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Abstract. In a financial market consisting of a nonrisky asset and a risky one, we study the
minimal initial capital needed in order to superreplicate a given contingent claim under a gamma
constraint. This is a constraint on the unbounded variation part of the hedging portfolio. We first
consider the case in which the prices are given as general Markov diffusion processes and prove a
verification theorem which characterizes the superreplication cost as the unique solution of a quasi-
variational inequality. In the context of the Black–Scholes model (i.e., when volatility is constant),
this theorem allows us to derive an explicit solution of the problem. These results are based on a
new dynamic programming principle for general “stochastic target” problems.
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1. Introduction. We study the problem of superreplicating a contingent claim
under a gamma constraint. This is a constraint on the unbounded part of the hedging
portfolio.

To explain this constraint and the idea of superreplication, let us first consider
the classical Black–Scholes framework with one riskless asset which is normalized to
S0 = 1 and one risky asset whose price process evolves according to the stochastic
differential equation dS(t)/S(t) = µdt+ σdW (t). Then given a European contingent
claim of the type g(S(T )), the unconstrained superreplication cost vBS(0, S(0)) is
defined as the minimal initial capital which allows us to hedge g(S(T )) through some
portfolio strategy on the assets S0 and S. It is known that the solution of this problem
coincides with the Black–Scholes arbitrage price of g(S(T )) and therefore it is given
by vBS(t, s) = EQ[g(S(T ))|S(t) = s]. Here EQ(.) is the expectation operator under
the equivalent martingale measure, i.e., Q is the probability measure equivalent to P
under which the process S is a martingale. Then the optimal hedging strategy consists
of holding ∆(t, S(t)) := vBS

s (t, S(t)) units of the risky asset at each time t ∈ [0, T ].
In practice, traders are faced with shortselling, borrowing, or another type of con-

straint. These restrictions render this optimal strategy impossible to use in practice,
and the notion of superreplication is introduced to replace the no-arbitrage price of
Black and Scholes, in the presence of such constraints. We refer to Jouini and Kallal
(1995) and Cvitanic̀ and Karatzas (1993) for the superreplication problem with general
portfolio constraints. They provide a characterization of the minimal superreplica-
tion cost as the value of a stochastic optimal control problem. Broadie, Cvitanic̀,
and Soner (1998) observe that, for a contingent claim of the type g(S(T )), this con-
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trol problem can be explicitly solved by proving that the minimal superreplication
cost is the unconstrained Black–Scholes price of a modified claim. For the stochastic
volatility model, a similar explicit solution is provided in Cvitanic̀, Pham, and Touzi
(1999).

Another problem which in practice faces traders is the variation of the optimal
hedging strategy. The gamma associated to the optimal hedging strategy is defined
by γ(t, S(t)) := vBS

ss (t, S(t)) and describes the variation of the holdings in S, in the
optimal hedging strategy, with respect to an infinitesimal change of the process S.
Since traders act only in discrete-time, a large γ induces an important risk exposure
between two transaction dates. This problem was raised by Broadie, Cvitanić, and
Soner (1998) who provided an upper bound for the superreplication cost under gamma
constraint, as well as the associated hedging strategy. However, they did not formulate
a precise statement of the problem.

The chief goals of this paper are first to define the superreplication problem under
a gamma constraint and then to obtain an explicit solution.

Formulation of the problem is obtained by observing that the gamma constraint
is equivalent to a bound on the variation of the hedging portfolio. We then provide
a simple solution to this problem. To describe this solution, let ĝ be the smallest
function greater than g which satisfies the gamma constraint. Then the minimal
superreplicating cost with a gamma constraint solves a variational inequality with
terminal condition ĝ. When the volatility is a given constant, the solution of the
problem is given by EQ[ĝ(S(t))], i.e., the Black and Scholes no-arbitrage price of the
contingent claim ĝ(S(T )). We explicitly calculate the ĝ function for several standard
options such as European calls, puts, and digital options.

Previously, the convex duality argument was used to characterize the minimal su-
perreplicating cost. In this approach, the dual formulation of the problem is obtained
by suitable changes of measure. However, in the case of gamma constraints, it seems
that the diffusion coefficients need to be modified in order to follow a similar tech-
nique. Since this cannot be accomplished by equivalent changes of measure, we were
not able to use the convex duality arguments. Instead, we introduce a dynamic pro-
gramming argument to identify the superreplication cost as the viscosity solution of a
differential inequality. To our knowledge, this is the first use of dynamic programming
in this context. We believe that this is a powerful tool in analyzing “stochastic target”
problems and establishing the connection between the backward-forward stochastic
differential equations and viscosity solutions as developed in an accompanying paper
by the authors Soner and Touzi (2000).

A technical contribution of this paper is a result on the behavior of double stochas-
tic integrals with respect to Brownian motion. This is needed because our formulation
of the problem involves a nonclassical constraint on the unbounded variation part of
the portfolio process, which is itself the integrand of the martingale part of the state
process.

This paper is organized as follows. Section 2 describes the general problem. We
introduce the modified terminal data in section 3 and state the assumptions in section
4. After stating the dynamic programming in section 5, we state and prove the main
result in section 6. Section 7 focuses on the constant coefficient (i.e., the Black–
Scholes) case, and several examples are discussed in section 8. The remainder of
the paper is devoted to technical results: section 9 proves the viscosity property, a
comparison result is proved in section 10, and finally a property of stochastic double
integrals is proved in section 11.
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2. Problem. We consider a financial market which consists of one bank account,
with constant price process S0(t) = 1 for all t ∈ [0, T ], and one risky asset with price
process evolving according to the following stochastic differential equation:

St,s(t) = s and
dSt,s(u)

St,s(u)
= µ(u, St,s(u))dt+ σ(u, St,s(u))dW

0(u), t ≤ u ≤ T.

Here W 0 is a standard Brownian motion in R defined on a complete probability space
(Ω,F , P 0). We shall denote by F = {F(t), 0 ≤ t ≤ T} the P 0-augmentation of the
filtration generated by W 0. The drift and the volatility functions sµ(t, s) and sσ(t, s)
satisfy the usual Lipschitz and linear growth conditions in order for the process St,s
to be well defined; we also assume that σ(t, s) > 0 for all (t, s) ∈ [0, T ]× (0,∞) and

EP 0

[
E
(
−
∫ T

0

µ(t, S0,s(t))

σ(t, S0,s(t))
dW 0(t)

)]
= 1,

where EP 0

(.) is the expectation operator under the probability measure P 0 and E(.)
is the Doléans–Dade exponential martingale, i.e.,

E
(∫ T

0

b(t)dW 0(t)

)
= exp

(∫ T

0

b(t)dW 0(t)− 1

2

∫ T

0

b2(t)dt

)
.

As usual, the assumption that the interest rate of the bank account is zero can
be easily dispensed with by appropriate discounting.

Consider now an economic agent, endowed with an initial capital x at time t,
who invests at each time u ∈ [t, T ] an amount Y (u)S(u) of his wealth in the risky
asset and the remaining wealth in the bank account. The process Y = {Y (u), t ≤
u ≤ T} represents the number of shares of risky asset S held by the agent during the
time interval [t, T ]. Then, by the self-financing condition, the wealth process evolves
according to the stochastic differential equation

X(t) = x and dX(u) = Y (u)dS(u), t ≤ u ≤ T.

The purpose of this paper is to introduce constraints on the variations of the hedging
portfolio Y . We consider portfolios which are continuous semimartingales with respect
to the filtration F. Since F is the Brownian filtration, we define the controlled portfolio
strategy Y α,γ

t,s,y by

Y α,γ
t,s,y(t) = y,(2.1)

dY α,γ
t,s,y(u) = α(u)du+ γ(u)

dSt,s(u)

St,s(u)
, t ≤ u ≤ T,

where y ∈ R is the initial portfolio and the control pair (α, γ) takes values in

Dt := (L
∞([t, T ]× Ω; Lebesgue⊗ P 0))2.

Hence a trading strategy is defined by the triple (y, α, γ) with y ∈ R and (α, γ) ∈ Dt.
Then the associated wealth process, denoted by Xα,γ

t,x,s,y, satisfies

Xα,γ
t,x,s,y(u) = x+

∫ u

t

Y α,γ
t,s,y(r)dSt,s(r), t ≤ u ≤ T.(2.2)
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We shall formulate the gamma constraint by requiring that the process γ be
bounded from above. Before making this definition precise, we give a formal discus-
sion. Formally, we expect the hedging portfolio to satisfy

Y (u) = vs(u, St,s(u)),

where v is the minimal superreplication cost. Indeed, this is true in the classical Black–
Scholes theory as well as in the case of portfolio constraints; see Broadie, Cvitanic̀,
and Soner (1998). Assuming enough regularity, we apply the Itô formula. The result
is

dY (u) = A(u)du+ σ(u, St,s(u))St,s(u)vss(u, St,s(u))dW
0(u),

where A(u) is given in terms of derivatives of v. Compare this equation with (2.1) to
conclude that

γ(u) = St,s(u) vss(u, St,s(u)).

Therefore a bound on the process γ translates to a bound on svss. Notice that, by
changing the definition of the process γ in (2.1), we may bound vss instead of svss.
However, we choose to study svss because it is a dimensionless quantity, i.e., if all the
parameters in the problem are increased by the same factor, svss remains unchanged.

We now formulate the gamma constraint in the following way. Let Γ be a constant
fixed throughout the paper. Given some initial capital x > 0, a trading strategy
(y, α, γ) is said to be x-admissible if it satisfies the gamma constraint γ(u) ≤ Γ
for all t ≤ u ≤ T almost surely (a.s.) and the associated wealth process Xα,γ

t,x,s,y is
nonnegative. We shall denote by

At,s(x) :=
{
(y, α, γ) ∈ R ×Dt : γ(.) ≤ Γ and Xα,γ

t,x,s,y(.) ≥ 0
}

the set of all admissible trading strategies.
We consider a European-type contingent claim g(St,s(T )) defined by the terminal

payoff function g. Given such a contingent claim, we then consider the infimum v(t, s)
of initial capitals x which induce a wealth process Xα,γ

t,x,s,y through some admissible
trading strategy (y, α, γ) such that Xα,γ

t,x,s,y hedges g(St,s(T )), i.e.,

v(t, s) = inf
{
x : ∃ (y, α, γ) ∈ At,s(x), X

α,γ
t,x,s,y(T ) ≥ g(St,s(T )) a.s.

}
.(2.3)

Note that if g is convex so is v in the s-variable; hence, in this case, gamma is bounded
from below as well.

Our goal is to prove that function v(t, s) solves a variational inequality and that
its terminal value is given by some function ĝ dominating g. When we focus on the
constant volatility case, these observations allow us to derive an explicit solution of
the hedging problem (2.3): v(t, s) is the (unconstrained) Black and Scholes price of
the modified contingent claim ĝ(St,s(T )). This function ĝ can be easily computed and
several examples are provided in section 7.

Throughout this paper, we shall introduce a probability measure P ∼ P 0 defined
by

P (A) = EP 0

[
1AE

(
−
∫ T

0

µ(t, S0,s(t))

σ(t, S0,s(t))
dW 0(t)

)]
for all A ∈ F .
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We shall denote by E(.) the expectation operator under the probability measure P .
By Girsanov’s theorem, the process W defined by

W (u) :=W 0(u) +

∫ u

t

µ(r, St,s(r))

σ(r, St,s(r))
dr, t ≤ u ≤ T,

is a Brownian motion under P . In terms of the Brownian motion W , the risky asset
price process is defined by

St,s(t) = s and
dSt,s(u)

St,s(u)
= σ(u, St,s(u))dW (u), t ≤ u ≤ T.(2.4)

3. Modified terminal data. Due to the constraint, the limit of the value func-
tion v(t, s) of (2.3), as t tends to the terminal time T , may not be equal to the con-
tingent claim g. Indeed the determination of this limit is an important step toward
the solution of the problem.

We will show in the following sections that the following function ĝ is equal to
the limit

ĝ(s) := hconc(s) + Γs ln (s), s > 0,

where h(s) = g(s)− Γs ln (s) and hconc is the concave envelope of h, i.e., the smallest
concave function greater than h. In other words, function ĝ(s)−Γs ln (s) is the concave
envelope of function g(s) − Γs ln (s). The chief property of ĝ that we will use is the
following.

Lemma 3.1. ĝ is the smallest function satisfying the following two conditions:
(i) ĝ ≥ g and (ii) ĝ(s)− Γs ln (s) is concave.

Proof. Clearly, ĝ satisfies these conditions. Let u be another function satisfying
both of them. Set w(s) := u(s) − Γs ln (s). Clearly w ≥ h. Since w is concave and
w ≥ h, by the definition of the concave envelope of h, w ≥ hconc. Therefore,

u(s) = w(s) + Γs ln (s) ≥ hconc(s) + Γs ln (s) = ĝ(s).

In section 6 below, we will show that the terminal data of the minimal super-
replicating cost are equal to ĝ. The formal reason for this is that if v is sufficiently
smooth, we formally expect v(t, s) to satisfy the gamma constraint svss(t, s) ≤ Γ.
This is equivalent to the statement that v(t, s) + Γs ln(s) is concave. Therefore we
formally expect the terminal data limt↑T v(T, s) to be the smallest function satisfying
the two conditions of the previous lemma.

4. Assumptions. We always assume that

function g is nonnegative and lower semicontinuous.(4.1)

We start with several assumptions on the payoff function g and ĝ. In sections 7
and 8 below, we will verify that all these assumptions are satisfied by standard claims
in the Black–Scholes model, i.e., in the case of a constant volatility function σ(t, s);
see section 7 below.

Assumption 4.1. We assume that ĝ is finite and there exists a nonnegative,
strictly concave function φ ∈ C2 with lims→∞ φ(s) = ∞ such that

lim sup
s→∞

ĝconc(s)− E [ĝconc(St,s(T ))]

φ(s)
<∞.(4.2)



78 H. METE SONER AND NIZAR TOUZI

Remark 4.2. Any function g which is growing at most linearly at infinity satisfies
ĝconc(.) < ∞. Indeed in this case, h(s) ≤ H(s) := K − Γs ln(s)/2 for some constant
K. Since H is concave, hconc ≤ H, and therefore ĝ is finite.

The main use of Assumption 4.1 is to prove a comparison result. The statement
and the proof of this result are given in section 10.

Our final assumption is the existence of a smooth solution to the variational
inequality

min {−Lu; Γ− suss} (t, s) = 0 on [0, T )× (0,∞)(4.3)

together with the terminal condition

u(T, s) = ĝ(s) for all s > 0,(4.4)

where L is the parabolic operator related to the infinitesimal generator of the stock
price process,

L := ∂

∂t
+
1

2
σ2(t, s)s2

∂2

∂s2
.

We will prove in section 6 that this solution is equal to the minimal superreplication
cost.

Assumption 4.3. The variational inequality (4.3)–(4.4) has a C1,2 ([0, T ), (0,∞))
solution v̂ satisfying

(i) v̂(t, 0) = ĝ(0) for all t ∈ [0, T ],
(ii) v̂ is polynomially growing in its s variable at infinity,
(iii) sv̂ss, Lv̂ are bounded,
(iv) vs is a W

1,2 function with generalized derivatives satisfying Lv̂s bounded.
In section 7, for the constant volatility model, we verify this assumption by pro-

viding an explicit solution.
Remark 4.4. By a classical comparison theorem for the equation Lv = 0 (see, for

instance, Friedman (1964)), we see that v̂(t, s) ≥ E[ĝ(St,s(T ))]. Since g is nonnegative,
so is ĝ; therefore we have

v̂(t, s) ≥ E [ĝ(St,s(T ))] ≥ 0 for all (t, s) ∈ [0, T ]× (0,∞).
5. Dynamic programming. The following is the analogue of the principle of

dynamic programming which is standard in the theory of stochastic optimal control
theory first proved by R. Bellman.

Lemma 5.1. Let (t, s) ∈ [0, T )× [0,∞) and consider an arbitrary stopping time
θ valued in [t, T ]. Suppose that Xα,γ

t,x,s,y(T ) ≥ g(St,s(T )) P -a.s. for some (α, γ) ∈
At,s(x), y ∈ R, and initial wealth x ∈ R. Then, for the value function v of (2.3), we
have

Xα,γ
t,x,s,y(θ) ≥ v (θ, St,s(θ)) , P -a.s.

Proof. Let x, y, θ, and (α, γ) be as in the above statement. Set x̂ = Xα,γ
t,x,s,y(θ),

ŝ = St,s(θ), ŷ = Y α,γ
t,s,y(θ). Clearly Yt,s,y = Yθ,ŝ,ŷ. By definition of the wealth process

(2.2), this provides

Xα,γ
t,x,s,y(T ) = X

α,γ
θ,x̂,ŝ,ŷ(T ).

Also, by uniqueness of the solution for the stochastic differential equation defining
the stock price S, we have St,s = Sθ,ŝ. Since X

α,γ
θ,x̂,ŝ,ŷ(T ) = Xα,γ

t,x,s,y(T ) ≥ g (St,s(T ))
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= g (Sθ,ŝ(T )), it follows that x̂ ≥ v(θ, ŝ) by definition of the control problem
v(θ, ŝ).

Remark 5.2. As in optimal control theory, the second part of the dynamic pro-
gramming is also available. A systematic study of dynamic programming is given in
an accompanying paper by the authors. Since we do not need the second part of the
dynamic programming in this paper, we refer the reader to Soner and Touzi (2000)
for a discussion of the full dynamic programming.

6. Main result. Let v̂ be the solution of the variational inequality (4.3)–(4.4)
introduced in Assumption 4.3.

Theorem 6.1. Let Assumptions 4.1 and 4.3 hold. Then, the value function v
of the hedging problem (2.3) is equal to the unique smooth solution of the variational
inequality (4.3)–(4.4), i.e.,

v = v̂.

Notice that the variational inequality (4.3)–(4.4) was not assumed to have a
unique solution satisfying the requirement of Assumption 4.3. Uniqueness is obtained
as a consequence of the above theorem.

Let v∗ be the lower semicontinuous envelope of v:

v∗(t, s) := lim inf
(t′,s′)→(t,s)

v(t, s).(6.1)

We prove the theorem after assuming two properties of the value function v.
P1. Function s �−→ v∗(t, s)− Γs ln (s) is concave for all t ∈ [0, T ).
P2. v∗ is a viscosity supersolution of the equation −Lu = 0 on [0, T )× (0,∞).
These properties will be verified in section 9 below.
Proof. We start with the inequality v ≤ v̂. For t ≤ u ≤ T , set

y = v̂s(t, s), α(u) = Lv̂s(u, S(u)), γ(u) = St,s(u)v̂ss(u, S(u)).

Since Lv̂ ≤ 0,

g (St,s(T )) ≤ ĝ (St,s(T )) = v̂ (T, St,s(T ))

= v̂(t, s) +

∫ T

t

Lv̂(u, St,s(u))du+ v̂s(u, St,s(u))dSt,s(u)

≤ v̂(t, s) +

∫ T

t

Y α,γ
t,y (u)dSt,s(u);

in the last step we applied the generalized Itô’s formula to vs ∈ W 1,2. (See Krylov
(1980, Theorem 1, p. 122) for Itô’s formula with generalized derivatives.) By Assump-
tion 4.3, (α, γ) ∈ Dt. Furthermore, since v̂ solves the variational inequality (4.3), γ(u)
≤ Γ for all u ∈ [t, T ]. By Remark 4.4, v̂(u, St,s(u)) = Xα,γ

t,x,s,y(u) ≥ 0 with x = v̂(t, s).
Hence (y, α, γ) ∈ At,s(v̂(t, s)), and by the definition of the minimal replicating price,
we conclude that v ≤ v̂.

We now prove the reverse inequality. Fix (t, s) ∈ (0, T ) × (0,∞), and δ > 0. By
the definition of v, there exist an initial wealth x ∈ [v(t, s), v(t, s) + δ) and a trading
strategy (yt, αt, γt) ∈ At,s(x) satisfying

Xαt,γt

t,x,s,yt(T ) ≥ g (St,s(T )) P -a.s.
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Therefore,

δ + v(t, s) +

∫ T

t

Y αt,γt

t,s,yt (u)dSt,s(u) ≥ g (St,s(T )) P -a.s.

By the definition of At,s(x), the local martingale {
∫ u

t
Y αt,γt

t,s,yt (r)dSt,s(r), u ≥ t} is
bounded from below and is therefore a supermartingale. We take the expected value
in the last inequality and then use this fact. The result is

δ + v(t, s) ≥ E [g(St,s(T ))] .

Since δ > 0 is arbitrary and g is lower semicontinuous, Fatou’s lemma yields

v∗(T, s) = lim inf
(t,s′)→(T,s)

v(t, s′) ≥ g(s) for all s > 0.

In view of the property P1, v∗(T, ·) satisfies both conditions stated in Lemma 3.1, and
therefore v∗(T, s) ≥ ĝ(s).

By dynamic programming, for any (y, α, γ) ∈ At,s(x) satisfying X
α,γ
t,x,s,y(T ) ≥

g(St,s(T )),

Xα,γ
t,x,s,y(u) ≥ v(u, St,s(u)) for all u ∈ [t, T ].

Since we have shown that v∗(T, s) ≥ ĝ(s), by taking the limit as u tends to T , we
conclude that

Xα,γ
t,x,s,y(T ) ≥ ĝ(St,s(T )).

Therefore, any strategy that dominates g also dominates ĝ. Since ĝ ≥ g, this provides

v(t, s) = inf
{
x : ∃ (y, α, γ) ∈ At,s(x), X

α,γ
t,x,s,y(T ) ≥ ĝ(St,s(T )) a.s.

}
,(6.2)

i.e., v is the minimal superreplication cost for the claim ĝ. By definition, the Black–
Scholes price (i.e., unconstrained superreplication cost) is always smaller than the
superreplication cost with gamma constraint,

v(t, s) ≥ E [ĝ(St,s(T ))] for all (t, s) ∈ [0, T )× (0,∞).(6.3)

Moreover, by (6.2), v(t, 0+) = ĝ(0) for all t ∈ [0, T ). Therefore, v∗(t, 0) ≤ v(t, 0) =
ĝ(0). Also (6.3) together with Fatou’s lemma yield v∗(t, 0) ≥ ĝ(0). Hence v∗(t, 0) =
ĝ(0).

In view of Lemma 9.2 below, v∗ is a lower semicontinuous viscosity supersolution
of (4.3)–(4.4). By Theorem 10.1, v∗ ≥ v̂. This completes the proof of the theorem
since v ≥ v∗.

Remark 6.2. In the first part of the above proof, the optimal hedging strat-
egy (y, α, γ) is expressed explicitly in terms of the derivatives of the minimal super-
replication cost function v̂.

Remark 6.3. In the proof above, it is shown (without appealing to Theorem 10.1)
that the (unconstrained) Black and Scholes price of ĝ(St,s(T )) is a trivial lower bound
for v

v(t, s) ≥ E [ĝ(St,s(T ))] for all (t, s) ∈ [0, T )× (0,∞).
We shall use this lower bound in the proof of the comparison Theorem 10.1.
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7. The Black and Scholes model. In this section, we focus on a discussion of
the Black and Scholes model in which the volatility function σ(t, s) is constant, i.e.,
σ(t, s) = σ for all (t, s) ∈ [0, T ]× (0,∞).

We shall provide an explicit solution to the hedging problem (2.3) under the
following condition.

Assumption 7.1. Function s �−→ hconc(s) − Cs ln (s) is convex for some con-
stant C.

Remark 7.2. Suppose that function g is such that s �−→ g(s)+As ln (s) is convex
for some constant A. Then, since h(s) = g(s) + As ln (s)− (Γ + A)s ln (s), it follows
from the construction of the concave envelope that Assumption 7.1 is satisfied by C
= Γ +A.

Theorem 7.3. Let Assumptions 4.1 and 7.1 hold. Then, Assumption 4.3 holds
and the value function v of the hedging problem (2.3) is simply the unconstrained Black
and Scholes price v̂ of the contingent claim ĝ(St,s(T )), i.e.,

v(t, s) = v̂(t, s) = E [ĝ(St,s(T ))] for all (t, s) ∈ [0, T ]× (0,∞).
Proof. Denote ṽ(t, s) := E [ĝ(St,s(T ))]. Then ṽ is a classical solution to the

equation

−Lu = 0 on [0, T )× (0,∞) and u(T, s) = ĝ(s), s > 0.

Furthermore, by the definition of ĝ,

ṽ(t, s)− Γs ln (s) = E [hconc(St,s(T ))] +
1

2
σ2(T − t)Γs.(7.1)

Since hconc is concave and St,s(T ) is linear in s, this proves that for all t ∈ [0, T ],
function s → ṽ(t, s)− Γs ln (s) is concave, and therefore sṽss(t, s) ≤ Γ for all (t, s) ∈
[0, T )× (0,∞). A similar argument using Assumption 7.1 shows that sṽss(t, s) ≥ C.

Consequently ṽ = v̂ is a classical solution of the variational inequality (4.3)–
(4.4). By Friedman (1964, Theorem 10, p. 72), function v̂s is C

1,2, which provides
all the regularity required in Assumption 4.3, except the property (iii). To verify
Assumption 4.3 (iii), we differentiate the equation Lv̂ = v̂t(t, s) + σ2s2v̂ss(t, s) = 0 to
obtain Lv̂s(t, s) = σ2sv̂ss(t, s). Since we have already proved that sv̂ss is bounded, so
is Lv̂.

Remark 7.4. Observe that Assumption 4.1 is only used in the proof of the com-
parison Theorem 10.1 which is needed to show that v̂ ≤ v. Since in the Black and
Scholes case v̂(t, s) = E[ĝ(St,s(T ))], the variational inequality (4.3) reduces to the lin-
ear equation −Lv = 0. Then we can appeal to the standard comparison theorem for
this equation, and Assumption 4.1 can be relaxed by requiring only that ĝ(.) <∞.

8. Examples.

European call option. Let g(s) = (s − K)+, s > 0. Since g is convex, As-
sumption 7.1 is satisfied; see Remark 7.2. Next, it is easily checked that the concave
envelope of function h(s) = (s−K)+ − Γs ln (s) is given by

hconc(s) =

{
h(s), s ∈ (0,∞) \ [s1, s2],
h(s1) + h

′(s1)(s− s1), s ∈ [s1, s2],
i.e., hconc coincides with h outside the interval [s1, s2] and is defined by a straight line
in [s1, s2]. The values s1 and s2 are characterized by

s1 < K < s2 h
′(s1) = h′(s2) and h(s2) = h(s1) + h

′(s1)(s2 − s1).
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A direct calculation yields

s1 =
K

Γ(e1/Γ − 1) and s2 =
Ke1/Γ

Γ(e1/Γ − 1) .

Therefore,

ĝ(s) =

{
(s−K)+, s ∈ (0,∞) \ [s1, s2],
Γ
(
s ln s

s1
+ s1 − s

)
, s ∈ [s1, s2].

Since ĝconc(s) = s for all s > 0, Assumption 4.1 is clearly satisfied and Theorem 7.3
applies.

European put option. We now consider the case g(s) = (K − s)+, s > 0. As
in the previous example, g is convex, and therefore Assumption 7.1 is satisfied. The
concave envelope of function h(s) = (K − s)+ − Γs ln (s) is given by

hconc(s) =

{
h(s), s ∈ (0,∞) \ [s1, s2],
h(s1) + h

′(s1)(s− s1), s ∈ [s1, s2],
i.e., hconc coincides with h outside the interval [s1, s2] and is defined by a straight line
in [s1, s2]. The values s1 and s2 are characterized by

s1 < K < s2 h
′(s1) = h′(s2) and h(s2) = h(s1) + h

′(s1)(s2 − s1).
We directly calculate that

s1 =
K

Γ(e1/Γ − 1) and s2 =
Ke1/Γ

Γ(e1/Γ − 1)
(the same values as in the first example) and

ĝ(s) =

{
(K − s)+, s ∈ (0,∞) \ [s1, s2],
K − s+ Γ

(
s ln s

s1
+ s1 − s

)
, s ∈ [s1, s2].

Since ĝ is bounded, Assumption 4.1 holds and therefore Theorem 7.3 applies.

Straddle option. We now study the contingent claim defined by g(s) = (s−K)+
+ (K − s)+, s > 0. The same argument as in the previous examples yields

ĝ(s) =

{
(s−K)+ + (K − s)+, s ∈ (0,∞) \ [s1, s2],
K − s+ Γ

(
s ln s

s1
+ s1 − s

)
, s ∈ [s1, s2],

where s1 =
2K

Γ(e2/Γ−1)
and s2 = s1e

2/Γ.

Digital option. Our last example is the contingent claim defined by g(s) =
1{s>K}, s > 0. Then, it is easily seen that the concave envelope of function h(s) =
1s>K − Γs ln(s) is given by

hconc(s) =

{
h(s), s ∈ (0,∞) \ [s∗,K],
h(s∗) + h′(s∗)(s− s∗), s∗≤ s ≤ K,

where s∗ is the unique solution of

0 < s∗ < Γ and s∗ −K ln (s∗) = K −K ln (K) + 1

Γ
.
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Clearly, the above function satisfies Assumption 7.1. This provides the candidate for
the hedging problem under the gamma constraint:

ĝ(s) =



0, s ≤ s∗,
Γs ln (s) + h(s∗) + h′(s∗)(s− s∗), s∗ ≤ s ≤ K,
1, s ≥ K.

Since ĝ ≤ 1, we have ĝconc ≤ 1 and Assumption 4.1 holds. Then, Theorem 7.3 again
applies.

9. Viscosity property. In this section, we prove properties P1 and P2 of sec-
tion 6.

Theorem 9.1. v∗ is a viscosity supersolution of the variational inequality

min {−Lu(t, s), Γ− suss(t, s)} = 0(9.1)

on (0, T )× (0,∞).
Proof. For ε ∈ (0, 1], set

Aε
t,s(x) :=

{
(y, α, γ) ∈ At,s(x) : |α(.)|+ |γ(.)| ≤ ε−1

}
,

and

vε(t, s) = inf
{
x : ∃ (y, α, γ) ∈ Aε

t,s(x), X
α,γ
t,x,s,y(T ) ≥ g(St,s(T )) a.s.

}
.

Let vε∗ be the lower semicontinuous envelope of v
ε; cf. (6.1). It is clear that vε also

satisfies the dynamic programming equation of Lemma 5.1.
First we will show that vε∗ is a viscosity supersolution of (9.1). Let ϕ ∈ C∞(R2)

and (t0, s0) ∈ (0, T )× (0,∞) satisfy
(vε∗ − ϕ)(t0, s0) = min

(t,s)∈(0,T )×(0,∞)
(vε∗ − ϕ)(t, s).

We need to show that

−Lϕ(t0, s0) ≥ 0 and s0ϕss(t0, s0) ≤ Γ.(9.2)

We may assume that (vε∗ − ϕ)(t0, s0) = 0 so that vε∗ ≥ ϕ.
Choose (tn, sn)→ (t0, s0) so that v

ε(tn, sn) converges to v
ε
∗(t0, s0). For each n, by

the definition of vε and the dynamic programming, there are xn ∈ [vε(tn, sn), vε(tn, sn)+
1/n] hedging strategies (yn, αn, γn) ∈ Aε

tn,sn(xn) satisfying

Xαn,γn

tn,xn,sn,yn
(tn + t)− vε(tn + t, Stn,sn(tn + t)) ≥ 0

for every t > 0. Since vε ≥ vε∗ ≥ ϕ,

xn +

∫ tn+t

tn

Y αn,γn

tn,sn,yn
(u)dStn,sn(u)− ϕ(tn + t, Stn,sn(tn + t)) ≥ 0.

Set

βn := xn − ϕ(tn, sn)
and observe that βn → 0 as n → ∞, since ϕ(tn, sn) → ϕ(t0, s0) = vε∗(t0, s0), |xn −
vε(tn, sn)| ≤ 1/n, and vε(tn, sn) −→ vε∗(t0, s0).
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By Itô’s lemma,

Mn(t) ≤ Dn(t) + βn(9.3)

for every t ≥ 0, where

Mn(t) =

∫ t

0

[
ϕs(tn + u, Stn,sn(tn + u))− Y αn,γn

tn,sn,yn
(tn + u)

]
dStn,sn(tn + u),

Dn(t) = −
∫ t

0

Lϕ(tn + u, Stn,sn(tn + u))du.

For some sufficiently large positive constant λ, define the stopping time tn + θn by

θn := inf {u > 0 : |ln (Stn,sn(tn + u)/sn)| ≥ λ}
and observe that the sequence of stopping times (θn) satisfies

lim inf
n→∞ t ∧ θn ≥ 1

2
t ∧ θ0 P -a.s.

for all t > 0; see Remark 11.2. By the smoothness of Lϕ, the integrand in the
definition of Mn is bounded up to the stopping time θn and therefore, taking the
expectation in (9.3) provides

−E
[∫ t∧θn

0

Lϕ(tn + u, Stn,sn(tn + u))du
]
≥ −βn.

By sending n to infinity, we obtain

−E
[∫ t∧θ0

0

Lϕ(t0 + u, St0,s0(t0 + u))du
]
≥ 0

by dominated convergence and continuity of Lϕ. Then, dividing by t and taking the
limit as t↘ 0, we get by dominated convergence

−Lϕ(t0, s0) ≥ 0,
which is the first part of (9.2). It remains to prove the second inequality.

By another application of Itô’s lemma, it follows that

Mn(t) =

∫ t

0

(
zn +

∫ u

0

an(r)dr +

∫ u

0

bn(r)dStn,sn(tn + r)

)
dStn,sn(tn + u),

where

zn = ϕs(tn, sn)− yn,
an(r) = Lϕs(tn + r, Stn,sn(tn + r))− αn(tn + r),

bn(r) = ϕss(tn + r, Stn,sn(tn + r))−
γn(tn + r)

Stn,sn(tn + r)
.

Observe that the processes an(.∧ θn) and bn(.∧ θn) are bounded uniformly in n since
Lϕs and ϕss are smooth functions. By (9.3),

Mn(t ∧ θn) ≤ Dn(t ∧ θn) + βn ≤ Ct ∧ θn + βn
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for some positive constant C. We now apply the results of Propositions 11.5 and 11.6
to the martingales Mn. The result is

lim
n→∞ yn = ϕs(t0, y0) and lim inf

n→∞, t↘0
b(t) ≤ 0,

where b is the L2 weak limit of the sequence (bn). The remaining inequality in (9.2)
is obtained after recalling that γn(t) ≤ Γ.

Hence vε∗ is a viscosity supersolution of (9.1). Since

v∗(t, s) = lim inf∗ vε(t, s) = lim inf
ε→0,(t′,s′)→(t,s)

vε∗(t
′, s′),

the Barles–Perthame technique implies that v∗ is a viscosity supersolution of (9.1) as
well.

The following result completes the proof of the properties P1 and P2 of section 6.
Lemma 9.2. Let f be a lower semicontinuous function defined on (0,∞). Then, f

is a viscosity supersolution of Γ−sfss(s) ≥ 0 if and only if f(s)−Γs ln(s) is concave.
Proof. Suppose that h(s) := f(s) − Γs ln(s) is a concave function and a smooth

test function ϕ and s0 > 0 satisfy

0 = (f − ϕ)(s0) = min { (f − ϕ)(s) : s ≥ 0 }.
Set ψ(s) := ϕ(s)− Γs ln(s), so that for any δ > 0,

ψ(s0 + δ) + ψ(s0 − δ)− 2ψ(s0) ≤ h(s0 + δ) + h(s0 − δ)− 2h(s0) ≤ 0.
We divide by δ2 and let δ go to zero. The result is ϕss(s0) ≤ Γ/s0. Hence, f is a
viscosity supersolution of −sfss(s) + Γ ≥ 0.

Now suppose that f is a viscosity supersolution of −sfss(s) + Γ ≥ 0. We need to
show that

h(s+ δ) + h(s− δ)− 2h(s) ≤ 0
for any δ > 0. Suppose that there exist s0 and δ > 0 such that

α := h(s0 + δ) + h(s0 − δ)− 2h(s0) > 0.
Set

ψ(s) := h(s0) +
h(s0 + δ)− h(s0 − δ)

2δ
(s− s0) + α

4δ2
(s− s0)2.

Then, (h− ψ)(s0) = 0 and

(h− ψ)(s0 ± δ) = 1

2
[h(s0 + δ) + h(s0 − δ)− 2h(s0)]− α

4
=
α

4
.

Hence, (h−ψ) attains a local minimum in (s0 − δ, s0+ δ). Set ϕ(s) := ψ(s)+Γs ln(s)
so that (f −ϕ) attains a local minimum in the same interval, say at s∗. We calculate
that

Γ− s∗ϕss(s
∗) = −s∗ α

2δ2
< 0.

This contradicts the supersolution property of f .
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10. The comparison result. This section is devoted to the proof of a compar-
ison theorem which was used in the proof of our main result. We refer to Crandall,
Ishii, and Lions (1992) and Fleming and Soner (1993) for the definition and the prop-
erties of viscosity solutions.

Theorem 10.1. Let Assumption 4.1 hold. Suppose that the variational inequality
(4.3)–(4.4) has a solution v̂ ∈ C1,2([0, T ]× (0,∞)) which is polynomially growing and
has bounded Lv̂. Let u be a lower semicontinuous viscosity supersolution of (4.3)
satisfying u(T, ·) ≥ ĝ, u(·, 0) ≥ v̂(·, 0), and u(t, s) ≥ E [ĝ(St,s(T )]. Then,

u ≥ v̂ on [0, T ]× (0,∞).
We start with deriving an upper bound for the solution v̂ of (4.3)–(4.4).
Lemma 10.2. For all (t, s) ∈ [0, T ]× (0,∞), v̂(t, s) ≤ ĝconc(s).
Proof. To prove this result, we first show that v̂ is related to some stochastic con-

trol problem. Let N be the set of all bounded nonnegative progressively measurable
processes. For all ν ∈ N , consider the controlled process Sν

t,s defined by

dSν
t,s(u)

Sν
t,s(u)

=

[
ν(u)

1 + Sν
t,s(u)

+ σ2
(
t, Sν

t,s(u)
)]1/2

dW (u).

Notice that the random function s �−→ s
[
ν(1 + s)−1 + σ2(t, s)

]1/2
is Lipschitz uni-

formly in t and therefore the process Sν is well defined. Next, for some small parameter
η > 0, define the stochastic control problem

u(t, s) := sup
ν∈N

E

[
ĝ(Sν

t,s(T ))−
1

2
(Γ− η)

∫ T

t

ν(u)
Sν
t,s(u)

1 + Sν
t,s(u)

du

]

and consider the approximating problems

un(t, s) := sup
ν∈Nn

E

[
ĝ(Sν

t,s(T ))−
1

2
(Γ− η)

∫ T

t

ν(u)
Sν
t,s(u)

1 + Sν
t,s(u)

du

]

with Nn consisting of elements in N which are bounded by n. Clearly, for every n
we have un(t, s) ≤ u(t, s) for all (t, s) ∈ [0, T ]× (0,∞). By classical arguments, it is
easily checked that un is a viscosity solution of the Hamilton–Jacobi–Bellman (HJB)
equation

− sup
0≤ν≤n

{
wt +

1

2
s2
(
σ2(t, s) +

ν

1 + s

)
wss − 1

2
(Γ− η)ν s

1 + s

}
= 0

which can be written as

−Lw − 1

2
n

s

1 + s
[swss − (Γ− η)]+ = 0 on [0, T )× (0,∞).(10.1)

Now recall that v̂ is a classical solution to (4.3).
Case 1. sv̂ss < Γ, then Lv̂ = 0 and therefore −Lv̂− 1

2n
s

1+s [sv̂ss − (Γ− η)]+ ≤ 0.
Case 2. sv̂ss = Γ, then Lv̂ ≥ 0 and −Lv̂− 1

2n
s

1+s [sv̂ss−(Γ−η)]+ ≤ −Lv̂− 1
2nη

s
1+s≤ 0 for sufficiently large n; recall that Lv̂ is assumed to be bounded uniformly in (t, s).

We have then proved that v̂ is a subsolution of the HJB equation (10.1) for
sufficiently large n. Since v̂(T, s) = un(T, s) = ĝ(s), it follows from the comparison
theorem (which will be verified at the end of this proof) that v̂ ≤ un and therefore

v̂(t, s) ≤ u(t, s) for all (t, s) ∈ [0, T ]× (0,∞).
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We then have

v̂(t, s) ≤ sup
ν∈N

E
[
ĝ(Sν

t,s(T ))
] ≤ sup

ν∈N
E
[
ĝconc(Sν

t,s(T ))
]
.

By the Jensen inequality and the martingale property of the process Sν
t,s, this provides

v̂(t, s) ≤ sup
ν∈N

ĝconc
(
E
[
Sν
t,s(T )

])
= ĝconc(s).

It remains to prove the comparison theorem for (10.1). Let m be the growth rate
of v̂, i.e., v̂(t, s) ≤ C(1+sm) for some constant C. Take some λ ≥ m(m+1)σ2(t, s)/2
(recall that s �−→ sσ(t, s) is Lipschitz uniformly in t and therefore σ is bounded).
Choose a minimizer at (t0, s0) of

ψ(t, s) = eλtun(t, s)− eλtv̂(t, s) + εsm+1,

where ε is a small positive parameter. Since un ≥ 0 and v̂ is growing at the rate
m, φ attains its minimum. If s0 = 0 or t0 = T , then ψ(t0, s0) ≥ 0 by the boundary
conditions. Now, suppose that s0 > 0 and t0 < T . Since u

n is a viscosity solution of
(10.1) and v̂ is a classical subsolution of (10.1), it follows that

λeλt0 [un(t0, s0)− v̂(t0, s0)] + ε1
2
σ2(t0, s0)m(m+ 1)s

m(m+1)
0

≥ eλt0
n

2

s0
1 + s0

{
[s0v̂ss(t0, s0)− Γ]+ − [s0v̂ss(t0, s0)− e−λt0Γ− εm(m+ 1)sm0 ]+

}
≥ 0.

Then ψ(t0, s0) ≥ 0 from the choice of the parameter λ. By sending ε to zero, we
obtain the comparison result for (10.1).

Proof of Theorem 10.1. Fix some positive scalar λ and set ŵ(t, s) = v̂(t, s)e−λt

and w(t, s) = u(t, s)e−λt for all (t, s) ∈ [0, T ]×(0,∞). Then ŵ is a C1,2([0, T )×(0,∞))
solution of the variational inequality

min
{
λŵ − Lŵ; Γe−λt − sŵss

}
= 0 on [0, T )× (0,∞),

ŵ(T, s) = ĝ(s)e−λT , s > 0,(10.2)

and w is a lower semicontinuous viscosity supersolution of the above equation. Given
ε > 0, define the test function

ϕ(t, s) = ŵ(t, s)− εφ(s), (t, s) ∈ [0, T )× (0,∞),
where φ is the function introduced in Assumption 4.1; recall that φ is positive, C2

is strictly concave, and lims→∞ φ(s) = +∞. By Remark 6.3, we have v(t, s) ≥
E [ĝ(St,s(T ))]. Moreover, since g is nonnegative, we have ĝ ≥ 0 and by the definition
of the concave envelope, it follows that ĝ ≥ ĝconc − C for some positive constant C.
Then, from Lemma 10.2 together with condition (4.2), we can conclude that

lim inf
s→∞ (w − ϕ)(t, s) ≥ lim inf

s→∞ {E [ĝ(St,s(T ))]− ĝconc(s) + εφ(s)} = +∞

for all t ∈ [0, T ]. Then there exists (t0, s0) ∈ [0, T ]× [0,∞) such that
(w − ϕ)(t0, s0) = min

[0,T ]×[0,∞)
(w − ϕ).
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In order to prove the required result, we have to show that

(w − ϕ)(t0, s0) ≥ 0,(10.3)

which implies that w(t, s)− ŵ(t, s) + εφ(s) ≥ 0 for all (t, s) ∈ [0, T ]× (0,∞) and the
result of the theorem follows by sending ε to zero.

Inequality (10.3) is trivially satisfied if s0 = 0 or t0 = T . We then concentrate on
the case t0 < T and s0 > 0. Since (t0, s0) is an interior minimum, it follows from the
viscosity supersolution property of w that

λw(t0, s0)− Lϕ(t0, s0) ≥ 0 and Γe−λt0 − s0ϕss(t0, s0) ≥ 0.(10.4)

Recalling the definition of ϕ, the second inequality provides

Γe−λt0 − s0ŵss(t0, s0) ≥ −εφss(s0) > 0.
By (10.2), we then see that Lŵ(t0, s0) = λŵ(t0, s0). Plugging this into the first
inequality of (10.4) provides

λ(w − ϕ)(t0, s0) ≥ ε

[
λφ(s0)− 1

2
σ2(t0, s0)φss(t0, s0)

]
≥ 0,

which is the required inequality (10.3).

11. Appendix: Properties of stochastic integrals. In this section we prove
several properties of double stochastic integrals with respect to Brownian motion.
The key idea in our analysis was provided by Professor F. Delbaen. Our main result
is Proposition 11.6 below.

It is known that if∫ t∧θ

0

h(u)dW (u) ≤ Ct ∧ θ for all t ≥ 0,(11.1)

for some continuous adapted process h(·), standard Brownian motion W (·), positive
stopping time θ, and a constant C, then h(0) = 0. This result is contained in Soner,
Shreve, and Cvitanic̀ (1995).1

In the analysis of gamma constraints, in particular in proving the viscosity prop-
erty of the value function in section 9, we are led to study a similar situation for
double stochastic integrals such as∫ t

0

∫ u

0

b(r)dW (r) dW (u) ≤ Ct.(11.2)

In this section, we analyze several inequalities of the type (11.2) ordered by increasing
difficulty.

First, suppose that the process b(·) in (11.2) is equal to a constant b0. Then,
b0
2
[W 2(t)− t] =

∫ t

0

∫ u

0

b(r)dW (r) dW (u) ≤ Ct.

1Here is an alternative simple proof of this result. Given an arbitrary ν ∈ R, introduce the
exponential martingale Zν = E(νW ). Then, multiplying both sides of (11.1) by Zν(t ∧ θ), and

taking expectations, it follows from the optional sampling theorem that νE[Zν(t∧θ)
∫ t∧θ

0
h(u)du] ≤

CE[Zν(t∧θ)(t∧θ)]. Dividing by t, sending t to zero, and recalling that the process h(.) is continuous,
and the stopping time θ is positive P -a.s., we see that νh(0) ≤ C. By arbitrariness of ν, this proves
that h(0) = 0.
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Hence, b0 ≤ 0 by the law of iterated logarithm.
Next, suppose that b is a bounded, progressively measurable process and (11.2)

holds for all t ∈ [0, η] where η is a positive constant. Delbaen proved the following:

P

[
inf

0≤u≤t
b(u) ≥ c

]
< 1 for all c > 0, t ≤ η.(11.3)

Suppose to the contrary, i.e., suppose that there are c > 0, t ≤ η such that b(u) ≥ c
for all u ∈ [0, t]. Let Zν(t) := exp

(
νW (t)− (ν2t/2)

)
. A direct calculation shows that

E

[
Zν(t)

∫ t

0

∫ u

0

b(v)dW (v)dW (u)

]
= ν2E

[∫ t

0

∫ u

0

b(v)Zν(v)dvdu

]
≥ cν2t2/2.

By (11.2),

E

[
Zν(t)

∫ t

0

∫ u

0

b(v)dW (v)dW (u)

]
≤ Ct.

Hence, cν2t2/2 ≤ Ct for all ν, which cannot happen. This proves (11.3).
We continue the analysis when (11.2) holds only up to a stopping time.
Lemma 11.1. Let θ be some bounded positive stopping time and {b(t), t ≥ 0} be

a bounded progressively measurable process satisfying (11.2) for all t ≤ θ. Then,

lim inf
t↘0

b(t) ≤ 0.(11.4)

Proof. Suppose to the contrary. Then, there exist a positive stopping time τ and
a constant c > 0 such that b(t ∧ τ) ≥ c for all t. Rename the stopping time τ ∧ θ to
be θ.

Step 1. We employ a time change and then use standard properties of Brownian
motion to obtain a contradiction. Set

h(t) :=

∫ t

0

[b(u)2 + 1{u>θ}]du, t ≥ 0,

so that h is a continuous strictly increasing function on [0, θ]. Let

Ŵ (t) :=

∫ h−1(t)

0

b(u)dW (u), t ≥ 0,

and G = {Gt, t ≥ 0} be given by Gt := Fh−1(t). Then the time-changed process (Ŵ ,G)
is a standard Brownian motion. By the time-change formula (see, e.g., Karatzas and
Shreve (1991, Proposition 4.8, p. 176)), we rewrite (11.2) as

Ct ∧ θ ≥
∫ t∧θ

0

∫ u

0

b(r) dW (r) dW (u) =

∫ t∧θ

0

Ŵ (h(u)) dW (u)

=

∫ h(t∧θ)

0

φ(u)Ŵ (u) dŴ (u)

=
1

2

∫ h(t∧θ)

0

φ(u)d[Ŵ (u)2]− 1

2

∫ h(t∧θ)

0

φ(u)du,
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where φ(u) := 1/b(h−1(u)). Since b is bounded away from zero, φ is bounded and∫ h(t∧θ)

0

φ(u)d[Ŵ (u)2] ≤ C ′t ∧ θ, t ≥ 0,(11.5)

for some constant C ′.
Step 2. By the law of iterated logarithm, there exists a sequence of bounded

positive F-stopping times (τn)n converging to zero such that

Ŵ (τn)
2

τn
−→ +∞ P -a.s.

Set

θn := θ ∧ h−1(τn) .

Since θ is positive, for sufficiently large n, h(θn) = h(h
−1(τn)) = τn. Hence,

Ŵ (h(θn))
2

h(θn)
−→ +∞ P -a.s.(11.6)

Step 3. Choose M so that |b| < M . Let φ be as in Step 1. Since b > 0 on [0, θ],
we have φ > 1/M on this interval.

Set 9 := lim inft↓0 2
t

∫ t

0
[φ(u)− 1

M ]d[W
2(u)], and let (ζn)n be a sequence of positive

stopping times converging to zero P -a.s. such that∫ ζn

0

[
φ(u)− 1

M

]
d[W 2(u)] ≤ 9ζn.

Direct calculation provides

9 E[ζn] ≥ E

[∫ ζn

0

[
φ(u)− 1

M

]
d[W 2(u)]

]
= E

[∫ ζn

0

[
φ(u)− 1

M

]
du]

]
≥ 0.

This proves that 9 ≥ 0, and consequently

lim inf
t↓0

∫ t

0
φ(u)d[Ŵ (u)2]

Ŵ (t)2
≥ 1

M
.

Let θn be the sequence constructed in Step 2. Since θn tends to zero as n ap-
proaches to zero,

lim inf
n→∞

∫ h(θ∧τn)

0
φ(u)d[Ŵ (u)2]

Ŵ (h(θ ∧ τn))2
≥ 1

M
.(11.7)

Step 4. Since b(θ ∧ t) ≥ c, the definition of h implies that

lim
n→∞

h(θn)

θn
≥ c2.

Combining this inequality with (11.6) and (11.7), we arrive at

lim sup
n→∞

h(θn)

θn

Ŵ (h(θn))
2

h(θn)

∫ h(θn)

0
φ(u)d[Ŵ (u)2]

Ŵ (h(θn))
2 = +∞.
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Step 5. By (11.5), we have

h(θn)

θn

Ŵ (h(θn))
2

h(θn)

∫ h(θn)

0
φ(u)d[Ŵ (u)2]

Ŵ (h(θn))
2 ≤ C ′ θn

θn
.

Clearly this is in contradiction with the previous step.
Our next generalization is to replace W in (11.2) by the stock price process.
We introduce some notation that will be used throughout this section. Let (tn, sn)

be a sequence converging to some (t0, s0) ∈ [0, T )× (0,∞). To simplify the notation,
we set

Sn(t) := Stn,sn(t) and σ̄n(t) := Stn,sn(t)σ (t, Stn,sn(t)) .

Since the processes Sn may take very large values, we need to introduce a sequence
of stopping times defined as follows. For a large constant λ > 0 let

τ̄n := inf {t > tn : |ln (Sn(t)/sn)| ≥ λ} .(11.8)

In our notation, we do not show the dependence of τ̄n on λ.
Remark 11.2. The sequence of stopping times (τ̄n)n satisfies

lim inf
n→∞ t ∧ τ̄n ≥ 1

2
t ∧ τ̄0 P -a.s.

Indeed, since (tn, sn) −→ (t0, s0), it follows from Protter (1990, Theorem 37, p. 246)
that for almost everywhere (a.e.) ω ∈ Ω, we have

Stn,sn −→ St0,s0 uniformly on [t0, t0 + t],

which implies the announced claim.
Lemma 11.3. Let b, θ, C be as in Lemma 11.1. Suppose that

∫ t∧θ

0

∫ r

0

b(r) dS0(r) dS0(u) ≤ Ct ∧ θ for all t ≥ 0.

Then, b satisfies 11.4.
Proof. We follow the proof of Lemma 11.1. We replace θ by the stopping time

θ̄ := θ ∧ τ̄0 and the time-change function h by

h̄(t) :=

∫ t

0

[b(u)2σ̄(u)2 + 1{u>θ̄}]du.

We define the time-changed Brownian motion Ŵ in the obvious way. Then, the
time-change formula implies that

∫ t∧θ̄

0

∫ u

0

b(r)dS0(r) dS0(u) =

∫ t∧θ̄

0

Ŵ (u) dS0(u) =

∫ h(t∧θ̄)

0

φ̄(u)Ŵ (u)dŴ (u),

where φ̄ = 1/[b̄(h̄−1)]. We then proceed as in Lemma 11.1.
Remark 11.4. The conclusion of Lemma 11.1 is still valid if t is substituted for

t∧θ in the right-hand side of inequality (11.2). This is easily checked by going through
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the proof. The same observation prevails for Lemma 11.3.

Finally, we provide two results which deal with a slightly general double integral:

Mn(t∧θn) :=
∫ tn+t∧θn

tn

(
zn +

∫ u

tn

an(r)dr +

∫ u

tn

bn(r)dSn(r)

)
dSn(u) ≤ βn+Ct.

(11.9)
We will first show that if βn tends to zero, then zn also converges to zero. This is a
slight generalization of the result on single stochastic integrals stated in the beginning
of this section. The second result provides information on the limit behavior of the
sequence (bn)n.

Proposition 11.5. Let ({an(u), u ≥ 0})n and ({bn(u), u ≥ 0})n be two se-
quences of real-valued, progressively measurable processes that are uniformly bounded
in n. Suppose that (11.9) holds with real numbers (zn)n, (βn)n, and stopping times
(θn)n. Assume further that, as n tends to zero,

βn −→ 0 and t ∧ θn −→ t ∧ θ0 P -a.s.,

where θ0 is a strictly positive stopping time. Then

lim
n→∞ zn = 0.

Proof. For each n ≥ 0, define the stopping time

τn := 1 ∧ τ̄n ∧ θn.

By Remark 11.2, lim infn t∧ τn ≥ t∧ τ0/2 with probability one. Let ν be an arbitrary
real parameter and define the local martingales Zν

n by

Zν
n(t) = E

(∫ t

0

νdW (u)

σ̄n(u)

)
, t ≥ 0.

By the definition of τn in (11.8), the process {Zν
n(t ∧ τn), t ≥ 0} is a P -martingale.

We then define the probability measure P ν
n equivalent to P by its density process

{Zν
n(t ∧ τn), t ≥ 0} with respect to P . We shall denote by Eν

n the expectation
operator under P ν

n . By Girsanov’s theorem, the process W
ν
n (. ∧ τn) defined by

W ν
n (t) =W (t)−

∫ t

0

ν du

σ̄n(u)
, t ≥ 0,

is a Brownian motion under P ν
n . We also define the local martingale Z

ν by

Zν(t) = E
(∫ t

0

νdW (u)

σ̄0(u)

)
, t ≥ 0.

By the same argument as above, the process {Zν(t ∧ τ0), t ≥ 0} is a P -martingale
and is therefore the density process of some probability measure P ν equivalent to P .
We shall denote by Eν the expectation operator under P ν . It is easily checked that
Zν
n(.) −→ Zν(.) P -a.s. Then, since t ∧ τ0/2 ≤ lim infn t ∧ τn ≤ lim supn t ∧ τn ≤ t, it
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follows from the continuity of Zν
n and Z

ν that

Zν
∞ := lim inf

n→∞ Zν
n(t ∧ τn) > 0.(11.10)

Rewrite Mn(t ∧ τn) in terms of W ν
n ,

Mn(t ∧ τn) = mart(P ν
n ) + νznt ∧ τn + ν

∫ tn+t∧τn

tn

∫ u

tn

an(r)drdu

+ νt ∧ τn
∫ tn+t∧τn

tn

bn(r)σ̄n(r)dW
ν
n (r) + ν

2

∫ tn+t∧τn

tn

∫ u

tn

bn(r)drdu,

where mart(P ν
n ) is a martingale under P

ν
n starting from zero. Take the expectation

under P ν
n , apply the Cauchy–Schwartz inequality for the third term on the right-hand

side, and also utilize the bounds on (an)n and (bn)n to obtain

νznE
ν
n[t ∧ τn] ≤ βn + C

′
(
Eν

n[t ∧ τn] + (|ν|+ ν2)Eν
n[(t ∧ τn)2]3/4

)
≤ βn + C

′
(
t+ (|ν|+ ν2)t3/4

)
.

Let 9 denote either lim infn zn or lim supn zn, and restrict ν to have the same sign as
9, so that ν9 ≥ 0. Now, let n go to infinity. Then, it follows from Fatou’s lemma
together with (11.2) and (11.10) that

1

2
ν9E[t ∧ τ0Zν

∞] ≤ C ′
(
t+ (|ν|+ ν2)t3/4

)
.

We now divide by t and take the limit as t↘ 0. Since τ0 and Z
ν
∞ are positive P (and

then P ν)-a.s., we get by dominated convergence

ν9 ≤ C ′ for all ν ∈ R.

Since ν is arbitrary, we conclude that lim infn zn = lim supn zn = 0.
The following result is a stronger version of Lemma 11.1 which was used in sec-

tion 9. We shall denote by H
2 the Hilbert space of all progressively measurable

Lebesgue(0,T)⊗P -square integrable processes.
Let (bn)n be as in Lemma 11.5. By assumption, (bn)n is bounded in L

∞(Le-
besgue(0, T )⊗P ). Then it is bounded in H

2 and, therefore, converges weakly to some
b, possibly along a subsequence.

Proposition 11.6. Assume the hypothesis of Lemma 11.5. Let b be as above.
Then

lim inf
u↘0

b(u) ≤ 0.

Proof. Define the stopping times τn as in the proof of Lemma 11.5. To simplify
the notation, we rename process bn(t)1tn≤t≤tn+t∧τn by bn(t). By Mazur’s lemma,
there exists a sequence of coefficients (λnk , k ≥ n)n with λ

n
k ≥ 0 and

∑
k≥n λ

n
k = 1

such that

b̂n :=
∑
k≥n

λnkbk −→ b strongly in H
2.(11.11)
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Integrating by parts and using the bound on an and Sn(. ∧ τn) provide

Mn(t ∧ τn) = zn[Sn(tn + t ∧ τn)− sn]

+ Sn(tn + t ∧ τn)
∫ tn+t∧τn

tn

an(r)dr −
∫ tn+t∧τn

tn

Sn(u)an(u)du

+

∫ tn+t∧τn

tn

∫ u

tn

bn(r)dSn(r)dSn(u)

≥ −C ′t ∧ τn − |zn|sn(eλ − 1) +
∫ tn+t∧τn

tn

∫ u

tn

bn(r)dSn(r)dSn(u).

Set β̂n := βn + |zn|sn(eλ − 1). Then, from Lemma 11.5, β̂n −→ 0 as n→ ∞ and we
get from the inequality satisfied by Mn∫ tn+t∧τn

tn

∫ u

tn

bn(r)dSn(r)dSn(u) ≤ β̂n +Kt ∧ τn(11.12)

for some positive constant K. Set

εn(t) :=

∫ tn+t∧τn

tn

∫ u

tn

bn(r)dSn(r)dSn(u)−
∫ t0+t∧τ0

t0

∫ u

t0

bn(r)dS0(r)dS0(u).

We shall later prove that

εn(t) −→ 0 P -a.s.(11.13)

possibly along a subsequence. Take convex combinations in (11.12) to conclude that

∑
k≥n

λnkεk(t) +

∫ t0+t∧τ0

t0

∫ u

t0

b̂n(r)dS0(r)dS0(u) ≤
∑
k≥n

λnk

(
β̂k +Kt ∧ τk

)
.(11.14)

We directly calculate that

E

[(∫ t0+t∧τ0

t0

∫ u

t0

(
b̂n(r)− b(r)

)
dS0(r)dS0(u)

)2
]

= E

[∫ t0+t∧τ0

t0

(∫ u

t0

(
b̂n(r)− b(r)

)
dS0(r)

)2

σ̄0(u)
2du

]

≤ C1 E

[∫ t0+t

t0

(∫ u

t0

(
b̂n(r)− b(r)

)
dS0(r)

)2

du

]

≤ C2 E

[∫ t0+t

t0

∫ u

t0

(
b̂n(r)− b(r)

)2

drdu

]

≤ C3t‖b̂n − b‖2
H2 ,

where Ci’s are constants independent of n. This proves that∫ t0+t∧τ0

t0

∫ u

t0

b̂n(r)dS0(r)dS0(u) −→
∫ t0+t∧τ0

t0

∫ u

t0

b(r)dS0(r)dS0(u) as n→ ∞
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in L2(P ), and therefore P -a.s. along some subsequence. Then, taking a.s. limits in
(11.14) and using (11.13), we get

∫ t0+t∧τ0

t0

∫ u

t0

b(r)dS0(r)dS0(u) ≤ Kt.

Since the limit process b inherits the bound on bn, we apply the result of Lemma 11.3
to complete the proof; see also Remark 11.4.

It remains to prove the convergence result stated in (11.13). Set ζn = tn + t ∧ τn
for n ≥ 0. By Itô’s lemma,

εn(t) = An +Bn + Cn,

where

An = [Sn(ζn)− sn]
∫ ζn

tn

bn(u)dSn(u)− [S0(ζ0)− s0]
∫ ζ0

t0

bn(u)dS0(u),

Bn = −
∫ ζn

tn

bn(u)Sn(u)dSn(u) +

∫ ζ0

t0

bn(u)S0(u)dS0(u),

Cn = −
∫ ζn

tn

bn(u)σ̄n(u)
2du+

∫ ζ0

t0

bn(u)σ̄0(u)
2du.

It suffices to prove that An, Bn, and Cn converge to zero P -a.s. along some sub-
sequence. We prove only the convergence of An; the remaining claims are proved
similarly.

(i) To simplify the presentation, set σ̄(.) = 0 outside the stochastic interval [tn, ζn]
and observe that

Sn(ζn)− S0(ζ0) = sn +

∫ ζn

tn

σ̄n(u)dW (u).

Since σ̄n is bounded inside the stochastic interval [tn, ζn], by dominated convergence,

E



(∫ ζn

tn

σ̄n(u)dW (u)−
∫ ζ0

t0

σ̄0(u)dW (u)

)2



= E

[∫ ζ0∨ζn

t0∧tn

(σ̄n(u)− σ̄0(u))
2
du

]
−→ 0.

This proves that

Sn(ζn) −→ S0(ζ0) P -a.s.

along some subsequence.
(ii) Recall that we have set bn(.) = 0 outside the interval [tn, ζn]. Thus,∫ ζn

tn

bn(u)dSn(u)−
∫ ζ0

t0

bn(u)dS0(u) =

∫ t0∨tn

tn

bn(u)dS0(u) +

∫ ζn

ζ0∧ζn

bn(u)dS0(u)

+

∫ ζ0∧ζn

t0∨tn

bn(u) (σ̄n(u)− σ̄0(u)) dW (u).
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From the bound on bn, the first two terms on the right-hand side converge to zero in
L2(P ) and therefore P -a.s. along some subsequence. As for the third term,

E



(∫ ζ0∧ζn

t0∨tn

bn(u) (σ̄n(u)− σ̄0(u)) dW (u)

)2



= E

[∫ ζ0∧ζn

t0∨tn

bn(u)
2 (σ̄n(u)− σ̄0(u))

2
du

]

≤ C1E

[∫ ζ0∧ζn

t0∨tn

(σ̄n(u)− σ̄0(u))
2
du

]

≤ C2E

[∫ ζ0

t0

(σ̄n(u)− σ̄0(u))
2
du

]
,

where Ci’s are constants and we have set σn(.) = 0 outside the stochastic interval
[tn, ζn]. Since σ̄n is bounded, we see by dominated convergence that the third term
of interest converges to zero in L2(P ) and therefore P -a.s. along some subsequence.
This proves that∫ tn+t∧τn

tn

bn(u)dSn(u)−
∫ t0+t∧τ0

t0

bn(u)dS0(u) −→ 0 P -a.s.

along some subsequence.
By (i) and (ii), An → 0 P -a.s. along some subsequence.

Acknowledgment. We gratefully acknowledge conversations with Professor
F. Delbaen; in particular, he has provided us with the key idea in the proof of Lemma
11.5.

REFERENCES

F. Black and M. Scholes (1973), The pricing of options and corporate liabilities, J. Political
Economy, 81, pp. 637–654.
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