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ABSTRACT

AFeynman-Kac representation is proved for geometric partial
differential equations. This representation is in terms of a
stochastic target problem. In this problem the controller tries
to steer a controlled process into a given target by judicial
choices of controls. The sublevel sets of the unique level set
solution of the geometric equation is shown to coincide with
the reachability sets of the target problem whose target is the
sublevel set of the final data.
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1. INTRODUCTION

A stochastic target problem is a non-classical control problem in
which the controller tries to steer a controlled stochastic process into a
given target set G by judicial choices of controls. The chief object of study
is the set of all initial positions from which the controlled process can be
steered into G with probability one in an allowed time interval. Clearly
these reachability sets depend on the allowed time. Thus they can be
characterized by an evolution equation which is the analoque of the
dynamic programming, or equivalently the Bellman, equation of stochastic
optimal control.

These geometric equations express the velocity of the boundary as
a possibly nonlinear function of the normal and the curvature vectors.
As a Cauchy problem these equations in general do not admit classical
smooth solutions and a weak formulation is needed. Several such formula-
tions were given starting with the pioneering work of Brakke.[5] Here
we consider the viscosity formulation given independently by Chen,
Giga and Goto[6] and by Evans and Spruck.[9] The main idea of this
approach is to characterize the geometric solution as the zero level set
of a continuous function. The level set approach in numerical studies was
first introduced by Osher and Sethian[18] and in the physics literature by
Okta et al.[17]

In our earlier work,[22,23] we have shown that smooth solutions of
these geometric equations, when exist, are equal to the reachability sets.
Also, under certain assumptions, the characteristic functions of the reach-
ability sets are shown to be viscosity solutions of the geometric dynamic
programming equations in the sense defined by the first author.[19] In
particular, this result implies that the reachability set is included in the
zero sub-level set of the solutions constructed in Refs. [6,9].

The chief goal of this paper is to give a stochastic characterization of
the unique level set solutions of Refs. [6,9] in terms of the target problem.
This is achieved by using the mentioned results of Ref. [22] and the
techniques developed by Barles et al.[2] The main result in this direction is
stated in Theorem 3.1. We give the proof of this representation in §5 and 6
by using a one parameter family of target problems whose targets are the
sub-level sets of a given initial function. A restatement of the main
theorem is given in Theorem 3.2 and the representation result is outline in
Subsection 7.1.

These results can be interpreted in two ways. From a differential
equations point of view it is a Feynman-Kac type of representation of
level set solutions of the geometric equations. From the control point of
view this gives a unique characterization of the reachability sets.

120016135_PDE_027_009-010_R1.pdf

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

+ [12.9.2002–1:47pm] [2031–2054] [Page No. 2032] I:/Mdi/Pde/27(9&10)/120016135_PDE_027_009-010_R1.3d Partial Differential Equations (PDE)

2032 SONER AND TOUZI



Let us mention that a similar representation theorem was recently
obtained by Buckdahn et al.[4] by different techniques. However, their
result is restricted to the level set equation of the codimension-1 mean
curvature flow.

In this paper we first show that a function w defined in Eq. (3.4) is a
viscosity solution of the corresponding geometric level set equation. In this
construction, we consider a family of target problems whose targets are the
sublevel sets of a given function g. If this equation has comparison as the
large class of level set equations discussed in Ref. [6], then the above
result shows that the reachability sets are the sublevel sets of the unique
viscosity solution of the level set equation. This also provides a representa-
tion for the unique viscosity solution. These two results are proved in
Theorems 4.2, and 3.2.

The paper is organized as follows. The target reachability problem is
introduced in the next section. The statement of our main results is reported
in §3. Section 4 discusses the dynamic programming principle and the
induced class of geometric PDE’s. The stochastic representation of this
class of geometric PDE’s in terms of the target problem is proved in §5.
The level set characterization of the reachability sets is proved in §6.
Examples are given in the final section.

2. TARGET REACHABILITY PROBLEM

In this section, we recall the target reachability problem introduced in
Ref. [22] for diffusion processes.

We assume that the control set U is a compact subset of R
k. The

controlled process is a solution of the stochastic differential equation

dZðsÞ ¼ �ðs,ZðsÞ, uðsÞÞ dsþ �ðs,ZðsÞ, uðsÞÞ dWðsÞ , ð2:1Þ

whereW is a d-dimensional standard Brownian motion and u is a U-valued
progressively measurable map. As usual the drift � is vector-valued and the
diffusion coefficient is matrix-valued, i.e.,

� : ½0,T � � R
n
�U �! R

n and � : ½0,T � � R
n
�U �! R

n�d :

We assume that both �ðt, z, uÞ and �ðt, z, uÞ are bounded and continuous.
For later use, we introduce the set

Kðt, zÞ :¼ �ðt, z, aÞ, �ðt, z, aÞð Þ : a 2 U
� �

for all ðt, zÞ 2 ½0,T � � R
n:

ð2:2Þ
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In this paper, we relax the control problem slightly as in Ref. [11] by
admitting all weak solutions of the stochastic differential equation (2.1).
This forces us to consider all possible Brownian motions as part of the
minimization process as well. This relaxation is needed only to ensure the
existence of an optimal strategy and is not needed for the PDE results.

Mathematically, this is done as follows. For all initial data
ðt, zÞ 2 ½0,T Þ � R

n, let Uðt, zÞ be the collection of all elements

� ¼ ��,F �, F�,P�, fW�
ðsÞgs� t, fu

�
ðsÞgs� t

� �
where ��,F �, F�,P�

ð Þ is an arbitrary filtered probability space, fW�
ðsÞ,

s � tg is a d dimensional standard Brownian motion, fu�ðsÞ, s � tg is a
progressively measurable U-valued process on this space. For � 2 Uðt, zÞ,
let fZ�

t, zðsÞgs� t be the solution of Eq. (2.1) with ðu�,W�
Þ substituted for

ðu,WÞ and with initial condition Z�
t, zðtÞ ¼ z.

For a given Borel subset G of R
n, the target reachability set is given by

VGðtÞ :¼ z 2 R
n : Z�

t, zðTÞ 2 GP
�
� a.s. for some � 2 Uðt, zÞ

� �
: ð2:3Þ

This set is the chief object of our study. A natural condition for VGðtÞ to be
non-empty for any G is the following

Nðt, z, pÞ 6¼ ; for all ðt, z, pÞ 2 ½0,T � �R
n
�R

n,

where for ðt, z, pÞ 2 ½0,T � � R
n
� R

n

Nðt, z, pÞ :¼ fu 2 U : �ðt, z, uÞ�p ¼ 0g

for p 6¼ 0 and N ðt, z, 0Þ :¼ U: ð2:4Þ

In what follows, we always assume that this condition holds. As a corollary,
if G is smooth, then VGðtÞ is non-empty at least for some t > 0. Although
this is a natural general assumption, if we could apriori restrict the reach-
ability sets into a smaller class such as graphs or epigraphs, then
Assumption 4.1 can be relaxed: see Remark 4.3 below.

The stochastic target problem is introduced by the authors in Refs.
[20,21] to study the problem of super-replication in mathematical finance.
Anapplication to stochastic volatility is givenby the secondauthor inRef. [24],
and jump-diffusion processes are discussed by Bouchard.[3] In addition to
these examples, forward-backward stochastic differential equations (FBSDE)
also can be seen as target reachability problems. We close this section by a
brief discussion of these equations.

Example 2.1. (unconstrained FBSDE ’s.) The forward–backward stochastic
differential equation is this. Given functions �,�, a, b, and � (with appropriate
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domains and ranges) consider the problem of finding square integrable
adapted processes Z ¼ ðX ,YÞ valued in R

m
� R

p and � valued in R
d satisfy-

ing the differential equations

dXðsÞ ¼ �ðs,ZðsÞ, �ðsÞÞdsþ �ðs,ZðsÞ, �ðsÞÞ dWðsÞ

dYðsÞ ¼ aðs,ZðsÞ, �ðsÞÞdsþ bðs,ZðsÞ, �ðsÞÞ dWðsÞ

together with the initial and final conditions

Xð0Þ ¼ x and YðTÞ ¼ �ðXðTÞÞ:

The main point here is that, unlike the deterministic framework, there is an
important measurability problem : the processes Z ¼ ðX ,Y Þ and � are
required to be adapted to the given filtration F. Note that an initial and a
final condition is given and we could solve this only for certain values of x.
The set of initial x for which a solution exists is indeed the projection on the
first m coordinates of the target reachability problem for the process
Z ¼ ðX ,YÞ with target

G ¼ Graphð�Þ :¼ fðx, yÞ : y ¼ �ðxÞg:

Further discussion of the connection between the target problems and
FBSDE’s is given in Remark 4.3 below.

The problem of FBSDE’s has been motivated by applications in finan-
cial mathematics, namely the problem of hedging for a large investor.
Loosely speaking, (i) the control � is the investment strategy, i.e., the
number of shares of risky assets to be held at each time, (ii) the dynamics
of the process X, standing for the price process of m risky assets, is
influenced by the investment strategy � (large investor), (iii) and the Y
component of the state process Z is the amount of wealth implied by the
investment strategy �; under the so-called self-financing condition, the
dynamics of Y are given by dY ¼ �dX .

For the existence of nontrivial solutions, certain restrictions on the
coefficients, especially on b, are needed. We refer the reader to the recent
lecture notes of Ma and Yong[16] and the references therein for information
on FBSDE’s. œ

Example 2.2. (constrained FBSDE’s.) Let Z ¼ ðX ,Y Þ with a scalar Y be as
above and let A be a non-decreasing adapted process with Að0Þ ¼ 0. Again
we look for Z and � in a certain convex set, satisfying the above differential
equations together with the initial and final conditions

Xð0Þ ¼ x and YðTÞ ¼ �ðXðTÞÞ þ AðTÞ:
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This is again a target reachability problem with target

G ¼ Epið�Þ :¼ fðx, yÞ : y � �ðxÞg:

The constraint that � taking values in a convex set is the main
difference between this and the unconstrained problem. For this reason
the process A is introduced. A problem with constraints is considered by
Cvitanić et al. in Ref. [8]. œ

3. THE STOCHASTIC REPRESENTATION RESULT

The main result of this paper is the following representation formula
for a partial differential equation. To state the theorem we need to define the
nonlinear term in the equation. Let Sn be the set of all n by n symmetric
matrices.

For ðt, z, p,AÞ 2 ½0,T � �R
n
�R

n
� S

n, define

Fðt, z, p,AÞ :¼ sup
�2N ðt, z, pÞ

��ðt, z, �Þ�p�
1

2
trace ���ðt, z, �ÞAð Þ

� �
, ð3:1Þ

where Nðt, z, pÞ is defined in Eq. (2.4).
Observe that Fðt, z, p,AÞ is singular at p ¼ 0 because Nðt, z, 0Þ ¼ U.

In the sequel, we shall denote F� and F
� the lower and the upper semicon-

tinuous envelopes of F . Then the equation is

�wtðt, zÞ þ Fðt, z,Dwðt, zÞ,D
2wðt, zÞÞ ¼ 0 on ½0,TÞ � R

n: ð3:2Þ

We consider this equation together with the terminal condition

wðT , zÞ ¼ gðzÞ, ð3:3Þ

where g is a uniformly continuous function. Here we choose to study a
terminal boundary value problem as they are more natural in optimal
control. However, one could easily reverse time to obtain an initial value
problem.

The main representation result is a consequence of the following
theorem which requires a technical assumption, Assumption 4.1, that will
be discussed in the next section.

Theorem 3.1. Suppose Assumption 4.1 holds and that F is locally Lipschitz on
f p 6¼ 0g. Then,

wðt, zÞ :¼ inf
�2Uðt, zÞ

ess sup
!2�

g Z�
t, zðT ,!Þ

� �
ð3:4Þ
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is a discontinuous viscosity solution of Eq. (3.2) satisfying the terminal
condition (3.3) pointwise.

The proof of this theorem will be given in Sec. 6. If the solutions of
these equations are unique, then the above theorem provides a stochastic
representation formula for the unique solution.

Definition 3.1.We say that the Eq. (3.2) has comparison if for all functions u,
u satisfying

. u is an upper semicontinuous, bounded viscosity subsolution of
Eq. (3.2) on ½0,T Þ � R

n,
. u is a lower semicontinuous, bounded viscosity supersolution of

Eq. (3.2) on ½0,T Þ � R
n,

. uðT , �Þ � h � uðT , �Þ for some uniformly continuous function
h :Rn ! R,

we have u � u on ½0,T � � R
n.

In particular, if Eq. (3.2) has comparison and g is an uniformly
continuous function on R

n, then there exists at most one continuous viscosity
solution to the Eq. (3.2) together with the terminal condition uðT , �Þ ¼ g.
Notice that the requirement that h is uniformly continuous rules out
the non-compact counterexamples to comparison constructed by Ilmanen.[12]

Comparison results for geometric equations have been first proved in
Refs. [6,9] for the mean curvature flow. Also Ref. [6] provides a very general
comparison result for a large class of geometric equations. In Sec. 7, we will
give two examples of such flows.

With the assumption of comparison, Theorem 3.1 provides a
stochastic representation formula for the unique solution of Eqs. (3.2)–(3.3).
Our next result provides a characterization of the reachability set VG as the
zero sublevel set of the function w.

Theorem 3.2. Let the conditions of Theorem 3.1 hold. Suppose that g is
bounded and uniformly continuous, and Eq. (3.2) has comparison, so that w
is the unique bounded continuous viscosity solution of Eqs. (3.2)–(3.3).

Assume further that the set Kðt, zÞ, defined in Eq. (2.2), is closed and
convex for all ðt, zÞ 2 ½0,T � � R

n. Then,

VGðtÞ ¼ fz : wðt, zÞ � 0g

with the target set

G :¼ fz 2 R
n : gðzÞ � 0g:
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Proof of this theorem is a straightforward application of Theorem 3.1
and Propositions 5.1–5.2. Observe that the boundedness of g is by no means
a restricting condition, as one can replace g by ð1þ kgk1Þ

�1g. Also, the
boundedness of w is inherited from g, as it is immediately seen from its
definition.

4. DYNAMIC PROGRAMMING

In this section, we recall several results of Ref. [22], which will be used
in the proof of Theorem 3.1.

We first start by stating a geometric dynamic programming principle
for the target reachability problem.

Theorem 4.1.[22] Let G be a Borel subset of R
d , and t 2 ½0,T Þ. For all

stopping times 
 2 ½t,T �,

VGðtÞ ¼ z 2 R
n : Z�

t, zð
Þ 2 V
G
ð
ÞP�

� a:s: for some � 2 Uðt, zÞ
� �

:

This principle is proved in Ref. [22] for general target reachability
problems. While the inclusion of VGðtÞ in the right hand side of the above
expression is obvious, the reverse inclusion is technical, and relies mainly on
a measurable selection argument.

As in classical optimal control theory, the infinitesimal version of the
dynamic programming principle yields a second order partial differential
equation. This is also the case here. Indeed, in Ref. [22] it is proved that
the characteristic function of the complement of the reachability sets

vGðt, zÞ ¼ 1� 1VGðtÞðzÞ ¼
0 if z 2 VGðtÞ

1 otherwise

(
ð4:1Þ

is a viscosity solution of the geometric dynamic programming equation.
This is proved under the following assumption.

Assumption 4.1. (Continuity of Nðt, z, pÞ.) Let N be as in Eq. (2.4). We
assume that for any ðt0, z0, p0Þ 2 S � R

n and u0 2 N ðt0, z0, p0Þ, there exists
a map ûu : S �R

n
! U satisfying,

ûuðt0, z0, p0Þ ¼ u0,

ûuðt, z, pÞ 2 N ðt, z, pÞ for all ðt, z, pÞ 2 S � R
n,

and that ûu is locally Lipschitz on fðt, z, pÞ : p 6¼ 0g.
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A possible relaxation of this assumption is discussed in Remark 4.3
below. The following is proved in Ref. [22].

Theorem 4.2.[22] Suppose that Assumption 4.1 holds and that F is locally
Lipschitz on f p 6¼ 0g. Let G be a Borel subset of R

n. Then, the support func-
tion of its reachability sets vG is a discontinuous viscosity solution of the
dynamic programming equation (3.2).

We refer the reader to Refs. [7,11] for information on viscosity
solutions.

By a discontinuous viscosity solution, we mean that the lower (resp.
upper) semicontinuous envelope ðvGÞ� (resp. ðv

G
Þ
�) of vG is a viscosity super-

solution (resp. subsolution) of Eq. (3.2) with F� (resp. F�) substituted to F .
While the proof of the supersolution property follows from judicial changes
of measure, the subsolution property turns out to be a surprisingly technical
proof. The complication is mainly related to the above-mentioned singularity
of F at p ¼ 0.

Remark 4.1. Although Eq. (3.2) is a second order partial differential
equation, it admits a discontinuous function vG as a solution. Uniqueness
of discontinuous solutions to level set equations is not always expected due
to the fattening phenomenon. This is studied extensively in the paper by
Barles et al.[2] where the characteristic functions were first used as solutions
of level set equations. Indeed when the target is a level set of a given func-
tion, then the reachability set VGðtÞ is a subset of this ‘‘fat’’ level-set.
However, VGðtÞ is the equal to the whole level-set under mild assumptions
as discussed in Proposition 5.2 and Theorem 3.2 provides an exact statement
towards this problem. œ

Remark 4.2. The nonlinearity F has the following two important properties

Fðt, z, c1p, c1Aþ c2pp
�
Þ ¼ c1Fðt, z, p,AÞ 8 c1 > 0, c2 2 R, ð4:2Þ

Fðt, z, p,Aþ BÞ � Fðt, z, p,AÞ, 8 B � 0: ð4:3Þ

The second property means that Eq. (3.2) is degenerate elliptic, while the
first implies that it is geometric; see Ref. [2]. Note that the geometric
property implies that Eq. (3.2) is degenerate along the gradient direction
which is the normal direction to the level sets of vG. œ

The latter observation was the starting point of Ref. [23] where a
stochastic representation of a class of smooth geometric flows in terms of
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target reachability problems is provided. In contrast with the technical
proofs in Ref. [22], the stochastic representation of Ref. [23] relies on an
easy application of Itô’s lemma together with the use of the square distance
function to the family of submanifolds.

Remark 4.3. Assumption 4.1 is restictive for the forward backward
stochastic differential equations discussed in the previous section. Still our
techniques apply to FBSDE’s. Indeed the variable p in N stands for any
possible normal vector of the reachability set, and in FBSDE’s the reach-
ability sets are either graphs or epigraphs of functions of the form
Y ¼ ’ ðs,X Þ. Therefore for these examples we need Nðs, z, pÞ to be
nonempty only for p’s which are normals to graphs. To illustrate this
point consider the Example 2.1 with X 2 R

m, Y 2 R
1, � ¼ �ðs, zÞ and

bðs, z, �Þ ¼ � 2 R
1. Then the driving Brownian motion is one dimensional.

Moreover, a normal p to the graph of any function y ¼ ’ ðxÞ has the form
p ¼ � ðq, �1Þ for some scalar � and q 2 R

m. For such a p,

��ðs, z, �Þp ¼ � ½��ðs, zÞq� ��:

So � ¼ ��ðs, zÞq belongs to Nðs, z, pÞ whenever p is normal to a graph. In
particular, Nðs, z, pÞ is nonempty for normals. Although the Assumption 4.1
does not hold for every p, this is enough to use the techniques of the
preceeding sections.

This example shows how to relax the Assumption 4.1 depending on
the possible geometries of the reachable sets.

5. TARGETS AS LEVEL SETS

In this section, we provide a convenient alternative expression for the
function w of Eq. (3.4). Then, as stated before, Theorem 3.2 follows from
Theorem 3.1 and the results of this section.

In the context of this paper, we would like to see the target G as the
zero sublevel set of some function g : R

n
! R, i.e.,

G ¼ fz 2 R
n : gðzÞ � 0g:

where g is an uniformly continuous function on R
n. This is not a

restriction as we could always take g to be the signed distance to the
boundary of G.

In order to prove Theorem 3.1, we need to derive an alternative
expression of the function w defined in Eq. (3.4). For parameter � 2 R,
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define the target

G� :¼ z 2 R
n : gðzÞ � �

� �
,

together with the associated target reachability problem:

VG� ðtÞ :¼ z 2 R
n : Z�

t, zðT Þ 2 G�P
�
� a.s. for some � 2 Uðt, zÞ

� �
:

Set

Wðt, zÞ :¼ � 2 R : z 2 VG� ðtÞ
� �

: ð5:1Þ

Then,

Lemma 5.1. For all ðt, zÞ 2 ½0,T � � R
n, we have

wðt, zÞ ¼ infWðt, zÞ:

Proof.

(i) We first prove that wðt, zÞ � infWðt, zÞ. Take some arbitrary
�> infWðt, zÞ. By definition, this means that, for some � 2 Uðt, zÞ,
gðZ�

t, zðT ÞÞ � � P�a.s. or equivalently esssup!2� g ðZ
�
t, zðT ,!ÞÞ �

�. Hence wðt, zÞ :¼ inf�2Uðt, zÞ esssup!2� gðZ
�
t,zðT ,!ÞÞ� �, and the

required inequality follows by sending � to infWðt,zÞ.
(ii) To see that the reverse inequality holds, take an arbitrary

� > wðt, zÞ. Then, gðZ�n
t, zðT ÞÞ �� P�a.s. for some �n 2 Uðt, zÞ, or

equivalently z2VG
�

ðtÞ. Hence �� infWðt, zÞ, and the required
inequality follows by sending � to wðt, zÞ. œ

Observe that VG� ðtÞ � VG� ðtÞ whenever � � �. Hence

wðt, zÞ,1ð Þ �Wðt, zÞ � wðt, zÞ,1½ Þ for all ðt, zÞ 2 ½0,T � �R
n:

The following result expresses the target reachability sets VGð�Þ as the
level sets of wð�, zÞ. Its proof is straightforward and it is omitted.

Proposition 5.1. For any t 2 ½0,T �

fz 2 R
n : wðt, zÞ < 0g � VGðtÞ � fz 2 R

n : wðt, zÞ � 0g:

If in addition Wðt, zÞ is closed for all z 2 R
n, then

VGðtÞ ¼ fz 2 R
n : wðt, zÞ � 0g for all t 2 ½0,T �:
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Hence, in order to deduce Theorem 3.2 from Theorem 3.1, it remains
to prove that W is a closed interval. This closedness property is the main
reason for the relaxation of the stochastic reachability problem by means of
weak solutions. In our previous paper,[22] the filtered probability space and
the Brownian motions were fixed, and the controlled process Z� was defined
as a strong solution of Eq. (2.1). However, such a setting requires stronger
conditions in order to guarantee the closedness of Wðt, zÞ. The following
result is almost an immediate corollary of the results proved by
Haussman,[14] and by ElKaroui et al.[10]

Proposition 5.2. Fix a point ðt, zÞ 2 ½0,T Þ � R
n with wðt, zÞ <1, and suppose

that the set Kðt, zÞ, defined in Eq. (2.2), is closed and convex. Assume further
that the function g, defining the target, is lower semicontinuous. Then,Wðt, zÞ
is a closed interval, i.e., there exists a control �̂� 2 Uðt, zÞ such that

g Z�̂�
t, zðT Þ

� 	
� wðt, zÞP�̂�

� a:s::

Moreover, there exists a Borel measurable U-valued function �uu such that
u�̂�ðtÞ ¼ �uuðt,Z�̂�

t, zÞðtÞ, P
�̂�
� a.s.

Proof. We shall briefly recall the compactification method of Ref. [14].
Assertions of the Proposition follow easily from this compactification
method.

1. We first rewrite the reachability set problem using the canonical
space � ¼ Cð½0,1Þ,Rd Þ, FðtÞ ¼ �f!ðsÞ, s � tg. Then we identify a weak
solution of Eq. (2.1) with its induced measure; see Ref. [14]. With this
identification, the set of (measure) controls is compact in the weak topology
of Proposition 3.1 of Ref. [14].

2. Since wðt, zÞ <1 by assumption, the set of controls is non-empty.
Now let ð�nÞn be a minimizing sequence for the optimization problem
wðt, zÞ, i.e.

g Z�n
t, zðT Þ

� �
� wðt, zÞ þ 1=n P�n � a.s. for all n � 1:

Let Pn be the measure control associated to �n. Then, there is some
(measure) control P̂P, identified to �̂� 2 Uðt, zÞ, such that Pn�! P̂P weakly.
By the definition of the weak convergence, this implies that Z�n

t, zðT Þ !
Z�̂�
t, zðT ÞP

�̂�
� a.s. along some subsequence. Since g is lower semicontinuous,

we pass to the limit in the above inequality, to obtain gðZ�̂�
t, zðT ÞÞ �

wðt, zÞP�̂�
�a.s.

3. The final claim in Proposition 5.2 is proved in Lemmas 3.4, 3.5
and Proposition 3.2 of Ref. [14]. œ

AQ2

120016135_PDE_027_009-010_R1.pdf

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

+ [12.9.2002–1:47pm] [2031–2054] [Page No. 2042] I:/Mdi/Pde/27(9&10)/120016135_PDE_027_009-010_R1.3d Partial Differential Equations (PDE)

2042 SONER AND TOUZI



6. LEVEL SET EQUATION

In this section we prove Theorem 3.1 which states that the function w,
defined in Eq. (3.4) (or Lemma 5.1), is a viscosity solution of the geometric
dynamic programming equation (3.2) together with the terminal condition
(3.3).

We start the proof with a straigtforward observation. Recall that vG is
defined in Eq. (4.1).

Lemma 6.1. For any �, the semicontinuous envelopes of vG� satisfy

(i) ðvG� Þ� � 1fw�>�g, and ðv
G� Þ

�
� 1fw���g,

(ii) w�ðt, zÞ < �¼)ðvG� Þ�ðt, zÞ ¼ 0,
(iii) w�ðt, zÞ > �¼)ðvG� Þ

�
ðt, zÞ ¼ 1.

Proof. We shall only prove the statements concerning the lower semicontin-
uous envelopes. The statements concerning the upper semicontinuous
envelopes is proved exactly the same way.

1. Let W be as in Eq. (5.1). Then,

vG� ðt, zÞ ¼ 1f� =2Wðt, zÞg for all ðt, zÞ 2 ½0,T � � R
n: ð6:1Þ

Suppose that 1fw�ðt, zÞ>�g ¼ 1. Then, wðt, zÞ � w�ðt, zÞ > �. and this implies
that � 62Wðt, zÞ. By Eq. (6.1), we conclude that vG� ðt, zÞ ¼ 1. Since 1fw�>�g

and vG� are valued in f0, 1g, this proves that 1fw�>�g � v
G� . Moreover, 1fw�>�g

is clearly lower-semicontinuous. Hence 1fw�>�g � ðv
G� Þ�.

2. Next, suppose that ðvG� Þ�ðt, zÞ ¼ 1. Then vG� ¼ 1 on some
neighborhood B0 of ðt, zÞ. By Eq. (6.1), � � w and consequently � � w�
on B0. œ

Remark 6.1. From the above lemma, it follows that:

ðvG� Þ� ¼ 1fw�>�g on fw� 6¼ �g and ðvG� Þ
�
¼ 1fw���g on fw

�
6¼ �g

Moreover, Part 2 of the proof provides that

ðvG� Þ� > 1fw�>�g ¼)ðt0, z0Þ is a point of local minimum ofw�:

A similar statement holds for ðvG� Þ
�.

We first prove the w solves the geometric PDE.

Proposition 6.1. Under the conditions of Theorem 3.1, w is a discontinuous
viscosity solution of Eq. (3.2).
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Proof. We first prove that w� is a viscosity subsolution of the dynamic
programming Eq. (3.2) by applying Theorem 4.2 to VG�n with a carefully
chosen sequence of �n.

1. Let ðt0, z0Þ 2 ½0,T Þ � R
n and ’ 2 C2

ð½0,T � � R
n
Þ be such that

0 ¼ ðw� � ’Þðt0, z0Þ > ðw
�
� ’Þðt, zÞ

for all ðt, zÞ 2 ½0,T Þ � R
n
nðt0, z0Þ: ð6:2Þ

Note that w� � ’. We need to show that

�’tðt0, z0Þ þ F� t0, z0,D’ ðt0, z0Þ,D
2’ ðt0, z0Þ

� �
�0: ð6:3Þ

Set

� :¼ w�ðt0, z0Þ ¼ ’ ðt0, z0Þ, and �n :¼ �� 1=n:

By Lemma 6.1 (i), we see that

ððvG�n Þ
�
� ’Þðt, zÞ � ð1fw���ng � ’Þðt, zÞ

� ð1� ’Þ1fw���ngðt, zÞ � ’1fw�<�ngðt, zÞ

� ð1� w�Þ1fw���ngðt, zÞ � ’1fw�<�ngðt, zÞ

� ð1� �nÞ1fw���ngðt, zÞ � ’1fw�<�ngðt, zÞ:

Now if w� < �n, then the right hand side of the above inequality is equal to
�’ which is by the continuity of ’ is less than ��n on some bounded
neighborhood B0 of ðt0, z0Þ. In the opposite case, the right hand side is
equal to 1� �n. So in any case, there exists a bounded neighborhood B0

of ðt0, z0Þ such that

ððvG�n Þ
�
� ’Þðt, zÞ � ð1� �nÞ on B0: ð6:4Þ

On the other hand, since w�ðt0, z0Þ ¼ � > �n, it follows from Lemma 6.1 (iii)
that vG�n

� ��
ðt0, z0Þ ¼ 1 for every n. Hence

ððvG�n Þ
�
� ’Þðt0, z0Þ ¼ 1� � < 1� �n: ð6:5Þ

2. Let ðtn, znÞ be a maximizer of ðvG�n Þ
�
� ’ on clðB0Þ, i.e.,

ððvG�n ‘Þ� � ’Þðtn, znÞ ¼ sup
B0

ððvG�n Þ
�
� ’Þ:

We claim that

ðtn, znÞ �!ðt0, z0Þ as n ! 1: ð6:6Þ
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Indeed, let ð�tt, �zzÞ be the limit of some converging subsequence of
ðtn, znÞn, that we rename ðtn, znÞ. After possibly choosing a smaller neighbor-
hood B0,

vG�n
� ��

ðtn, znÞ ¼ 1 for all large n: ð6:7Þ

This follows from the fact that ðvG�n Þ
�
ðt0, z0Þ ¼ 1 together with the smooth-

ness of ’. Hence,

lim
n!1

ððvG�n Þ
�
� ’Þðtn, znÞ ¼ 1� ’ ð �tt, �zzÞ: ð6:8Þ

By Eqs. (6.4) and (6.5),

1� � ¼ ððvG�n Þ
�
� ’Þðt0, z0Þ � ððv

G�n Þ
�
� ’Þðtn, znÞ � 1� �n,

so that Eq. (6.8) yields ’ ð�tt, �zzÞ ¼ �. Using again Eq. (6.7) together with
Lemma 6.1 (i), we conclude that w�ðtn, znÞ � �n. Therefore,

ðw� � ’Þð�tt, �zzÞ

¼ lim sup
n!1

ðw� � ’Þðtn, znÞ

� lim sup
n!1

�n � ’ ðtn, znÞ ¼ �� ’ ð �tt, �zzÞ ¼ 0:

In view of Eq. (6.2), this proves that ð �tt, �zzÞ ¼ ðt0, z0Þ and the proof of Eq. (6.6)
is complete.

3. By Eq. (6.6), ðtn, znÞ is a local maximizer of ððvG�n Þ
�
� ’Þ on B0, for

sufficiently large n. Also, by Theorem 4.2, vG�n is a discontinuous subsolu-
tion of the dynamic programming equation. Hence

�’tðtn, znÞ þ F tn, zn,D’ ðtn, znÞ,D
2’ ðtn, znÞ

� �
� 0,

We now take liminf as n approaches to infinity to arrive at Eq. (6.3).
So w is a discontinuous viscosity subsolution of the dynamic program-

ming equation.
(ii) It remains to prove that w� is a viscosity supersolution of the

dynamic programming equation. This part of the proof is very similar to (i).
4. Let ðt0, z0Þ 2 ½0,T Þ �R

n and ’ 2 C2
ð½0,T � � R

n
Þ be such that

0 ¼ ðw� � ’Þðt0, z0Þ < ðw� � ’Þðt, zÞ

for all ðt, zÞ 2 ½0,T Þ � R
n
nðt0, z0Þ: ð6:9Þ
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Observe that w� � ’. Set �n ¼ �þ 1=n where � is as in Step 1.
Argueing as in Step 1,

vG�n
� �

�
� ’

� �
ðt, zÞ � 1fw�>�ng � ’

� �
ðt, zÞ

� ð1� ’Þ1fw�>�ngðt, zÞ � ’1fw���ngðt, zÞ

� ð1� ’Þ1fw�>�ngðt, zÞ � w�1fw���ngðt, zÞ

� ð1� ’Þ1fw�>�ngðt, zÞ � �n1fw���ngðt, zÞ

� ��n, ð6:10Þ

on some bounded neighborhood B0 of ðt0, z0Þ. On the other hand, since
w�ðt0, z0Þ ¼ � < �n, it follows from Lemma 6.1 (ii) that

vG�n
� �

�
� ’

� �
ðt0, z0Þ ¼ �� > ��n: ð6:11Þ

5. Let ðtn, znÞ be a minimizer of ðvG�n Þ� � ’ on clðB0Þ, i.e.

vG�n
� �

�
� ’

� �
ðtn, znÞ ¼ inf

B0

vG�n
� �

�
�’

� �
:

As in Step 2, we claim that

ðtn, znÞ �!ðt0, z0Þ as n�!1: ð6:12Þ

We argue as before. Let ð�tt, �zzÞ be the limit of some converging subsequence of
ðtn, znÞn, that we rename ðtn, znÞ. Observe that after possibly choosing a
smaller neighborhood B0,

vG�n
� �

�
ðtn, znÞ ¼ 0 for large n: ð6:13Þ

This follows from the fact that ðvG�n Þ�ðt0, z0Þ ¼ 0 together with the smooth-
ness of ’. Then,

lim
n!1

vG�n
� �

�
� c’

� �
ðtn, znÞ ¼ � ’ ð �tt, �zzÞ: ð6:14Þ

We now use Eqs. (6.10) and (6.11) to conclude that

�� ¼ vG�n
� �

�
� ’

� �
ðt0, z0Þ � vG�n

� �
�
� ’

� �
ðtn, znÞ � ��n:

Hence by Eq. (6.14), ’ ð�tt, �zzÞ ¼ �. Using again Eq. (6.13) together with
Lemma 6.1 (i), we see that w�ðtn, znÞ � �n. Therefore,

ðw� � ’Þð�tt, �zzÞ ¼ lim inf
n!1

ðw� � ’Þðtn, znÞ

� lim inf
n!1

�n � ’ ðtn, znÞ ¼ �� ’ ð�tt, �zzÞ ¼ 0,

which shows that ð �tt, �zzÞ ¼ ðt0, z0Þ, in view of Eq. (6.9). This proves the claim.
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6. By Eq. (6.12), ðtn, znÞ is a local minimizer of ððvG�n Þ� � ’Þ on B0,
for large n. Since vG�n is a discontinuous subsolution of the dynamic
programming equation, this proves that

�’tðtn, znÞ þ F tn, zn,D’ ðtn, znÞ,D
2’ ðtn, znÞ

� �
� 0,

Letting n tend to infinity we obtain

�’tðt0, z0Þ þ F
� t0, z0,D’ ðt0, z0Þ,D

2’ ðt0, z0Þ
� �

� 0:

Hence w is a discontinuous viscosity supersolution of the dynamic
programming equation. œ

In order to conclude the proof of Theorem 3.1, it remains to show
that w satisfies the terminal condition (3.3). In preparation of this, we
start with

Lemma 6.2. For any initial data ðt, zÞ 2 ½0,T Þ � R
n, there exists ~�� 2 Uðt, zÞ

such that

Z ~��
t, zðT Þ � z




 


2� C½ðT � tÞ2 þ ðT � tÞ�P ~��
� a:s:,

for some constant C depending on k�k1 and k�k1.

Proof. Fix ðt, zÞ and a small constant � > 0. Let u0 be an arbitrary control in
U, and construct processes ~�� and ~ZZ :¼ Z ~��

t, z so that for all s 2 ½t,T �,

~uuðsÞ :¼ u ~��ðsÞ ¼ u0ðsÞ1fj ~ZZðsÞ�zj<�g þ ûu s,
~ZZðsÞ, ~ZZðsÞ � z

� �
1
fj ~ZZðsÞ�zj��g,

where ûu is as defined in Assumption 4.1. Clearly for any arbitrary filtered
probability space ð�,F , F,PÞ equipped with an R

d-valued Brownian motion
W , ~�� :¼ ð�,F , F,P,W , ~ZZ, ~uuÞ 2 Uðt, zÞ.

Set f ðsÞ :¼ ~ZZðsÞ � z, for s � t, and apply Itô’s rule to j f ðsÞj2,

dj f ðsÞj2 ¼ 2 f ðsÞ��ðs, ~ZZðsÞ, ~uuðsÞÞ þ tracef���ðs, ~ZZðsÞ, ~uuðsÞÞg
� �

dt

þ 2 f ðsÞ��ðs, ~ZZðsÞ, ~uuðsÞÞ dWðsÞ:

Since ~uuðsÞ 2 N ðs, ~ZZðsÞ, ~uuðsÞÞ whenever j f ðsÞj � �, the stochastic term in the
above equation is equal to zero. Hence, for j f ðsÞj � �,

dj f ðsÞj2 � Cðj f ðsÞj þ 1Þ dt,
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for some constant C, depending on the bounds of � and �. This proves that

j f ðsÞj2 � �2 þ C

Z s

t

ð1þ j f ðsÞjÞ1j f ðsÞj�� ds

� �2 þ Cðs� tÞ þ
C

�

Z s

t

j f ðsÞj2 ds:

We now use Gronwall’s Lemma to arrive at

j f ðsÞj2 � �2eðC=�Þðs�tÞ þ � eðC=�Þðs�tÞ � 1
� 	

for s 2 ½t,T �:

Choosing � :¼ T � t yields

j f ðT Þj2 ¼ j ~ZZðT Þ � zj2 � eC½ðT � tÞ2 þ ðT � tÞ�:

The following result completes the proof of Theorem 3.1.

Proposition 6.2. For all z 2 R
n, we have w�ðT , zÞ ¼ w

�
ðT , zÞ ¼ gðzÞ.

Proof. We shall prove that w�ðT , �Þ � g and w�ðT , �Þ � g, then the required
result follows from the trivial inequality w� � w�.

1. We first prove that w�ðT , �Þ � g. Fix z 2 R
n and consider a

sequence ðtn, znÞn such that

ðtn, znÞ ! ðT , zÞ and wðtn, znÞ ! w�ðT , zÞ:

With �n :¼ wðtn, znÞ þ 1=n, it follows from the definition of w that

g Z�n
tn, zn
ðT Þ

� �
� �nP

�n � a.s. for some control �n 2 U:

Since the functions � and � are bounded, it is easily seen that Z
�n
tn, zn
ðT Þ !

zP� a.s. and therefore

gðzÞ ¼ lim
n!1

g Z
�n
tn, zn
ðT Þ

� �
� lim
n!1

�n ¼ w�ðT , zÞ

by the continuity of g.
2. We now prove that w�ðT , �Þ � g. Let " > 0 be given. By Lemma

6.2, there exists t" < T such that for any z 2 R
n, t 2 ½t�,T � there exists a

control ~�� 2 Uðt, zÞ satisfying

gðZ ~��
t, zðT ÞÞ � gðzÞ þ " for all t 2 ½t",T �P

~��
� a.s.

By the definition of w, this yields

wðt, zÞ � gðzÞ þ " for all t 2 ½t",T �:
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Then we obtain the required inequality by taking limsup as ðt, zÞ approaches
to ðT , z0Þ and using the continuity of g. œ

7. EXAMPLES

7.1. Stochastic Representation of Mean Curvature

Type Geometric Flows

In this subsection we outline the above results with a view towards
finding the stochastic representation.

1. Suppose that a level set PDE is given with a nonlinearity as in
Eq. (3.1). Then Theorem 3.1 or Theorem 3.2 provide the desired representa-
tion. Of course, we need a uniqueness result for this equation together with
the boundary condition.

For initial value problems, we need to reverse time in order to apply
our results. Indeed if the coefficients �, � are independent of t, then this
reversal is easy:

wðt, zÞ ¼ inf
�2Uðt, zÞ

ess sup
!2�

g Z�
0, zðt,!Þ

� �
:

2. Given a target problem we showed that the corresponding level
set equation is Eq. (3.2). However, it is not always possible to find
a corresponding geometric equation written purely in geometric quantities.
The difficulty lies in the fact that the dimension of the reachability sets may
change. Still formally, the geometric equation is

~vvðt, xÞ ¼ inf �ðt, z, �Þ þ ~HHaðt, z, �Þ : � 2 Kðt, zÞ
n o

for z 2 �ðtÞ, ð7:1Þ

where ~vv is the normal velocity vector, and ~HHaðt, z, �Þ is the mean curvature
vector at ðt, zÞ using the metric generated by the quadratic form of the
matrix aðt, z, �Þ :¼ ���ðt, z, �Þ, and

Kðt, zÞ :¼ � 2 U : Normal space at ðt, zÞ � Kernel aðt, zÞ
� �

:

When the solution has co-dimension one, the normal space is one-
dimensional. Then, assuming further that ~vv, � and ~HH are directed along
the normal, the above infimum has to be understood as the infimum of
scalar quantities obtained after taking the dot-product with the outward
unit normal vector. However, in the general case, the above infimum is
just a formal writing which needs a serious geometric study in order to be
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justified rigorously. In the subsequent section, we provide examples where
the above geometric equation is fully justified.

3. Given a level set equation to obtain its stochastic representation,
we need to express the equation as in Eqs. (3.1)–(3.2). Of course this is not
always straightforward. When the coefficients � and � are linear functions
of �, it is possible to deduce � and � by the Fenchel transform. See Example
7.3 below.

7.2. Codimension-k Mean Curvature Flow

In this example we will show that with appropriate choices of � and �
we can obtain the level set equation of the mean curvature flow in any
codimension. The geometric equation for this flow is

~vv ¼ ~HH,

where ~vv is the normal velocity vector and ~HH is the mean curvature vector.
The corresponding level set equation in any codimension is obtained by
Ambrosio and Soner.[1]

Let Uk be the set of all projections matrices onto a n� k dimensional
unoriented plane in Rn. Let the control set U ¼ Uk, and for � 2 Uk,

� � 0, �ðs, z, �Þ ¼
ffiffiffi
2
p

�:

Then the nonlinear term in the dynamic programming equation (3.2) is

Fð p,AÞ ¼ infftrace ½A�� : � 2 Uk, �p ¼ 0g:

In Ref. [22], it is shown that

Fð p,AÞ ¼
Xn�k
i¼1

�ið p,AÞ,

where �1ð p,AÞ � � � � � �n�1ð p,AÞ are the eigenvalues of the matrix
½I � ð pp�Þ=j pj2� A ½I � ð pp�Þ=j pj2� with eigenvectors orthogonal to p. This
is exactly the nonlinearity in the level set equation of codimension k mean
curvature flow as studied by Ambrosio and Soner.[1] The codimension one
case is also included in the above formulation and agrees with level set
equation of Refs. [6,9],

�wt ¼ �w� ðD2wDw �DwÞ=jDwj2:
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Note that we are considering this PDE in ½0,T Þ � R
n with final data at time

T , and this accounts for the minus sign in front of wt.
Comparison for the above codimension-k mean curvature flows falls

in the generality of the comparison result established by Chen et al.[6] Hence,
Theorem 3.2 applies and provides a representation of the flow as the target
reachability set of fgðzÞ � 0g.

7.3. Inverse Mean Curvature Flow

The second example is a nonlinear function of the curvature. It
provides a guideline how to construct the target problem starting from a
geometric equation.

The geometric equation is only for codimension one, mean convex
surfaces, i.e., for surface with positive mean curvature at every point. The
equation is

v ¼ �1=H,

where v is the normal velocity andH is the mean curvature. Note that we are
requiring that the solution should have H � 0 everywhere. This equation is
recently used by Huisken and Ilmanen[15] to prove the Riemanian positive
mass conjecture of general relativity.

The staring point of the connection between the inverse mean curva-
ture flow and the target problems is the Legendre transform of the concave
function �1=x restricted to positive x:

�1=x ¼ inffa2x� 2a : a � 0g, x > 0:

The level set equation for the mean curvature flow is

�
wt
jDwj

¼ �
1

D � Dw=jDwjð Þ
¼

jDwj

�w�D2wDw �Dw=jDwj2
: ð7:2Þ

We now multiply the equation by jDwj and then use the expression for �1=x
to arrive at

�wt ¼ inf
a�0
fa2½�w�D2wDw �Dw=jDwj2� � 2ajDwjg:

We are now in a position to define the target problem. We first
note that

½�w�D2wDw �Dw=jDwj2� ¼ infftrace ½A�� : � 2 U1, �Dw ¼ 0g,
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and any � 2 U1 is of the form � ¼ ½I � ~nn~nn
�
� for some vector ~nn 2 Sn�1.

So instead of using projection matrices from U1, we could use Sn�1. With
this identification, we set U ¼ Sn�1 � ½0,1Þ and

�ð~nn, aÞ ¼ �a~nn, �ð~nn, aÞ ¼
ffiffiffi
2
p

a ½I � ~nn~nn
�
�:

By a direct calculation we can show that the nonlinear term F is given by

Fð p,AÞ ¼ inf
a�0
fa2ðtrace½A� � Ap � p=j pj2Þ � 2aj pjg

¼
jpj2

ðtrace½A� � Ap � p=jpj2Þ
:

Notice that Eq. (7.2) is exactly equal to the dynamic programming equation
(3.2) with the above F .

In this example, the controls take values in unbounded set.
Consequently, Theorems 4.2 and 3.2 do not apply to this context. The
representation result needs to be proved for this specific case. Notice that
a representation result for smooth inverse mean curvature flows is proved
in Ref. [23].
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