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Abstract. We study the Ginzburg-Landau functional

1 1 2 1 2,2
I (u) = n(1/e) /U 2|Vu| t a2 (1—ul®)" dz,
foru € H*(U;R?), whereU is a bounded, open subsetl®f. We show that if a sequence

of functionsu® satisfiessup I.(u®) < oo, then their Jacobiangu® are precompact in
the dual ofC2* for everya € (0, 1]. Moreover, any limiting measure is a sum of point
masses. We also characterize fiémit 1(-) of the functionald (), in terms of the function
spaceB2V introduced by the authors in [16,17]: we show tliét) is finite if and only

if w € B2V(U;S%), and foru € B2V (U;S"), I(u) is equal to the total variation of the
Jacobian measuréu. When the domair/ has dimension greater than two, we prove if
I (u®) < C'then the Jacobiansu are again precompact {C¢"*)" for all o € (0, 1], and
moreover we show that any limiting measure must be integer multiplicity rectifiable. We
also show that the total variation of the Jacobian measure is a lower bound Brithé

of the Ginzburg-Landau functional.

Mathematics Subject Classification (2008%J50, 35Q80

1 Introduction

The chief goal of this paper is to establish a connection between the Jacobian
and the Ginzburg-Landau energy of a sequence of functions. Our main result is
that, for a sequence of function$ : R™ > U — R2, m > 2, with uniformly
bounded Ginzburg-Landau energy, the Jacobiufsare precompact in the dual
space(C‘)’a) * for everya € (0, 1]. We also characterize all possible weak limits of
the Jacobians, and we prove dimit result for the Ginzburg-Landau functional:

€) .— 1 1 €2 i —1.,€12)\2
1) = o [ 5190+ g (= P
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wheree > 0 is a small parameter. This functional is related to the Ginzburg-Landau
model for superconductivity and it also serves as a model problem in which the
singularities concentrate on sets of codimension two.

When the dimension of the domain is equal to two, the behavior of minimizers
with given boundary data: OU — S isthe subject of the book by Bethuel, Brezis
and Helein [6]. If dedg; 0U) = d then in the limit, the energy of minimizers
u® concentrates o] points, called vortices. The limiting vortex configuration
minimizes a renormalized energy that is explicitly given in [6]. Later alternate
proofs were given by Lin [21] and Struwe [32]. One important technical step in [6]
is a lower energy estimate in terms of the degree of the function around a given
zero. A local version of these estimates as proved by the first author in [15] are key
to our approach. Similar techniques were introduced independently in Sandier [27].
The asymptotic behavior of the minimizers in higher dimensions was first studied
by Riviere [25,26]. He established a connection between the asymptotic behavior
of the minimizer and the singular set of the limitisg valued function.

In this paper, we study th&-limit of I. and related compactness properties.
The corresponding problem for scalar-valued functions, or more generally for po-
tentials with two or more equal minima, is completely understood due to work of
Modica and Mortola [23,24], Modica [22], Sternberg [31], Kohn and Sternberg
[20], Fonseca and Tartar [11], and Ambrosio [2]. In this setting, the singular set is
a co-dimension one rectifiable set and fhdimit is proportional to the perimeter
of this set. Since the definition of perimeter relies on the notionB¥afunction,
the space o3V functions plays a crucial role in the analysis of this problem.

Motivated by the analysis of, and the central role aBV in the scalar case,
the authors introduced and studied a class of functions cBldd in [16]; a short
summary is provided in [17]. A function € W1n=1(U;R"), for U Cc R™,m >
n, is said to belong t@BnV if the weak determinants of all by n submatrices of
the gradient matrix/« are signed Radon measures. For instandg, & R? and
u e Whin Lee(U;R?), set

(1.1) Ju) i=u X Vu = (u X Uy, , U X Uyg,)

where forv = (v, v?) andw = (w!, w?) we writev x w := v'w? — v?w'. We

then define
1 1
(12) Ju = iv X ](u) = 5 ((u X ul’2)951 - (u X u11)12) .

A priori Ju is only a distribution; we say that € B2V if it happens to be a
measure. Fot/ C R™, m > 3, the definition of B2V (U;R?) is similar and is
given in Sect. 5.

The classBnV is very closely related to th€artesian Current®f Giaquinta,
Modica and Soucek [12, 13]. This connection is discussed in detail in [16].

In [16] itis shown that ifu € B2V (R™; S1), then the Jacobian measurbsis
supported on am — 2 dimensional rectifiable set. In particularifc B2V (U; S*)
andU c R?, then there aréa;} C U and integerg; such that

(1.3) Ju=mY " kida, .
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This is interpreted as encoding the location and degree of the topological singular-
ities onu. Let|Ju| be the total variation measure associated withi.e.,

(1.4) [Tul(B) = 7> kil 00, (B) -

Set ; »
(1.5) I(u) = { |J|(U) if ue B2V(U; S)

00 otherwise.

In Sect. 4, Theorem 4.1, we will prove that thelimit of I. in the topology of
WLH(U;R?) is equal tol (u):

Theorem 4.1Supposé/ C R2. Thel limit of I. in the topology of¥V 1:1(U; R?)
is equal tol, i.e., for every sequeneg converging tou in Wil (U;R?),

liminf I (u€) > I(u) ,
e—0

and for everyu € B2V (U;S%), there exist functions converging tou in
W1(U; R?) satisfying
liminf I (u®) = I(u) .

e—0

WhenU is higher dimensional, we prove that the Jacobian is a lower bound for
the I' limit; see Theorem 5.2 below.

For the scalaf” limit problem, the crucial observation is the following elemen-
tary inequality:

1 1

Vh(] = Z5IVulll =] < eB*(u) = 5IVul®+ (1= u)?,
whereh(u) := [u — u?/3]/+/2. A kind of vector generalization for this step was
recently provided by Jin and Kohn [14]. They consider the same functional as above
but foru = V¢ for some scalar valued functign They obtain a lower bound for
the energy of the form

(1.6) eE°(Vp) + null Lagrangian> div X (V),

for a suitable chosen functidfi. This estimate was later used by Ambrosio, DelLellis
and Mantegazza [4], and independently by DeSimone, KolitlgWand Otto [10]
to prove a compactness result again in the case whgia gradient, i.e., if

sup / eE¢(Ve©) dx < o0,
€ U
then, the sequencEV¢°} is precompact in certaifi? spaces. These results are
valid only in two dimensions.

Whenu is not a gradient the situation is completely different. The leading term
in the energy now comes from the divergence-free pait ahd the natural scaling
is

1.7) /UEE(ue) dzx ~ 1n <1)



154 R. L. Jerrard, H.M. Soner

Under this assumption one cannot expect any compactneds:fprin any L?
space. For example, if we lef(z,y) = eiwVine then the sequenci‘}cc(o,1]
satisfies (1.7), but is precompact only in th&’ weak-* ( and weaker) topologies,
and the weak limit, = 0 does not give much information about the behavior of
the sequencéuc}.

However, one expects that control over the energy should provide control over
the limiting number and degree of singular points, as recorded in the limiting
behavior of the Jacobian&:€. To explain the main idea, let us suppose tifat
C2°(u;R?) is a function that is non zero everywhere except at one poiatU
with «¢(a) = 0. Then lower bounds of [15] or [28] imply that

(1.8) L(uf) = m /U () dz > |d| 7 +o(1),

whered is the degree ofi© around the point.
Let ¢ be a nonnegative, smooth test function compactly supportéd sing
the Definition (1.2) of/u, integration by parts and the co-area formula

/¢Ju€dx:1/Vx¢-j(u)dm
U 2 Ju

1 Vxo¢
=3 s V9l J(u) |Vl dx

/ / ct dH! ds
002(s )

Here we are writing?2(s) := {x € U : ¢(z) > s} andt := (V x ¢)/|V¢|. Note
that if s is a regular value op thent is an oriented unit tangent vector field along
00(s). Setve = u/|uf|. Thenj(v¢) = j(u)/|u¢|?, and one can check that for
any Jordan curvé’ enclosinga,

(1.9)

/j(v€)~td’Hl:27rde§(uE;F):27rd.
r
Thus

/¢Ju€dx:7r/ dequ®; 012(s)) ds

U 0

1 OO i(u) — (v)] - 1 S
+§/0 /BQ(S)D(U) J)]-tdH d

:w/oo degus; 002(s)) ds

i(u€) -t dH ds .
o /arzs)[ ) 700

Here we used the fa¢lv x ¢)/|V¢| is equal to the unit tangent vectorof the
level set of¢. Since by the Sard’'s Theorer{2(t) is regular for almost every,
and since)(2(t) encloses: if and only if ¢(a) > ¢,

dequs; 00(t)) = {g :; z i((;)(v(j;(a)) )
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Hence,
/ ¢ Ju de =7 d¢(a) + By(u®) .
U

We will show that the error termB,(u<) can be controlled by the energy. Also, as
seen in (1.8), the degrekis controlled by, (u¢). Hence, the Jacobian measure
Ju¢ is formally controlled byl (u€). This argument is made rigorous in Theorem
2.1; asharper result along the same lines is given in Corollary 2.5. A key ingredient
in both is an improved version of the degree type lower bound (1.8), valid under
much weaker hypotheses abatt The proof of this lower bound is deferred to the
final section.

The estimates described above, combined with rather soft arguments, easily
imply that Ju€ is precompact in certain weak topologies, if the Ginzburg-Landau
energies/¢(u€) are uniformly bounded. With a little extra work we establish in
Sect. 3 the following result, which also characterizes all possible weak limits:

Theorem 3.1Suppose that/ ¢ R?, and letu be a sequence of smooth functions
satisfying
Ky := sup I.(uf) < oo.
€€(0,1]
Then there exists a subsequengeonverging to zero and a signed Radon measure
J such that/u¢" converges to/ in the dual normC%<(U)* for everya € (0, 1].
Moreover, there arda;}¥., C U and integersk; such that

N
J=mY kids,, and |J(U)=m Y |k|<Ky.

i=1

Finally, if the Ginzburg-Landau energy measuteconverges weakly to a limit,
thenJ < pu, and% <1, ;L.almo.st ev_erywhere.

The energy measuge is defined in (1.11) below.

By a slicing argument, we use the two-dimensional compactness result and the
estimates from Theorem 2.1 to extend the compactness result to higher dimensions.

Theorem 5.2 LetU C R™, and suppose thgtu } ¢ (0,1 is a collection of smooth
functions such thak'y := sup.¢(g,1) Ie(u€) < oo. Thenthere exists a subsequence
¢, — 0 and a Radon measutésuch that

(i):  Jur converges to a limif in the (C%)* norm for everyn > 0;

(ii): J/mis (m — 2)-dimensional integer multiplicity rectifiable; and

(iii): If is any weak limit of a subsequence of the Ginzburg-Landau energy mea-
sureu~, then|J| < i, and% J|(U) < Ky.

= < 1. In particular,

Notice that the last assertion is the lower bound part oflthamit result in
higher dimensions.

The definition of integer multiplicity rectifiable is given in Sect. 6. Informally,
(i) asserts that one can think éfas being supported in a Lipschitz submanifold
of dimensionm — 2.

We close this introduction with a brief review of some related problems. The
basic estimates in this paper come from lower bounds of the type introduced in [15,
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27]. Similar lower bounds have played a central role in results about singular lim-
its of evolution equations associated with the Ginzburg-Landau functional. These
include the analysis by the authors [18] of dynamics of point vortices in Ginzburg-
Landau heat flow, and analogous work by Colliander and Jerrard [7] dealing with
the Ginzburg-Landau Sobdinger equation. The latter work also explicitly exploits
the connection between the Ginzburg-Landau energy and the Jacobian, in a spirit
similar to some of the results in this paper. In higher dimensional evolutionary
problems, the energy and the Jacobian concentrates on sets with codimension two
and these sets flow by the mean curvature flow; see for instance [19].

The same kind of lower bounds have been a basic ingredient in a series of
papers by Sandier and Serfaty on the asymptotic behavior minimizers of the full
Ginzburg-Landau model for superconductivity, see for example [29] among other
works, and in recent work by Sandier [28] describing the limiting singular set of
minimizers of general Ginzburg-Landau type functional in higher dimensions.

Anindependent forthcoming paper of Alberti, Baldo and Orlandi[1] also studies
the asymptotic behavior of the functional

The paper is organized as follows: In Sect. 2, we prove the Jacobian estimate
in terms of the normalized Ginzburg-Landau energy. Using these estimates, we
prove a compactness result in Sect. 3. Then, we prové'ilimit result in Sect. 4.
Compactness in higher dimensions is proved in Sect. 5. The final section contains
an appendix in which we establish some estimates used in Sect. 2.

AcknowledgementAfter the completion of this manuscript we have learned that a sequence
of smooth functionsue converging tou and also whose renormalized Ginzburg-Landau
energy converges tbJu|| is constructed in the forthcoming paper of Alberti, Baldo and
Orlandi [1]. This completes the Gamma convergence result in dimensions greater than two.

Notation

Given a functioru € H'(U;R?) we define the energy density
1.10 Eu) = S|Vl + (1 )2
(1.10) (w) = 5|Vul + 5 (1= ul)

and the energy measure

1
1.11 ¢(B) = —— E(u) dz.
(1) piB) = s [ ) o
We will typically write ;€ instead ofi:;, when no ambiguity can result.

The distributional Jacobiasiu for a functionu : R? > U — R? is defined in
(1.2). A definition valid when the domain has arbitrary dimensio 2 is given
in (5.2).

We write B,.(z) to denote thelosedball {y € R™ : |z —y| < r}. We do
not explicitly display the dimensiom in our notation because it is normally clear
from the context.

If A C R, we typically use the notationd| to denote thel-dimensional
Lebesgue measure df.
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2 Jacobian estimate

The chief result of this section is the following estimate of the Jacobian in terms
of the Ginzburg Landau energy. This estimate will be the main ingredient in the
compactness result. We give a more precise version of the estimate at the end of
the section.

Theorem 2.1. Suppose € C%1(U) andu € H'(U;RR?). Forany\ € (1,2],and
e € (0,1],

2.) \ [ 6 guda] < ms ol + 9o (6,0
U

where \

2.2 iy = | 2ustopt)|

|z | denotes the greatest integer less than or equal,to

(23) k(e u,\) < Ce*™ (1 + ps (spi(9))) (1 + LelP (spt(e))) ,

a(\) = 453, andC is a constant independent of ¢, e, A andU.

Note thath¢ depends o only through the support af, and oru only through
its (linear) dependence qtf, (spt(¢)).

It suffices to consider nonnegative test functions, since we can decompose an
arbitrary functione into its positive and negative parts. So we will assume that
¢ > 0.

By an approximation argument, we may also assumetigsmooth.

Throughout this section we will use the notation

(24) T = |6 = maxo(c).

As discussed in the Introduction, the main idea behind the above estimate is the
following identity, which relies on the co-area formula, integration by parts, and
the identityJu = V x j(u)/2:

T
(2.5) / ¢>Judm:3/ / j(u) -t dH' dt ,
U 2 Jo Joowm
where
(2.6) Q) ={zeU|d()>t},
t = unittangentt@2(t) = |§ i z|.

The proof shows that
/ ()t dH! ~ 2 dequ; 9(1))
o90(t)

for most values of. The other main point is then to prove that the setsiich that
degu; 992(t)) > dy has LeB measure that can be controlled py(spt(¢)). This
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last point is similar in spirit to results established in [7,15,27] for example. The
details of the proof are given in Sect. 6.
Giveng € C21(U) we use the notation

Regq¢) := {t € [0,T] : 992(t) = ¢~ ' (t), 012(t) is rectifiable
(2.7) H(902(t)) < oo} .

The coarea formula implies that Reg is a set of full measure. For evetyec
Red ¢), 0£2(t) is a union of finite Jordan curvds(¢), i.e.,

69(25) =U; Fi(t) s Vite Regqb)

In particular this holds for almost evetyFort € Req ¢) we define

28 I(t)=U { componentd;(t) of 902(t) | min |u(z)| > 1/2} .

zel;(t)
We also definey(t) = 0£2(¢) \ I'(t),
(2.9 ~@t) =U { componentd’; (t) of 9£2(t) | n;u(l) lu(z)] < 1/2} .
xel;(t
When we want to indicate explicitly the dependencd¢f) on ¢ andu, we

will write Iy, (t).
We start the proof of Theorem 2.1 with two simple estimates.

Lemma 2.2. For any set4,

(2.10) /A /m(t)j(u) -t dH?

For any nonnegative functiofy,

dt < Ll Ef(u) dz .

spt($)

T
2.11 dH! d Véllso dz .
(2.11) / /(m(t).f(x) t< |V /mw f() da

Proof. For anyt € Red¢), Stokes’ Theorem yields

1
/ j(u)-td?—[lzf/ Ju dz .
a0(t) 2 Jaw

Since|Ju| < 1|Vul* < E*(u), (2.10) follows from the above identity.
For (2.11), we calculate by using the coarea formula,

T
// fd’Hldt:/ [V dx
o Joanw) spt(p)

< V6o / f d.
spt(¢)
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By definition|u/| falls belowl/2 on~(¢) and so we expect the Ginzburg-Landau
energy to be large on(¢). The following technical lemma proves this under the
assumption that(t) is sufficiently large.

Lemma 2.3. Suppose that
H ((1) > €.

Then
1

E(u) dH' > — .
/8!?(25) ( ) 25€

Proof. This is very similar to Lemma 2.3 in [15]. Fix a connected compoti&(t)
of v(t) and sep := |u| and

1
Vi 5=/ S| Vp|* dH .
0 2

i

By the Definition (2.9) ofy(¢) there is a point:,,,;, € I3(t) such thalp(xmin) <
1/2. Parametrizd;(t) by arclength so that

Lty ={x(s) s €0,G]},  Gi=H(Li(t)
With zmin = 2(0) = (G;). Then sincei(s)| = 1,

pla(s)) = p(x(0)) + /0 Vp(x(r)) - a(r) dr

% + 512 (/O Vp(:z:(r))|2dr> v

1 3
§§+\/%8 SZ’

provided that < o; := [G;A(1/167;)]. Then, fors € [0, 03], (1—p?(x(s)))?/4 >
1/25. Therefore,

IN

1
E(u) dH' > v +/ —(1—p*)?dH!

0 rir) 4€
> b 2
=TT o5
By calculus,
ag; GL A (1/16’}/1) 1 Gz 5
, —y e N s AT
Vit g = B =2 | ¢ 2
Thus ) o
/ E(u) dH' > — { A 5} :
Fi(t) 256 € 2
Since
H (y(t) = > HULi(1) =) Gi>e,

{¢|I"; (t) is a component of (¢) } i
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we can sum over componenfs(¢) of v(t) to conclude that

1
u) dH' >

O

We are now in a position to prove Theorem 2.1. In the proof we repeatedly
absorb logarithmic factors by using the fact that ik « then

e*1n(1/e) < C°
for someC' = C(«, 3) independent of € (0, 1].

Proof of Theorem 2.1
1. Recall that we are writind’ = ||¢]lc. FiX A € (1,2] and defined, :=
|2 15(spt(¢))]. We define setst, B C [0, by

(2.12) B:={t € Red¢) : |dequ;I'(t))| > dx + 1 orH'(y(t)) > €},

(2.13) A =Redq)\ B.
Because almost everybelongs tod U B = Red ¢), (2.5) implies that

/quudx- // ) -t dH! dt
F(t)
// thldt—irl// j(u) -t dH* dt
(t) 2 a0(t)

(214) *IA,F+IA,7+IB~

2. Estimate of 4

Supposé € A.OnI'(t), |u] > 1/2 by the Definition (2.8), and we set:= u/|u|,
so thatj(v) = j(u)/|u|?, and

/ j(v) -t dH' = 2 dedu; I'(1)).
I0)

Then

. 1 . |“‘2 —1 1

jw) -t dH" =2n dedu; I'(t)) + Jju) ——m— - tdH" .

0] r( |ul
Sincelj(u)| < |u| [Vu|, Cauchy’s inequality and (2.11) imply that
1 Jul> — 1
// j(u) -t dH — 2ndedu; (1) dt<// M
AlJre F(t) “|

€ 1
< 46/A o Ef(u) dH
(2.15) < 4eln(1/e) [Vl 1 (spt(e)) .
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Clearly A C [0, T] has measure less th@h= ||¢||-.. Also, by the definition of4,
if t € AandI'(t) is nonempty, thetdequ; I'(t))| < d.. It follows that

(2.16) [Ta,r| < 7|¢llscdr + Ce/2(|V|l oo 1 (spt(8)).

3. Estimate of1 4
Using Cauchy’s inequality and the elementary fact that (1 — )% + (1 + %)
forall z € R andb > 0, we have

a 1
ullval < 5 (1VaP + o)

a o, (A—fuP)?y 1 .. b
5 (Vu| +o + 2a(1+ 4)

for everya, b > 0. We selectt = ¢ for a € (0,1) andb = ¢2~2 to find

1 (w)]

IN

IN

(2.17) lj(u)] < Ce*E(u) + Ce™®

The Definition (2.13) ofd implies that|A| < T = ||¢||o. and that{!(vy(t)) < ¢
for everyt € A, so we can taker = 1/2 and use (2.11) to find

a| <c/ [ Ve @ +0// —d’H (dz)dt

< CPu(sp(9)) IVl + CVelld]oo-

4. Estimate of I
To estimatel 3 we prove thatB has small measure. Toward this end we define

By = {t € Reg¢) : H'(y(t)) > ¢}
(2.18) By := {t € Req¢) : I'(t)is nonempty, antdequ; I'(t))| > dx + 1}.

The estimate of3; is deferred to Sect. 6, where we prove

Proposition 2.4. For every\ € (1,2], ¢ € (0,1], smoothu : U — R?, and
nonnegative test functioh € C%1(U),

(2.19) [Bo| < Ce'™3||Vo|ooldr +1) < CETX|Ve||oo (L + pc(sPU)).

For the time being we assume this fact and use it to complete the proof of the
theorem.
The measure oB; is easily estimated: using (2.11) and Lemma 2.3,

1
Lipy / / w)dH dr
25¢ 1B1| teB, JOn(t

(2.20) <Volloo ln(g)ue(spt(sb))
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Clearly|B| < |B1| + | B2|, so by combining (2.20) and (2.19) we obtain

(2.21) |B| < Ce || Voo (1 + 1 (sP(S)))-
Finally, we use (2.10) to estimate
(2.22) B < C [ Vlloo (L + 1 (SPU)) e (SPL)).-

5. The previous three steps imply that

‘/d)Jud:L’
for
A—1

B (6,1, 0) < OO (14 e (spLe)) + (w*(sP(6))?) . a(N) = S
To complete the proof of the Theorem, note that by (2.10) and (2.17) (with

2a(N))
T
- 1
‘/(éJu dz S/o /{m(t) |7 (w)|dH" dt

< C||V¢||x,/ 29N Ee(u) + 7200 gz
sp(#)

< Cllgllerhi(¢,u, A),

for h = Mpus(spie)) + e 22N Leb?(spt¢)). We define h(¢,u, \)
:= min{h§, h{}, so that (2.1) clearly holds. It thus suffices to verify that (2.3)
holds, that is,

he(¢,u,A) = min{h§, hi} < Ce*M (1 + p(sp¢))(1 + Leb?(spt(9)))

for some appropriately large const@ntThis follows immediately from the defini-
tion of hg if uc(spt(p)) < e3> and if not, it follows directly from the definition
of hj. O

Note that the result we have proved is in fact somewhat sharper than Theorem
2.1 as stated, in that it not only provides an upper bound/fpvu, but in fact
gives an approximate value for the integral. The following corollary states a small
technical modification of this sharper estimate.

< da|[lloo + [[Dllcrhg (@, u, A)

Corollary 2.5. Let U be a bounded, open subset®f, and suppose thap <
COY(U) andu € H'(U;R?). Define Refp), I'(t) and~(t) as in (2.7), (2.8) and
(2.9) respectively.

Then for anyX € (1,2] ande € (0, 1], there exists a sel = A(¢, u, A, €) C
(0,]|#]|so) such that

(2.23) Al 2 [[8]loc = Ce* ™[V lloo (1 + 1 (sP)));

(2.24) I'(t) is nonempty, anfeqw; I'(t))| < dx vt € A; and

Joru - x| deguira)d] < folo (),
teA

whereh© is defined in (2.3) and,, is defined in (2.2).

(2.25)
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Proof. We cannot taked to be the set defined in (2.13), as we have now imposed
the additional condition thaf'(t) ## () for t € A. So we letA be the set formerly
known asA, defined in (2.13), and we define

A={te A : I'(t)is nonempty}

Then (2.24) follows from the definition of, and (2.25) follows from (2.15). We
claim moreover thatl \ A has measure at mostV||.. In view of (2.21) and
(2.13), this will suffice to establish (2.23), and thus to complete the proof of the
Corollary.

To prove our claim, note first that for everye A, H'(y(t)) < e. If t € A\ A,
thenI'(t) is empty, and s{' (¢~ 1(t)) = H'(y(t)) < eforallt € A\ A. Onthe
other hand, let;yg € U be a point such that(zo) = ||¢||co- If |y — x| < € then
d(y) = |9l — € IVP| - It follows that B.(zo) C 2(t) for all ¢ < [|¢|leo —
€ ||Vé||. Thus the isoperimetric inequality implies tHdt (¢p—1)(t) > 27e.

We conclude that if € A\ A, thent > ||¢||o — €]| V]|, which proves the
claim. O

3 Compactness in two dimensions

In this section we consider a sequence of functiohse H'(U;R?), whereU
is a bounded open subset®f and the renormalized Ginzburg-Landau energy is
uniformly bounded:
(3.1) Ky = sup u(U) < o0, e = e
e€(0,1]

As discussed in the Introduction we will show that under this assumption, the
Jacobian is compact in the dual not@®?)* for every3 € (0, 1]. Compactness
in higher dimensions will be the subject of Sect. 5.

We introduce the Jacobian (signed) measure

Ju(E) = / det (Vue) dz EcU.
E

Sincedet (Vu®) = 1V x j(u) for j(uc) := u¢ x Vue,

/¢dJuE=1 V x ¢(x)-j(u)(z)de,  VoeC(U),
- 2

where for a scalar functiog, we writeV x ¢ := (¢y,, —¢s, ).

Theorem 3.1. Let {u¢} C H'(U;R?) satisfy (3.1). Then there exists a subse-
guencee,, converging to zero and a signed Radon measuseich that/u~ con-
verges toJ in the dual norm(C?-#)" for every € (0, 1]. Moreover, there are
{a;}., c U and integers; such that

N
J=mY kid, and |J|(U)=m>_ |k|<Ky.
i=1 A

Finally, if u converges weakly to a limjt, thenJ <« u, and %(x) < 1forpu
almost everyt.
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We will first prove
Proposition 3.2. Assume (3.1). Thedu* can be written in the form
Ju® = J§ + Ji
whereJ§ and J§ are signed measures such that
(3.2) 1 Jllcoy < Coand 5oy < Ce®
for somea > 0 and a constan€’ depending only on the constaR; in (3.1).

Proof. 1. In light of the assumptiop(U) < K, Theorem 2.1 (with\ = 2 and
a = 1/24, for example) implies that

(3.3) /¢>Ju€ < O)¢lloo + Ce*|| V|0 forall ¢ € C%1(U).

We writed = €*, and we defind/s; = {z € U : dist(xz,0U) > d}. Let

C[1ifxe Uy
X6 =90 ifnot.

We defineJs := xs(n° * Juc), wheren?® is a standard mollifier with support

in Bs(0). We then defingl{ := Ju® — J§.
Suppose thap is aC'! test function vanishing ofU, and note that

/gb Jodx = /775 x (xs0)Jude.

We write¢? := 1’ x (xs¢). Itis clear thaty? is compactly supported iti, and one
easily checks that

C C
16°llo0 < X5l < Nlbllocs IV oo < < lIx50llo0 < < 16]lco-
Sinced = ¢, (3.3) implies that
[ ¢ 5z <l

2. We now estimate/{. Giveng € C}(U), write

¢1 = min{¢a 26HV¢I|OO}5 ¢2 = ¢ - (bl-

Itis clear thatp < 26|Vl iN U \ Uas, SO¢s is supported irszs.
From the definitions,

/¢>1Jf de = /(¢1 — 1% % (xs¢1))Ju de.
Itis clear that

[61]loc < 20(V|oc, IVorilleo < IVE]oo-
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Similarly, 7° x (xs¢1) satisfies

C
17 % (xsdn)lloo < 200 Vblloo, [V 5 (xa1) oo < =

So (3.3) implies that

[61llec < C[[Vloo-

/ 615 dz < O3 Vo]l = Ce(| Vo |co-

Finally, sinceg, is supported /s,

/(Z)ng dx = /(qbg —nd % (xs¢2))Ju de = /(<;$2 — 0 x ¢2)Ju dx.
It is easy to check that

62 = 1" % P2lloc < COlIVllcc, V(2 =1 * $2)lloc < C|[V|oo-

So we again use (3.3) to conclude

/ boJ5 dz < O3Vl = Ce|| Vo |co-
O

Once we have the above decomposition, the compactness of the sequénce
follows from soft arguments.

Lemma 3.3. If v is a Radon measure dn, then

1—
(3.4) 1 oy < ClVlEony. IS -
Proof. SinceU is bounded and we are considering compactly supported functions,
the Holder seminorm is in fact a norm and is topologically equivalent to the usual
C%< norm. So for this lemma we set

||¢||c§va(U) = [u]co. = sup , a € (0,1].

Fix ¢ € C%, and let¢¢ = 7 * ¢, wheren® is a smoothing kernel andwill be
chosen later. Then one easily checks that

(35) |9 cor < Ce* Mgl := Me,  [l¢ = ¢ o < Ce®[|g]| o

In particular,¢¢| < Ce®[|¢]|co.. ONOU.
We next modify¢© so that it vanishes 08U while continuing to satisfy the
above estimates. Let

u(w) = sup (§°(s) ~ Mele—31) ", vle) = sup () + Mol )

Then one easily checks that = u — v on AU. Moreover, if we define)® :=
¢¢ — u + v, theng® satisfies the estimates in (3.5) and also vanishe¥.an
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Jow = [oans [6-o)a

<|lglNcorlwllcory- + ¢ = ¢Cllcellvlicoy-

< Cllicow (e Wy + e Wlion)-)

So

Takinge = [[v[| co.1)./

|v||(coy- gives the conclusion of the lemma.

Lemma 3.4. If o > 0, then(C°)* cc (C%)*.

Proof. The Arzela-Ascoli Theorem implies that any sequence that is bounded on
C% is precompact irC°. The lemma follows by duality.

More concretely: given a sequence of measures boundéddir, we can
extract a subsequence, say that converges to a limjt in the weak-* topology.
We must show that this sequence converges in nori@f)*. If not, then we can
find a sequence of functions, with |[1,||co.« < 1 such that

(3.6) / Pnd(tin — ) > co > 0

for all n. However, the Arzela-Ascoli theorem implies that, upon passing to a
subsequence},, converges to some limit uniformly, whence (3.6) is impossible.
|

We now prove

Theorem 3.5. Assume (3.1). Thesuc is strongly precompact inC%#)* for all
B> 0.

Proof. By Proposition 3.2 we can writdu® = J§ + J5, where the two measures
on the right-hand side satisfy (3.2).

Fix any 3 € (0,1]. Lemma 3.4 implies thaf.J§} is precompact ifC%%)*
(C2O)".

Also, it is clear from the definitions that

€ € € € 1
17l coys < 1T + 156l o) < ClIVus|7z + C < Kn(=).

So together with (3.2) and the interpolation inequality (3.4) this implies that
||Jf||(cg.5)* —0ase— 0.0

Remark 3.6.The above resultis sharp in the sense thetneed not be precompact,
oreven weakly precompact, {6°)*. To see this, consider the sequence of functions

u(2,y) = (1,0) + E(In(;) 2 (cos(5),sin( 4))

on the open unit diskD in the plane. One easily verifies that(D) < C, and
that || Juc[|(coy- = [[Juc|[zr > ¢! In(L). In particular, since|Ju®||(co)- is un-
bounded, the Uniform Boundedness Principle implies that the sequence cannot
converge weakly ifC?)*.
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Remark 3.7.Suppose© is any sequence of measures on a bounded opén set
R™, and that

1
v¥|(U) < K'ln(=), /¢>dv€ < Cf¢lloc + Ce*[| Voo

for somex > 0. The arguments given above then show, with essentially no change,
that{v<} is precompact ifC%#)* for all 3 € (0, 1].

We are now in a position to give the

Proof of Theorem 3.1Supposgu‘}.c(o,1] C H'(U;R?) is a sequence satisfying
(3.1). By an approximation argument, we may assume that in factéasbmooth.

In view of Theorem 3.5, we can find a measurand a subsequeneg such that

Jucr — Jin (C%8)* for everys € (0, 1].

1. Sincepuf" is a sequence of uniformly bounded, nonnegative Radon measures,
we may assume upon passing to a further subsequence (still lahg it there

is a Radon measugesuch that

€n X
I A U
in the weak topology of Radon measuresih Forz € U, set

O(z) = 17}%1 w(Br(x)NU) .

We first claim that/ is supported only on the points with(x) > .
Indeed, suppose th&(zy) < 7 at somezxy, € U. Then there exists some
ro > 0 and a numbetr < 7 such that

fin(Bro(20)) < a <

for all sufficiently largen. Then Theorem 2.1 with = (o + 7) /o > 1immediately
implies that

/gde(:c) = ILm ¢ Jurdx =0

for all smoothyp with supportinB,., (zg), sinced, = 0forsuchy. Thuszy & spt(.J).
Sinceu is bounded or/, there are finitely many points:; }; C U such that

O(a;) > .

Therefore there are constamissuch that the limit measutg satisfies
J=7 % €iba,.

We need to prove that’s are integers and that/c;| < ©(a;) for all ¢; this will
immediately imply all the remaining conclusions of Theorem 3.1.
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2.Chooser; < 1 so thatB,, (a1) does not intersedta; },~1 U OU. We may also
assume, taking; smaller if necessary, that there exists some 1 and an integer
Ny such that

(3.7) Ay i= DBy ()] < ~6(@)  ¥n > N,

We first apply Corollary 2.5 to the functiaf(z) := (r; — |z — a1|)™, which
is supported inB,., (a1). Let A™ = A(¢,u", A\, €,) be the set whose existence is
asserted in Corollary 2.5. Note thattie A™, thenly . (t) is nonempty, which
is to say that there is a componentgof!(¢) on whichmin |u| > 1/2. However,
¢~ 1(t) = OBy, _¢(ay) is connected, so in fadty ,e. (t) = B,,_+(a1) for all
t € A™. So for everyt € A™ andn > Ny, Corollary 2.5 and the choice afimply
that

deq(us: 0B, 4(a1)] < dy < %Q(al).

. c 1
min  |u™| > -
2€IBr, —t(a1) 2

It follows that for all suchn there is an integed(n)d, such that the set

1
SEm = {r € [0,r] : pmin fur| > 5, degu; OB,) = d(n)}

(@i

has measure at leak} : . Note also thatS,L is open, sinceut" is by
assumption continuous (mdeed smooth). We can therefore find an opEp set

520 such that 2, | = ko.
3. We now define new test functiong® as follows. First let
fr(r) = |[r,r] N2y

We then define™(z) = f™(Jz — a1|). One can then check thais a regular value
of ¢™ if and only if

(¥™)71(t) = dB,(a1) for somer € X,.

In particular, degu; (v™)~1(¢)) = d(n) for a.e.0 < t < ||¢)"||0c = ko-
One can then easily check, using Corollary 2.5, that

/¢"Ju6"dx = wd(n)ko + O(e).

On the other hand, since the functiapé are uniformly bounded i’?:* and since
Jun — J =13 ¢id,, in COL(U)*

/w"Juﬁ"dx — merkg

0 = lim

/w"JuE"dx —merp™(ar)| = lim
Comparing the last two equations, we find thi&t) = ¢; for all sufficiently large
n. In particularc; is anintegerantt; | < d) < %Q(al), which is what we needed
to show. O
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4 Gamma limit

Let U be an open bounded subsefff with a smooth boundary.

Recall that in the Introduction we have defined the function s@3é. Results
in [16] discussed in the Introduction show thatif € B2V (U;S!), then the
Jacobian measutéu has the form

(41) Ju=m ij (;aj s
J

for finite collections of point§a;} C U and integers;.
In this section we study thg limit of the functionals

1 1 1
i — L 2 1— ul?)2
)= 7 [ 51T g )

ase tends to zero and show that the limiting functional is
|[Jul(U) =7 >, kil , if w e B2V (U;S1) ,
+o0, if ug B2V(U;S1) .
We refer the reader to the book of Dal Maso [8] for more informatior dimits.

Theorem 4.1. TheI limit of I. in the topology ofV1:!(U; R?) is equal tol, i.e.,
for every sequence’ converging tou in Wi(U; R?),

(4.2) liminf I (u) > I(u) ,
e—0
and for everyu € B2V (U;S'), there exist functions:€ converging tou in
WL1(U; R?) satisfying
(4.3) liminf I (u) = I(u) .
e—0
In the next section, we will prove (4.2) in higher dimensions. We believe that
(4.3) holds in higher dimensions as well.

Proof. We start with the proof of (4.2). Suppose that converges tou in
WL1(U;R?). We assume that

liminf I, (u€) < oo,

as there would be nothing to prove otherwise.

1. By the Compactness Theorem 3.1, there exists a subsequgmmaverging
to zero such that the Jacobian measié" converges to a Radon measutén
(C9B)* for all B > 0. We claim that/ = Ju. In particular this will show that
u € B2V (U; SY).

To simplify the notation, set,, := u*".
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2. We directly estimate that

)
i) = 2] < 9

11— Jun|

Hence,

lim
n— oo U

3.Setv, = u,/(Ju,|? A 1) so that

1 ) )
TP AT n) = 3() = vn X Ve = u x Vu
= Uy X (Vuanu)+(vn7u) XVU.
Hence
1 ) .
A Jn) = 3(0)] < Joal [ Vetw = Vul + oo = u| T

< |Vuy, — Vu| + v, — ul[Vul .

Sinceu,, converges ta. in W11 (U; R?), there exists a subsequence, denoted by
again, sothat,, converges ta almost everywhere. Hen¢e, —u|| Vu| convergesto
zero almost everywhere and also itis less thjanu|. So we may use the dominated
convergence theorem to conclude that

1 j(un) — j(u)| de=0.

li _—
o RE

n—oo U

4. Steps 2 and 3 imply that on a subsequejies, ) converges tg(u) in L. Hence,
Juc converges tdu in the sense of distributions. This implies thiat= Ju. Since
by Theorem 3.1/ is a Radon measure, so.Jds and therefore: € B2V (U; R?).

Itis also clear thatu| = 1 almost everywhere. Hence,c B2V (U; S!).

5. The Jacobian estimate (2.1) implies that

/U ¢ Ju(dz) /U ¢ Jup (dx)

< Al lloo lim inf 1 () ,

= lim
n— oo

for every\ > 1. Hence,

lim inf 7 (u,) > sup { ’/ ¢ Ju(dz) | : ¢l <1}
n— o0 U
= |Ju|(U)

=I(u).
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This proves (4.2).

6. We continue by proving thé&'-limit upper bound (4.3). Fixx. € B2V (U; S1).
As remarked above, it is shown in [16] that must have the form

Ju=m ij(Saj,
J

It suffices to show that, given any sufficiently smalb 0, there exists a sequence
of functions{v¢} ¢ H'(U;R?) such that

() =7 |k, limsup [[v° — ullyra ey < C6.

To do this, fix some small > 0. Letry > 0 be a number such that the balls
{Bar(a;)} are pairwise disjoint and do not interseii, whenever- < ry, and
select some > 0 such that

(4.4) Z/ [Vu| de < 4, r < min{rg, d}.
j Bar(aj)

For anys > 0, letU, denotelU \ U; B,(a;). Demengel [9] proves that if is
an open subset @2, then smooth functions taking values$n are dense in the
subspacdw € WHi(V;S1) : Jw = 0}. SinceJu = 0 onU,, this implies that
there exists a function € C>°(U,., S*) such that

(45) HU — U||W1>1(Ur) S 5
Demengel’s proof in fact shows that we may also assume that

(4.6) 17(w) = (@)1 ,) < 6.

7.Clearly (4.4) and (4.5) imply that

2r
|Vo(x)| dH (= / [Vo|dz < 26.
Z~/ /@B (a]) Z Ba,\B: (a])

So for eachy we can find some numbey € [r, 2r] such that

@.7) / Vo(a)] di! (z) < 2
9By, (a;)

r

We also claim that
(4.8) dedv; 9B, (a;)) = k;

if 6 is sufficiently small. Indeed, sinceis smooth ands!-valued it is clear that

s — dedv; 0B;(ay)) is constant fors € [r, 2rg], so we only need to verify that

this constant must equél. To do this, note that i§ is any function of the form
¢(|z —a;|) thatis constant o3, (a;) and has its support iB2,, (a;), then

/ VX6 / degv; ¢ (s)) ds = né(a;)deqv; 0B, (a,))
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and
%/V X ¢-ju)de = /(;SdJu = 7wd(a;)k;.

If 0 is small enough, (4.8) follows from these two identities and (4.6), stheep
is supported irU.,..

8. We claim that for eacti there exists smooth functions, defined inB,., (a;)
such that$(z) = v(z) forz € 9B, (a;),

1
4.9 |Vvj|de < C9, and lim —— E(v5)dr = 7|k;].
B., (a;) e—0 | In ¢ By, (a;) ‘

To see this, fix somg. We may assume without loss of generality that= 0,
and due to (4.8) we can write

v(x) = expli(k;0 + o + P(x))] forz € 0B,,

wherea; is a constanty is a smooth, single-valued function @B,,, and6 as
usual sa’[isfie%| = (cosf,sin ). We are identifyingR? = C in the usual way.
We extendy) to be homogeneous of degree zerdim\ {0}, and we define

2|z —

vj(e) = explilk;f +ay + == —Lp(@)] it Sry < o] <1y
J

For|z| < §r; we definev$(x) to be a minimizer of

/ Ef(w) dzx
Brj/2

subject to the boundary conditions= expli(k;0 + a;)] oN 9B, /2.
Sincev; restricted to the annulus, \ B,, /2 is just a fixed smooth function of
unit modulus, independent efit is clear that
1 1 1
lim —— E‘(v$)dx = lim =

J

— |VvS|? de = 0.
e |lnel B, \B., /2 e |lnel B"j\B7‘j/22 J

Also, using (4.7) one can check that

/ |Vvi|dz < C6.
Brj \B'rj /2 (a‘j) .

Finally, the book of Bethuel, Brezis, ancel¢in gives a detailed description of the
asymptotics of Ginzburg-Landau energy-minimizers, and their results imply that

1
lim —— E€(v§) dx = m|kj|, limsup/ [Voi|de < Cry; < C6.
€ |1H€| Brj/2 ’ € BTj/Q !

Putting these facts together we find that the sequ@m;]ehas the properties spec-
ified in (4.9).
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9. Finally we define

(@) = {v@) HaeUN (U ()
= {vﬂm) ifzeB, <(aj> )

Sincew is a fixed smooth function and| = 1, = E¢(v) =

" lne]

zero uniformly as: — 0. Thus it is clear from (4.9) that

g | Vol? tends to

: 1 € € _ : € € _ .
lli%m/UE(“ Jdz = : 2 e Sy, (aj)E(”j)dx‘”Zj sl
Also,

lu —v(lwrawy < llu—=vllwiaw,)

+ 3 (lullwasca,, o + 105 lwes o) < €
J

by (4.4), (4.5), and (4.9). So the sequefcé} has all the required properties]

5 Compactness in higher dimensions

Now supposé/ is a bounded, open subset®f* with m > 3.

In this section we will show that ifu}.co1; € H'(U;R?) is a sequence
of functions such that the normalized Ginzburg-Landau energy meas(i®
is uniformly bounded, then the Jacobians® are precompact iC%?)* for all
£ > 0, and any limit is rectifiable. In addition, we prove that

|J|(U) < liminf p¢(U).

This is not a fullI"-convergence result, but it shows that the mass of the Jacobian
is a reasonable candidate for thelimit. We also believe that the compactness
result and the upper bound for the Jacobian (ie, lower bound for the energy) are
interesting and will be useful in other contexts.

We start by defining some of the terms used above. We remark that good general
references for this material include Giaquietaal[12] and Simon [30].

Foru : R™ C U — R? with m > 2 we view the Jacobian as a measure taking
values in the exterior algebr#2R™. For everyn (and in particular forn = 2) we
endowA™R™ with the natural inner product structure, which we deriate, and
for a multivectorv € A"R™ we write |v| = (v,v)Y/2. If w € WI(U;R?) we
define

(5.1) jlu) = Z U X Uy, dr’
=1
and ifj(u) € L., we define

loc?

(5.2) Ju = % d j(u) in the sense of distributions
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whered is the exterior derivative. Thusif € H., then

Ju = ZJ”u dz" Nda? = §ZJ”udxl/\dm],

1<J .9

whereJiiy = —Jiu = uy, X uy;, = delug,,u,,). For sufficiently differen-
tiableu : R™ — R™ one can define in a similar waju as a measure taking values
in A”R™. We omit the most general definition as we will not need it here.

AsetM C R™issaid to be &-dimensional rectifiable set if there are Lipschitz
functionsf; : R* — R™ and measurable subsets of R* such that

M = My U (U, fi(A))), H* (M) = 0.

Thus, in a precise measure theoretic sengegdanensional rectifiable set is not
much worse than a-dimensional Lipschitz submanifold. Rectifiable sets can also
be characterized by the fact that they havdimensional approximate tangent
spaces{* almost everywhere; see [30] or [12].

Suppose thal/ is an oriented, rectifiablen — n)-dimensional subset &,
and for ™" almost everyx € M, letv(z) € A™R™ be the unitn-vector
representing the appropriately oriented normal spadé t¢lt is more convenient
for our purposes to work with normal spaces rather than tangent spaces.) Suppose
also thatd : M — N is aH™ "-integrable function. One can define a measlire
taking values i"R™ by

(5.3 /¢(:c)J(dm) = y o(x) - v(2)0(x)H™ " (dx) V¢ € CO(R™; A"R™).

We say that a measurktaking values id”R™ is (m — n)-dimensional integer
multiplicity rectifiable (or more briefly, integer multiplicity rectifiable) if it has the
form (5.3) for some rectifiable séf and an integer-valued functighas above.

The class of functions for whictiu is a measure is denoteinV (U, R™)
and was defined and studied in [16]. In particular we prove there that &f
BnV(R™, Sn—1) then—.]u is integer multiplicity rectifiable, where,, is the
volume of the unit ball ifk™. This is deduced as a consequence of a more general
rectifiability criterion which we recall here, as we will need it later.

LetJ be a measure on a subgetc R™ taking values im”R"™, wheren < m.
We can writeJ in the formJ = v|J|, where|J| is a nonnegative Radon measure,
andv is a|J|-measurable function taking valuesAftR™ such thafv(z)| = 1 at
|J|-a.ex € U.

Suppose thaty, ..., e,,, IS an orthonormal basis f@&™. Given any pointv €
R™, wewritey; = z-¢;ifi =1,...,m— nandzz—x em-ntilfi €1,...,n.We
write R7?~" to denote the span e{fe ™. Similarly, R? = spare; }Z menil
Thus We identify pointss € R™ with corresponqu;g, z) € RP™™ x RZ. Let
dz := dz' A ... Adz", and letJ* denote the scalar signed rheasure defined by
J* = (dz, 1/)|J|.

We say that/~ is locally represented by slice, (dz) if, given any open set
O c U of the formO = O, x O, with O, C Ry " andO, C RZ, there exist
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signed Radon measurdg(dz) on O, for a.e.y € Oy, such that

(5.4) [or - /O y /O 00y (d) dy

for all continuousp with compact support id.

We say that a statement holds foe. J, (dz) if, for every open se®D as above,
itis valid for a.e.y € O,,.

In [16] we prove the following

Theorem 5.1. Suppose thaf is a Radon measure dii C R™ taking values in
A™R™, and also thatlJ = 0 in the sense of distributions. Suppose also that for
every choice on an orthonormal bagfis; }”, (determining a decomposition of
R™ into R*~" x RY) J* is represented locally by slices, and that toe. y € O,
these slices have the form

K
Jy(dz) = dida,(dz)

for an integersK andd;, and pointsa; € O,.
ThenJ is rectifiable.

A much more general version of this result was later established by Ambrosio
and Kirchheim[3]. A similar theorem in somewhat different and very general setting
was proved independently (and slightly earlier) by White [33].

We will need Theorem 5.1 to prove

Theorem 5.2. LetU C R™, and suppose thgtu‘}.¢(o,1) is a collection of func-
tions inW12(U;R?) such thatu‘(U) < Ky < oo for all e. Then there exists a
subsequence, — 0 such that

():  Ju‘ converges to a limif in the (C%<)* norm for everyx > 0;

(ii): For any choice of basige;} for R™ (determining a decomposition &™
into R7"~2 x R?), J* is represented locally by slicek,(dz), and for a.ey
these slices have the forfy(dz) = wail d;bq,;, Withd; € Z for all 4.

(ii): dJ = 0inthe sense of distributions, ar}rdf is integer multiplicity rectifiable;

(iv): Finally, if 7 is any weak limit of a subsequenceof, then|J| < i, and

d{g' < 1. In particular, |J|(U) < Ky.

Remark 5.3.For any.J as above(iii) and the definition of rectifiability imply that
a lower density bound:

for |.7| almost everyz. Also, if i is as in(iv), then clearly then — 2-dimensional
density ofu is greater tham: — 2-dimensional density of . In particular,

e AU(Br(2))
R 2B, ) 7

for |.J| almost everyz.
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The basic idea of the proof is to decompose a componeit.affor example
Jm=1mys, into two-dimensional slices, safj (dz), and to use the two-dimensional
estimates on each slice. Arguing in this fashion, it is quite easy to obtain uniform
estimates for/”™~14¢ in certain weak spaces, and these imflyby results of
Sect. 3.

To prove(ii), itis convenient to view the sliced measuik$dz) as constituting
afunction mappin®;" 2 into C. (R2)*; the latter is a space that contains measures
onR? and is endowed with arather weak topology. Cléijrcan be seen as assertion
that the functiory — J;(dz) is precompact in some weak sense. What one would
like to do is to show that in facy — Jy(dz) is precompact in some stronger
sense, for example ih' (R} ~2; (C (R2)*), so that one can extract a subsequence
that converges to some limiting function— J,(dz) in L'. In particular, after
passing to a further subsequence we could then assumgtiat) — J,(dz) for
almost every. In addition, by our two-dimensional results, for almost eygrgne
can find a subsequeneg, — 0 (in general depending ay) such that/;"™ (dz)
converges to some limit that has the form souglftii By combining these results
one can hope to show that in fa#tfy(dz) is a sum of point masses with integer
multiplicities.

The key point is then to establish some sort of strong compactness of the se-
quence of functiong — J¢(dz) ase — 0. We do this using the observation from
[16,17] that the total variation gf — J5(dz) in the(C?-')* norm can be estimated
by controlling “orthogonal” components dfu¢, which is already done in the proof
of (i). Using this one can argue that the functions+ J;(dz) have uniformly
bounded variation ifC?1)*, modulo terms that vanish in still weaker norms, and
this gives the necessary strong convergence. (The terms involving weaker norms
force us to work with test functions that ai& instead ofC'! in much of the proof.)

The remaining points follow quite directly froifii) and the rectifiability cri-
terion of Theorem 5.1, and from the two-dimensional results.

Proof.

1. To prove compactness, it suffices to show that any compaHént is precom-

pact. Without loss of generality we considér—1™uc. We writez = (y,2) €

R™~2 x R2, so thaty; = z; fori < m — 2, andz; = x,,_o4; fori = 1,2. We

also writeJ*< as a shorthand fof™~1™«¢. Note that/*€ is just the Jacobian of

ufinthez variables./*¢ = ug, X uf =ug Xug,.
For any¢ € C1(U),

(5.5) /QSJZ’E dzr = / / oy, z) det(ug ,us,) dzdy.
RZL_Q {z€R2:(y,2z)eU}

Note thaip(y, -) is C' and compactly supported {n € R? : (y,2) € U}, and that
Leb? (spt(¢(y, -)) is bounded uniformly foy € R”~2. Thus Theorem 2.1 implies
that

d(y, z) det(uy, , us,) dz

/{zE]Rzz(y,z)EU}
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1

‘ In 6‘ {z€R2:(y,2)eU}

(56.6) < Clo(y,)lloc + € lloy; )lcor ) E(uf)dz

whereC is a constant depending only on §pt. Integrating overy € R™~2 we
obtain

(5.7) ‘ [ 77 da| < C ol + V-0 (0.

HereV ¢ denotes the gradient with respect to theariables only, reflecting the
fact that onlyz derivatives appear in the terfi@(y, -)||co.. on the right-hand side
of (5.6). Sinceu(U) is bounded by assumption, we deduce that

(5.8) \ [ 677 da] < QI + ol

It is also clear that

(5.9) /U ]

so Remark 3.7 implies th4t/*“} is precompact ifC*)* for all a > 0.
The main part of the proof is to show that is locally represented by slices.
This will be done in the next four steps.

dx < C/ |Vus2de < Cln(l),
U €

2. Let e, be a subsequence such thai» converges to a limit/ in (C%)* for
all « > 0. Fix an arbitrary orthonormal basfg; }" ; for R™. Using this basis we
write z = (y, z) andR™ = R}"~? x R2 as above. We writd"/ = wk lim Ju*",
sothat/ = 37, _; J¥dz' A da?. We also write]* = J™™~1 = wk lim J=.
LetO = O, x O, be subset ol/, For eactn and eacly € O, let J;(dz) be the
measure o), whose density with respect to Lebesgue measurgis ugz (y, z).
We also write*" for J*<». From the definitions it is clear thdt"" (dz) is locally
represented by the slicg§ (dz); this assertion is simply the obvious identity (5.5).

Fix anyy € C2(0), and for eactn define
(5.10) = [ o). yeo,

In this step we show that™ is precompact inC'(0,), with the aid of a lemma
whose proof appears somewhat later.

For anyv € C}(O,), letg(z) = é(y, z) = v(y)¥(y, z). Then (5.5) and (5.8)
imply that

L ) )y = A y /O .2y )y
(5.11) = [ $w)7"(d) < C(loll + V:0l) = Clvle
O

for some constant depending |1 but independent of andv.
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Next fix anyk € {1,...m — 2} and anyw € C}(O,)) and compute

/wyk " (y dy—/ / Wy, (Y z)J, (dz)dy

1J

(5.12) - /O W)y, — wi,] T (da).
We deduce from (5.7) that

(5.19) | 0,277 @) < e

To estimate the remaining term, note that for any k € {1,...,m}

(Jz] ) (J]k en)h (sz 5,1))' =0

Tj

in the sense of distributions. Take= m — 1, j = m; thenJ%u = J*", and
alsox; = z1,x; = 22, = Y. THUS

/ (wih)ye J5" (d) = / (W) oy T (dir)

O O

(5.14) —/(wz/;)zka’m_lue"(dm)
O

Note that(wy)., = wy,,, sincew depends only og. Thus we can use (5.8) to
estimate the right-hand side of the above equation, and combine with (5.12) and
(5.13) to conclude that

(5.15) | @iy < Cllul -+ eVl
for someC depending orj|y|| = but independent of.. Also, if we estimate the
right-hand side of (5.14) using (5.9) instead of (5.8) we easily find that

616 [ w0 < (n) 1) ol

We have shown that (5.11), (5.15), and (5.16) hold foralb € C!(O,).
According to Lemma 5.4, proven below, this is sufficient to establish{tﬁal}n
is precompact irl!.

If v is not compactly supported i@ butv(y, -) is compactly supported i»,
for everyy € O,, we can apply the above arguments to the functib(p z) =
x(W)¥(y, z), wherex € C°(0O,) andy = 1 on some open subseét cc O,, to
find that{¥"} is precompactirl,', and hence thafty" } is precompact i}, ..

3. Now fix a countable dense subdet;. } of C2(0.), and for eachy;, and each,
define

- [ vepe  veo,
0.
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The results of Step 2 imply th&i)} 152, is precompact i, (O, ) for eachk, so
using a diagonal argument and passing to a subsequence (which we stid, Jabel
we may arrange that there is a st C O, of measure zero such that for evéry
Y7 (y) converges to a finite limity, (y) for all y € O, \ A1, asn — oco.
Next define
g (0;) :=|In en|_1/ E(y,2)dz

0.
Clearlyfoy s (0.)dy = p(0) < Ky.
It follows that there exists a sel, C O, of measure zero such that
liminf,, g7 (0,) < coforally € O, \ As.
Let A = A; U A,, and note thatl has measure zero.

4.Fix somey € O, \ A, consider any subsequengg, such that
(5.17) py'™(02) < C.

Such subsequences exist by virtue of the definitiomofThe two-dimensional
compactness results imply th} (dz) is precompact iVgs0(CO%)*. Let.J, be
any limit. From Step 3itis clear thdtiy (v, 2).J, (dz) = Ui (y) for everyiy, in the
dense subsdtyy }. of C2(0,). This implies that/,, is uniquely determined, inde-
pendent of the choice of a subsequeage, and hence that any limit oI{];" (dz)
for any sequence,, satisfying (5.17) must equal, (dz).

This definesJ, for everyy € O, \ A. Note that, as a consequence of the 2-
dimensional results], (dz) has the formr ", d;8,, (dz) for almost everyy, for
integersd; and pointss; € O, that of course depend an

Returning to the subsequence obtained in Step 3, we see tha D, \ A4,

then
lim / ()3 (d2) = lim / B(2) T (dz) = / W(2)7,(dz

for any continuous), whenever the left-most limit exists. The two-dimensional
results also imply that if3 is any open subset @?,, then

(5.18) liminf p5" (B) > Jy(B).
5. We now show that/* is represented locally by the slicds(dz), where (we

recall) J* (dx) = wk lim J*"(dz) = wklim Jm=1myén dg.
To do this, fix any € C2?(0) and compute

[ @) =t [ ()77 @)

~ lim / / (y.2) 7 (d=)dy = lim / 5 (y)dy,

for ™ as in (5.10). We know from Step 2 th{;ujz;”} is precompact in.'. Fix a
convergent subsequence, andjetenote the limit. We may assume upon passing
to a further subsequence, still labeléd, thaty™ (y) — ¥ (y) atally in O, \ As,
whereAs is some set of measure zero.
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Also, if y € O, \ (AU As), Step 4 implies that

¥(y) = lim 9" (y) = lim w(y,Z)Jg,”(dZ):/O Uy, 2)Jy(dz).

o

/O ()T (dw) = /O /O (0,2, (d)

as claimed. Sinc€”? is dense irC?. this holds for all continuous. This completes
the proof of (7).

6. Itis clear that ifp € C(U; A2R™), then

Thus

/(;S'dj:lirrln/qﬁd{]ue" :1irrln/¢~d2%j(u6") =0.

ThusdJ = 0 in the sense of distributions. )
In view of Theorem 5.1 an(ii), this shows that J is rectifiable. Thus we have
establishedyiiz).

7. Itremains to provéiv).

We write J in the form#|.J|, where|J| is a nonnegative Radon measure, and
v is a|J|-measurable function taking values #¥R™, such thatz(x)| = 1 for
|J|- a.e.x € R™. Since J is rectifiable, is simple at.J| a.e.z, that is, it has the
form 7 = v! A v? for orthogonal unit vectors® € A'R™. General theorems on
differentiation of measures imply that

. 1 —( — T 1
(5.19) hqmu(Bm/Br(m)W(x)—y(xﬂ 17(da’) = 0

at|J|-a.e.x € R™,
Let iz be a weak limit of p°. It suffices to show that

(5.20) [T1(Br(2)) < (1+ 0r (1)U By ()

at every pointc where (5.19) holds and(x) is simple.

Fix such a point:. After a change of basis we can assume tfa) = v*(z) A
v?(z) = dz™ =" Adz™. As above we decompo®e” asR;' > x RZ, and we write
r = (y,2), dz = do™ ! Adz™, J* = (dz,7)|J|, and so on. First note that by
(5.19),

J*(B,(z)) = /B (@) i) + / (dz, 7(a") — #(x)) || (d2)
(5.21) — (1+0,(1)|T|(B,).

Because/~ is represented by slicek, (dz),

G22) @) - [ Ty (Briy(2)) dyf

{yeRm=2:|y—y’|<r}
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forr(y') = (r> — |y’ — y|?)'/2. Thus sinceB, denotes &losedball,
(B, (2)) > limint 5 (B, ())

= lim inf fy7 (Bry (2)) dy’

{y'eRm=2:|y—y’|<r}

> jy/(Br(y/)(Z)) dy/

B /{y’ER’""2¢y—y’|§T}
using (5.18) and Fatou’s Lemma in the last line. The desired estimate (5.20) now
follows from (5.21) and (5.22). m|

We now prove the lemma used above.

Lemma 5.4. Suppose thal/ ¢ R¥, that f€ is a sequence of uniformly compactly
supported functions iBV (U), and that there exist positive constaidtsand «
such that

(5.23) / o) (v) dy < Cllolloo,
U
(5.24) / w(y) - V1) dy < C(lwlloo + [ Vawoo)
U
1
(5.25) [ w0 Vi s < 0+ )l

forallv € CH(U) andw € C}(U;RF). Then{f¢} is precompact in..'.

Proof.
1. First note that (5.23) implies thdff€|| .. < C.
We write § = €, f§ = n° * f¢, and ff = f¢ — f5. Clearly || ff||.: < C for
i =0, 1. Also, for e sufficiently small,ff is compactly supported far= 1, 2.
The proof of Proposition 3.2 shows that

(5.26) IVf5llcoy» <C, IVFll oy < Ce

Also, using (5.25) and the interpolation inequality (3.4), we find that for every
3 € (0,1) there exists some’ > 0 such that

(5.27) IV Fillgosy. < Ce.
The first estimate of (5.26) implies th&f§} is uniformly bounded inBV (U),

and hence precompact i'. So to prove the lemma, it suffices to show tfat
converges to zero ih* (U).

2. Letg € C1(U), and compute
Joti= [ [ oo - 1) dody
:/0 //¢(x)n5(y)Vf€(m —sy)-ydydxzds.
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We make a change of variables in #heintegral to find that

1
628) [ofi = [w-vrtorwt@)= [ [ o+ spunt)dy s

Note thatw’ is compactly supported ifl if € is sufficiently small.
3. Let(’(y) == yn°(y) = 6 7"¢1 (). Itis clear from the definition ofv® that

lw’lloe < 1C°M lI@lle < COll]cc-

We now estimate a &lder seminorm ofv®. By another change of variable,

0= [ e dyas
/0 s/ 5(7«) (y — ) dy ds.

Also, for anyz;, 7, € U and any3 € (0,1), |¢*(x1) — (¥ (z2)] < Clay —
z5|%(s8)'=P~™, so one easily estimates from the above expressiomfdhat
5 5 go' "
[w®(z1) — w’(22)| < Cl|@lloc|rr — 2]

1-p

forall 5 € (0,1). In particular,|w’ || os < C(B)5" 7.

4.Combining (5.26), (5.27), (5.28), and Step 3, we conclude there &Xjsts> 0
such that ifp € C}(U) then
+ ‘ / w’ - Vi

‘/qﬁff S‘/w‘“vfé

< N’ ooV f5llcoye + 0l cos IV 51l cos)
< Ce” 9]0

for all e sufficiently small (depending on the supportof This clearly implies that
£ — 0in Li,(U). Since there exists somé& CC U such that siitf;) c V for all
e sufficiently small, this in fact shows thdyf} is precompact ! (U). m|

6 Appendix

In this section we present the proof of Proposition 2.4. We follow very closely
arguments introduced in [15].

In this sectionU is a bounded open subset®f, andu € H(U;R?) is a
function that we have assumed (without loss of generality) to be smooth. In addition,
¢ is a nonnegative Lipschitz test function that vanishe®@n

We will use notation from Sect. 2, in particuld?(¢), Req ¢), I'(t), and~v(t),
defined in (2.6) and (2.7)-(2.9).

We will use the notation
(6.1) te = €l|Velloo



Ginzburg-Landau functional 183

For any positive integet, let
(6.2) Dg := {t € Red¢) : t > t., I'(t) is nonempty, andded(u; I'(t))| > d}.

Recall that for Proposition (2.4) we want to estimate the measure of A;set
Red¢), and from the Definition (2.18) aB, we see that

>

(63) Dis = Bon{t:1 > 1), ford} = [2uf(spte) | +1 > 2 (spHs)).

We further define

2 1— 2
(6.4) A(r)= min | " (1=m)
mel0,1] r Cp€

] , A(r) = /0 XE(5) A %ds

for certain constants,, ¢; whose choice is discussed below.
The main result of this section is the following theorem, from which we will
easily obtain Proposition 2.4.

Theorem 6.1. If u : U — R? is a smooth function andis a nonnegative Lipschitz
function such thap = 0 on 90U, then for any positive integet,

€ |D¢€i| ) € _ 1 €
dAf [ ———%— E = In(- .
(zdnwnm < /SW () = () (spw)

Note that for anyt, > t; the ratio(ts — ¢1)/||V¢||~ is a lower bound for
the distance betwee2 () anddf2(¢1). This explains the role dfV¢||« in the
estimate.

Similar results were proven in [15] under more or less the assumptio®that
is an interval; and in [7] in the casé= 1. Related results have also appeared in
Sandier [27].

Note that the case covered inthe statement of the thedremy(z) > 0} C U,
can be reduced to the cae : ¢(z) > 0} = U, if we replacel/ by U := {z €
U : ¢(z) > 0}. So we will henceforth assume for notational simplicity that this
holds, so that sgpp) = U.

We introduce more notation and definitions, taken from [15].

We letS denote the set on whidl| is small, that is,

(6.5) {xeU : |ulz) <1/2}.
We define theessentiapart Sk of S to be
(6.6) Sk := U{componentsS; of S : dequ; dS;) # 0.}.

We also define theegligible partSy of S to beSy := S\ Sg. For any subset
V c U such thabV N Sg # (), we define the generalized degree

dg(u; V) := Z {deg(u;dS;) | componentsS; of Sg
(6.7) such thatS; cc V'}.
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In Proposition 3.2, [15], it is shown that the constanisc; in (6.4) can be
chosen such thatify € U, e < rg < ry, By, (1) C U, and

[Br (20) \ Bro(20)]N S =0, |dg(u; 0By(x0))| =d >0,  Vp € [ro,m]

then
(6.8) / Be(u)de > d[4(") = 4<("2)] .
By, (20)\Bro (c0) d d
The following elementary estimates are proved in Propositions 3.1 and 3.2 in
[15]:
(6.9) AS(ry + 1) < A(r1) 4+ A%(r2)

(6.10) s~ ! A¢(s) is nonincreasing 1/16(3) <9y
S S €

andA¢(r) > wln(r/e) — co for some constant,. Also, clearly,\¢(r) < = /r, and
therefore, by redefining, if necessary,

(6.11) |[AS(r) = wln(r/e) | < ca Vr>e.

We now use Theorem 6.1 and the above facts aldéub give the proof of
Proposition 2.4. After this, the rest of this appendix is devoted to proving Theorem
6.1.

Proof of Proposition 2.4
We need to show that

|Bs] < Ce' ™3|V oods, df o= dy + 1.
LetR := 2|‘\V(<ibll‘ . From (6.3) and the Definition (6.1) ¢f it suffices to show that
R
dT S 061_7.

We may assume th%% > ¢, as otherwise the conclusion is obvious. Then (6.11),
Theorem 6.1, and the choice (6.3)d5f imply that

(i) == o () == (0)
() re (i>
(1) we@) oo ()
(/1\—1>1n<1>+0

For the proof of Theorem 6.1 we define

IN

| N

IN

(6.12) S5 := U{componentsS; of Sg : S; C Q2(t)}.
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Note that ifx € 2(t.) andy € 9U, then
[z =y [Vollee = |6(z) — d(y)| = [¢(z)] = te = €l|VPox.

In particular,
(6.13) dist(z,0U) > ¢ forall z € S5,.

Note also that ift” C £2(t.), then
dg(u; V) := Z {deg(u; 0S;) | componentsS; of S§, such thatS; cc V}.

In other words, for such setdwe can ignoresz \ S when computing dg; V).
In the proof of Theorem 1 below we will always be concerned with subidets
£2(t.), so this will always be the case.

Our strategy for proving Theorem 6.1 will be to find a collection of balls such
we have a good lower bound for the Ginzburg-Landau energy on each ball. We

then show that the sum of the radii of the balls is bounded belovgﬂ%,
hence obtaining a lower bound for the total Ginzburg-Landau energy in terms of
this quantity.

We find the collection of balls by starting from an initial collection of small
balls that covef;, then letting these balls grow by expanding them and combining
them. The first step is thus to establish the existence of the initial collection of small

balls. This is the content of

Proposition 6.2. There is a collection of closed, pairwise disjoint ba]lB; }%_,
with radii } such that

(6.14) SS c Uk By,

(6.15) i >e Vi

(6.16) / Eé(u)de > Lrr > A°(r))
BrnU €

This is essentially proved in Proposition 3.3 in [15]. The idea of the proof is as
follows:

Given any componen$; of Sg, fix a pointx; € S;. Let p; be the smallest
number such that; C B,, (x;), and letr; = max(p;, €).

If 7, = e then (6.16) holds foB,., (x;) because
/|Du|2 dx > C_l/|Ju| de>C™! /Judx
S S 3
(6.17) > C 7Y\ deg(u;08;)| > O~

If r; > ¢, then the definition of; implies thatdB,.(x;) N S; # 0 for everyr < r;.

Also, (6.13) implies tha#{' (9B, N U) > e for everyr > . So Lemma 2.3
implies that
1 €
A E*¢ I> - Lo
(6.18) /w(m (W' > s Vel
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and this implies (6.16) for each bal,., (z;).

If two or more of these balls intersect, they can be combined into larger balls,
relabeling as necessary. One can use the Besicovitch Covering Theorem to control
the overlap and show that the larger balls still satisfy (6.16). The details of this
argument appear in [15]. ]

Proposition 6.2 differs from Proposition 3.3 of [15] in that in the lati&s,
appears in place of§; in the counterpart of (6.14). Since (6.13) need not hold
for all z € Sg, this makes it a little harder to prove (6.18) and necessitates some
assumptions about the smoothnes®éf Thus stating the conclusion in terms§
rather tharSg simplifies the result a little and eliminates the need for assumptions
aboutoU.

The lower bound (6.17) is uselessSif has degree zero, which makes it impos-
sible, in general, to covesy with balls satisfying the stated conditions. It is this
fact that forces us to introduce the generalized degree dg.

Our next result is Lemma 3.1 in [15]. It is used below when we allow the small
balls to grow and merge, to form large balls. For the sake of completeness, here we
state it and give its short proof.

Lemma 6.3. Given any finite collection of closed ballsi¥, say{C;} ,, we can
find a collection{C;} Y, of pairwise disjoint balls such that

joe Yo

Z diamC; = diamC;,
CjCél

HCZ

N < N, with strict inequality unles$C;}¥ , is pairwise disjoint.

Proof. Replace pairs of intersecting ball, C; by larger single ball§ such that
C; UC; C C and diamC = diam C; 4 diam Cj, continuing until a pairwise
disjoint collection is reached. This collection has the stated properties. O

We next show that, starting from the initial collection of balls, we can let them
grow in such a way that each ball continues to satisfy a good lower bound. We
follow the presentation of Sandier and Serfaty [29].

As above le{ B} } denote the balls found in Proposition 6.2, with radfiiand
generalized degre& := dg(u; 0B;). Define

A0}

0" := min{

Id*\

Proposition 6.4. For everyo > o*, there exists a collection of disjoint, closed
balls B(c) = {BZ}¥"°) satisfyingr? > ,

(6.19) SS c Uy, BY,
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(6.20) / Eu) dz > % A%(o) |
UnBg o

(6.21) ry > oldf| wheneveBy NoU =0,
wherer{ is the radius andl7 is the generalized degree.
Proof. Let C be the set of alb > o* for which such a collection exists.

1. Wefirstclaim thav™ € C. Indeed{ B} } be the collection of balls constructed in
Proposition 6.2. Sdf(c*) := {B; }. The Definition (6.4) ofAc easily implies that
A%(o)/o < ¢y /e for all o, so Proposition 6.2 implies that this collection satisfies
(6.19) and (6.20). Also, (6.21) is satisfied due to the definitiom*of

2.In step we will show thaf’ is closed. Le{ o™ },, be a sequence ifi and suppose
thato™ converges t@ asn tends to infinity. Since the balls are disjoint, and their
radii are at least, the total number of ball&(c,,) is uniformly bounded im.
Therefore by passing to a subsequence we may assumk(thgtis equal to a
constant, independent ofi. By passing to a further subsequence, we may assume
that the radiir;" and the centerg;" converge to-) anday, respectively, for each

k < ko. Let By, o be the closed ball centered @} with radiusr). It is clear that
this collection of balls satisfies (6.19), (6.20), and (6.21). If the balls are disjoint ,
we setB(oy) = {Bk,o}’,jﬂzl. If they are not disjoint, we apply the amalgamation
process outlined in Lemma 6.3. LEB?°} be the resulting balls and™ be their
radius. Then, by Lemma 6.3

(6.22) r? = > rmo> Y. ooldeol.

By ,0CBj By ,0CBj

Since{ By o} satisfies (6.20), this implies that

/ Ef(u) dz > / Ef(u) dz
UnB; Brocn; JUNBro

Tk,0
> —— A€
> Y M)
BkyoCB]‘
r7°
> L g€ .
= oo (Uo)

Hence B(0g) := {B]"} satisfies (6.20). Moreover,

7 = | Y diol < D ldeaol,

By,0CB; Bk,0CB;j

and this together with (6.22) implies that the balls in the collectién,) satisfy
(6.21).

3. Supposethat; € C. We will showthattherei§ > 0suchthafo;,0146] C C.
Indeed, letK; be the set of indicek such thatB;' N U = ) and set

rot

s k
TUT R A
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By (6.21), 01 < s;. If this inequality is strict, we seB(c) = B(oy) for all

o € [o1,51]. Itis clear that this collection of balls satisfies (6.19), and (6.21). Also
(6.20) follows from (6.10). So let us assume that= o1, and letK, C K; be the
indicesk which minimize the ratio' /d7*. Foro > o, set

o if ko & Ko,
2 fkeKs.

Let By be the closed ball with radiug with the same center @' and let3(o) be
the collection of these balls. Sin¢é3;"* }, are disjoint closed sets, therejis> 0
such that for alb € [o1, 01 + 61] BY’s are disjoint and

Kl(o):{k|Bg05‘U:®}:K1

T ‘=

Then, fork € Ko,
= —— dgl = do-
b= |7 = a7

and fork ¢ Ko,

o g1
Tk _ 91 Tx

g g 01
Since fork & Ky, r7' /oy > |d]'|, there isD < § < ¢, such that (6.21) is satisfied
by the collection3(o). Sincery > 7', (6.19) is also satisfied.
To verify (6.20), we observe that férZ K,, B] = B;' and (6.20) is satisfied
in light of (6.10). If, howeverk € K», then

(6.23) T=dy, ry = o|dy|,

and
B\ BJ'INnSE=10.
Then by (6.8),

E¢(u) de = E¢(u) de + / E¢(u) dx
By Byt BB

lrgl € [oa € TZ € lrgl
£ A dst| | A [ &= ) — A [ £—
o Ao T [ <|dz> @;M
o1 € To-l 01 € TU € 7’01
= 414 <|d§1|>+'dk'[A (u%)‘A <|d§1>}

T‘O-
= |dg"| AE( = )
* |7

7
=k A (0) .
LA (o)

v

Here we repeatedly used the identities (6.23) and the facBifiasatisfies (6.20).
HenceBB(c) also satisfies (6.20) for all € [o1, 071 + J].

4. We have shown that' is closed set including™ and for everyo € C, there
existsé > 0 such thafo, o + 6] C C. HenceC' = [o*, c0). O
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Remark 6.5.Foro > o*, set

B

(o)

k=1

In the above constructioR(-) is a nondecreasing and a continuous function on its
domain.

We are now ready for the

Proof of Theorem 6.1SetR := |D5|/(2||Vé|l~) ands := R/d. Leto™* be as in
the previous Lemma. We suppose thtis nonempty as there is nothing to prove
otherwise .

1. First suppose that < ¢*. The opposite inequality will be treated later in the
proof.

Consider the ball§B;;} constructed in Proposition 6.2. By (6.16) and the
definition ofo*,

E° d E d
/U (u) dx > Z /UmB* u) dz
> Z C1 * > ClO’ Z dﬁ ;

k

Letty € Dg. Then the Definition (6.2) aDg implies thatd < | deg(u; I'(to))| and
by Definition (2.8),ju| > 1/2 on I'(ty). Henced < |dg(u; I'(to))|. Moreover, by
(6.7) and (6.14),

dgi ) < S 4l < 3 jdyl.

{k : BiNQ2(to)#0} k
Hence by (6.10),

R R
Ef(u)dx > c1—d>dA | —
J #rw ez e gz ax ()

which is what we needed to prove.
2. We now assume that > o*. Consider the collection of ball§(5) provided by
Proposition 6.4. Assume towards a contradiction that

(6.24) Y <R
k
Set _
Ci={te 0 (¢ll) [ It)N[UBL] #0 }.

The definitions imply tha€ C U ¢(Bg7), and as a consequence

IC] <2|[Vllow D 77 <2|Vo|oR = |Dgl .
k
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HenceDg \ C # 0.

3. Letty € D§\ C. The definition of D5 implies that |dg(u; I'(to))|
= | deg(u; I'(to)| > d. On the other hand, the definition 6fimplies thatl"(ty) N
(UrpBY7) =0, so (6.19) and the additivity of the degree yield

d < |dg(u; (o))l < > |d7 |
{k : B Cf2(to) }

< >y ||

{k: BZnoU=0 }

<y

{k: BZNOU=0 }

by (6.21). On the other hand by (6.24),
R
d==> zk:

Therefore we conclude that (6.24) is false.
4. By the previous step”, r7 > R = da. Hence by (6.20),

/ E(u) dz > Z E¢(u) dx
v k

UNBg

>> 7 Aef)
k
> d A°(5) .

QI ‘gm

QI ‘?;EQ\
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