(0).

(1

Since Q(t)) < spt ¢, the negation of (3.2) follows directly from (10.1) and
0.3).
Final inequality is obvious in the construction, and the continuity

assertion is made in Remark 6.5 of [17]. 1
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