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We continue our study of the functional

EeðuÞ :¼
Z
U

1

2
jruj2 þ

1

4e2
ð1� juj2Þ2 dx;

for u 2 H1ðU ;R2Þ, where U is a bounded, open subset of R2. Compactness results for the

scaled Jacobian of ue are proved under the assumption that EeðueÞ is bounded uniformly

by a function of e. In addition, the Gamma limit of EeðueÞ=ðln eÞ2 is shown to be

EðvÞ :¼ 1
2
jjvjj22 þ jjr 	 vjjM;

where v is the limit of jðueÞ=jln ej, jðueÞ :¼ ue 	 Due, and jj 
 jjM is the total variation of a

Radon measure. These results are applied to the Ginzburg–Landau functional

Feðu;A; hextÞ :¼
Z
U

1

2
jrAuj2 þ

1

4e2
ð1� juj2Þ2 þ

1

2
jr 	 A� hext j dx;

with external magnetic field hext � H jln ej. The Gamma limit of Fe=ðln eÞ2 is calculated to

be

Fðv; a;H Þ :¼ 1
2
½jjv� ajj22 þ jjr 	 vjjM þ jjr 	 a� H jj22
;

where v is as before, and a is the limit of Ae=jln ej. # 2002 Elsevier Science (USA)
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1. INTRODUCTION

The functional

EeðuÞ :¼
Z
U
eeðuÞ dx; eeðuÞ :¼

1

2
jruj2 þ

1

4e2
ð1� juj2Þ2;

for u 2 H1ðU ;R2Þ, is an important model problem in the Calculus of
Variations as it contains different length scales such as the vortex core,
vortex spacing, and its solution has a rich topological structure. As pointed
out by Bethuel et al. [4] this functional can be considered as a simplified
version of a functional proposed by Ginzburg and Landau [29] as a
phenomenological model for superconductivity.

In their book, Bethuel et al. [4] obtain a complete description of the
asymptotic behavior of the minimizers of this functional with given Dirichlet
data. They prove that asymptotically the minimizers have finitely many
singularities called vortices. Each of these vortices carries pjln ej amount of
energy and the number of the vortices is determined by the winding number
of the Dirichlet data. These results indicate that a natural scaling for this
functional is jln ej. Motivated by this, in [17] the authors studied the Gamma
limit of Ee divided by the scaling factor jln ej and proved the following results
for this scaling: suppose that for a sequence fueg, EeðueÞ=jln ej is uniformly
bounded in e. Then, the Jacobian

Jue ¼ r	 jðueÞ=2; jðueÞ :¼ ue 	rue;

of these functions is precompact in the dual of H .oolder continuous functions,
and any limit J is an atomic Radon measure with weights equal to an integer
multiple of p. The support of J is the asymptotic location of the vortices and
the weights of J at these points are related to the limiting degree of ue.
Moreover, for any sequence ue converging to u in W 1;1,

lim inf
EeðueÞ
jln ej

5jjJ jjM;

where jjJ jjM is the total variation of the measure J and the energy
concentrates on small balls around the vortices [17]. Also for any atomic
measure J with weights equal to an integer multiple of p, there exists a
sequence whose limit Jacobian is J and the above limit is achieved with an
equality.

Important earlier work on Jacobians in a similar setting includes the
paper of Brezis et al. [8] that demonstrated the relevance of Jacobians in
studying harmonic maps with singularities. The Jacobian was subsequently
used by Bethuel [2] to characterize the class of maps B3 ! S2 which can be



JERRARD AND SONER526
approximated by smooth S2-valued maps. More recently, the authors in
[18, 19] proved, as a special case of more general results, that if u 2
W 1;1 \ L1ðR2; S1Þ and the distributional Jacobian of u is a Radon measure,
then this measure must be atomic. Similar results are found in the work of
Giaquinta, Modica, and Soou$ccek on Cartesian currents [15] and analog of
this result in the space H1=2 is proven by Bourgain et al. [7].

In this paper, we continue this analysis with different scalings. Suppose
that for a sequence of functions fueg,

EeðueÞ4Kge; jln ej4ge�e�2: ð1:1Þ

Since e2ge tends to zero by assumption, the potential term in Ee forces juej to
be close to one in most of the domain. However, juej is still close to zero
around vortices. In view of the results of [17], this contributes to the energy
at least by an amount of jln ej jjJ ðueÞjjM. Moreover, mentioned before, this
‘‘vortex energy’’ concentrates near the vortices: on the union of balls with
small radii. We call this ‘‘vortex set’’ Ve. Then, on this set, the energy EeðueÞ is
approximately bounded from below byZ

Ve

eeðueÞ dx5jln ej jjJ ðueÞjjM:

A precise mathematical statement of this fact is demonstrated in Section 5 as
a sharp lower bound of the energy in terms of the Jacobian.

Away from the vortices only the gradient term is active. Since for
u ¼ reij,

jruj2 ¼ jrrj2 þ jrrjj2; jðuÞ :¼ u	ru ¼ r2rj;

and since away from the vortices juej is near one, in this region

jruej2 � jjðueÞj2 ¼ jue 	ruej2:

Hence, approximatelyZ
U=Ve

eeðueÞ dx5
Z
U=Ve

jruej2 dx5
Z
U=Ve

jjðueÞj2 dx:

This reasoning indicates that the functional EeðueÞ is approximately
bounded from below by

1
2
jjjðueÞwU=Ve jj

2
2 þ jln ej jjJ ðueÞjjM:

The excess energy between Ee and the above expression is due to the extra
winding around the vortices.
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To examine possible scalings, set

ve :¼
jðueÞffiffiffiffi
ge

p ; #vve :¼
jln ej
ge

jðueÞ; we :¼
jln ej
ge

J ðueÞ: ð1:2Þ

Then,

Jue ¼
ffiffiffiffi
ge

p
r	 ve=2 ¼

ge
jln ej

r 	 #vve=2

and

we ¼ r	 #vve=2; jðueÞ ¼
ge

jln ej
#vve:

So approximately,

EeðueÞ5
ge
2

jjvewU=Ve jj
2
2 þ

jln ejffiffiffiffi
ge

p jjr 	 vejjM

" #

or equivalently

EeðueÞ5
ge
2

ge
jln ej2

jj#vvewU=Ve jj
2
2 þ jjr 	 #vvejjM

� �

¼ ge
ge

2jln ej2
jj#vvewU=Ve jj

2
2 þ jjwejjM

� �
:

Therefore, the critical scaling is ge ¼ ðln eÞ2. In this case, ve ¼ #vve and both
expressions are identical. For ge � ðln eÞ2, however, the first lower bound
indicates that jjvejj22 is the dominating term. On the other hand, for
ge � ðln eÞ2, from the second estimate we see that the important term is
jjwejjM. Indeed, this is consistent with the results of [17] which studies the
case ge ¼ jln ej and proves that the Gamma limit is given by the limit of we.
Since in the critical case both terms appear in the limit behavior, we need to
show that the contribution of jjwejjM is localized near the vortices. This fact
is mathematically verified in a ‘‘sharp’’ Jacobian estimate in Section 5. This
separation of energy renders the analysis of the critical case more difficult
than the others and that is the only reason we study the case ge ¼ ðln eÞ2 in
detail. All the ingredients of other cases are included in our analysis.

This formal expansion of Ee together with (1.1) suggest that ve and we are
compact in appropriate spaces. Let v and w be the limits of ve we,
respectively.

In this paper, we prove the compactness of ve and we, and study the
Gamma limit in the critical case ge ¼ ðln eÞ2. Compactness results follow
from the formal lower bounds of Ee together with (1.1). Indeed, a
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compactness result for ve follows easily from the energy bound (1.1). For we,
we follow the techniques developed in [17].

Theorem 1.1 (Compactness). Assume (1.1). Then, the scaled Jacobians

we defined in (1.2) are precompact in C0;a * for all a > 0.
Further assume that ge4e�g for some g52. Then, ve defined in (1.2) satisfies

sup
e

jjve=juej jj2251:

Also, for every bounded open set V � R2 and every 14p5ð2þ gÞ=ð1þ gÞ
there exists some constant C ¼ Cðp; V ; g;KÞ such that

jjvejjLpðV Þ4C 8e 2 ð0; 1
:

Finally, fve=juejg converges weakly to some limit in L2 if and only if ve

converges weakly in Lploc for all p as above, and the weak limits are equal.

For ge ¼ jln ej, the first assertion in the above theorem is proved in [17].
In general, we do not expect the strong convergence of ve in L2 even for

the minimizers. Also, note that depending on the scaling either v or w is zero,
except in the critical case ge ¼ ðln eÞ2.

We now specialize to the case ge ¼ ðln eÞ2. In view of the compactness
result, on a subsequence, denoted by e again, ðve;weÞ converge to some limit
ðv;wÞ in appropriate spaces. Moreover, due to the choice of the scaling

ve ¼
jðueÞ
jln ej

; we ¼ r	 ve=2 ¼
Jue

jln ej
:

Hence w ¼ r	 v=2.

Theorem 1.2 (Gamma Limit). Assume (1.1) with gðeÞ ¼ ðln eÞ2. Let v and

w be as above. Then, v 2 L2, w ¼ r	 v=2 is a Radon measure and belongs to

H�1. Moreover,

lim inf
jEeðueÞj

ðln eÞ2
5EðvÞ :¼

1

2
½jjvjj22 þ jjr 	 vejjM
:

Finally, if U is smooth and bounded, then for any given v 2 L2 such that w :¼
r	 v=2 is a Radon measure, there exists a sequence fueg in H 1ðU Þ such that ve,
we defined as in (1.2) converge to v and w, respectively, weakly in L2 and in C0;a *

for every a > 0, and for this sequence the above limit is achieved with an equality.

The above result says that the Gamma limit of Ee=ge is E. This theorem is
proved in two steps: the lower bound is proved in Section 6, while the
sequence achieving equality is constructed in Section 7.
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We have only stated the result for the most interesting case ge ¼ ðln eÞ2,
but we have given a nearly complete analysis in other scalings as well.
Indeed, the Gamma limit for ge�ðln eÞ2 is jjwjjM, while for ðln eÞ2�ge�e�2

the limit is jjvjj22=2. The lower bound in the latter case is nearly trivial, and in
the former case it follows from an easy modification of arguments in
Sections 5 and 6, and the construction in Section 7 establishes the upper
bound for general ge�e�2.

The above result is proved by a localization and a lower bound result of
[17]. The main technical tool is a covering argument devised by the first
author in [16] and by Sandier [23].

1.1. Applications to Superconductivity

A closely related functional is the Ginzburg–Landau functional for
superconductivity. It is a phenomenological model for a complex-valued
order parameter u and an R2-valued vector potential A. After an appropriate
rescaling, the Ginzburg–Landau functional takes the form

Feðu;A; hextÞ :¼
Z
U

1

2
jrAuj2 þ

1

4e2
ð1� juj2Þ2 þ

1

2
jr 	 A� hextj2 dx;

where hext is the applied magnetic field, and the covariant derivative
rAu :¼ ru� iAu. We refer to the book by Tinkham [29] and the surveys of
Rubinstein [22], and Chapman [10] for information.

Although the functional Ee does not have some of the physical
complexities of the Ginzburg–Landau functional, its analysis and the
behavior of the minimizers are surprisingly similar. A complete analysis of
the minimizers of this functional is recently carried out in a series of papers
by Serfaty and Sandier–Serfaty; see [25–27] and the references therein. In
particular, the vortex structure and the connection between the magnitude
of the applied magnetic field and the number of vortices is proved through
hard analysis. Compactness results for nonminimizers are also obtained in
these papers.

In this paper, we obtain a Gamma limit for Fe by using our results on Ee.
The starting point of our analysis is the following decomposition of Fe by
Bethuel and Riviere [3]:

Feðu;A; hextÞ ¼ EeðuÞ �
Z
U
jðuÞA dx

þ
1

2

Z
U
jAj2juj2 þ jr 	 A� hextj2 dx; ð1:3Þ

which clearly indicates the important role played by Ee in the asymptotic
behavior of Fe.
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As in the analysis of Ee, suppose that a sequence ðue;AeÞ and the external
magnetic field hext satisfy

Feðue;Ae; hextÞ4Kge; hext � K
ffiffiffiffi
ge

p
; ð1:4Þ

for some function ge satisfying jln ej4ge � e�2. Indeed, given the above
behavior of the external magnetic field, the energy upper bound is satisfied
by the minimizers. We simplify the presentation, we assume the following
limit exists:

H :¼ lim
hextffiffiffiffi
ge

p : ð1:5Þ

Then, juej tends to one and in view of our results on Ee we have the formal
approximate lower bound

Feðue;Ae; hextÞ5
ge
2

jjvewU=Ve jj
2
2 þ

jln ejffiffiffiffi
ge

p jjr 	 vejjM � 2ðve; aeÞ2

"

þ jjaejj22 þ jjr 	 ae � H jj22

#
;

where ve is as in (1.2), ð
; 
Þ2 is the L2 inner product and

ae :¼ Ae=
ffiffiffiffi
ge

p
: ð1:6Þ

Again, the interesting case is ge ¼ ðln eÞ2 which corresponds to hext �
H jlnðeÞj. In this scaling, we rewrite the above approximate lower bound as

Feðue;Ae; hextÞ5geFðve; ae;H Þ;

where

Fðv; a;H Þ :¼ 1
2
½jjvjj22 þ jjr 	 vjjM � 2ðv; aÞ2 þ jjajj22 þ jjr 	 a� H jj22


¼ 1
2
½jjv� ajj22 þ jjr 	 vjjM þ jjr 	 a� H jj22
: ð1:7Þ

As well known Fe has a gauge invariance:

Feðu;A; hextÞ ¼ Feðueiw;Aþrw; hextÞ;

for any smooth w; see [22, 29]. This invariance is inherited by F as well.
Indeed,

Fðv; a;H Þ ¼ Fðvþrw; aþrw;H Þ:
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This is natural as ðv; aÞ is the scaled limit of ðjðuÞ;AÞ, and for a complex-
valued function u ¼ reij, jðuÞ ¼ r2rj. Note that v� a is the scaled limit of
the superconducting current

jAe ðueÞ :¼ ue 	rAeue ¼ jðueÞ � juej2Ae:

Due to the gauge invariance, we expect compactness results only for the
quantities that are gauge invariant. Important gauge invariant quantities are
the superconducting current jAe and the induced magnetic field r	 Ae. It
turns out that the limit functional is described by the scaled limits of these
quantities.

Theorem 1.3 (Gamma Limit). Assume (1.4) with ge ¼ ½ln e
2. Let ve be as

in (1.2) and ae be as in (1.6). Further assume that H in (1.5) is finite. Then,
r	 ae is weakly compact in L2 and we have the same compactness for

veae :¼
jAeðueÞ
jln ej

¼ ve � juej2ae

as in Theorem 1.1. Any limit of ðveae ;r	 aeÞ can be expressed as ðv� a;r	 aÞ
by a pair ðv; aÞ 2 L2 	 H 1ðU ;R2Þ. Moreover, r	 a 2 L2, r	 v is a Radon

measure, and

lim inf
Feðue;Ae; hextÞ

ðln eÞ2
5Fðv; a;H Þ:

Finally, given ðv; aÞ as above there exists a sequence ðue;AeÞ so that the above

limit is achieved with an equality, and veae , a
e are compact in the above spaces.

Results of this type is already obtained by Serfaty and Sandier [26]. In
particular, the upper bound and a compactness result is proved in [25, 26].

Several asymptotic results of interest can be obtained from the Gamma
limit result. Here, we outline the derivation of the first critical threshold Hc1 :
the largest value of H below.

Although the asymptotic formula for Hc1 is formally known for sometime,
a rigorous derivation of it is only given recently by Serfaty [27] and Serfaty
and Sandier [25]. Our derivation is similar to the proof given in these papers.

A quick formal calculation of Hc1 using the limit functional F in (1.7) is
this. We expect for small H , the minimizers of Fðv; a;H Þ to be gauge
equivalent to ðv* ; a* Þ where r	 a* � 0, and a* is the minimizer of the last
two terms in (1.7):

EðaÞ :¼ 1
2
½jjajj22 þ jjr 	 a� H jj22
:
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The question is how small H has to be for this pair to be the minimizer. This
is a rather straightforward calculation.

We first observe that the minimizer a* of E solves

r	 ½r 	 a* � H 
 þ a* ¼ 0 in U ; r	 a* � H ¼ 0 on @U : ð1:8Þ

By taking the curl of this equation we see that ½r 	 a* � H 
 ¼ H #zz, where #zz

is the unique solution of

�D#zz þ #zz ¼ �1 in U ; #zz ¼ 0 on @U : ð1:9Þ

For any pair ðv; aÞ, set b :¼ a� a* so that

Fðv; a;H Þ ¼ 1
2
½jja* jj22 þ jjbjj22 þ 2ða* ; bÞ2
þ jjr 	 a* � H jj22 þ jjr 	 bjj22 þ 2ðr 	 a* � H ;r	 bÞ2
þ 2ðv; a* Þ2 þ 2ðv; bÞ2 þ jjr 	 vjjM þ jjvjj22
:

Equations (1.8) and (1.9) imply that

ðv; a* Þ2 ¼ �ðv;r	 ½r 	 a* � H 
Þ2 ¼ �H ðv;r	 #zzÞ2 ¼ �H ðr 	 v; #zzÞ2

and

ða* ; bÞ2 þ ðr 	 a* � H ;r	 bÞ2 ¼ ða* þr	 ½r 	 a* � H 
; bÞ2 ¼ 0:

Hence, for any ðv; aÞ,

Fðv; a;H Þ ¼ F1ðv; bÞ þ F2ðv; a* Þ;

where

F1ðv; bÞ ¼ 1
2
½jjr 	 bjj22 þ jjbjj22 þ 2ðv; bÞ2 þ jjvjj22


¼ 1
2
½jjr 	 bjj22 þ jjb� vjj22
50

and

F2ðv; a* Þ ¼Eða* Þ � H ðr 	 v; #zzÞ2 þ
1
2
jjr 	 vjjM

5Eða* Þ þ 1
2
jjr 	 vjjM½1

2
� H max

U
j#zzj
:

So the minimizer satisfies r	 v* � 0, if and only if the term in the
brackets is negative or equivalently when

H5Hc1 :¼
1

2 maxU j#zzj
: ð1:10Þ
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Clearly, the above argument is a statement about the limit, but with some
extra effort this can be used for the minimizers with small e, showing that
the minimizer u of Fe never vanishes if and only if H5Hc1 .

In fact, this and more is proved by Serfaty and Sandier [26].
The second consequence of the Gamma limit result is the derivation of a

mean field equation which is the Euler–Lagrange equation for F. It turns out
that this is a variational inequality closely related to London’s equation. A
rigorous derivation of this equation from the Ginzburg–Landau functional
is first given by Sandier and Serfaty [25]. Later Brezis and Serfaty [6] used
convex duality and earlier results of Brezis [5] on the convex dual of
variational problems to obtain an alternate derivation.

A formal derivation of the dynamic version of this mean field equation is
obtained by Chapman et al. [9].

We finish this introduction with related variational and dynamic
problems. A related functional with the additional constraint u ¼ rj is
an important model problem in phase transitions. Recently, compactness
results for this functional is proved in [1, 12]. The properties of the Jacobians
of S1-valued functions is studied by the authors in [18, 19]. Related higher
dimensional problems are studied in [20, 21, 24].

The paper is organized as follows. After recalling the notation and the results
of [17], we first prove the compactness theorem in Section 4. A sharper Jacobian
estimate is proved in Section 5, and the lower limit of Ee is proved in Section 6.
An upper bound of the energy is obtained in Section 7 by constructing a
sequence of functions with certain asymptotic-properties. Last two sections are
devoted to the derivation of the Gamma limit of Fe and the mean field
equations. Finally the proof of a technical lemma is given in the appendix.

2. NOTATION

We need to recall some of the notation of [17].
Set

eeðuÞ :¼
1

2
jDuj2 þ

1

e2
W ðjuj2Þ;

so that
EeðuÞ :¼

Z
U
eeðuÞ dx:

If S � R2, we will write wS to denote the characteristic function of S, so that

wSðxÞ ¼
1 if x 2 Sy
0 if x =2 S:

(



JERRARD AND SONER534
Given f 2 C0;1
c ðU Þ, we use the notation

OðtÞ ¼ fx 2 U jfðxÞ > tg; ð2:1Þ

RegðfÞ :¼ f t 2 ½0; T 
 : @OðtÞ ¼ f�1ðtÞ; @OðtÞ rectifiable;

H1ð@OðtÞÞ51g: ð2:2Þ

The co-area formula implies that RegðfÞ is a set of full measure. For every
t 2 RegðfÞ, @OðtÞ is a union of finite Jordan curves GiðtÞ, i.e.,

@OðtÞ ¼
[
i

GiðtÞ; 8t 2 RegðfÞ:

In particular, this holds for almost every t. For t 2 RegðfÞ, we define

GðtÞ ¼
[

components GiðtÞ of @OðtÞ j min
x2GiðtÞ

juðxÞj > 1=2


 �
: ð2:3Þ

Given any function f 2 C0;1ðU Þ such that f ¼ 0 in @U , we define

Dd ðfÞ :¼ ft 2 RegðfÞ : GðtÞ is nonempty; and jdegðu;GðtÞÞj5dg; ð2:4Þ

De
d ðfÞ :¼ Dd ðfÞ \ ft : t5ejjrfjj1g: ð2:5Þ

We will normally write simply Dd when there is no possibility of confusion. Of
course, jDd j depends on u as well as on f.

Note that if u 2 H 1 is fixed, then the ratio jDd ðfÞj=jjfjj1 is scale-invariant
in that it is not changed when we multiply f by a scalar, so that
jDd ðfÞj=jjfjj1 ¼ jDd ðlfÞj=jjlfjj1. The same remark holds for jDe

d ðfÞj=jjrfjj.

3. PREVIOUS RESULTS

In this section, we recall and restate two results of [17].
The first one is a localization and a lower energy bound result. It is

essentially proved in [17] by a covering argument of the first author [16].

Theorem 3.1. Suppose that u 2 H 1ðU ;R2Þ and e 2 ð0; 1
. Then, there

exists s* ¼ s* ðu; eÞ > 0 and C > 0 (independent of e and u) such that for

every s5s* there is a collection of pairwise disjoint closed balls

Bðs; u; eÞ ¼ Bs ¼ fBs
i g

kðsÞ
i¼1 , such that for any f 2 C0;1

0 ðU Þ and for any positive
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integer d,

jDe
d ðfÞj

jjrfjj1
42RðsÞ; ð3:1Þ

whenever either ds > RðsÞ orZ
sptðfÞ\

S
i
Bs
i


 � eeðuÞ dx5pd ln
RðsÞ
ed

� �
þ C

� �
: ð3:2Þ

Moreover,

s ! RðsÞ ¼
X

rsi is continuous and nondecreasing on ½s* ;1Þ; ð3:3Þ

where rsi is the radius of Bs
i . Finally, s* also satisfies

Rðs* Þ4
e
C
EeðuÞ: ð3:4Þ

This result is essentially a restatement of Proposition 6.4 and Remark 6.5
of [17]. For the reader’s convenience, we give its short proof in the
appendix. The second result is a Jacobian estimate proved in [17, Theorem
2.2]. The version stated below is slightly different than the statement of
that theorem but the version below is actually proved in Step 5 of Theorem
2.2 in [17].

Theorem 3.2. Suppose that u 2 H1ðU ;R2Þ. There exists some constant

C > 0 such that for any f 2 C0;1
0 ðU Þ, positive integer d and e 2 ð0; 1
,Z

U
fJu dx

����
����4pðd þ C

ffiffi
e

p
Þjjfjj1 þ jDdþ1jEeðuÞ

þ Ce1=3jjrfjj1ðEeðuÞ þ ðEeðuÞÞ2Þ: ð3:5Þ

Finally, we recall a compactness result which is proved by interpolation
techniques; see [17, Remark 3.7].

Theorem 3.3. Suppose ne is any sequence of measures on a bounded open

set U � Rm, and there exists some a > 0 such that

jnejðU Þ4K jln ej;
Z

f dne4Cjjfjj1 þ Ceajjrfjj1

for all f 2 C0;1
0 ðU Þ. Then, fneg is precompact in ðC0;b

0 ðU ÞÞ* for all b 2 ð0; 1
.
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4. COMPACTNESS

In this section, we prove Theorem 1.1. The compactness of the Jacobian is
proved exactly as in [17] by using Theorem 3.1. The compactness of jðueÞ is
more of a direct consequence of (1.1) and straigtforward estimates.

We start with ve.

Theorem 4.1. Suppose that ue 2 U1ðU ;R2Þ satisfies (1.1) with ge4e�g for

some 05g52. Let ve be as in (1.2). Then,

ve

juej

����
����

����
����
2

2

42K 8e 2 ð0; 1
;

where K is the constant in (1.1). Also, for every bounded open set V � R2 and

every 14p5ð2þ gÞ=ð1þ gÞ there exists some constant C ¼ Cðp; V ; g;KÞ such

that

jjvejjLpðV Þ4C 8e 2 ð0; 1
: ð4:1Þ

Finally, for any subsequence feng tending to zero, fven=juen jg converges weakly

to some limit in L2 if and only if ven converges weakly in Lploc for all p as above,
and the weak limits are equal.

Remark 4.2. If we consider a nonlinearity of the form W ðjujÞ such that
W ð1Þ ¼ 0, W ðsÞ > 0 for s=1, and W ðsÞ5sr � C for some r52, then similar
results are true, for a different range of p.

Proof. Since jDuj2 ¼ jDjujj2 ¼ jjðuÞj2=juj2, the first conclusion of the
theorem is obvious.

1. Because ve4juejðjDuej=
ffiffiffiffi
ge

p
Þ, H .oolder’s inequality implies that

Z
V
jvejp4C

1

ge

Z
V
eeðueÞ

� �p=2 Z
V
juej2p=ð2�pÞ

� �ð2�pÞ=p

4C
Z
V
juej2p=ð2�pÞ

� �ð2�pÞ=p

:

So to prove (4.1), it suffices to show that (1.1) implies that jjuejjq4C for
q ¼ 2p=ð2� pÞ, with 14p5ð2þ gÞ=ð1þ gÞ.

First, note that

juejq4ðjuej � 1Þq þ CðqÞ:
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Because V is bounded, it suffices to prove that jjjuej � 1jjq is uniformly
bounded for q as above. This is immediate if q44, since
ðjuej � 1Þ44ðjuej2 � 1Þ2, and so

Z
V
ðjuej � 1Þ44

Z
V
ðjuej2 � 1Þ24Ce2ge:

For q > 4, we interpolate as follows: writing he :¼ juej � 1, we see that
jDhej4jDuej, and so jjDhejj224Cge. This implies jjDhejj2LrðV Þ4CðV Þge for all
r52. Using the Sobolev–Nirchberg–Gagliardo inequality

jjhejjq4Cjjhejjy4jjDh
ejj1�y
r 4CðegeÞ

y=4gð1�yÞ=2
e 4Ce�g=2þy=4ðgþ1Þ

where 1
q ¼

y
4
þ ð1� yÞð1r �

1
2
Þ, one finds by taking r arbitrarily close to 2 that

in fact jjhejjq4C for all q less than some number q* ðgÞ > 4. A short
computation shows that q* ðgÞ ¼ 2ð1þ gÞ=g, and after another short
calculation one finds that (4.1) holds for all 14p5ð1

2
þ gÞ=ð1þ gÞ as

claimed.
2. Now suppose that ven=juen j * v weakly in L2. Note that

ðjuen j � 1Þ44ðjuen j2 � 1Þ2, so (1.1) implies that juej ! 1 strongly in L4. Thus,
the product juen jðven=juen jÞ ¼ ven converges weakly in L4=3 to the product of
the strong limit of juen j and the weak limit of jðuen Þ=juen j which is equal to v. It
follows that, in fact, ven * v weakly in Lploc, for the entire range of p for
which fveng is weakly precompact.

Finally, if ven * v, then the above argument shows that any weakly
convergent subsequence of fven=juen jg must also converge to v. However,
since fven=juen jg is weakly precompact in L2, in fact it must be the case that
ven=juen j * v in L2. ]

Proof of Theorem 1.1. The compactness of the rescaled Jacobian we is
the only part that remains to be proved. From the definition and the
assumed energy bound (1.1) it is clear that jjwejj14K, so in view of Theorem
5.1, we only need to prove that

R
fðxÞweðxÞ dx4Cjjfjj1 þ Ceajjrfjj1 for

Lipschitz test functions f with compact support in U . This is proved for
ge ¼ ðln eÞ2 in Theorem 5.1. The general case follows the argument of Step 3
of the proof of Theorem 5.1, by using Theorem 3.1 to show that if d ¼ de is
chosen to be sufficiently large (for example de5Kge=jln ej is good enough),
then jDe

deþ1j4Cea for some a a 2 ð0; 1Þ. The estimate then follows from
Theorem 5.2. In applying Theorem 3.1 one can take s ¼ 1 say; the more
careful choice of s as in the proof of Theorem 5.1 is not necessary here. ]
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5. JACOBIAN ESTIMATE

The main result of this section is a sharp Jacobian estimate in terms of the
Ginzburg–Landau energy. It also states that the vortex energy as measured
by the Jacobian concentrates near the vortices. This allows us to separate the
contributions of jðueÞ and Jue to the energy. Since in the scaling ge ¼ ðln eÞ2

both of these contributions are of the same size, this decomposition is
essential in the limit analysis.

Theorem 5.1. For any a 2 ð0; 1Þ and K > 0 there exists e0ða;KÞ > 0 such

that u 2 H1ðU ;R2Þ is any function satisfying

EeðuÞ4Kðln eÞ2 ð5:1Þ

for some e 2 ð0; e0Þ, then there exists a collection of balls *BBða; u; eÞ ¼ *BB ¼
f *BBig

*kk
i¼1 such that

*RR :¼
X

*rri4ea; ð5:2Þ

where *rri is the radius of *BBi; and such that for every nonnegative Lipschitz

function f,

Z
U
fJu dx

����
����4 jjfjj1

ð1�
ffiffiffi
a

p
Þ2jln ej

Z
sptf\

S
i
*BBi


 � eeðueÞ dxþ CegðaÞ=2jjfjjC0;1 ; ð5:3Þ

where gðaÞ ¼ minf1=3; ag.

Proof. (1) Fix some a 2 ð0; 1Þ and K > 0, and suppose that u 2 H1ðU ;R2Þ
satisfies (5.1) for e smaller than some small constant e0ða;KÞ. We will give
conditions on e0ða;KÞ in the course of the proof.

We first construct a collection of balls, and in later steps we will show that
it has the desired properties.

Consider the collection of balls Bðs* ; u; eÞ ¼ fBs *

i gi produced in Theorem
3.1. Note that by (3.4) and (5.1),

Rðs* Þ4
e
C
EeðuÞ4

e
C
K jln ej2:

By taking e0ða;KÞ sufficiently small, we can arrange that the right-hand side
is less than ea. Because s ! RðsÞ ¼

P
rsi is continuous and nondecreasing

on ½s* ;1Þ, it follows that for e5e0, either

(i) there exists some *ss5s* such that Rð *ssÞ ¼ ea; or
(ii) RðsÞ4ea for all s5s* .
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For the time being we assume that (i) holds, and we take our collection *BB
to be the collection Bð *ss; u; eÞ ¼ B *ss guaranteed by Theorem 3.1. Clearly,
(5.2) is satisfied, so we only need to show that (5.3) holds.

Case (ii) is simpler and in some sense merely technical, and we will discuss
it at the end of the proof.

(2) Now fix any function f 2 C1
c ðU Þ and set

da ¼
1

pjln ejð1�
ffiffiffi
a

p
Þ2

Z
sptðfÞ\

S
i
*BBi


 � eeðueÞ dx
$ %

; ð5:4Þ

where bac is the integer part of a.
For any nonnegative integer d, define as before

Dd :¼ ft 2 RegðfÞ : GðtÞ is nonempty; and jdegðu;GðtÞÞj5dg:

From (3.5), we haveZ
U
fJu dx

����
����4pðd þ C

ffiffi
e

p
Þjjfjj1 þ jDdþ1jEeðuÞ

þ Ce1=3jjrfjj1ðEeðuÞ þ ðEeðuÞÞ2Þ ð5:5Þ

for every d, and in particular for da. We will write d * ¼ da þ 1. Note from
(5.4) that

1

pjln ejð1�
ffiffiffi
a

p
Þ2

Z
sptðfÞ\

S
i
*BBi


 � eeðueÞ dx4d *4K jln ej: ð5:6Þ

Define as before De
d ¼ Dd \ ft j t5teg, where te :¼ ejjrfjj1, so that

jDd j4jDe
d j þ ejjrfjj1: ð5:7Þ

(3) From (5.6) and the choice of *ss, it is clear that Rð *ssÞ=d * ¼

ea=d *5e
ffiffi
a

p
�1, if e0ða;KÞ is chosen to be sufficiently small. So

pd * ln
*RR

ed *

� �
� C

� �
¼ pd * ðlnðe

ffiffi
a

p
�1Þ � CÞ

5pd * ðð1�
ffiffiffi
a

p
Þjln ej � CÞ:

Again using (5.6), the right-hand side is greater than

Z
sptðfÞ\

S
i
*BBi


 � eeðueÞ dx
 !

1

ð1�
ffiffiffi
a

p
Þ
jln ej �

C

ð1�
ffiffiffi
a

p
Þ2

 !
:
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As a result,

Z
sptðfÞ\

S
i
*BBi


 � eeðueÞ dx5pd * ln
*RR

ed *

� �
� C

� �

for e sufficiently small (depending on K; a). Because the collection *BB ¼ Bð *ssÞ
of balls satisfies the conclusions of Theorem 3.1 for some *ss > 0, and because
the above inequality is exactly (3.2), we conclude that

jDe
d * j

jjrfjj1
42Rð *ssÞ ¼ 2ea: ð5:8Þ

Then (5.5), (5.7), and (5.8) imply that for all e 2 ð0; e0Þ,

Z
U
fJu dx

����
����4pðda þ C

ffiffi
e

p
Þjjfjj1 þ CegðaÞjjrfjj1ðEeðuÞ þ ðEeðuÞÞ2Þ;

where gðaÞ ¼ minfa; 1=3g,
(4) Finally, suppose that (ii) holds, and consider the collection of balls

Bs given by Theorem 3.1 for some fairly large value of s, say s ¼ 1 for
example. Then for any positive integer d,

ds ¼ d > ea5RðsÞ

by the assumption of case (ii), and so Theorem 3.1 implies that
jDe

d j42RðsÞjjrfjj142eajjrfjj1, so (5.3) follows as before. In fact, more is
true: since in particular jDe

1j42eajjrfjj1, taking d ¼ 0 in (5.5), we find that
if (ii) holds, then

Z
U
fJu

����
����4C

ffiffi
e

p
jjfjj1 þ CegðaÞjjrfjj1ðEeðuÞ þ ðEeðuÞÞ2Þ: ]

Remark 5.2. In the above proof, we actually proved a slightly stronger
version of (5.3) than stated. Indeed, we proved that

Z
U
fJu dx

����
����4pðda þ C

ffiffi
e

p
Þjjfjj1 þ CegðaÞjjrfjj1ðEeðuÞ þ ðEeðuÞÞ2Þ

4pðda þ C
ffiffi
e

p
Þjjfjj1 þ CegðaÞ=2jjrfjj1;

where da is as in (5.4).



GINZBURG–LANDAU FUNCTIONAL 541
6. LOWER BOUNDS

In this section, we prove the lower bound in the Gamma limit. The upper
bound will be proved in the next section, completing the proof of Theorem
1.2.

We consider a sequence of functions ue 2 U 1ðU ;R2Þ satisfying (1.1) with
ge ¼ ½ln e
2. Then,

ve ¼
jðueÞ
jln ej

; we ¼
Jue

jln ej
¼

1

2
r	 ve;

and by the compactness results of the previous sections, ve, ve=juej and we are
compact in appropriate spaces. In the following theorem, we assume
convergence in these spaces and prove a lower bound.

Theorem 6.1. Suppose that

ve=juej * v L2 weak; ve * v Lploc weak 8p52: ð6:1Þ

Then, w :¼ r	 v=2 is a measure, and

lim inf
e!0

EeðueÞ
jln ej

5
1

2
½jjvjj22 þ jjr 	 vjjM
: ð6:2Þ

Proof. (1) Fix a 2 ð0; 1Þ, and for e5e0ða;KÞ let *BB
e
¼ *BBða; e; ueÞ denote

the collection of balls that is shown to exist in Theorem 5.1. We will write Be
i

to denote a generic ball in *BB
e
.

For each e 2 ð0; e0Þ define

weðxÞ ¼
1 if x 2

S
i
*BBi;

0 if not:

(

Note that by H .oolder’s inequality, for any fixed h 2 L2,

Z
h
ve

juej
we

� �2

4
Z

jhj2we dx
Z

ve

juej

����
����
2

dx:

The first integral on the right-hand side vanishes as e ! 0 by the dominated
convergence theorem, and the second is uniformly bounded. It follows
that ðve=juejÞwe * 0 weakly in L2 and hence that ðve=juejÞð1� weÞ * v weakly
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in L2. As a result,

lim inf
e!0

jln ej�2

Z
U=
S

i
*BB
e
i


 � eeðueÞ dx5 lim inf
e!0

Z
U=
S

i
*BB
e
i


 � 1
2

rue

ln e

����
����
2

dx

5 lim inf
e!0

Z
U=
S

i
*BB
e
i


 � 1
2

ve

juej

����
����
2

dx

¼ lim inf

Z
U

1

2

ve

juej
ð1� weÞ

����
����
2

dx

5
1

2
jjvjj22 dx: ð6:3Þ

(2) Since ve * v, it is clear that we ¼ r	 ve=2 converges in the sense of
distributions to w ¼ r	 v=2. For any f 2 C1

c ðU Þ, Theorem 5.1 implies thatZ
U
fr	 v dx

����
���� ¼ lim

e!0
jln ej�1

Z
U
fJue dx

����
����

4
jjfjj1

ð1�
ffiffiffi
a

p
Þ2

lim inf
e!0

jln ej�2

Z
sptðfÞ\

S
i
*BBi


 � eeðueÞ dx:
By taking the supremum over all f as above such that jjfjj141, we find
that

1

2
jjr 	 vjjM4

1

ð1�
ffiffiffi
a

p
Þ2

lim inf
e!0

jln ej�2

Z
U\

S
i
*BB
e
i


 � eeðueÞ dx:
Adding this to (6.3), we find that

lim inf
e!0

jln ej�2

Z
U
eeðueÞ dx5

1

2
ð1�

ffiffiffi
a

p
Þ2jjr 	 vjjM þ

1

2
jjvjj22

for all a 2 ð0; 1Þ. Letting a tend to zero, we obtain (6.2). ]

7. UPPER BOUNDS

In this section, we construct sequences of functions to prove that
the lower bounds established earlier are essentially sharp. This construction
is very similar to a construction given by Sandier and Serfaty [25] for the
functional with the applied magnetic field. Here, we present this construc-
tion in a way that would be easier to generalize to higher dimensions.

We will prove:
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Proposition 7.1. Suppose that U a bounded domain with a smooth

boundary. Fix any v 2 C1ðU ;R2Þ. Let fdege2ð0;1
 be an increasing sequence

such that de ! 1 and ede ! 0 as e ! 0. Then, there exists a sequence of

functions fuege2ð0;1
 � H1ðU ;CÞ such that

ve :¼ jðueÞ=de * v in Lp for all p52; ð7:1Þ

we :¼ Jue=de * r	 v=2 ¼: w in W �1;p for all p52 ð7:2Þ

and

EeðueÞ4
d2e
2
jjvjj22 þ dejln ej jjwjj1 þ oðd2e Þ ð7:3Þ

as e ! 0.

For the scaling de ¼ Oð1Þ, essentially the same estimate is obtained in [17].
Note that (7.2) follows immediately from (7.1). Also, if ge4jln ej2, then,

the compactness results and (7.3) imply that we ! w in C0;a * for all a > 0.
However, this does not add much since C0;a * is in a sense not much stronger
than W �1;p.

The upper bound in Theorem 1.2 follows from Proposition 7.1 (with
de ¼ jln ej) and an approximation argument. These sorts of approximation
arguments are standard in the theory of Gamma convergence; see for
example the book of Dal Maso [11]. To obtain a Gamma limit upper bound
for the scaling 1�ge�jln ej2, one would use Proposition 7.1 with
de ¼ ge=jln ej, and for the scaling jln ej2�ge�e�2, Proposition 7.1 with
de ¼

ffiffiffiffi
ge

p
.

We can write L2ðU ;R2Þ as a direct sum

L2ðU ;R2Þ :¼ F� G�H;

where

F :¼ fv : v ¼ r	 f ; f 2 H 1ðU Þ; f ¼ 0 on @Ug;

G :¼ fv : v ¼ rg; g 2 H 1ðU Þg;

H :¼ fv : Dv ¼ 0 in U ; v 
 n ¼ 0 on @Ug:

Note that as a consequence of our assumption on U , H is a finite-
dimensional real vector space; see for instance, the lecture notes by Schwartz
[28]. These also prove that if v is smooth, then its projections into F, G, H
are also smooth.



JERRARD AND SONER544
We first consider the case v 2 FðU Þ. Note that for such functions, one can
recover v from its curl via the formula

v ¼ �r	 D�1
D r	 v;

where DD denotes the Laplace operator with zero Dirichlet boundary data
on @U .

We now prove

Lemma 7.2. If v 2 F, then there exists a sequence ue satisfying the

conclusions of Proposition 7.1. In addition, ve ¼ jðueÞ=de has the form

ve ¼ ðreÞ2 #vve with #vve 2 F and jjðreÞ2 � 1jjLqðU Þ ! 0 814q51 ð7:4Þ

as e ! 0.

Proof 1. Construction of auxilliary function: We will use an auxilliary
function qe that we define as follows.

First, fix a nonnegative smooth, rotationally symmetric function Z :R2 !
R with support in the unit ball, such that

R
Z dx ¼ 1. Define ZeðxÞ :¼ ZðxeÞ=e

2,
and note that the symmetry of Z implies that

if DH ¼ 0 in BeðxÞ; then Ze *H ðxÞ ¼ H ðxÞ: ð7:5Þ

Define also vðxÞ :¼ r	 ln jxj ¼ ðx2;�x1Þ
jx2 j , so that

r	 v ¼ �D ln jxj ¼ 2pd0; r 
 v ¼ 0 on R2:

In particular v, is harmonic away from the origin. We define qe by requiring
that

qeðxÞvðxÞ ¼ Ze *vðxÞ ð7:6Þ

for all x. We will need some properties of qe, summarized in the following
lemma. The proof is deferred to the end of this section.

Lemma 7.3. qe is well-defined, smooth and radial and has the following

properties:

04qe41; qeðxÞ ¼ 1 whenever jxj5e; ð7:7Þ

qeðxÞ ¼ q1
x
e

� �
; ð7:8Þ
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jjqevjj14
C
e
;

Z
Be

jqeðxÞvðxÞj2 dx4C for C independent of e: ð7:9Þ

2. Construction of ue: We start by selecting points faeig
Ne
i¼1 and integers

sei ¼ �1 such that

we :¼
p
de

X
seidaei * wðxÞ dx weakly in M and strongly in W �1;p

8p52; ð7:10Þ

jwej :¼
p
de

X
daei * jwðxÞj dx weakly in M and strongly in W �1;p

8p52; ð7:11Þ

jaei � aejj5c0d�1=2
e 8i=j; distðaei ; @U Þ5c0d�1=2

e 8i; ð7:12Þ

where c0 is some small constant that depends on jjwjj1. We indicate in
Lemma 7.5 how this can be done. Define #vve 2 W 1;pðU ;R2Þ by

#vve ¼ �2r	 D�1
D we:

Next define a function #uue :U ! S1 satisfying

jð #uueÞ=de ¼ #vve; ð7:13Þ

and therefore

J #uue=de ¼ we:

This is done by defining #uue :¼ eif
e
, where fe is a multivalued function

satisfying rfe ¼ de #vve. To fix an otherwise free constant we can select some
point x0 2 U and specify that feðx0Þ ¼ 0. The definition of #vve implies that fe

is a well-defined modulo 2p, and thus that #uue is well defined. The definitions
also imply that jð #uueÞ ¼ rfe and thus that (7.13) holds.

We finally define

ue :¼ re #uue; reðxÞ :¼
Y

qeðx� aei Þ; ð7:14Þ
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where qe is defined in (7.6). Thus, ve :¼ jðueÞ=de ¼ ðreÞ2 #vve. The definition of re

easily implies that

jjðreÞp � 1jjq ! 0 as e ! 0 for all i4p; q51: ð7:15Þ

In particular, (7.4) holds.
3. Convergence of jðueÞ and Jue: We use the notation ðr	Þ�1c :¼

�r	 D�1
D c. Then for every p52

jj#vve � vjjp ¼ 2jjðr	Þ�1ðwe � wÞjjp
4Cjjwe � wjjW �1;p ! 0 as e ! 0

by standard elliptic theory. Given p52 fix some *pp 2 ðp; 2Þ and define *qq by
1
*pp
þ 1

*qq
¼ 1

p. Then,

jjre #vve � #vvejjp4jj#vvejj *ppjjr
e � 1jj *qq;

and (7.16) and (7.15) imply that the right-hand side tends to zero, and thus
that

jjre #vve � vjjp ! 0

as e ! 0, for all p52. Exactly the same argument shows that

jjðreÞ2 #vve � vjjp ¼
1

de
jðueÞ � v

����
����

����
����
p
! 0 as e ! 0

for every p52. This is exactly (7.1).
4. Decomposition of EeðueÞ: Note that

jruej2 ¼ jrrej2 þ ðreÞ2jr #uuej2 ¼ jrrej2 þ d2e ðr
eÞj#vvej2:

One easily verifies that jrrej24e�2wS
j
Be
j
. It is similarly clear that

e�2W ðjuej2Þ4Ce�2wS
j
Be
j
. From (7.11), we see that

p
de
Ne ¼ jjwejjM ! jjwjjM: ð7:16Þ

From these, we deduce that

EeðueÞ4CNe þ
d2e
2

Z
U
jre #vvej2 dx4CdejjwjjM þ

d2e
2

Z
U
jre #vvej2 dx:
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And

1

2

Z
U
jre #vvej2 ¼

1

2

Z
U
jvj2 dxþ

Z
U
v 
 ðre #vve � vÞ dxþ

1

2

Z
U
jre #vve � vj2 dx

¼
1

2

Z
U
jvj2 dxþ oð1Þ þ

1

2

Z
U
jre #vve � vj2 dx:

So to complete the estimate of EeðueÞ, it suffices to show that

jjre #vve � vjj224
jln ej
de

jjr 	 vjjM þ oð1Þ:

It is clear that when de � jln ej, the right-hand side of the above estimate can
be simply replaced by oð1Þ.

We define

d ¼ dðeÞ ¼ c0d�1=2
e =3;

where c0 is the constant in (7.12). For r4d, this choice of d implies that
[Brðaei Þ is a distance at least 2r from @U . Due to (7.5) we see that Zr *v

e ¼ ve

away from [Brðaei Þ, and in particular in the set fx 2 U : r4distðx; @U Þ52rg.
Motivated by this, we use the convention that Zr *v

eðxÞ ¼ veðxÞ for
x 2 fx 2 U : distðx; @U Þ4rg. If r4d this makes Zr *v

e well defined and
smooth in all of U , and indeed harmonic away from [Brðaei Þ.

Using the triangle inequality,

1
3
jjre #vve � vjj224 jjre #vve � Ze * #vv

ejj22 þ jjZe * #vv
e � Zd * #vv

ejj22 þ jjZd * #vv
e � vjj22

¼Ae þ Be þ Ce:

5. Estimate of Ce: We first show that Ce ! 0 as e ! 0. Since (7.16)
easily implies that Zd * #vv

e ! v in LpðU Þ for all p52, it suffices to show that
fZd * #vv

e � vge2ð0;1
 (or more simply fZd * #vv
ege2ð0;1
), is precompact in L2ðU Þ. We

do this as follows:
From the definition of we, in particular (7.12), and from the choice of d

one can see that at any x 2 U , there is at most one point aie in BdðxÞ, and so

Zd *w
eðxÞ ¼

pZdðx� aei Þ=de if 9aei 2 BdðxÞ;

0 if not:

(

(We are using essentially the same convention as above for extending the
convolution near the boundary.) In particular, since jZdj � Zd4C=d24Cde,
this implies that jZd *w

ej4C in U for C independent of e. Interior regularity
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estimates then imply that

jjD�1
D Zd*w

ejjW 2;pðU Þ4C

for every p51. So

jjZd * #vv
ejjW 1;pðU Þ ¼ jjr 	 D�1

D Zd *w
ejjW 1;pðU Þ4C ð7:17Þ

for every p51. This gives more than enough compactness to conclude that
Ce ! 0 as e ! 0.

6. Estimate of Be: Recall that for any r > 0; Zr * #vv
eðxÞ ¼ #vveðxÞ unless

BrðxÞ \ faeig
Ne
i¼1 is nonempty. Thus Ze * #vv

e � Zd * #vv
e is supported in [Bdðaei Þ.

Consider one such ball, say with center aei0 , which for simplicity we take to
be the origin. Then in a neighborhood of the origin, we can write #vve in the
form #vve ¼ ðv=deÞ þ H where H is a harmonic and as above
vðxÞ ¼ ðx2;�x1Þ=jxj2. This follows from the definitions of #vve and v, which
imply that #vve � ðv=deÞ is harmonic away from faeigi¼1;...;Ne;i=i0

. In particular,
this neighborhood contains the ball of radius 3d, by our choice of d. Thus,

ðZe � ZdÞ* #vv
e ¼ ðZe � ZdÞ*

v
de

þ ðZe � ZdÞ*H ¼ ðqe � qdÞ
v
de

using the definition of q and (7.5). Since i0 was arbitrary,

Be ¼
1

d2e
N e
Z
Bdð0Þ

ðqe � qdÞ2jvj2 dx ¼
1

d2e
N e
Z
Bdð0Þ

ðqe � qdÞ2jxj�2 dx:

Lemma 7.3 implies that 04qe � qd41 when e4jxj4d, and with (7.9), (7.16)
this gives the estimate

Be4p
N e

d2e
ln

d
e

� �
þ C

� �
4

jjwejj
de

ðjln ej þ CÞ:

7. Estimate of Ae: Finally, note that re #vve � Ze * #vv
e is supported in

[Beðaei Þ. As above we fix some i0, and we assume for simplicity that aei0 is the
origin. In this ball, we write as before H ¼ #vve � ðv=deÞ, so that H is
harmonic. In this ball reðxÞ ¼ qeðxÞ, so

re #vve � Ze* #vv
e ¼ qe

v
de

þ H
� �

� Ze *
v
de

þ H
� �

¼ ðre � 1ÞH ¼ ðre � 1ÞZd *H :
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However, Zd *H ¼ Zd * #vv
e � Zd * ðv=deÞ, so (7.9) implies that

jre #vve � Ze * #vv
ej4 ð1� reÞðjZd * #vv

ej þ CðddeÞ
�1Þ

4 ð1� reÞðjZd * #vv
ej þ Cd�1=2

e Þ:

As a result,

Ae4C
Z
U
ð1� reÞ2 jZd * #vv

ej2 þ
C
de

� �
dx:

Applying H .oolder’s inequality and using (7.15) and (7.17), we infer that
Ae ! 0 as e ! 0. ]

We next prove

Lemma 7.4. If v 2 C1 \ ðG�HÞ, then there exists functions fuege2ð0;1

� H 1ðU ; S1Þ such that

jðueÞ=de ¼: ve ! v in CkðU Þ for all k; EeðueÞ=d2e ! jjvjj22=2:

Also, ve 2 G�H for every e.

We remark that the assumptions imply that r	 v ¼ 0; this is why
jjr 	 vjj1 does not appear in the upper bound.

Proof. The functions we will construct satisfy juej ¼ 1 a.e. As a result
jruej2 ¼ jjðueÞj2 a.e., and so the stated convergence of d�2

e EeðueÞ will follow
immediately once we establish the convergence of jðueÞ=de.

Recall that U has the form G=ð
Sm
i¼1 PiÞ, where G; P1; . . . ; Pm are open,

connected and simply connected, and the Pi are pairwise disjoint subsets
compactly contained in G. We assert that there exist functions Hi, i ¼
1; . . . ;m in H characterized byZ

@Pj

Hi 
 t ¼ 2pdij;

and moreover every function H 2 H has the representation

H ¼
Xm
i¼1

Hi
1

2p

Z
@Pi

H 
 t
� �

:

The constant 2p is a convenient normalization. These claims follow from the
Hodge theorem, see again Schwarz [28]. This can also be established by
elementary arguments in this setting. An efficient way to do this is to use the
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fact that every function in H can be written as the curl of a scalar function
c. A quick proof of this fact is sketched in [4, Lemma 1.1].

So if v 2 G�H, then it can be written in the form

v ¼ rgþ ciHi

for certain constants ci.
For each Hk, we define a functions vk :U ! S1 such that jðvkÞ ¼ Hk. To do

this we define vk :¼ eifk , where fk is a multivalued function satisfying
rfk ¼ Hk. As above, we fix an otherwise free constant by selecting some
point x0 2 U and specifying that fkðx0Þ ¼ 0. The definition of Hk implies that
fk is well-defined modulo 2p, and thus that vk is well defined. The definitions
also imply that jðvkÞ ¼ rfk ¼ Hk as desired.

If we now define a function v by

ue ¼ eideg
Ym
k¼1

v
pe
i

i

for integers pe
1; . . . ;p

e
m, then one checks that

ve :¼
jðueÞ
de

¼ rgþ
X pe

i

de
Hi:

Taking pe
i such that ðde=pe

i Þ ! ci, we immediately find that ve ! v in CkðU Þ
for all k. It is also clear that ve 2 G�H for every e. ]

At the end of the section, we will prove the auxiliary lemmas used above.
We first give the

Proof of Proposition 7.1. Suppose v 2 C1ðU ;R2Þ, and write v ¼ v1 þ v2,
where v1 2 F and v2 2 G�H. Let fueige2ð0;1
 and fue2ge2ð0;1
 be sequences
satisfying the conclusions of Lemmas 7.2 and 7.4, respectively. Define ue to
be the product, ue1u

e
2. We verify that fueg satisfies the conclusions of

Proposition 7.1.
First, ve ¼ jðueÞ=de ¼ jue1j

2ve2 þ jue2j
2ve1 ¼ ve1 þ ve2 þ ðjue1j

2 � 1Þve2. From
(7.15) we know that jj jue1j

2 � 1jjq ! 0 in lq for all q51, and this implies
that (7.1) holds.

It follows that we ¼ r	 ve=2 ! w in W �1;p for all p52.
Finally, to prove (7.3), we use the fact that jjue2jj � 1 to compute

jDuej2 ¼ jDue1j
2 þ jue1j

2jDue2j
2 þ jðue1Þ 
 jðu

e
2Þ4jDue1j

2 þ jDue2j
2 þ jðue1Þ 
 jðu

e
2Þ:

Again using the fact that juej � 1, we infer EeðueÞ4Eeðue1Þþ
Eeðue2Þ þ

R
U jðu

e
1Þ 
 jðu

e
2Þ. In view of Lemmas 7.2 and 7.4 it suffices to show
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that

Z
U
ve1 
 v

e
2 dx ! 0 as e ! 0:

To do this, we use (7.4) to write ve1 in the form ðreÞ2 #vve1, where ðr
eÞ2 � 1 ! 0 in

Lq for all q51, and #vve1 2 F. Then,

Z
U
ve1 
 v

e
2 dx ¼

Z
U
#vve1 
 v

e
2 dxþ

Z
U
ððpcpÞ2 � 1Þve1 
 v

e
2 dx:

But #vve1 and ve2 are orthogonal in L2, and since jjve2jj14C; jjve1jjp4Cp for all
p52, we easily conclude that the right-hand side tends to zero as e ! 0. ]

Lemma 7.5. There exists families faeig
Ne
i¼1 of points, satisfying (7.10)–

(7.12).

Proof. Write U ¼ [U e
i , where for each i; U

e
i is a set of the form U \ Qe

i ,
and Qe

i is a cube of side length d�1=4
e . For each i, let N e

i ¼ bde
R
U e
i
joj dxc if

distðU e
i ; @U Þ > 0, and let N e

i ¼ 0 otherwise. Also let sei ¼ sgnð
R
U e
i
o dxÞ. In

each U e
i select N e

i points faeijg
N e
i

j¼1 that are roughly equally distributed. Note
that N e

i4jjojj1 d1=2e for all i. This implies that the points can be chosen so
that the distances are bounded below as in (7.12). Finally, define

we :¼
X
i

XN e
i

j¼1

seidaeij :

Upon relabelling, this collection of points has the same form as in (7.10)–
(7.12).

It is easy to see that this sequence of measures has uniformly bounded
mass, so weak convergence in M will follow from strong convergence in
W �1;p, p52. For the latter, since functions in W 1;q, q > 2 are H .oolder
continuous, it suffices to verify that for every a > 0,

sup
jjfjjC0;a41

Z
U
f dwe �

Z
fðxÞwðxÞ dx

����
����! 0

as e ! 0. To verify this, note that if distðU e
i ; @U Þ > 0 and jjfjjC0;a41, then

Z
U e
i

f dwe �
Z

fðxÞwðxÞ dx

�����
�����4Cd�ð1=2Þ�ða=4Þ

e :
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Also, the number of sets U e
i satisfying such that distðU e

i ; @U Þ > 0 is bounded
by Cd1=2e . A different but equally straightforward argument is needed to
show that the error at the boundary vanishes in the limit. ]

We complete the above proof by verifying the properties of the function qe

stated in Step 1.

Proof of Lemma 7.3. Since Z is rotationally symmetric

jxj2

x1

Z
Zðx� yÞ

y1
jyj2

dy ¼
jxj2

x2

Z
Zðx� yÞ

y2
jyj2

dy:

Set q1ðxÞ to be the above expression, and qeðxÞ ¼ q1ðx=eÞ. Then, (7.6) holds
by definition. To prove the other properties, we first observe that for any
r > 0 and x 2 R2,

Z
@Br

x� y

jx� yj2
dy ¼

j@Br j xjxj2 if jxj5r;

0 if jxj > r:

(

Therefore,

Z*vðxÞ ¼
Z
B1

ZðyÞ
x� y

jx� yj2
dy

¼
Z 1

0

ZðrÞ
Z
@Br

ZðyÞ
x� y

jx� yj2
dy dr

¼
x

jxj2

Z 1^jxj

0

ZðrÞj@Br j dr:

Since

Z 1

0

ZðrÞj@Brj dr ¼ 1;

(7.7) follows. To obtain (7.9), observe that
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jqeðxÞvðxÞj ¼ jZe *vðxÞj

¼
Z
Be

1

e2
Zðy=eÞ

x� y

jx� yj2
dy

����
����

¼
1

jxj

Z e^jxj

0

1

e2
Zðr=eÞj@Br j dr

¼
1

jxj

Z 1^jxj=e

0

ZðrÞj@Brj dr

4
C
e
:

The L2 inequality follows easily from the above and the fact that
jBej ¼ pe2. ]

8. GINZBURG–LANDAU FUNCTIONAL FOR
SUPERCONDUCTIVITY

In this section, we examine the asymptotic behavior of the functional

Feðu;A; hextÞ :¼
1

2

Z
U
jrAuj2 þ jr 	 A� hextj2 þ

ðjuj2 � 1Þ2

4e2
dx;

where the order parameter u is C-valued, the magnetic potential A is R2-
valued, and

rAu :¼ ru� iAu:

The applied magnetic field hext is assumed to be a constant that may depend
on e.

We will use the results of the previous sections to prove Theorem 1.3.
We recall that Fe has a gauge invariance

Feðu;A; hextÞ ¼ Feðueiw;Aþrw; hextÞ;

for any smooth w; see [22, 29]. Due to this invariance, and because the
statement of Theorem 1.3 is gauge-invariant, it suffices to prove the theorem
for a fixed gauge. We find it convenient to work with the Coloumb gauge: by
an appropriate choice of w and by relabelling ðueiw;A�rwÞ/ ðu;AÞ we can
arrange that

r 
 A ¼ 0 in U ; A 
 n ¼ 0 on @U ;

Z
U
A dx ¼ 0:
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We will henceforth assume this to be the case. Our assumptions in Theorem
1.3 imply that hext ¼ Hejln ej, where He converges to a finite limit H as e ! 0.
We assume for simplicity that He � H ; this simplifies the notation a bit and
otherwise does not affect the proof. Our method easily extends to cover hext
of the form pðxÞjln ej, where pðxÞ is some nonnegative square integrable
function. We could also consider other scalings.

Proof. (1) First, let ðue;AeÞ be a sequence such that

Feðue;Ae; hextÞ4K jln ej2: ð8:1Þ

To establish compactness, note that

jjr 	 ae � H jj22 ¼ ½ln e
�2jjr 	 Ae � hextjj24½ln e
�2Feðue;Ae; hextÞ4K:

Also by the choice of the Coulomb gauge, r 
 ae � 0. These imply that faeg
is uniformly bounded in H 1, and we immediately get weak compactness in
H 1.

We obtain compactness for ue by Theorem 1.1. For this, we need to verify
(1.1). By (1.3)

EeðueÞ4Feðue;Ae; hextÞ � ðjðueÞ;AeÞ2: ð8:2Þ

We estimate the unsigned term ðjðueÞ;AeÞ2 ¼
R
Ae 
 jðueÞ dx by noting that

jAe 
 jðueÞj4
1

4

jjðueÞj2

juej2
þ juej2jAej2

4
1

4
jruej2 þ ðjuej2 � 1ÞjAej2 þ jAej2

4
1

4
jruej2 þ

1

8e2
ðjuej2 � 1Þ2 þ 2e2jAej4 þ jAej2:

Thus,

jðjðueÞ;AeÞ2j4
1
2
Ee ðueÞ þ 2e2jjAejj44 þ jjAejj22:

This together with (8.1) and (8.2) imply

EeðueÞ4C½ðln eÞ2 þ jjAejj44 þ jjAejj22
: ð8:3Þ

But for any p51, the Sobolev embedding theorem informs us that

jjAejjp ¼ Cp jjAejjH14Cjln ej:

With (8.3) this implies the energy upper bound (1.1). The remaining
compactness assertions for ve then follow from Theorem 1.1.
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(2) Now suppose that ðve; aeÞ are functions such that converge to ðv; aÞ
along the full sequence e ! 0. We write the functional as a sum of terms,

Feðue;Ae; hextÞ :¼ F1e ðu
e;AeÞ þ F2e ðu

e;AeÞ þ F3e ðu
e;AeÞ þ F4e ðu

e;AeÞ;

where

F1e ðu
e;AeÞ :¼ EeðueÞ;

F2e ðu
e;AeÞ :¼

ðln eÞ2

2
½jjr 	 ae � H jj22 þ jjaejj22
;

F3e ðu
e;AeÞ :¼

ðln eÞ2

2

Z
U
ðjuej2 � 1Þjaej2 dx;

F4e ðu
e;AeÞ :¼ �ðln eÞ2

Z
U
ae 
 ve dx:

It is an immediate consequence of our earlier results that

lim inf
e!0

jln ej�2F�1
e ðue;AeÞ51

2
½jjvjj22 þ jjr 	 vjjM
:

Also, the H 1 weak convergence of ae implies that

lim inf
e!0

jln ej�2F2e ðu
e;AeÞ51

2½jjr 	 a� H jj22 þ jajj22
:

The third term is estimated (similar to Step 2) by noting that

jF3e ðu
e;AeÞj4jj juej2 � 1jj2jjA

ejj244Cjj juej2 � 1jj2jjA
ejj2H14Cejln ej3:

Finally, since ae converges to a weakly in H1, it converges strongly in Lp for
all p51. The weak Lq convergence of ve; q52, is good enough to guarantee
that

lim inf
e!0

jln ej�2F4e ðu
e;AeÞ ¼ �ða; vÞ2;

thus proving the Gamma limit lower bound

lim inf
Feðue;Ae; hextÞ

ðln eÞ2
5Fðv; a;H Þ: ð8:4Þ

(3) Finally, the upper bound is a very easy consequence of our earlier
results. Given ðv; aÞ as stated, we define Ae :¼ jln eja, and we let ue be the
sequence constructed in the proof of Proposition 7.1 with de ¼ jln ej. One
then can easily check that in (8.4) equality holds for ðue;AeÞ. ]
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9. MEAN FIELD EQUATIONS AND THE FIRST CRITICAL
THRESHOLD

In this section, we derive a variational inequality as the Euler–Lagrange
equations for the functional F, and obtain a formula for Hc1 as a corollary of
it. These derivations were given in [25]. We provide the short computation
for completeness.

The Euler–Lagrange equations of F is a variational inequality, (9.1)
below, and they are interpreted as the mean field equations of super-
conductivity. Indeed, the variational problem (9.1) is derived by Serfaty and
Sandier [25] as the equation satisfied by the limit of the minimizers of Fe.
Equation (9.1) is related to the London-type evolution equations for
superconductivity. A formal derivation of the time-dependent mean field
equations is given in [9].

Since the functional

Fðv; a;H Þ :¼ 1
2
½jjv� ajj22 þ jjr 	 vjjM þ jjr 	 a� H jj22


is convex, the existence of a minimizer v* 2 L2; a* 2 H1 withr	 v* a Radon
measure is straightforward. Indeed, using the Coloumb gauge r 
 a ¼ 0, a
minimizer is easily constructed by lower semicontinuity arguments.

Next theorem gives a characterization of the minimizers as solutions of a
variational inequality.

Theorem 9.1 (Sandier–Serfaty [25]). Let a* ; v* be a minimizer of F.
Then, z* ¼ ½r 	 a* � H 
 is the unique minimizer of the functional

inf
K

Dðz;H Þ; Dðz;H Þ :¼ 1
2½jjrzjj

2
2 þ jjzjj22j þ ðz;H Þ2; ð9:1Þ

where

K :¼ fz 2 H1
0 : z5� 1=2 a:e:g;

and v* is computed by the equation

r	 ½r 	 a* � H 
 þ a* ¼ v* in U ; r	 a* � H ¼ 0 on @U : ð9:2Þ

Moreover, �1
2
4z*40,

m* :¼ r	 v*50 and support m* � fz* ¼ �1=2g:

This proof is a combination of Lemmas III.3 and III.4 in [25]. Also, see a
recent paper of Brezis and Serfaty [6] and a paper by Brezis [5] for the use of
convex duality in this context.
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Proof. A direct variation in a yields (9.2).

1. To obtain a second equation, we need to do variations in v. For this,
we find it convenient to vary the curl of v, instead of varying v. Indeed, for
any Radon measure m 2 H�1, the vector field vm :¼ �r	 D�1

D m is in L2 and
r	 vm ¼ m.

We write mac þ msing ¼ m for, respectively, the absolutely continuous and
the singular parts of m with respect to m* , and for any Radon measure
signðmÞ gives Hahn decomposition of m into its positive and negative parts by

signðmÞ ¼ �1; m� a:e:; signðmÞ dm ¼ d jjmjj:

See [13] for an introduction.
Recall that m* :¼ r	 v* , and for any Radon measure m, set

f ðt; mÞ ¼ Fðv* þ tvm ; a* ;H Þ.
2. Using (9.2), definitions of z* ; vm, and integration by parts we see that

ðv* � a* ; vmÞ2 ¼ ðz* ;mÞ2. Therefore,

04Dþf ð0; mÞ :¼ lim
t#0

f ðt; mÞ � f ð0; mÞ
t

¼ ðv* � a* ; vmÞ2 þ
1

2

Z
signðm* Þ dmac þ

1

2
jjmsingjjðU Þ

¼
Z

z* þ
1

2
signðm* Þ

� �
dmac þ

Z
z* þ

1

2
signðmÞ

� �
dmsing:

Similarly,

05D�f ð0; mÞ :¼ lim
t"0

f ðt; mÞ � f ð0; mÞ
t

¼ ðv* � a* ; vmÞ2 þ
1

2

Z
signðm* Þ dmac �

1

2
jjmsingjjðU Þ

¼
Z

z* þ
1

2
signðm* Þ

� �
dmac þ

Z
z* �

1

2
signðmÞ

� �
dmsing:

Since we can choose mac and msing independently, we immediately conclude
that

jz* j41
2
; �2z* dm* ¼ d jjm* jj:

The second identity is equivalent to z* ¼ �1=2 signðm* Þ on the support of
m* .

3. In this step, we show that m* is nonnegative. Set

m*
� :¼ ðsignðm* ÞÞ�m*
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to be the negative part of m* . Then by the previous step, for any function f ,
with f ðzÞ ¼ 0 for z40, we have

Z
f ðz* Þ dm* ¼ �f ð1=2Þm*

�ðU Þ:

Let f be such a function, which is smooth and nondecreasing. By taking the
curl of (9.2), we see that m* ¼ �Dz* þ z* þ H . Hence, noting that f ðz* Þ ¼ 0
on @U ,

Z
f ðz* Þ dm* ¼

Z
f 0ðz* Þjrz* j2 þ

Z
f ðz* Þ½z* þ H 
50:

Since we could take f ð1=2Þ > 0, we conclude that m*�ðU Þ ¼ 0. Hence m* is
nonnegative.

4. We next verify (9.1). Indeed, by the inequality jvj2 � jwj2

52ðv� wÞ 
 w, we have the following for any z 2 K:

Dðz;H Þ �Dðz* ;H Þ5 ðr½z� z* 
;rz* Þ2 þ ð½z� z* 
; z* Þ2 þ ð½z� z* 
;H Þ2

¼ð½z� z* 
; ½�Dz* þ z* þ H Þ
2

¼ð½z� z* 
; m* Þ2:

In the final step, we used the curl of (9.2).
Since m* is a nonnegative measure whose support is included in

fz* ¼ �1=2g, we conclude that for any z5� 1=2; ð½z� z* 
;m* Þ250.
5. By the theory of variational problems like (9.1), z* is the unique

solution of the variational inequality

� Dz* þ z* þ H50; z*5� 1=2;

ð�Dz* þ z* þ H Þðz* þ 1=2Þ ¼ 0 in U ; ð9:3Þ

with zero boundary conditions; see for instance [14]. Then, by maximum
principle z*40. ]

We obtain a quick formulation of Hc1 as a corollary of the variational
formulation of z* .

Corollary 9.2. Let ðv* ; a* Þ be a minimizer of Fð
; 
;H Þ. Then the

limiting vorticity r	 v* is identically equal to zero, if H5Hc1 , where Hc1 is as

in (1.10). Moreover, r	 v* is nonzero for H > Hc1 .
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Proof. First suppose that H5Hc1 . Let #zz be the solution of (1.9). Then,
H #zz is a solution of (9.3), and therefore z* ¼ H #zz. Moreover, z* > �1=2, and
the support of r	 v* is empty.

For H > Hc1 . The obstacle is active in the variational inequality (9.3), and
by the theory of obstacle problems we see that �Dz* þ z* þ H ¼ r	 v* is
a nonzero measure. ]

APPENDIX

In the section, we provide the proof of Theorem 3.1.

Proof of Theorem 3.1. In Proposition 6.4 of [17], a collection of disjoint,
closed balls BðsÞ ¼ fBs

kg
kðsÞ
k¼1 satisfying rsk5e,Z

U\Bs
k

EeðuÞ dx5
rsk
s
LeðsÞ; ð10:1Þ

rsk5sjdsk j whenever Bs
k \ @U ¼ |; ð10:2Þ

where dsk is the essential degree as defined in [17] and it has the same additive
properties as the usual degree. In particular, for t 2 RegðfÞ dgðu;GðtÞÞ ¼
degðu;GðtÞÞ. Le is an additive function satisfying

s/LeðsÞ=s is nonincreasing ð10:3Þ

and

LeðsÞ5p lnðs=epÞ þ c0; for s5e;

for some constant c0. Define

C :¼ t 2 ð0; jjfjj1Þ j GðtÞ \
[
k

B %ss
k

" #
=|

( )
:

The definition implies that C �
S
k fðB

%ss
k Þ, and as a consequence

jCj42jjrfjj1
X
k

r %ssk ¼ 2jjrfjj1RðsÞ:

Thus if jDe
d j > 2RðsÞjjrfjj1, then De

d =C=|, and we may select some
t0 2 De

d =C. The definition of De
d and the essential degree imply that

jdegðu;Gðt0ÞÞj ¼ jdegðu;Gðt0ÞÞj5d. On the other hand, the definition of C
implies that Gðt0Þ \ ð

S
k B

%ss
k Þ ¼ |. Since the balls covers essential zero set of
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u, the additivity of the degree yield

d4jdegreeðu;Gðt0ÞÞj4
X

fk:B %ss
k�Oðt0Þg

jd %ss
k j4

X
fk:B %ss

k\@U¼|g

jd %ss
k j:

So (10.2) implies that ds5RðsÞ.
Since Oðt0Þ � spt f, the negation of (3.2) follows directly from (10.1) and

(10.3).
Final inequality is obvious in the construction, and the continuity

assertion is made in Remark 6.5 of [17]. ]
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