
SIAM J. CONTROL AND OIrI’IMIZATION
Vol. 25, No. 6, November 1987

1987 Society for Industrial and Applied Mathematics

008

AN OPTIMAL STOCHASTIC PRODUCTION PLANNING PROBLEM WITH
RANDOMLY FLUCTUATING DEMAND*

W. H. FLEMING, S. P. SETHI AND H. M. SONER

Abstract. This paper considers an infinite horizon stochastic production planning problem with demand
assumed to be a continuous-time Markov chain. The problems with control (production) and state (inventory)
constraints are treated. It is shown that a unique optimal feedback solution exists, after first showing that
convex viscosity solutions to the associated dynamic programming equation are continuously ditterentiable.
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Introduction. Thompson and Sethi [13] consider a production-inventory model
which determines production rates over time to minimize an integral representing a
discounted quadratic loss function. The model is solved both with and without nonnega-
tive production constraints. It is shown that there exists a turnpike level of inventory,
to which the optimal inventory levels approach monotonically over time. The model
was generalized by Sethi and Thompson 11 and Bensoussan et al. 1 by incorporating
an additive white noise term in the dynamics of the inventory process.

In this paper we consider an analogue of the Thompson-Sethi model, in which
the demand rate z(t) is a finite state Markov chain. A similar, but technically more
complicated, analysis applies if z(t) is a jump Markov process or a reflected diffusion
subject to bounds 0< Zo<-_ z(t)=< zl < (see [7]). We denote by y(t), p(t) the inventory
level and the production rate. Production is the control variable, subject to the constraint
p(t) >= O. In 5 we impose the state constraint y(t)>= Ymin on the inventory level.

The control objective is to minimize an expected discounted cost of the form (4.1),
which involves convex holding or shortage costs h(y) and productions costs c(p). The
value (or minimum cost) v(y, z) defined in (1.4) for initial data y(0)= y, z(0)= z obeys
the dynamic programming equation (1.6). Special features of the model allow us to
show that v(., z) is convex and that the quantity Ov/Oy which appears in the dynamic
programming equation exists and is continuous. The optimal feedback production law
p*(y, z) is expressed as a function of Ov/Oy by formula (4.3). We do not know that
p*(., z) is Lipschitz continuous. However, since p*(., z) is a nonincreasing function
of y, the differential equation

dy*
-p*(y*(t),z(t))-z(t), y*(0) y,

dt

has a unique solution for the optimal inventory level y*(t).
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We begin in 1 by formulating a more general class of discounted optimal control
problems with Markov chain parameter z(t). It is elementary that the value function
is convex in the state y, provided the state dynamics are linear in state y and control
p and the cost criterion is convex jointly in (y, p); see Lemma 1.1. In 2 we find that
the value v(y, z) is the unique solution to the dynamic programming equation, and
that the gradient Vyv is continuous. For the continuity of Vyv, an additional assumption
(2.2) on the Hamiltonian appearing in the dynamic programming equation is needed.

In 3 we discuss optimal controls, both from the viewpoint of dynamic program-
ming and the theory of controlled piecewise deterministic processes. Under a strict
convexity condition (3.1) on the cost criterion, there is a continuous optimal control
policy p*(y, z) and the corresponding optimal control process p*(t) is unique.

These results are applied to the production planning model in 4. Finally, in 5
the analysis is modified to deal with a state-space constraint y(t)>=Ymin Such a
constraint imposes an inequality (5.2) on Ov/Oy at Ymin.

The production planning model considered here does not impose any upper bound
on the production rate. A more interesting extension ofthe problem involves production
processes, which are bounded from above by a stochastic process representing the
capacity of the production system. The capacity process over time may be modelled
as a jump process or a piecewise deterministic process [5], [14]. Moreover, there may
be several different products competing for a variety of scarce capacities. This is a
problem faced by flexible manufacturing systems [10], upon which the methods
developed in this paper have some bearing.

1. Discounted optimal control problems with Markov chain parameters. Let us begin
with a model of the following rather general form, and then specialize. Let
y(t), p(t), z(t) denote, respectively, state, control and parameter processes for t-> 0.
We assume that y(t) R", p(t) K, z(t) Z for each => 0, where R" is n-dimensional
Euclidean space, K is a closed convex subset of some Euclidean space, 0 K and Z
is a finite set. The parameter process z(t) is a finite state continuous time Markov
chain, defined on some underlying probability space (f, , P) with jumping rate qzz,
from state z to state z’. The associated generator L of the Markov chain z(t) has the
form

(1.1) Lg(z)= E q=,[g(z’)-g(z)].

In the general formulation, the state dynamics are dy(t) =f(y(t), p(t), z(t)), _>- 0.
Actually we shall consider only f of the special form (1.5) below. A control process
P={p(t, to), t->0, to12} will be called admissible if: (i) P is adapted to fit=
o-(z(s): 0-<s-< t); (ii) sup {[p(t, to)l: t->0, to 12} <; (iii) p(t, to) K for all t>-0 and
to 11 (in whatever follows the to-dependence will be SUlressed). Let denote the set
of admissible control processes.

We consider a cost criterion l(y, p) about which the following assumptions are
made:

(a)

(1.2) (b)

(c)

1(’,’) is convex on R" x K,

-c<-_l(y,p)<-_f(+lyl) whenever Ipl<_- N,

lim l(y, p)]p1-1 =’+m if K is unbounded

where m, C are fixed constants and CN may depend on N. Let c >0 denote the
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discount rate. For every P M and y y(0), z z(0), let

Io(1.3) J(y, z, P)= E e-tl(y(t), p(t)) dt.

The value function is

(1.4) v(y,z)=inf{J(y,z,P): PM}.

From now on, let us assume that the dynamics have the following special form:

(1.5) dy(t)=[B(z(t))p(t)+C(z(t))]dt, t>0.

(In the simple production planning model to be considered in 4, both y(t) and p(t)
are scalar valued and B(z)= 1, c(z)=-z.) Instead of (1.5) we could take equally well
dy(t) [a(z(t))y(t) + B(z(t))p(t) + C(z(t))]dt provided that the eigenvalues of a(z)
have strictly negative real parts.

LEMMA 1.1. For each z Z, v( z) is convex on R" and -C
for some C > O.

This lemma is easily proved, after observing that J(., z,.) is convex jointly in
(y, P) for each z Z and p(t)---0 is an admissible control process.

The dynamic programming equation associated with this optimal stochastic control
problem is as follows:

(1.6) av(y,z)=H(y,z, Vv(y,z))+Lv(y,z), yR", zZ

where Vv is the gradient in y

Lv(y, z)=[Lv(y, .)](z)= Y qzz,[v(y, z’)-v(y, z)]
z’z

and for y, z, r R" xZ Rn

(1.7) H(y, z, r)= inf [l(y,p)+(B(z)p+C(z)). r].
PK

Since Z is a finite set, (1.6) is a system of nonlinear first order PDE’s in y, coupled
through the zeroth order term Lv.

We are concerned with solutions to (1.6) belonging to the following space Do.
DEFINITION 1.2. We say that a real-valued function v with domain Rn Z is in

Do if
(i) v(., z) is convex on R" for each z Z,
(ii) -C <- v(y, z)-<- C(1 +ly]), for suitable C and/3 (depending on v),
(iii) The gradient Vv(y, z) is continuous.
The following "verification theorem" is standard, but for completeness we indicate

the proof.
THEOREM 1.3. Let v Do satisfy the dynamic programming equation (1.6). Then
(a) v(y, z) <- J(y, z, P) for all P
(b) Suppose that there are P* , y*( t) that satisfies (1.5) with y*(0) y, r*(t)

Vv(y*(t), z(t)), and

n(y*(t), z(t), r*(t))= l(y*(t), p*(t))+(B(z(t))p*(t)+ C(z(t)) r*(t))
a.e. in with probability 1. Then

v(y,z)=J(y,z,P*).

Proof For T <, we have the usual dynamic programming relation

(1.8) v(y,z)<=E e-’l(y(t),p(t)) + e-v(y(r, (r.
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Since any admissible P is bounded, [y(t)[=< Clt+ C2 for suitable constants cl, c2. We
obtain (a) as T’, using the polynomial growth condition (ii) in Definition 1.2. In
part (b), inequality (1.8) becomes an equality.

In the next section we shall show that, under an additional condition (2.2) on H,
the value function in fact belongs to Do.

2. Viscosity solutions to the dynamic lrogramming equation. The definition of
viscosity solution used here is a straightforward generalization of the original definition
given by M. G. Crandall and P.-L. Lions [4]. See also [3], [9] for more information.

Let v be a continuous function on R" x Z. For each (y, z) we define convex subsets
Dyv(y, z) of R as follows:

Dy+v(y, z)={rR"" limsup(v(y+h,z)- v(y,z)-r, h)lh]-l<0},=
h-O

D-v( y, z) { r R"" lim inf (v( y + h, z) v( y, z) r. h)]h1-1 >= 0}.
h-0

We say that any continuous function v is a viscosity solution of (1.6), if for each
+y,z:(i) cv(y,z)<-H(y,z,r)+Lv(y,z) for all rDyv(y,z), and (ii) v(y,z) >-

H(y, z, r)+ Lv(y, z) for all re D-v(y, z).
Remark 2.1. v is differentiable in the y-direction at (y, z) if and only if D-v(y, z)

and D-v(y, z) are both singletons. In this case, the singleton is the gradient 7v(y, z).
+v( is empty unless v is ditterentiable thereMoreover, if v is convex in y, then Dy y, z

and D-v(y, z) coincides with the set of subdifferentials in the sense of convex analysis,

(2.1) D-v(y, z)=co F(y, z)

where

F(y,z)={r= lim 7v(y,,z)’y,-y as noo and v(.,z) is differentiable at y,}

and where co F denotes the convex closure of F. (See [2, Thm. 251, pp. 63].)
We now make the additional assumption that the Hamiltonian H y, z, is constant

on no nontrivial convex set:

(2.2) If H(y,z, Ar+(1-A)r2)=constant in A for0<=A_<--l, then r=r2.

THEOREM 2.2. Let (2.2) hold and let v be a viscosity solution to the dynamic
programming equation (1.6). If in addition v(., z) is convex for each z, then V v(y, z)
exists for all (y, z) and V v(., z) is continuous on R n.

Proof By Remark 2.1 and formula (2.1) it suffices to show that D-/v(y, z) is a
singleton. If v(., z) is ditterentiable at yn, then (1.7) holds at (y, z)"

v(y,, z)-H(y,, z, Vv(y,, z))-Lv(y,, z)=0.

We then obtain, taking y, y as n c,

av(v,z)-H(y,z,r)-Lv(y,z)=O forrGF(y,z).

Moreover, H(y, z,. is concave, and hence by (2.1)

cev(y,z)-H(y,z,r)-Lv(y,z)<=O forrD-v(y,z).

However, the viscosity property implies the opposite inequality, and hence

ov(y,z)-H(y,z,r)-Lv(y,z)=O forrD-v(y,z).

Thus, for fixed (y, z), H(y, z, .) is constant on the convex set D-v(y, z). By (2.2),
D-v(y, z) is a singleton, which proves Theorem 2.2.
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The remainder of this section consists of a proof that the value function v(y, z)
defined by (1.4) is a viscosity solution to (1.6): the argument is rather standard.

LEMMA 2.3. Suppose K is bounded. Then v is a viscosity solution to (1.6).
Proof It is a direct modification of Theorem 1.1 of [12].
THEOREM 2.4. V is a viscosity solution to (1.6).
Proof Let K,,= {p K: Ipl_-< m} and v,, be the optimal value function of the

corresponding control problem. Then, v,, is a viscosity solution to (1.7) with H(y, z, r)
replaced with H,,(y, z, r) =minp: {r. [B(z)p+c(z)]+ l(y, p)}. Also, v,, converges
to v uniformly on bounded subsets of R as rn tends to infinity.

Take rD-v(yo, Zo). For each e>0, let q(y,z)=q(y,z)-e(y-yo)2 where
q(y, Zo) v(yo, Zo) + r(y Zo), and q(y, z) v(y, z) if z Zo. Since v is convex, the map
y-v(y, Zo)-o(y, z) has-a strict maximum at Yo. Therefore, y-v,,(y, Zo)-q(y, Zo)
has a maximum at Ym, and Ym converges to Yo as rn tends to infinity. But this implies
that Vo (y,,, Zo) Dv, (y,, Zo) and the viscosity property of v,, implies that

OlVm(Ym, ZO)>-- Hm(y,, Zo, r-2e(y,,-Yo)) + Lv,,(y,,, Zo).

Now send m to infinity, and then e to zero in the above inequality, to obtain

av(yo, Zo)>= H(yo, Zo, r)+ Lv(yo, Zo) for all re D-v(yo, Zo).

The reversed inequality for r D-v(y, z) is proved by a similar argument.

3. Optimal controls. Let us now assume the following stricter form of convexity
for the cost criterion than what was assumed in (1.2)(a)

(3.1) l(Ayl + (1 A )Y2, Apl + (1 A )P2)
=Al(yl,pl)+(1-A)l(y2,p2) for some 0<A <1 implies Pl---P2.

For example, for the production planning problem that will be considered in 4,
l(y,p)= c(p)+ h(y) and (3.1) holds if h is convex on R" and is strictly convex on
K. Assumption (3.1) also holds, if l( .,. is convex and the second derivative of in
p exists and is positive at each (y, p).

Condition (3.1) implies, in particular, strict convexity of l(y, ), by taking y Yl
y2. This fact together with the superlinear growth condition (1.2)(c) imply that the
minimum in (1.7) is attained at a unique P (y, z, r). Moreover, is continuous on
R x Z x R". Consider the control policy

(3.2) p*(y, z)=(y, z, Vv(y, z)),

where v is the value function. By Theorems 2.2 and 2.4, p* is continuous. The differential
equation,

(3.3) dy(t)=[B(z(t))p*(y(t), z(t))+ C(z(t))] dt,

has locally a solution y*(t). Let us assume the following"

(3.4) There exists a bounded solution y*(t) to (3.3) for t->0.

In 4 we shall verify (3.4) in the production planning example. The control process
P* {p*(t); _-> 0}, where

(3.5) p*(t) :p*(t*(t), z(t))

is admissible, by the superlinear growth condition (1.2)(c) and is optimal, by the
verification Theorem 1.3(b). Also, a straightforward application of (3.1) yields that P*
is unique. This implies, in particular, uniqueness of y*(t). We sum these results into
the following proposition.
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PROPOSITION 3.1. Let (3.1) and (3.4) hold. Suppose P d and J(y, z, P) v(y, z).
Then with probability 1, P( t) P*( t) for almost all > O. In particular, there is a unique
solution to (3.3).

Proof. For 0<h_-<l, let P=hP+(1-h)P*,y=hy+(1-h)y*, where y(t) is a
solution to (1.5) corresponding to P, with y(0) y. By convexity of and J, J(y, z, Px)
v(y, z) which implies with probability one

l(y (t), pX(t)) h/(y(t), p(t)) + (1 h)l(y*(t), p*(t))

for almost all -> 0. Assumption (3.1) then implies, with probability one,/9(t) p*(t)
for almost all _-> 0.

Remark 3.2. The optimal policy P* was obtained by the method of dynamic
programming. The theory of piecewise deterministic processes [5], [14] provides an
alternate approach. In the present context, the piecewise deterministic theory considers
bounded, Borel measurable functions r [0, ) x R x Z- K. Given initial data
y(0) y, z(0)=z, each such r determines an admissible control process P as follows.
Let % 0 and ’1 < ’2 < denote the successive jump times of the Markov chain z(t)
and let

p(t) r(t-’i, Y(’i), z(’7)), -i < <-- -i+

where y(t) is determined by solving (1.5) successively on each interval [’i, ’i+1]. An
optimal r* is found as follows. For fixed z, as in (3.4), assume that there is a solution
to

(3.6)

with )7(0)= y. Let

(3.7)

d.(t)=[B(z)p*(,(t), z)+ C(z)] dt,

rr*( t, y, z) p*(( t), z).

We claim that r*(’, y, z) is unique, almost everywhere on [0, ), for each y, z. This
can be seen by slightly modifying the uniqueness proof above. We write the dynamic
programming equation (1.6) as follows. Let

qz 2 qzz,, vl(y, z)= Z qzz,V(y, z’).
Z’Z Z’Z

Then (1.6) becomes

(3.8) (c + qz)v(y, z)= H(y, z, VV)d-Vl(y, Z).

For fixed z, (3.8) is the dynamic programming equation for a discounted deterministic
control problem, with dynamics (3.6), discount factor a + qz and cost criterion l(y, p)+
vl(y, z). As before, p*(., z) is an optimal feedback control and zr*(., y, z) determined
by (3.7) is the unique optimal (open loop) control.

4. Production planning problem. Let us return to the model mentioned in the
Introduction. We now have the following:

y(t) inventory level at time

p(t) production rate at time

z(t) demand rate at time

(y(t) 6R),

(p(t)>--O),

((t)Z).

In the notation of 1, we now have n 1, K [0, c). The demand process is a finite
state Markov chain, with state space Z {zl,. , ZM}. The dynamics are as follows:

dy(t) [p(t) z(t)] dt.
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Thus, in (1.5), B(z)= 1 and C(z)=-z. It is assumed that zi > 0 for all i= 1,..., M.
We assume that the cost criterion has the form

l(y,p)=h(y)+c(p)

and we seek to minimize

(4.1) J(y, z, P)= E e-’[h(y(t))+ c(p(t))] dt.

The following assumptions are made about the holding cost h and production cost c:
(A1) h is convex, nonnegative on (-, c) with h(0)=0.
(A2) c is twice continuously differentiable, nonnegative on

[0, ) with c’(0) c(0) 0 and c"(p) > 0 for p > 0.

(a3) C([yl’-l)<-_h(y)<-_C([y[V+l) for all y R.

(A4) C(Ip[-l)<-c(p) for all p-> 0,

where C > 0 and y,/3, v > 1 are fixed constants.
The Hamiltonian H in (1.7) now takes the form H(y, z, r) F(r)- zr+ h(y) where

(4.2) F(r) min [pr + c( p ].
pO

The assumption (2.2) is satisfied since z >0 for all z Z, F(r) is strictly concave for
r < 0 and F(r)= 0 for r => 0. Theorems 2.2 and 2.4 imply that the value function v(y, z)
belongs to the class Do and is the unique viscosity solution to the dynamic programming
equation.

The optimal feedback production policy is now given by

(4.3)
c,)_,( Ooy ) o

-_--- v( y, z) if-- v( y, z) > 0,
Oy

P*(y, Z)
0 ifO---v(y,z)<=O.

Oy

Since v is convex in y, and (c’) -1 is an increasing function, p* is nonincreasing in y.
Therefore, the differential equation

(4.4) dy(t)=[p*(y(t), z(t))-z(t)] dt

has a unique solution y*(t) (see [8, Thm. 6.2].)
In the rest of the section, we shall show that y* satisfies (3.4).
LEMMA 4.1. There is a constant C, depending only on the initial condition y*(0) y,

such that [y*(t)[ <= C for all >-_ O.
Proof Let 37 sup {y (-, ): p*(y, z) >- z for some z Z}. Since v is convex

in y and is nonnegative, (4.3) implies that 37 is finite. Similarly, let 37--inf {y (-, )"
p*(y, z) -< z for some z Z}. Suppose that 37 is not finite. Then, there is z Z such that
(O/Oy)v(y, z) >- -c’(z) for all y R. But this contradicts with Lemma 4.2, which follows.
Now one completes the proof of the lemma, by observing that [37, 97] is an attracting
set for the differential equation (4.4). We refer to this set as the turnpike set in [7]. [3

Let max {z Z}.
LEMMA 4.2. For each y, z, v(y, z) >- C(]y[-1) for a suitable constant C> c’().
Proof Let 3(y) be the value function of the following variational problem:

5(y)=inf e-’ h(y(t))+C -dy(t) dt;y(O)=yandy(.) W’
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with v > 1. In view of (A4), *3(y) -<_ v(y, z) for a suitable C > 0. It suffices to show that
,3(y)ly[ -1 converges to M > sup {c’(z)" z Z} as y tends to -oo. Since *3(. is convex,
M=-limn (d/dy)*3(y,,) where {y} is any sequence which converges to -oo and ,3(.
is differentiable at Yn, invoke Theorem 2.4 to conclude

(4.5) a*3(yn) --d-fy *3(Y") + h(y)

where P(r)= sup {rp+ clpl . -o< p < oo} -Clrl /(v-l>. The positivity of *3 yields M
[0, oe]. Suppose that M < ee. Then divide (4.5) by ly l and pass to the limit to obtain

aM a lim *3(y,)ly,[-1 lim h(y,)ly,[-= oo.

Hence M oe and the proof of the lemma is complete.

5. Inventory constraints. In this section, in addition to the nonnegative production
constraint earlier, we impose the constraint that the inventory level cannot fall below
a certain prescribed level Ymin" For each y, z [Ymin, Oe)xZ, the set of admissible
production processes sg(y, z) is given by

s(y,z)= Ps’y+ [p(s)-z(s)]ds>=ymforall t>=O

Then the corresponding value function is

v(y, z) inf {J(y, z, P): P s(y, z)}.

The following characterization of v is a straightforward analogue ofTheorem 1.1 of[ 12].
TEOREM 5.1. The value function v for the constrained problem is in Do and is the

only solution to the following equation:

(5. v(,= ,,v(, +v(,, ,e[m.n,xZ,

0
(5. V(m, Z --C’(, Z e Z

oy

Proo The first two conditions in the definition of Do are easily verified after
observing that if P (y, z) and (, z), thenP+ (y+y z) and J(., z,.
is convex for each z Z

Repeating the proofs of Theorems 2.2 and 2.4 we show that v is continuously
differentiable in the y-variable on (y, ) and satisfies (5.1). Define (O/OF)v(y,
as the limit of (O/Oy)v(y, z) as y approaches to Ymin from above (this limit exists due
to the convexity of v in y). Now proceed as in Lemma 2.3 and use the fact hat for
any P (y, z) the corresponding inventory level y(t) is no less than Ymin, to obtain:

0
(5.3) V(Ymin, z)H(Ymin, ar)+Lo(Ymin, 2) for r -- V(Ymin, Z)

oy

(also, see Theorem 1.1 of [12]). Equations (5.1) and (5.3) yield

0 0
(5.4) H(Ymin, z, V(Ymin, Z)) n(Ymin, z, r) for rNoy O(Ymin, Z).

The inequality (5.2) follows from (5.4), after observing that the map r H(Ymin,
achieves its maximum only at r=-c’(z).
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Uniqueness follows from the verification theorem, by observing that the optimal
feedback policy P* constructed in (3.5) is admissible on account of (5.2). [3

Remark 5.2. For each e > 0, define h (y) h (y) + (1 / e) 1 max { Ymin Y, 0}.
Let v be the value function of the unconstrained problem with inventory cost h .
Then, the following estimate is proved in [7]:

Ov(y,z)--v(y,z)<--x/KR fory, z6[Ymin, R]XZ

where KR is a suitable constant.
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