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ABSTRACT. We say that a function u : Rm → Rn, withm ≥ n,
has bounded n-variation if Det(uxα1

, . . . , uxαn ) is a measure for
every 1 ≤ α1 < · · · < αn ≤ m. Here Det(v1, . . . , vn) denotes
the distributional determinant of the matrix whose columns are
the given vectors, arranged in the given order.

In this paper we establish a number of properties of BnV func-
tions and related functions. We establish general (and rather
weak) versions of the chain rule and the coarea formula; we show
that stronger forms of the chain rule can fail, and we also demon-
strate that BnV functions cannot, in general, be strongly approxi-
mated by smooth functions; and we prove that if u ∈
BnV(Rm,Rn) and |u| = 1 a.e., then the Jacobian of u is an
m−n-dimensional rectifiable current.

1. INTRODUCTION

Given a function u : Rm ⊃ U → Rn with n ≤ m, we define the distributional
Jacobian [Ju] of u to be the pullback by u (in the sense of distributions) of the
standard volume form on Rn, so that

(1.1) [Ju] =
∑

α∈In,m
Det(uxα1

, . . . , uxαn )dx
α.

Here In,m is the set of all multiindices of the form α = (α1, . . . , αn) such that 1 ≤
α1 < · · · < αn ≤m. For such a multiindex, dxα := dxα1 ∧ · · · ∧ dxαn . Det
denotes the distributional determinant, the definition of which is given in Section
2. The definition of [Ju] makes sense if for example u ∈ W 1,n−1

loc ∩ L∞loc(U ;Rn).
We say that a function has locally bounded n-variation in U if for every

bounded open set V ⊂⊂ U there exists some constant C = C(V) such that

(1.2)
∑

α∈In,m

∫
ωα Det(uxα1

, . . . , uxαn ) := 〈ω, [Ju]〉 ≤ C‖ω‖C0
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for all C1 n-forms ω =
∑
α∈In,n ωα dxα with support in V . When this holds we

write u ∈ BnVloc(U ;Rn).
If C can be chosen independently of V , then we say that u has bounded n-

variation in U , and we write u ∈ BnV(U ;Rn).
If u ∈ BnVloc(U ;Rn), the Riesz Representation Theorem asserts that there

is a nonnegative Radon measure, which we denote |Ju|, and a |Ju|-measurable
function ν : U → ΛnRm such that

|ν(x)| = 1 |Ju| almost every x; and

〈ω, [Ju]〉 =
∫
ω(x) · ν(x)d|Ju|.

Moreover, |Ju| satisfies

(1.3) |Ju|(V) = sup{〈ω, [Ju]〉 |ω ∈ C1
c (V ;ΛnRm); |ω| ≤ 1 in V}

for every open V ⊂ U .
When u ∈ BnVloc we also write

∫
φ · [Ju] for 〈φ, [Ju]〉.

We will chiefly be interested in the case where [Ju] cannot be represented by
an L1 function.

Results. The definition of BnV more or less generalizes that of the classical
space BV , and many results about BV have some sort of generalization in BnV .
The first result we state is an analogue of the theorem of De Giorgi on the rectifi-
ability of the reduced boundary of a set of finite perimeter.

We write u ∈ BnVloc(U ;Sn−1) to mean that u ∈ BnVloc(U ;Rn) with |u| =
1 almost everywhere. We write ωn to denote the volume of the unit ball in Rn.

Theorem 1.1. If u ∈ W 1,n−1∩BnVloc(U ;Sn−1), then there exists an (m−n)-
dimensional rectifiable set Γ and a positive integer-valuedHm−n-measurable function
θ : Γ → Z, such that

(1.4)
∫
φ · [Ju] =ωn

∫

Γ
θφ · ν dHm−n

for all φ ∈ C0
c (Rm;ΛnRm). In addition, ν(x) represents an oriented unit n-vector

normal to Γ at Hm−n a.e. x ∈ Γ .
This theorem is an easy consequence of known results, but as far as we know

it was not explicitly pointed out before our work. We will give two proofs, one of
which is due to M. Giaquinta and G. Modica. After learning of our result, Lin
and Hang [20] gave a quick proof of a result very similar to Theorem 1.1, for
functions u ∈ W 1−1/n,n(Rm;Sn−1) such that the distributional pullback of the
volume form on Rn is a measure.

Rectifiable sets and related geometric background are discussed in many ref-
erences; see for example [17], Section 2.1.4.
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In the statement of our next result we use the notation

ua(x) =
u(x)− a
|u(x)− a| for u : Rm → Rn, a ∈ Rn.

If u is a smooth function and a is a regular value of u, then simple examples lead
one to expect that [Jua] should be a unit multiplicity measure whose support
is exactly the level set {x | u(x) = a}. More generally we think of [Jua] as a
weak, measure-theoretic representation of the level set {u(x) = a}; note in this
context that in view of Theorem 1.1, if ua ∈ BnV then [Jua] is carried by a
(m−n)-dimensional rectifiable set.

These considerations lead us to interpret (1.5) as a weak form of the coarea
formula.

Theorem 1.2. If u ∈ W 1,n−1
loc ∩L∞loc(Rm;Rn), then ua ∈ W 1,n−1

loc ∩L∞ for a.e.
a ∈ Rn, and

(1.5) [Ju] = 1
ωn

∫

a∈Rn
[Jua]da

in the sense of distributions.
If u ∈ W 1,p

loc ∩ L∞loc(Rm;Rn) for some p > n − 1, and if F ∈ W 1,∞(Rn;Rn)
and w = F(u), then

(1.6) 〈ω, [Jw]〉 = 1
ωn

∫

a∈Rn
JF(a)〈ω, [Jua]〉da

for all ω ∈ C1
c (Rm;ΛnRm). This remains true if u ∈ W 1,n−1

loc ∩ C0, or if u ∈
W 1,n−1 ∩ L∞loc and F ∈ C1.

If, in addition, u ∈ BnV(Rm;Rn) and either u ∈ W 1,p for some p > n, or
|u| = 1 a.e., then ua ∈ BnV(Rm;Sn−1) for a.e. a ∈ Rn, and

(1.7) |Ju|(A) = 1
ωn

∫

a∈Rn
|Jua|(A)da

for every Borel set A ⊂ Rm.

We refer to (1.5) as the weak coarea formula, and to (1.7) as the strong coarea
formula.

Remark 1.3. Observe that (1.5) and (1.6) do not require u ∈ BnVloc.

Our next result details some ways in which BnV fails to inherit certain nice
properties of BV .
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Theorem 1.4. Suppose that u ∈ BnVloc∩L∞(Rm;Rn). If V ⊂ Rm is any open
set, then

|Ju|(V) ≤ 1
ωn

∫

Rn
|Jua|(V)da(1.8)

≤ lim inf
ε→0

{
|Juε|(V) : uε smooth, ‖uε‖L∞ ≤ C,(1.9)

uε → u in W 1,n−1}.

Either of the inequalities above can be strict if n ≥ 2. In particular, there exist
functions w, w̃ such that, for any open set U containing the origin,

|Jw|(U) = 0 and
∫

Rn
|Jwa|(U)da = +∞,(1.10)

∫

Rn
|Jw̃a|(U)da = 0 and(1.11)

lim inf
ε→0

{|Jvε|(U) : vε smooth, ‖vε‖L∞ ≤ C, vε → w̃ in W 1,n−1} = +∞.

Finally, there exist functions u ∈ BnV and F ∈ C∞ such that F(u) .∈ BnV .

Several of the examples we give of possible pathological behavior are drawn
from earlier work of Giaquinta, Modica, and Soucek [16].

Related work. A lot of attention has been devoted to distributional determi-
nants in the past 10 years. In particular, Stefan Müller, motivated originally by
the relevance of weak determinants in nonlinear elasticity (see for example Ball
[5]) wrote a series of papers [24], [25], [26], [27] investigating questions of weak
continuity, the relationship between pointwise and distributional determinants,
integrability properties, and so on. Some of these questions were subsequently
taken up by Coifman, Lions, Meyer, and Semmes [10], as part of a more general
investigation of the relationship between compensated compactness and Hardy
spaces.

Another source of interest in distributional determinants has been questions
relating to harmonic maps with singularities, notably the work of Brezis, Coron,
and Lieb [8], later recast in a more general setting by Almgren, Browder, and Lieb
[1]. Later work of Bethuel [6], motivated by a conjecture of Brezis, showed that a
map u ∈ H1(B3, S2) can be approximated by smooth S2-valued functions if and
only if the distributional Jacobian [Ju] vanishes.

The work of Giaquinta, Modica, and Souček on Cartesian currents (see [17],
[18]) provided an appropriate weak setting for non-scalar variational problems
with global topological or geometric constraints, including problems in both non-
linear elasticity and harmonic maps. In many situations the distributional Jacobian
[Ju] of a map u : Rm → Rn is essentially the projection onto Rm of the vertical
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part of a Cartesian current that, roughly speaking, corresponds to the graph of
u with holes “filled in”. Thus our work is very closely related to Cartesian cur-
rents. Indeed, some of our ideas are implicit in the work of Giaquinta, Modica,
and Souček, and some of our results become very transparent when viewed in the
framework of Cartesian currents. These connections are discussed in more detail
in Section 6.

Organization. Section 2 gives the definition and basic properties of distri-
butional Jacobians, and also summarizes some notation. Section 3 contains a
number of examples, some of which are part of the proof of Theorem 1.4. Section
4 is mainly devoted to the proof of Theorem 1.2, though it also cleans up some
loose ends in Theorem 1.4. The proofs of these two theorems are summarized at
the beginning of Section 4.

In Sections 5 and 6 we give two proofs of Theorem 1.1. The first uses slicing
properties of [Ju], and the second, due to M. Giaquinta and L. Modica, uses
some ideas about Cartesian currents.

Acknowledgments. We gratefully acknowledge useful and interesting discus-
sions with Giovanni Alberti, Luigi Ambrosio, and Häım Brezis. The rectifiability
proof in Section 6 was communicated to us by M. Giaquinta and L. Modica,
and we are very grateful to them for pointing it out. We are also grateful to an
anonymous referee for some useful suggestions.
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tional Science Foundation through the Center for Nonlinear Analysis at Carnegie
Mellon University, and by NSF grant 98-17525 and ARO grant DAAH04-95-1-
0226. Parts of this paper were completed during visits of Jerrard to the Center
for Nonlinear Analysis, and other parts while Soner was visiting the Feza Gursey
Institute for Basic Sciences in Istanbul.

2. DEFINITIONS AND BASIC PROPERTIES

Definitions. For sufficiently smooth functions u : Rm → Rn, we define an
n− 1 form

(2.1) j(u) :=
∑

α∈In−1,m

det(u,uxα1
, . . . , uxαn−1

)dxα.

For our purposes, “sufficiently smooth” will mean that u belongs to a Sobolev
space in which j(u) is necessarily locally integrable, for exampleu ∈ W 1,n−1

loc ∩L∞loc

or u ∈ W 1,p
loc , p ≥mn/(m+ 1). One could relax this requirement somewhat; we

will not pursue this here.
We will write the components of j(u) as jα(u), so that

j(u) =
∑

In−1,m

jα(u)dxα.
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We next define

(2.2) [Ju] := 1
n
dj(u) = 1

n

m∑

i=1

∑

α∈In−1,m

∂xijα(u)dxi ∧ dxα

in the sense of distributions. Here d is the exterior derivative. Thus, for any
ω ∈ C1

c (Rm;ΛnRm)

(2.3) 〈ω, [Ju]〉 = 1
n

∫
d∗ω · j(u),

where d∗ is the formal adjoint of d. We will write the components of [Ju] as
[Jαu], so that [Ju] =

∑
α∈In,m[Jαu]dxα. The dot product “·” appearing in

(2.3) is defined as follows. We write ΛkRm to denote the linear space spanned
by {dxα}α∈Ik,m . We endow ΛkRm with the Euclidean inner product, making
{dxα}α∈Ik,m an orthonormal basis. We will write the inner product as either
v ·w or (v,w), according to convenience. For v ∈ ΛkRm, we write |v| to mean
the standard Euclidean norm (v, v)1/2. We will normally identify ΛkRm with its
dual, via the inner product.

If u is smooth enough, say C2, then [Ju] = (1/n)dj(u) can be computed by
differentiating j(u) pointwise. This is easy to carry out, using the multilinearity
of the determinant. In this case all second derivatives cancel, and we obtain exactly

[Ju] =
∑

α∈In,m
det(uxα1

, . . . , uxαn )dx
α.

(Strictly speaking, we should write the left-hand side as a Radon-Nikodym deriv-
ative d[Ju]/dLm). An approximation argument shows that this remains valid
if u ∈ W 1,n(Rm;Rn). More generally, Müller [25] has shown that this identity
holds whenever [Ju] can be represented as an L1 function.

Basic properties. First note that BnV is not a linear space; indeed, it is not
even convex. To see this, suppose that u = (u1, u2) ∈ W 1,1 ∩ L∞(R2;R2) is
a function that does not belong to B2V . We can write u = 1

2v1 + 1
2v2, where

v1 := (2u1,0) and v2 := (0,2u2). One easily sees that [Jvi] = 0, i = 1, 2, so
that vi ∈ B2V for i = 1, 2.

We next mention the following result.

Lemma 2.1 (Lower semicontinuity). Suppose uk ∈ BnVloc(Rm;Rn), and
assume that uk → u in L1

loc and j(uk) ⇀ j(u) weakly in L1
loc.

Then u ∈ BnVloc, and

(2.4) |Ju|(V) ≤ lim inf |Juk|(V)
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for every open set V ⊂ Rm.
More generally, (2.4) remains true if we merely know that [Juk] ⇀ [Ju] weak-*

in C1
c (Rm;ΛnRm)∗, (where one or both sides of the inequality may now equal +∞).

Proof. We prove only the first assertion, as the proof of the second is essen-
tially the same.

Suppose that ω ∈ C1
c (V ;ΛnRm) and |ω| ≤ 1 in V . Then

1
n

∫
d∗ω · j(u) = lim

k

1
n

∫
d∗ω · j(uk) = lim

k

∫
ω · [Juk] ≤ lim inf

k
|Juk|(V).

In view of (1.3), this implies the conclusion of the proposition. !

It is well-known that Jacobians have certain weak continuity properties. Some
of these are given in Lemma 4.6.

A simple but useful fact is the following result.

Lemma 2.2.
(i) If u ∈ W 1,m(Rm;Sn−1), then [Ju] = 0.

(ii) If u ∈ W 1,n−1 ∩ C0(Rm;Sn−1), then u ∈ BnV and [Ju] = 0.

Remark 2.3. For (ii) we need not assume that u ∈ BnV .

Proof. First assume that u is smooth. Then the condition |u| ≡ 1 implies
that Du(x) has rank at most n− 1 at every x. It follows that all n×n minors of
Du(x) vanish and thus that [Ju] = 0.

It is well-known that smooth functions are dense in W 1,m(Rm;Sn−1). For
a proof, see for example [17], Section 5.5.1. It is also clear that smooth func-
tions are dense in W 1,n−1 ∩ C0(Rm;Sn−1). So in either case the result follows by
approximation. !

Stefan Müller [27] shows that given any integer n > 1 and any α ∈ (0, n),
there exists a continuous function u ∈ W 1,p(Rn;Rn) for all p ∈ [1, n) such that,
in our notation, [Ju] is a nonnegative measure carried by a set S of Hausdorff
dimension α. In our language, the functions constructed by Müller belong to
BnV(Rn;Rn).

Our results imply that, for general u ∈ BnV(Rm;Rn), the s-dimensional
density of [Ju] is identically zero for every s < m − n. Müller’s construction
shows that for any s ∈ [m − n,m], [Ju] can have a nontrivial s-dimensional
part.

Miscellaneous notation. We summarize some notation that we will use
throughout this paper.

We will always use ωn to denote the volume of the unit ball in Rn. Thus
nωn is the (n − 1)-volume of the unit sphere Sn−1. We also sometimes use
ω to denote a generic differential form; we believe that this will not cause any
confusion.
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We write Bkr (a) to denote the open ball {x ∈ Rk : |x − a| < r}. We will
normally omit the superscript k when the dimension of the ball is clear.

When considering functions u : Rn → Rn we use the terms distributional
determinant and distributional Jacobian interchangeably. For u : Rm → Rn with
m > n, we only use the term distributional Jacobian.

When A is a subset of some Euclidean space, we write χA to denote the char-
acteristic function of A, defined by

χA(x) :=
{

1 if x ∈ A,
0 if not.

The Hodge star operator * : ΛkRm → Λm−kRm is defined by

*dxα = sgn(αβ)dxβ,

for the unique β ∈ Im−k,m such that (α1, . . . , αk, β1, . . . , βm−k) is a permutation
of (1, . . . ,m). Here sgn(αβ) is the sign of the permutation. It is not hard to
check that

dxα ∧*dxα = dx1 ∧ · · · ∧ dxm, * * dxα = (−1)k(m−k) dxα.

If M is a smooth, oriented codimension k manifold of Rm and ν is an oriented
normal k-vector at some point of M, then *ν := τ is the tangent (m− k)-vector
at the same point, appropriately oriented.

There is a classical formula for action of the formal adjoint on k-forms, in
terms of the Hodge-* operator:

(2.5) d∗ = (−1)m(m−k)−(m−k+1) * d * .

3. EXAMPLES

In this section we collect some examples. Many of these are known to experts.
For u : R2 → R2 it is convenient to use the identity

∫
φ[Ju] =

∫
∇×φ · j(u)dx, ∇×φ := (φx2 ,−φx1).

One can check that this is equivalent to the definition we have given above.

Example 3.1. Suppose that u : R2 \ {0} → R2 is a function which is ho-
mogeneous of degree zero and smooth away from the origin. Then u can be
written using polar coordinates in the form u(reiθ) = γ(θ), for some smooth
2π-periodic function γ : R→ R2. Using the chain rule,

uxi = γ
′(θ)θxi and so j(u) = Dθ det(γ(θ), γ′(θ)).
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From this, one computes that, for any φ ∈ C1
c (R2),

∇×φ · j(u) = −1
r
∂φ
∂r

det(γ(θ), γ′(θ)).

Integrating, we obtain
∫

R2
∇×φ · j(u) =

∫ 2π

0

∫∞

0
∇×φ · j(u)r dr dθ

=
∫ 2π

0
det(γ(θ), γ′(θ))

(∫∞

0
−∂φ
∂r

dr
)
dθ

= φ(0)
∫ 2π

0
det(γ(θ), γ′(θ)).

We conclude that

[Ju] = 1
2
∇× j(u) = Aδ0, A := 1

2

∫ 2π

0
det(γ(θ), γ′(θ)).

Note that A is just the area enclosed by the image of γ (counting sign and multi-
plicity).

The above example is a special case of the following example.

Example 3.2. Now consider a function u : Rn → Rn which is homogeneous
of degree zero and smooth away from the origin. Given a smooth, compactly
supported n-form φ(x)dx, we get from the definitions that
∫
φ·[Ju] = − 1

n

∫
Dφ·(det(u,ux2 , . . . , uxn), . . . ,det(ux1 , . . . , uxn−1 , u))dx.

We let j̃u denote the vector of determinants in the integrand. Since u is homoge-
neous of degree zero, j̃u is homogeneous of degree 1−n. We claim that

(3.1) Dφ(x) · j̃u(x) =
(
Dφ · x|x|

)(
j̃u(x) ·

x
|x|

)
.

This is obvious if x has the form x = (a,0, . . . ,0), a .= 0, since then ux1(x) = 0
by homogeneity. The general case follows by a change of coordinates. Using (3.1)
and again the homogeneity of u we get

∫
φ · [Ju] = − 1

n

∫∞

0

∫

∂B1

(Dφ(ry) ·y)(j̃u(y) ·y)dHn−1(y)dr .

Since Dφ(ry) ·y = (d/dr)φ(ry), integrating first with respect to r gives
∫
φ · [Ju] = φ(0) 1

n

∫

∂B1

y · j̃u(y)dHn−1(y) =: Vφ(0),



654 R.L. JERRARD & H.M. SONER

where the constant V is defined in the obvious way. In other words, [Ju] = Vδ0.
We give a geometric interpretation to V as follows: Let v(x) = |x|u(x), so that
v is Lipschitz. Then

∫

B1

detDv dx = 1
n

∫

B1

divj̃v dx =
1
n

∫

∂B1

j̃v(y) ·y dHn−1(y).

However, one easily checks that for y ∈ ∂B1, j̃v(y) · y = j̃u(y) · y . Thus
V =

∫
B1

detDv. If we write u in the form u(x) = γ(x/|x|) for some smooth
function γ : Sn−1 → Rn, then one can think of V as the volume enclosed by the
image of γ, counting sign and multiplicity.

Example 3.3. We record some consequences of the previous example.
First note that ifumaps Rn into Sn−1, then the volume enclosed by the image

of the unit sphere is an integer multiple of the volumeωn of the unit ball, and so
[Ju] = kωnδ0 for some integer k.

Next consider a map v : Rn → Sn−1, smooth away from the origin. We let
vλ(x) = v(λx), and we assume that as λ→ 0, vλ converges locally in W 1,n, say,
to a limit u, which is necessarily homogeneous of degree zero. Lemma 2.2 implies
that [Jvλ] vanishes away from the origin for every λ. Let φ be a smooth test
function, and write φ̃λ(x) = φ(λx)χ(x) for some smooth, compactly supported
function χ that equals one in the unit ball, From the definition, one checks that

∫
φ · [Jv] =

∫
φ̃λ · [Jvλ] = lim

λ→0

∫
φ̃λ · [Jvλ].

Clearly φ̃λ → φ(0)χ as λ → 0, and we have assumed that vλ converges to a ho-
mogeneous function u. Thus weak continuity properties of Jacobians, see Lemma
4.6, imply that [Jv] = [Ju] = kωnδ0 for some integer k.

Finally, suppose that w is a map Rn → Sn−1, smooth away from a finite
collection of singular points {a1, . . . , am}, and that around each singularity w
looks locally like a translate of a function of the form of v above. Again the
Jacobian [Jw] must vanish away from the singular points, and so we conclude
that

(3.2) [Jw] =ωn
∑
diδai

for certain integers d1, . . . , dm.
The rectifiability theorem, Theorem 1.1, shows that in fact (3.2) holds for

every w ∈ BnV(Rn;Sn−1), without ad hoc smoothness assumptions of the sort
we introduced above.

Example 3.4. Suppose u ∈ W 1,1(R3;S1) is a map for which there is a
smooth, connected, embedded, closed curve Γ ⊂ R3 with u smooth away from Γ ,
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and such that u has winding number 1 on appropriately oriented curves around
Γ . Then, for almost every θ ∈ [0,2π), the set

Mθ := {x ∈ R3 | u(x) = eiθ}

is a 2-dimensional submanifold with boundary Γ , and j(u)/|Du| is a smooth
oriented unit normal to Mθ, which we will denote νθ.

We will compute
∫
φ · [Ju] using Federer’s coarea formula (see for example

[11, Section 3.4]). Note that the Jacobian of u as a map from R3 to S1 is just
|Du| = |j(u)|, and so the coarea formula yields

∫
φ · [Ju] = 1

2

∫
∇×φ · j(u) = 1

2

∫
∇×φ · νθ|Du|(3.3)

= 1
2

∫ 2π

0

(∫

Mθ
∇×φ · νθ dH 2(x)

)
dθ,

where H 2 as usual is the 2-dimensional Hausdorff measure.
Since almost all the level sets Mθ share the same boundary Γ , Stokes’ theorem

implies that ∫

Mθ
∇×φ · νθ dH 2(x) =

∫

Γ
φ · τ dH 1(x)

for almost every θ, where τ is the appropriately oriented unit tangent vector along
Γ . Thus (3.3) can be integrated to give

∫
φ · [Ju] = π

∫

Γ
φ · τ dH 1(x).

Thus in this case [Ju] = πτH 1|Γ .
Theorem 1.1 shows that this situation is in some way typical for functions in

B2V(R3;S1), and indeed for functions in BnV(Rm;Sn−1) whenever m > n: the
Jacobian measure [Ju] is supported on a codimension n rectifiable set that may
be thought of as as the topological singular set of u.

We now present several examples illustrating various pathologies, including
the possible failure of the strong coarea formula. These constitute the bulk of
the proof of Theorem 1.4. Example 3.8 is drawn from Giaquinta, Modica, and
Souček [16], and many of the other examples are loosely inspired by the same
paper.

Example 3.5. Define a homogeneous function u(reiθ) = γ(θ), where γ is
a 2π-periodic function mapping onto [0,2π) onto a “figure 8”, circling the ball
Bright = B1((1,0)) once in an orientation-reversing sense, and the ball Bleft =
B1((−1,0)) once in the opposite sense, for example

γ(θ) =
{
(−1,0)+ (cos 2θ, sin 2θ) if 0 ≤ θ ≤ π,
(1,0)+ (− cos 2θ, sin 2θ) if π ≤ θ ≤ 2π.
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Then the signed area enclosed by γ is zero, and so [Ju] = 0, and hence |Ju| = 0.
Also, one easily sees that

(3.4) [Jua] =





−πδ0 if a ∈ Bright,
πδ0 if a ∈ Bleft,
0 if a .∈ B̄right ∪ B̄left,

so |Jua| = πδ0 if a ∈ Bright ∪ Bleft, and |Jua| = 0 otherwise. As a result,

0 = |Ju|(V) < 1
ωn

∫

R2
|Jua|(V)da = 2π

for any V containing the origin.

Example 3.6. By a fairly standard construction, which we sketch below, one
can build a “dipole” that has singularities like that of Example 3.5 above at two
points, with opposite orientation, and which in addition is constant outside of
a compact set. More precisely, given two points p and n in R2, for example
p = ( 1

2 ,0) = −n, we construct a function v which is constant outside the unit
ball, and satisfying

[Jv] = 0
and

[Jva] =





πδp −πδn if a ∈ Bright,
πδn −πδp if a ∈ Bleft,
0 otherwise.

We construct v as follows. Let u be a function of the form u(reiθ) = γ(θ),
for some γ that covers the “figure 8” as in Example 3.5. Assume further that
γ(θ) ≡ (0,0) for all θ ∈ [π/4,7π/4]; for example

γ(θ) =





(−1,0)+ (cos 8θ, sin 8θ) if 0 ≤ θ ≤ π/4,
(1,0)+ (− cos 8θ, sin 8θ) if −π/4 ≤ θ ≤ 0,
(0,0) if π/4 ≤ θ ≤ 7π/4.

Now define

v(x1, x2) =





u
(
x1 +

1
2
, x2

)
in {x1 ≤ 0},

u
(1

2
− x1, x2

)
in {x1 ≥ 0}.

This function is Lipschitz away from {p,n} and maps R2 \ {p,n} into a set of
measure zero, so it is clear that the support of [Jv] is contained in {p,n}. It is
then easy to see from Example 3.5 that in fact [Jv] = 0.
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Similarly, if a .∈ image(γ), then va is Lipschitz away from {p,n}, so one
easily verifies that the support of [Jva] is contained in {p,n}. It is then easy to
check, following Example 3.5, that [Jva] is as claimed above.

Finally, it is not hard to see that v = (0,0) outside the unit ball B1(0).

Example 3.7. Now we use scaling properties to construct, from the previous
example, a function w such that [Jw] = 0 but [Jwa] is not a measure for any
a ∈ Bright ∪ Bleft. Let v be the function constructed in Example 3.6 above, and
for ε > 0 let vε(x) := v(x/ε). Note that for each ε, vε ≡ (0,0) outside the ball
Bε(0), and

∫

Bε(0)
|vε|p + |Dvε|p dx ≤ ε2−p

∫

B1(0)
|v|p + |Dv|p dx = Cε2−p.

Now let εk := 2−k, define points qk ∈ R2 by qk = (22−k,0), and let

w(x) =
{
vεk(x − qk) if |x − qk| ≤ 21−k for some k ≥ 0,
(0,0) if |x − qk| > 21−k for all k ≥ 0.

Then w ∈ W 1,p
loc (R2;R2) for all p < 2 and [Jw] = 0, but

(3.5) [Jwa] =





π
∑
(δpk − δnk) if a ∈ Bright,

π
∑
(δnk − δpk) if a ∈ Bleft,

0 otherwise.

for certain sequences of points nk, pk → 0. In fact pk = qk + εkp and nk =
qk + εkn. In particular, if a ∈ Bright ∪ Bleft, [Jwa] is a distribution that belongs
to (C1

c )∗, but it is not a measure.
Thus w satisfies (1.10).

Example 3.8. We now indicate the construction of a function satisfying
(1.11). The basic idea is due to Giaquinta, Modica, and Souček [16], to which we
refer the reader for more details.

Their example is a function u(reiθ) = γ(θ) that is homogeneous of degree
zero, such that the image of γ is a figure 8 curve, as in the previous examples. In
this case, we assume that γ covers each half of the figure 8 twice, with opposite
orientations. For example, we could take

γ(θ) =





(−1,0)+ (cos 4θ, sin 4θ) if 0 ≤ θ ≤ π/2,
(1,0)+ (− cos 4θ, sin 4θ) if π/2 ≤ θ ≤ π,
(−1,0)+ (cos 4θ,− sin 4θ) if π ≤ θ ≤ 3π/2,
(1,0)+ (− cos 4θ,− sin 4θ) if 3π/2 ≤ θ ≤ 2π.
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Then for each a ∈ Bright ∪ Bleft, γ circles a twice, with opposite orientations. It
follows that [Jua] = 0 for almost every a ∈ R2, and hence that

∫

a∈R2
|Jua|(V)da = 0

for every set V .
But Giaquinta, Modica, and Souček prove that, if V is any open set containing

the origin and uε is any approximating sequence, then

lim inf |Juε|(V) ≥ 4π.

Following the arguments of Example 3.6, one can construct a function v
which is constant outside a bounded set, say the unit ball, and having singularities
like that of u at two points {p,n}. One can then use simple scaling arguments,
as in Example 3.7, to create a new function w̃ ∈ W 1,p ∩ L∞ ∩ B2V(R2;R2) for
all p < 2, which has an infinite sequence of such “dipoles” on smaller scales that
accumulate, for example, at the origin. Such a function w̃ satisfies (1.11).

Example 3.9. As in Example 3.5 let Bright := B1((1,0)) and Bleft = B1((−1,0)).
Let F be a smooth function R2 → R2 and c ∈ R a nonzero number such that

∫

Bleft
JF(a)−

∫

Bright

JF(a) = c.

Now let û = F(u), where u is the function defined in Example 3.5. Using the
distributional chain rule (1.6) and the explicit computation of [Jua] given in
(3.4), we find that

[Jû] = 1
π

∫

R2
JF(a)[Jua]da = δ0

(∫

Bleft
JF(a)−

∫

Bright

JF(a)
)
= cδ0.

In particular, the property [Ju] = 0 is not preserved under composition with
smooth functions.

In a similar spirit, define ŵ = F(w), where w is the function constructed in
Example 3.7. Using (3.5) and the distributional chain rule we compute that

[Jw̃] = c
∑
(δnk − δpk).

Thus, w ∈ BnV with [Jw] = 0, and F is smooth, but ŵ = F(w) .∈ BnV .

4. COAREA FORMULA AND CHAIN RULE

In this section we give the proof of Theorem 1.2, and we complete the proof of
Theorem 1.4. The main part of the proofs are spread around in a number of
lemmas. We summarize here both proofs.
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Proof of Theorem 1.2. The weak coarea formula (1.5) is proved in Lemma
4.3. The weak chain rule (1.6) is proved in Lemma 4.5. The strong coarea formula
(1.7) is proved in Lemma 4.4 for u ∈ W 1,p(Rm;Rn), p > n and in Lemma 4.8
for u ∈ BnV(Rm;Sn−1). !

Proof of Theorem 1.4. The inequality (1.8) is proved in the first step of the
proof of Lemma 4.4.

To prove (1.9), fix bounded some open set V . The Approximation Lemma
4.9 guarantees that, after passing to a subsequence {uk}, we may assume that
[Juak] ⇀ [Jua] weak-* in C1

c (Rm;ΛnRm)∗ for almost every a ∈ Rn. Then from
the lower semicontinuity of Jacobians, Lemma 2.1, we deduce that

|Jua|(V) ≤ lim inf
k

|Juak|(V).

Hence Fatou’s Lemma and the strong coarea formula (1.7) (which applies to the
smooth functions uk) allow us to conclude

1
ωn

∫

Rn
|Jua|(V)da ≤ lim inf

1
ωn

∫

Rn
|Juak|(V)da = lim inf |Juk|(V).

The examples whose existence is asserted in Theorem 1.4 are all constructed
in the previous section. In particular, see Example 3.7 for (1.10) and Example
3.8 for (1.11). Finally, Example 3.9 shows that membership in BnV need not be
preserved under composition with smooth functions. !

We use the notation ua(x) := (u(x)−a)/(|u(x)−a|). Note the following
result.

Lemma 4.1. If u ∈ W 1,n−1 ∩ C0(Rm;Rn) and ua ∈ W 1,n−1(Rm;Rn), then
the support of [Jua] is contained in {x | u(x) = a}.

Proof. Let O be the complement of {u = a}. The restriction of ua to O
belongs to W 1,n−1 ∩ C0(O;Sn−1), so the conclusion follows immediately from
Lemma 2.2. !

Remark 4.2. By comparing (1.7) with Federer’s coarea formula and using
Lemma 4.1, one can easily show that if u ∈ W 1,∞, then |Jua| =ωnHm−n|u−1(a)
for a.e. a ∈ Rn.

The key calculation in the proof of Theorem 1.2 is contained in the following
lemma.

Lemma 4.3. If u ∈ W 1,n−1
loc ∩L∞(Rm;Rn), then ua ∈ W 1,n−1

loc ∩L∞(Rm;Rn)
for a.e. a, and the distributional coarea formula (1.5) holds.

Proof.
1. For every positive integer M, the set {x ∈ Rm : |x| ≤ M, u(x) = a} can

have positive Lm measure for at most countably many a ∈ Rn. Thus {x ∈ Rm |
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u(x) = a} can have positive measure for at most countably many a. It follows
that for a.e. a ∈ Rn, ua(x) is well-defined for a.e x ∈ Rm.

2. Let R := ‖u‖L∞ + 1. For y , a ∈ Rn, let Pa(y) = (y − a)/|y − a|. If
|a| ≥ R, then Pa is smooth on the essential range of u, and so in this case clearly
ua(x) = Pa(u(x)) belongs to ua ∈ W 1,n−1

loc , and Dua = DPa(u)Du.
For a ≤ R, let va = DPa(u)Du. We want to show that va is the distribu-

tional gradient of ua, and that va ∈ Ln−1 for a.e. a.
To verify the latter point, fix some bounded open set U ⊂ Rm and compute

∫

{a:|a|≤R}

∫

U
|va|n−1 dxda = C

∫

{a:|a|≤R}

∫

U

|Du|n−1

|u− a|n−1 dxda

= C
∫

U

∫

{a:|u(x)−a|≤R}

|Du|n−1

|a|n−1 dadx

≤ C
∫

U

∫

{a:|a|≤2R}

|Du|n−1

|a|n−1 dadx

≤ C
∫

U
|Du|n−1 dx <∞.

Thus Fubini’s theorem implies that va ∈ Ln−1
loc for a.e. a.

Also, define

uεa = Pεa ◦u, Pε(y) =





1
ε
(y − a) if |y − a| ≤ ε,

Pa(y) if |y − a| ≥ ε.

Then the chain rule implies that uεa ∈ W 1,n−1, and it is clear that uεa → ua
almost everywhere as ε → 0, as long as {x ∈ Rm | u(x) = a} has measure zero.
If in addition va ∈ Ln−1

loc , then a short computation involving the dominated
convergence theorem implies that Duεa → va in Ln−1

loc . We conclude that for
almost every a, va is the distributional gradient of ua, and hence that ua ∈
W 1,n−1

loc .

3. It is a fact that for any y ∈ Rn and R > |y|,

(4.1) y = 1
ωn

∫

{z∈Rn:|z|<R}

y − z
|y − z|n dz.

One way to see this is to differentiate both sides of the identity

1
(2−n)ωn

∫

BR
|y − z|2−n dz = 1

2
|y|2 + n

2(2−n)R
2, if R > |y|, n ≥ 3,

which is due to Newton, at least for n = 3. A similar identity holds if n = 2.
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Our choice of R implies that |u| < R a.e., so we can use (4.1) to write, for
a.e. x ∈ Rm,

j(u) =
∑

α∈In−1,N

det(u,uxα1
, . . . , uxαn−1

)dxα

=
∑

α∈In−1,N

det
(( 1
ωn

∫

|a|≤R

u− a
|u− a|n da

)
, uxα1

, . . . , uxαn−1

)
dxα.

Moreover, using the fact that the determinant is linear in each column,

det
(( 1
ωn

∫

|a|≤R

u− a
|u− a|n da

)
, uxα1

, . . . , uxαn−1

)

= 1
ωn

∫

|a|≤R
det
( u− a
|u− a|n ,uxα1

, . . . , uxαn−1

)
da

= 1
ωn

∫

|a|≤R
det
( u− a
|u− a| ,

uxα1

|u− a| , . . . ,
uxαn−1

|u− a|

)
da

= 1
ωn

∫

|a|≤R
det
(
ua,ua,xα1

, . . . , ua,xαn
)
da.

The last equality follows from that fact that

ua,xi =
uxi

|u− a| +ua
(
ua ·

uxi
|u− a|

)
=

uxi
|u− a| + vector parallel to ua.

The terms involving vectors parallel to ua contribute nothing, because of course
det(v1, . . . , vn) = 0 if two columns vi, vj are parallel.

4. Assembling the above calculations, we find that

j(u) = 1
ωn

∫

|a|≤R
j(ua)da,

which implies that

[Ju] = 1
ωn

∫

|a|≤R
[Jua]da

as distributions.
To complete the proof of (1.5), we only need to check that [Jua] = 0 for all

a such that |a| ≥ R = ‖u‖L∞ + 1.
For such a, define uε := ηε ∗ u, where ηε is a standard mollifier. Then

|uε − a| is bounded away from zero for all sufficiently small ε, so one easily
sees that uεa := (uε − a)/|uε − a| is globally C∞ and converges to ua strongly
in W 1,n−1

loc . Since |uεa| ≡ 1, Lemma 2.2 implies that [Juεa] = 0. Moreover, the
convergence ofuεa toua implies that [Juεa]→ [Jua] in the sense of distributions,
so we are finished. !
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We next demonstrate that the strong coarea formula (1.7) holds for sufficiently
differentiable functions.

Lemma 4.4. If u ∈ W 1,p
loc (Rm;Rn) for some p > n, then

ua ∈ BnVloc(Rm;Sn−1)

for a.e. a ∈ Rn, and the strong coarea formula (1.7) holds.

Proof.
1. For any Radon measure µ and any Borel set A,

µ(A) = inf{µ(O) | O open, A ⊂ O}.

So it suffices to prove (1.7) under the assumption that A is open. For such sets,

|Ju|(A) = sup
{∫

ω · [Ju] |ω ∈ C1
c (A;ΛnRm), |ω| ≤ 1

}

= sup
{ 1
ωn

∫

a∈Rn

∫
ω · [Jua]da |ω ∈ C1

c (A;ΛnRm), |ω| ≤ 1
}

≤ 1
ωn

∫

a∈Rn
|Jua|(A)da.

This argument in fact is valid for any u ∈ W 1,n−1 ∩ L∞. Thus in particular we
have established (1.8).

2. We now prove the other inequality. For the time being assume that u is
C1, and fix an open set A ⊂ Rm such that |Ju|(A) < ∞. We define a measure µ
on Rn by setting µ(B) = |Ju|(u−1(B)∩A).

Let µac denote the part of µ that is absolutely continuous with respect to the
Lebesgue measure. General theorems on differentiation of Radon measures (see
for example Evans and Gariepy [11, Chapter 1]) imply that

µac =m(a)Ln(da) =m(a)da, for m(a) := lim
ε→0

µ(Bε(a))
ωnεn

.

In particular, the limit that defines m(a) exists and is finite for Ln almost every
a.

Now define

(4.2) uεa(x) :=





1
ε
(u− a) if |u− a| ≤ ε,
u− a
|u− a| if |u− a| ≥ ε.
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Since u is C1, it is clear that

Juεa(x) :=





1
εn
Ju if |u− a| < ε,

0 if |u− a| > ε.

It follows that for every ε > 0,

1
εn
µ(Bε(a)) =

1
εn

∫

{x∈A:|u(x)−a|<ε}
|Ju|dx(4.3)

=
∫

x∈A
|Juεa|dx = |Juεa|(A).

Recall also that ua ∈ W 1,n−1
loc for a.e. a ∈ Rn, by Lemma 4.3. For such a,

one readily checks that uεa → ua in W 1,n−1
loc and uεa ⇀ ua weak-* L∞ as ε → 0,

and these imply that j(uεa) ⇀ j(ua) weakly in L1. By lower semicontinuity it
follows that

(4.4) lim inf
ε→0

|Juεa|(A) ≥ |Jua|(A), a.e. a ∈ Rn.

At this stage it is still possible that both sides of the above inequality are infinite.

3. Thus for a.e. a ∈ Rn,

(4.5) m(a) = lim
ε→0

µ(Bε(a))
ωnεn

= lim
ε→0

1
ωn

|Juεa|(A) ≥
1
ωn

|Jua|(A),

using (4.3) and (4.4). In particular this shows that |Jua| is a measure for a.e.
a ∈ Rn. So

(4.6) |Ju|(A) ≥ µac(Rn) =
∫

a∈Rn
m(a)da ≥ 1

ωn

∫

a∈Rn
|Jua|(A)da.

4. It remains to prove (4.6) for u merely belonging to W 1,p
loc (Rm;Rn), for

p > n.
Fix such a function u, let A be any open set, and let {uk} be a sequence of

smooth approximators converging to u locally in W 1,p. Since u, uk ∈ W 1,p, it is
clear that |Ju| and |Juk| are absolutely continuous with respect to Lm. We write
|Ju(x)| to indicate the Radon-Nikodym derivative ∂|Ju|/∂Lm, and similarly
|Juk(x)|. Then the W 1,p convergence implies that

(4.7) |Ju|(A) =
∫

A
|Ju(x)|dx = lim

k

∫

A
|Juk(x)|dx = lim

k
|Juk|(A).
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Moreover, Lemma 4.9, to be proven at the end of this section, together with
Lemma 2.1, shows that for a.e a ∈ Rn,

|Jua|(A) ≤ lim inf
k

|Juak|(A).

Thus by Fatou’s lemma and the results of Step 3,
(4.8)

1
ωn

∫

Rn
|Jua|(A)da ≤ lim inf

k

1
ωn

∫

Rn
|Juak|(A)da ≤ lim inf

k
|Juk|(A).

The desired result follows immediately from (4.7) and (4.8). !

Next we establish the distributional chain rule. It will follow from the distri-
butional coarea formula and an approximation argument.

As above, we write ua := (u− a)/|u− a|.

Lemma 4.5. The distributional chain rule (1.6) holds under any of the following
assumptions:

(i) F ∈ C1(Rm;Rn) and u ∈ W 1,n−1
loc ∩ L∞(Rm;Rn).

(ii) F ∈ W 1,∞(Rn;Rn) and u ∈ W 1,p
loc ∩ L∞(Rm;Rn), p > n− 1.

(iii) F ∈ W 1,∞(Rn;Rn) and u ∈ W 1,n−1
loc ∩ C0(Rm;Rn).

For the proof we will need the following well-known lemma.

Lemma 4.6 (Weak continuity of Jacobians).

(i) Suppose that uk ⇀ u weakly in W 1,p1
loc (Rm;Rn) and uk → u strongly in Lp2

loc,
for p1, p2 ≥ 1 such that (n−1)/p1+1/p2 := 1/q < 1. Then j(uk) ⇀ j(u)
in Lqloc, and

(4.9) [Juk] ⇀ [Ju]

weak-* in (C1)∗. The convergence of [Juk] takes place in the weak topology on
Lp1/n if p1 > n, and weak-* in (C0

c )∗ if p1 = n.
(ii) If uk ⇀ u weakly inW 1,n−1

loc (Rm;Rn), uk → u strongly in L∞loc, and uk, u are
continuous, then j(uk) ⇀ j(u) weak-* in (C0

c )∗, and (4.9) is again satisfied.

Remark 4.7. Note that the Sobolev embedding theorem implies that hypoth-
esis (i) above holds if uk ⇀ u weakly in W 1,p for any p >mn/(m+ 1).

Proof. Under hypothesis (i), the lemma is standard. A proof under slightly
different hypotheses can be found for example in Giaquinta, Modica, and Souček
[17, Proposition 1 in Section 3.3.1]. That the hypotheses of this proposition are
satisfied in our situation follows from Theorem 1 in Section 3.3.2 in the same
reference.
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If (ii) holds, then the (n − 1) × (n − 1) minors of Duk converge weakly
as measures to the corresponding minors of Du; the proof, which again is stan-
dard, essentially appears in [17, Section 3.3.1]. The remaining claims follow from
standard facts about products of strongly and weakly converging sequences. !

Proof of Lemma 4.5.
1. We first prove the result under the assumption that both F and u are C∞.
Let w = F(u).
For ω ∈ C1

c (Rm;ΛnRm) fixed we compute

〈ω, [Jw]〉 =
∫

Rm
ω(x) · Jw(x)dx =

∫

Rm
ω(x) · Ju(x)JF(u(x))dx.

Let ω̃(x) := JF(u(x))ω(x) ∈ C∞c (Rm;ΛnRm). Then we can rewrite the above
as
∫

Rm
ω(x) · Ju(x)JF(u(x))dx = 〈ω̃, [Ju]〉 = 1

ωn

∫

a∈Rn
〈ω̃, [Jua]〉da,

by the coarea formula (1.5). But u(x) = a on the support of [Jua], so ω̃(x) =
JF(a)ω(x) on the support of [Jua]. It follows that 〈ω̃, [Jua]〉 =
JF(a)〈ω, [Jua]〉 a.e. a ∈ Rn, using the fact that [Jua] is a measure a.e. a,
which is proved for smooth functions in Lemma 4.4.

Thus (1.6) holds if F and u are smooth.

2. Now suppose that F is C1, but umerely belongs toW 1,n−1
loc ∩L∞(Rm;Rn).

By mollifying u we can produce a uniformly bounded sequence of smooth func-
tions uk such that uk → u inW 1,n−1

loc . It follows thatwk := F(uk) converges tow
in the same norm. Thus, using the Approximation Lemma 4.9, which is proven at
the end of this section, we deduce from Step 1 that the chain rule (1.6) continues
to hold under these hypotheses. Thus the lemma is proven under assumption (i).

3. Now assume that F is merely Lipschitz. By smoothing F we obtain a
sequence of smooth functions Fk such that Fk → F in W 1,p for all p < ∞,
‖DFk‖∞ ≤ C, and moreover,DFk → DF almost everywhere. Define vk = Fk(u).
By Step 2,

〈ω, [Jvk]〉 = 1
ωn

∫

a∈Rn
JFk(a)〈ω, [Jua]〉da

for every k. The function a ! 〈ω, [Jua]〉 is integrable, so the dominated con-
vergence theorem allows us to pass to limits on the right-hand side.

It remains only to show that

(4.10) 〈ω, [Jvk]〉 → 〈ω, [Jw]〉

as k→ ∞.
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If u ∈ W 1,p, p > n − 1, then vk → w in L∞, and {Dvk} is uniformly
bounded in Lp, and hence weakly precompact in Lp. So the conclusion follows
from (i) of Lemma 4.6.

If u ∈ W 1,n−1 ∩ C0, then similarly (4.10) follows from (ii) of Lemma 4.6. !

In the following lemma, we verify that the strong coarea formula holds for
functions in BnV that are Sn−1-valued.

Lemma 4.8. Suppose that u ∈ W 1,n−1
loc ∩ BnVloc(Rm;Sn−1), and write ua =

(u− a)/|u− a| as usual. Then

[Jua] =
{
[Ju] if |a| < 1,
0 if |a| > 1.

In particular, ua ∈ BnVloc(Rm;Sn−1) for a.e. a ∈ Rn, and the strong coarea
formula (1.7) holds.

Proof. We start by defining

Fεa(α) = F
(α− a

ε

)
, F(α) = f(|α|) α|α| ,

for f ∈ C∞(R+;R+) satisfying

f(r) ≡ 0 for r < 1
3
, f (r) ≡ 1 for r > 2

3
, f ′ ≥ 0 ∀r .

Then one can verify that η := (1/ωn)JF is smooth, nonnegative, supported in
the unit ball, and satisfies

∫
Rn η(α)dα = 1. Moreover, one easily checks that

JFεa(α) = ηε(α− a), for ηε(α) := (1/εn)η(α/ε).
Fix any a such that |a| < 1. For ε < 1−|a| we can define a smooth function

Gεa : Rn → Rn satisfying

Gεa(α) =
{
Fε(α) if α ∈ Bε(a),
Gεa(α) = α if |α| = 1,

and
Gεa maps Rn \ Bε(a) into Sn−1.

Finally, define uεa := Gεa(u). Note that JGεa ≡ JFεa, since Gεa = Fεa in Bε(A) and
JGεa = JFεa = 0 elsewhere.

Since |u| = 1 a.e., the definition of Gεa implies that uεa = u a.e., and hence
that [Juεa] = [Ju]. Combining this with the distributional coarea formula, we
obtain

[Ju] = [Juεa] =
1
ωn

∫
JFεa(α)[Juα]dα =

∫
ηε(α− a)[Juα]dα.
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Since this holds for all sufficiently small ε, we conclude that [Ju] = [Jua] if
|a| < 1. It is clear from Lemma 4.1 that [Jua] = 0 if |a| > 1. !

Finally we prove the approximation result used several times above. Infor-
mally, the point is that almost every level set of the approximating functions con-
verges to the corresponding level set of the limiting function, in a weak sense.

As usual, given a function uk and a point a ∈ Rn, we write uak := (uk −
a)/|uk − a|.

Lemma 4.9. Suppose that u ∈ W 1,n−1
loc ∩ L∞loc(Rm;Rn), and that uk is a se-

quence of smooth, locally uniformly bounded functions such that uk → u in W 1,n−1
loc .

Then

j(uk) ⇀ j(u) weakly in L1
loc, [Juk] ⇀ [Ju] weakly in (C1

c )∗;

and for every ω ∈ C1
c (Rm,ΛnRm),

(4.11) lim
k

∫
|〈ω, [Juak]〉 − 〈ω, [Jua]〉|da = 0.

Also, after passing to a subsequence we can arrange that

(4.12) 〈ω, [Juak]〉 → 〈ω, [Jua]〉 a.e. a ∈ Rn.

Remark 4.10. Given u as above, such a sequence uk can be produced by
mollification.

Proof.
1. It is clear that uk ⇀ u weak-* L∞. With the assumption uk → u in

W 1,n−1
loc , this implies that j(uk) → j(u) weakly in L1

loc. It immediately follows
that [Juk] ⇀ [Ju] weakly in (C1

c )∗.
Also, note that (4.11) easily implies (4.12). Indeed, (4.11) states that, for

any ω ∈ C1
c (Rm;ΛnRm), the functions a ! 〈ω, [Juak]〉 converge in L1(da)

as k → ∞ to the limit a ! 〈ω, [Jua]〉. We may thus pass to a subsequence
such that, for every ων in a countable dense subset {ων}∞ν=1 of C1

c (Rm;ΛnRm),
〈ων, [Juak]〉 → 〈ων, [Jua]〉 for almost every a. This implies (4.12).

So we only need to prove (4.11).
Since (4.11) involves integrating against compactly supported test functions

ω, we may assume that u ∈ L∞ and that the approximating sequence uk is uni-
formly bounded.

Arguing as in Step 1 of the proof of Lemma 4.3, we see that for a.e. a ∈ Rn,

uak ∈ W
1,n−1
loc for all k, and ua ∈ W 1,n−1

loc .
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It suffices to show that every subsequence of {uk} has a further subsequence for
which (4.11) holds. We may therefore pass to subsequences and assume that

uk → u a.e., Duk → Du a.e.,

which implies that j(uk)→ j(u) a.e. x ∈ Rm.
2. The desired conclusion (4.11) will easily follow once we demonstrate that

(4.13)
∫

U

∫

V
|j(uak)− j(ua)|dadx → 0

as k→ ∞, for every bounded open U ⊂ Rm and V ⊂ Rn.
From Step 1 we see that j(uak)(x) → j(ua)(x) for a.e. (x,a) ∈ Rm × Rn.

Also it is clear from the definition of j(u) that there is some constant C such that

|j(uak)| ≤ hk := C|Duk|n−1

|uk − a|n−1 , |j(ua)| ≤ h := C|Du|n−1

|u− a|n−1 .

Here hk and h are functions of (x,a) ∈ Rm × Rn. Step 1 implies that hk → h
for a.e.(x,a). By a well-known variant of the dominated convergence theorem, it
suffices to show that

∫

U

∫

V
hk dadx →

∫

U

∫

V
hdadx.

Toward this end, note that
∫

U

∫

V
(hk − h) dx = I + II,

for

I := C
∫

U

∫

V

|Duk|n−1 − |Du|n−1

|uk − a|n−1 dadx,

II := C
∫

U

∫

V

( 1
|uk − a|n−1 −

1
|u− a|n−1

)
|Du|n−1 dadx.

3. Integrating first with respect to a, we easily estimate

|I| ≤ C(V)
∫

U

∣∣|Duk|n−1 − |Du|n−1∣∣dx → 0, as m →∞.

To show that II → 0 as m →∞, define a function f : Rn → R by

f(z) :=
∫

V

1
|z − a|n−1 da =

∫

Rn

1
|a|n−1χV(z − a)da.
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The dominated convergence theorem implies that f is continuous. It follows that
f(uk(x)) → f(u(x)) for a.e. x ∈ U . Since V is bounded, one easily sees that f
is bounded, and so the dominated convergence theorem implies that

∫

U

∫

V

|Du|n−1

|uk − a|n−1 dadx. =
∫

U
|Du|n−1f(uk)dx

→
∫

U

∫

V

|Du|n−1

|u− a|n−1 dadx.

Thus II → 0 and so we have established (4.13).

4. To prove (4.11), note that
∫
|〈ω, [Juak]〉 − 〈ω, [Jua]〉|da =

∫

V
|〈ω, [Juak]〉 − 〈ω, [Jua]〉|da

≤ ‖d∗ω‖∞
∫

U

∫

V
|j(uak)− j(ua)|dx da,

where U ⊂ Rm and V ⊂ Rn are bounded open sets such that supp(ω) ⊂ U and
BR(0) ⊂ V for R := supk ‖uk‖L∞(U). !

5. RECTIFIABILITY VIA SLICING

In this section we give a proof of Theorem 1.1 that relies on the Rectifiable Slices
Theorem. We start by stating this theorem.

Suppose that J is a k-dimensional current in Rm, and f : Rm → R2 is
a Lipschitz function, where 2 ≤ k. A family of k − 2-dimensional currents
{〈J, f ,y〉}y∈R2 in Rm are slices of J by f if

J(φ∧ f3(dy)) =
∫

R2
〈J, f ,y〉(φ)dy

for all smooth k − 2-forms φ. Here f3(dy) denotes the pullback by f of the
standard volume form on R2.

Theorem 5.1. Suppose J is a k dimensional normal current in Rm (i.e., both J
and ∂J have finite mass).

Then J is integer multiplicity rectifiable if and only if for every projection P onto
a k-dimensional subspace of Rm, the slices 〈J, P ,y〉 are 0-dimensional integer multi-
plicity rectifiable for a.e.y .

This is a special case of a theorem in White [30], which in fact applies in the
more general setting of flat k-chains with coefficients in an arbitrary group.

Currents J as in the statement of the theorem can always be sliced by Lipschitz
functions, and 〈J, P ,y〉 is a normal current for a.e. y (see for example Federer
[12, 4.3.1-2]).
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When we wrote the first version of this paper, we were unaware of White’s
work, and we developed our own proof of Theorem 5.1 in more or less the form
stated here. A sketch of our proof appears in [23], and we present the full version
of our proof of Theorem 5.1 in [21]. Elements of our argument were later used by
Ambrosio and Kirchheim [3] in developing a general theory of rectifiable currents
in metric spaces.

To apply this theorem in our situation, we let ju represent the m − n + 1-
dimensional current on U defined by

ju(φ) =
∫
j(u)∧φ,

and let Ju = (1/n)∂ju. Then Theorem 1.1 states that (1/ωn)Ju is an integer
multiplicity m−n-dimensional rectifiable current.

Proof of Theorem 1.1. We verify that (1/ωn)Ju satisfies the hypotheses of
Theorem 5.1 with k = m − n. It is clear that (1/ωn)Ju is a normal current,
since it has no boundary and has finite mass by hypothesis. Let P be any pro-
jection Rm → Rm−n. By making a suitable change of basis, we may assume that
P(x1, . . . , xm) = (x1, . . . , xm−n).

1. We first claim that for a.e. y ∈ Rm−n, one can identify 〈J, P ,y〉 with the
Jacobian of the restriction of u to P−1(y), that is,

(5.1) 〈J, P ,y〉(φ) =
∫

z∈Rn
φ(y, z)DetDzu(y, z)dz.

Here we are writing x ∈ Rm as (y, z) ∈ Rm−n ×Rn, and Dz indicates differen-
tiation only with respect to the z variables.

Using the definition of slices, one finds that (5.1) is equivalent to the assertion
that
∫

Rm
φDet(uxm−n+1 , . . . , uxm)dx

=
∫

Rm−n

(∫

Rn
φDet(uxm−n+1 , . . . , uxm)dxm−n+1 . . . dxm

)
dx1 . . . dxm−n,

where the determinants are understood in the sense of distributions. This is an im-
mediate consequence of Fubini’s Theorem and the definition of the distributional
determinant.

2. Thus to apply Theorem 5.1 we need to verify that

(5.2)

∣∣∣∣∣∣∣

1
ωn

DetDzu(y, z) is a finite sum of integer

multiplicity point masses for a.e. y .
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As remarked above, almost every slice of a normal current is again a normal cur-
rent, and this implies that DetDzu(y, z) has finite mass for almost every y , and
thus that

(5.3) z ! u(y, z) belongs to BnV(Rn;Sn−1) for almost every y.

In Proposition 5.2 below we prove that Theorem 1.1 holds when m = n. This
fact, together with (5.3), implies that (5.2) holds. !

We now establish the propositions used above. First we prove Theorem 1.1 in
the special case m = n.

Proposition 5.2. Assume u ∈ BnV(Rn;Sn−1). Then there are a finite collec-
tion of points (a1, . . . , am) ∈ Rn and integers (d1, . . . , dm) ∈ Z such that

[Ju] =ωn
∑
diδai dx.

Proof.

1. For r > 0 and x ∈ Rn, let ur,x be the restriction of u to ∂Br (x). For
every x, ur,x belongs to W 1,n−1(∂Br ;Sn−1) for almost every r . For these values
of r , x we define

d(r ,x) := 1
nωn

∫

∂Br(x)
j(u) · τ∂Br .

Results of Brezis and Nirenberg [9] show that d(r ,x) is exactly the degree of
ur,x as a map from ∂Br (x) to Sn−1. If u is smooth, this is essentially a classical
integral formula for the degree; the point here is that j(u) is the pullback by u of
the standard volume form on Sn−1. The paper of Brezis and Nirenberg mentioned
above shows that integral representations of this sort remain valid for example in
W 1,n−1(Sn−1;Sn−1), which is our situation.

In particular, for every x ∈ Rn, d(r ,x) is an integer for a.e. r > 0.
For convenience we now consider balls around x = 0, and we write Br for

Br (0), the open ball of radius r about the origin. Similarly we write d(r) as a
shorthand for d(r ,0).

2. Let f ∈ C1
c ([0,∞);R) satisfy f ′(0) = 0 and ‖f‖∞ ≤ 1. Then ϕ :=

f(|x|)dx is a smooth n-form, where dx := dx1 ∧ · · · ∧ dxn is the standard
volume form. Using (2.5) we then compute

d∗ϕ = (−1)n * df(|x|) = (−1)n *
(
f ′(|x|) xi|x| dx

i
)
.

For every r > 0, the vector field (xi/|x|)dxi is an oriented unit normal to ∂Br ,
so *((xi/|x|)dxi) := τ is the appropriately oriented unit tangent (n−1)-vector
field to ∂Br . (Recall that we are not distinguishing between vectors and covectors.)
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Thus
∫
ϕ · [Ju] = 1

n

∫
j(u) · d∗ϕ(5.4)

= (−1)n

n

∫∞

0
f ′(r)

(∫

∂Br
j(u) · τ∂Br

)
dr

= (−1)nωn

∫
f ′(r)d(r)dr .

Also, since u ∈ BnV and |ϕ| ≤ 1,

∞ > |Ju|(Rn) ≥
∫
ϕ · [Ju] = (−1)nωn

∫
f ′(r)d(r)dr .

Since this holds for all f as above, we deduce that d(·) ∈ BV([0,∞)).

3. We next define, for r > 0,

d̃(r) := lim
h→0

1
h

∫ r

r−h
d(s)ds.

Since d(·) is a BV function, this limit exists for all r > 0. Then d̃(·) is a left
continuous function that agrees with d(·) almost everywhere. In particular d̃(·) is
integer-valued. It is also a function of bounded variation in the classical, pointwise
sense.

Fix some r > 0. Since [Ju] can be identified with a signed measure, [Ju](Br )
is certainly well-defined, and can be computed by

[Ju](Br ) = lim
k→∞

∫
ϕk · [Ju],

where ϕk is a sequence of smooth n-forms defined by ϕk(x) = fk(|x|)dx, for
smooth, nonincreasing functions fk : [0,∞) → [0,1] that satisfy

fk(s) =
{

1 if s ≤ r − 1/k,
0 if s ≥ r .

Using the fact that d̃(·) is left continuous and (5.4)

[Ju](Br ) = (−1)nωn lim
k→∞

∫
f ′k(s)d(s)ds = (−1)n+1ωnd̃(r).
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4. Because d̃(·) has bounded variation and is integer valued, there exists some
r0 > 0 such that

[Ju](Br ) = (−1)n+1ωnd̃(r) is constant ∀r < r0.

We have established this fact for balls Br (0) around the origin, but it clearly
remains valid for balls about any center x ∈ Rn. For each x ∈ Rn, we may thus
define

(−1)n+1ωnd0(x) := lim
r→0
[Ju](Br (x)) = [Ju](B(r)) for all r < r0(x).

By the same argument used above, d0(x) is an integer for every x. Since [Ju] is
finite, it is clear that d0(x) can be nonzero at only finitely many points x. Once
we know this, it is easy to see that for any open set U ,

[Ju](U) = (−1)n+1ωn
∑

x∈U :d0(x) .=0

d0(x).

The same identity then holds for all sets U , which proves the theorem. !

6. RECTIFIABILITY VIA CARTESIAN CURRENTS

In this section we give a quick proof of Theorem 1.1 that was suggested by M.
Giaquinta and G. Modica.

Given U ⊂ Rm and u ∈ W 1,n−1(U, Sn−1), let Gu represent the m-dimen-
sional current associated with integration over the graph of u in the product space
U ×Rn.

We write x to denote a typical point in U and ξ a point in Rn. We will
write dxα ∧ dξβ to denote multivectors in the product space, where α and β are
multiindices. A differential form of type (j, k) is one of the form

φ =
∑

|α|=j, |β|=k
φαβ dxα ∧ dξβ.

Let ju represent the m−n+ 1 dimensional current on U defined by

ju(φ) =
∫
j(u)∧φ,

and let Ju = (1/n)∂ju.
Finally, let [Sn−1] denote the n−1-dimensional current associated with inte-

gration over Sn−1 in Rn.
Giaquinta and Modica note that Theorem 1.1 follows almost immediately

from the following lemma, which is essentially proven in [18].
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Lemma 6.1. If u ∈ W 1,n−1(U, Sn−1), then ∂Gu = (1/ωn)Ju × [Sn−1].
Using the lemma, we give the proof of Theorem 1.1.

Proof of Theorem 1.1. First we claim that Gu is an integer multiplicity recti-
fiable current. To verify this, it suffices to check that all k × k minors of Du are
locally integrable. (See for example [17, Section 3.2.1.].) This is clear if k ≤ n−1,
since u ∈ W 1,n−1. And since Du(x) is for a.e. x a linear map from Rm into
Tu(x)Sn−1, it must have rank at most n− 1 almost everywhere. This implies that
all n×n minors of Du vanish a.e.

Next, if u ∈ BnV then Lemma 6.1 implies that ∂Gu has finite mass. The
boundary rectifiability theorem of Federer and Fleming [13] then states that ∂Gu
is integer multiplicity rectifiable. It immediately follows from the lemma that
(1/ωn)Ju is also integer multiplicity rectifiable. This is Theorem 1.1. !

Lemma 6.1 is not presented in exactly the form stated here in Giaquinta,
Modica, and Souček [18], so for the reader’s convenience we give the proof. Note
that the lemma does not assume u ∈ BnV .

Proof of Lemma 6.1.
1. First, for any v ∈ W 1,n−1 ∩ L∞(U ;Rn), one can explicitly write out the

action of Gv on an m form φ to find that

(6.1) Gv(φ) =
∫

U
φ(x,v(x))·(dx1+vi1x1

dξi1)∧· · ·∧(dxm+v
im
xm dξim)dx.

Thus in particular, Gv(φ) has the form

(6.2)
∑

j

∫

U

∑

|α|=m−j,
|β|=j

φαβ(x,v(x))Mαβ(Dv(x))dx,

where Mαβ(Dv) is a |β| ×| β| minor of Dv.
Since the target Sn−1 is (n− 1)-dimensional, Gu(φ) = 0 for forms φ of type

(m − j, j) with j ≥ n. Thus ∂Gu(φ) = 0 for forms of type (m − j − 1, j) with
j ≥ n.

We now claim that ∂Gu(φ) = 0 for forms of type (m − j − 1, j) with j ≤
n− 2. To see this, let uε be a sequence of smooth functions, in general not Sn−1-
valued, converging to u inW 1,n−1, and let Guε denote the current associated with
integration over the graph of uε. For j ≤ n− 1, the j × j minors of uε converge
strongly in L1

loc to the j × j minors of Du, so one easily deduces from (6.2) that
limε Guε(φ) = Gu(φ) for any form φ of type (m − j, j), with j ≤ n − 1.
Since the functions uε are smooth, the associated currents Guε have vanishing
boundary. Thus if φ is a form of type (m− j − 1, j) with j ≤ n− 2, then

∂Gu(φ) = Gu(dφ) = lim
ε
Guε(dφ) = lim

ε
∂Guε(φ) = 0.

So ∂Gu is nonzero only on forms of type (m−n,n− 1).
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2. Because Gu is supported in U × Sn−1 ⊂ U × Rn, we may think of it as a
current in the manifold U ×Sn−1, and similarly ∂Gu. Let φ be a differential form
of type (m − n,n − 1) with compact support in U × Sn−1. Since Λn−1TSn−1

is one-dimensional, we can write φ in the form
∑
α∈Im−n,m φα(x, ξ)dxα ∧ τ,

where for (x, ξ) ∈ U×Sn−1, τ is the unitn−1 vector inΛn−1TξSn−1 representing
the oriented tangent to Sn−1 at ξ. Since ΛnTSn−1 is trivial, dξφ = 0, so Hodge
theory implies that φ can be written

φ(x, ξ) =
∑

α∈Im−n,m
φ̄α(x)dxα ∧ τ + dξψα(x, ξ)∧ dxα

where, for each α ∈ Im−n,m,ψα is a form of type (0, n−2) with compact support
in U × Sn−1, and

(6.3) φ̄α(x) = 1
|Sn−1|

∫

Sn−1
φα(x, ξ)dHn−1(ξ).

Defining φ̄ =
∑
α φ̄α dxα, we write the above more concisely asφ = φ̄∧τ+dξψ.

This can be rewritten φ = φ̄ ∧ τ + dψ − dxψ. Since dxψ is a form of type
(m−n+ 1, n− 2), we deduce from Step 1 that

∂Gu(φ) = ∂Gu(φ̄∧ τ).

One can then compute from (6.1) that

(6.4) ∂Gu(φ) = Gu(dφ̄∧ τ) =
∫

U
dφ̄(x)∧ j(u) = ju(dφ̄).

3. On the other hand, the definition of a product of currents implies that
ju × [Sn−1] is nonzero only on forms of type (m−n+ 1, n− 1). Let ψ be such
a form, where ψ =

∑
α∈Im−n+1,m ψ

α(x, ξ)dx ∧ τ. Then by definition,

ju ×
1

|Sn−1|[S
n−1](ψ) = ju(ψ̄),

where ψ̄ is the (m − n+ 1)-form with compact support in U defined as in (6.3)
by averaging over the vertical variables. In particular this holds forψ = dφ. Since
|Sn−1| = nωn and ∂[Sn−1] = 0, we deduce from (6.4) that

∂Gu(φ) = ju(dφ̄) =
1

nωn
∂(ju × [Sn−1])(φ)

= 1
nωn

∂ju × [Sn−1](φ) = 1
ωn

Ju × [Sn−1](φ).

!
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