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1. Introduction

It is formally expected that, for a large class of Ginzburg-Landau-type reaction
diffusion equations, the dynamics of the nodal set asymptotically depends only on
the local geometry of the nodal set. More interestingly, the asymptotic behavior of
the solution is determined by the nodal set, thus dominating the other properties of
the solutions. In the case of scalar solutions, this phenomenon is well understood for
several canonical equations. Typically, the solutions form sharp interfaces, called
domain walls, and the time evolution of these sets is governed by geometric equa-
tions. See for instance, [16, 1, 17] and the references therein.

NEu [13] demonstrated this scenario for complex-valued solutions of a nonlin-
ear Schodinger equation and a Ginzburg-Landau-type equation. By formal asymp-
totics, he showed that the zeroes of these complex solutions, which he calls vortices,
persist in time, keeping their original winding number, and the asymptotic vortex
dynamics reduce to a set of ordinary differential equations for the vortex positions.
In particular, vortices with opposite signs attract each other, while the ones with
the same sign repel. His results were extended to the full Ginzburg-Landau model
by PERES & RUBINSTEIN [14] and later by E [6].

The main goal here is to rigorously study the asymptotics of the sequence of
solutionsu® considered byNEu [13] and E [6], in the limite | 0. Functions:®
solve a Ginzburg-Landau-type reaction diffusion system
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&
(1.1) W — Aut =5 (1= ) in @ x (0, 00)
&
and the boundary condition
1.2 uf(x,t) =gkx), Vxecoi,

where$ is an open, bounded set B¢ andg is a given function withig| = 1.
Equation (1.1) is the gradient flow of the Ginzburg-Landau functional

(1.3) IF(w) = I§(w) ::/ e.(w)dx,
Q
where, forR2-valued functions of2, the energy density, (w) is given by
(1.4) e (w) ;= =|Vw|* + —2W(w), Ww) = -1 — |w|9)~.
2 £ 4

Recently, BETHUEL, BREZIS & HELEIN [3, 4] obtained a very detailed char-
acterization of the Ginzburg-Landau functional in the limit, 0. In particular,
they showed that, for any open subsebf R? and aw : O — R? with |w| = 1
onado,

(1.5) 15 (w) 2 | degw; O)||Ing| — C,

whereC is a constant depending @hand the boundary values ef Suppose that
d = degg; Q) > 0. BETHUEL, BrEzis & HELEIN also showed that

inf {I&(w) 1 w=g on 30}
=dr|inel+min{W,(5) : 5= ...y} c Q) +o(e),

where, as | 0,|o(e)|/e — 0andW, is the renormalized energy defined in [4]: see
82, below. Moreover, the zeroes of the minimizers converge, along a subsequence,
to a minimizer ofW,. In [4], itis assumed tha® is star-shaped and this restriction
is later removed bySTRUWE [21], who also gave alternative proofs for several
results of [4]. Further results were obtained by~ [12] and JERRARD [7]. In
particular, JERRARD [7] proved the lower energy bound (1.5) for a smaller class
of functionsw, but with a constan€ independensf the boundary values a#. In
our proof, we will use this version of (1.5) as stated in Lemma 4.1, below.
Formal analyses indicate that, if initialy’ has isolated vortices, then these
vortices move with velocities of the order|df ¢| 1. Therefore to obtain nontrivial
vortex dynamics, we rescale the time variable by a factotrof| and set

vo(x, 1) = ub(x, |In(e)|r).
Thenv? satisfies the boundary condition (1.2) and
vé‘
(1.6) kevi — Avf = — (L—[v°%) in Qx (0, 00),
&

where
ke = (IIn(e)p L.
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Our chief result, Theorem 2.1, is this: Assume that initially thereMaiisolated
vortices with degree-1. Then, in the limit, these vortices persist and satisfy a set of
ordinary differential equations (2.10) as long as they remain separated. The vortex
equation (2.10) is, in fact, the gradient flow of the renormalized en8fgyOur
key assumption is an energy upper bound:

(1.7) f e (v (-, 0)(x)dx < Mr|Ing| + C.
Q

Then, by the standard energy estimate (3.4), this upper bound holds for all later
time.

BaumAN, CHEN, PHILLIPS & STERNBERG [2] obtained the first result in this
direction. They studied the large-time asymptotics of (1.1)R8pwith ¢ = 1
and showed that, as— oo, the solution converges to a point on the unit circle.
RUBINSTEIN & STERNBERG [15], studied the dynamics of one vortex in the limit
¢ | 0 under several a priori assumptions on the behavior of the solution around
the vortex. They proved that the speed of the vortex, in the original time scaling,
is of order| In¢|~1. In particular, they assumed that, for all timehere is exactly
one zero of (-, t) and the degree around this point is equal to 1. Ldtex [11]
studied the dynamics ¢dl| vortices, where! is the degree of the boundary dgta
In this case, all vortices have the same sign dnah proved that, in the original
time scaling, they move with a speed of or¢liers| ~1. Our result differs from these
in two key points. We do not assume thidt = |d|, and we rigorously derive the
vortex equation.

One key step in the proof is the lower energy bound

/ e, t)(x)dx ZaM|Ing| —C() VYVt =0,
Q

so that the unbounded part of the upper and lower bounds agree. M/hend|,

this lower bound follows from the stationary results. However, in the general case,
one needs to localize the estimates around each vortex. We prove this lower bound
by using the local stationary result GtRRARD and a local regularity result which
statesthat alocal integral bound uniforna iof the energy density implies a uniform
pointwise estimate of the energy in a slightly smaller region. This result, proved
by us in [8], is stated in Lemma 4.2. These two results imply the desired lower
bound, as long as the vortices stay isolated. Then, we show that the vortices remain
separated by the following energy estimate:

t
/nduf < /ndué+||n8|/ w5 (0%)ds,
0
whereOF is an open set not containing the vortices,

dus(x) :== E*(x, t)dx,

1 1
Ef(x,1) 1= e, (V" (. 1) (x) = EIva(x, N>+ ;W(ve(x, 1),
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andn is a smooth, positive function which is equal to a quadratic function around
each vortex; see (3.5). This estimate wjtly) = |x|? was first used in [2] and later
in [15]. Our argument is similar to that of [15].

In Lemmas 5.1 and 5.2, we combine all these to conclude that there are vortices
yi (1), depending continuously ansuch that, along a subsequegge

M
en X .
V=Y iy
i=1

where
IDERES AT

In Lemma 5.3, we show that away from the vortieé€s converges uniformly to a
functionv(x, 1), which is explicitly defined in §2. MoreoveF*" also converges
to %|Vv|2, away from the vortices. Finally, this convergence result and the en-
ergy identity (3.3), with an appropriately chosen test function, yield the ordinary
differential equation (2.10) satisfied by the vortices.

After the completion of this work, we have learned that, independeritiy
[10] also derived the vortex equation in the case when all the vortices have the same
sign, or equivalently, wheM = d.

2. Main Result

We assume that initial datg := v®(0, -) satisfy the following property: There
areM distinct points(af, ..., aj,} C 2 and a constant* satisfying:vy = g ondg,

. 1 . . . .
(2.1) Ro:=3 0r<n€|gl I;T:LI? {laf — af|}, min {dist(a?, 89)}} >0,
(2.2) d; = degvg; Bry(a)) € (-1, +1), i=1,.., M,

(2.3) SUP{E°(x,0):|x —af| = 3Ro, i=1,....M, e € (0,1]} < ¢*,

(2.4) inf {|v5(x,0)|: |x —a’| = 3Ro, Vi=1,....M, e € (0,1]} = 2,
0 i 4

(2.5) / Ef(x,0)dx < Mm|Ing| + c*,
Q
(26) 0§l <L & Vo], + 2] DPugl, < e
We further assume that
lim af =q;
e—0
existsforalli =1,..., M and

M
2.7) v§(dx) = ke E*(x, 0)dx = 71 81q,)(dx).
i=1
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In view of (2.2) and (2.3),
M
(2.8) d = degv; 0Q) = degg; 0Q) = » d;.
i=1

The assumption (2.7) is not restrictive. Indeed it follows from the stationary results
stated in Section 4 and a slightly stronger version of (2.3).
There are initial data satisfying these hypotheses; see Remark 2.1, below.
We continue by introducing several functions. Boz R ands = (b, ¢) € R?,
let
£ = (=c,b), ii(0) = (cogv),sin®)), ()= GiO)",

and for a non-zero vectat, let6(x) be the multi-valued function satisfying

AO() = — Vx=0.
| x|

Note that, locally oriR? \ {0}, there are smooth, single-valued representatives of
6(-) and, moreover, each representative satisfies

For M distinct pointsy := {y%, ..., yM} c Q, set
M . .
OW:y) =) dif(x =), xFy
i=1

Since|vg| = |g| = 1 0nd<, for everyy C Q there is, by (2.8), a single-valued
smooth functionpg defined o 2 satisfying

(2.9) n(po+O(x;y) =vg=gx), xe€iQ.
Letp(x) = ¢(x; y) be the solution of
Ap=0 in Q

andg = ¢ 0N 9L2.
Finally, set

R@) = min{ mini+;{|y7 (1) — y' ()]}, min;{dist(y’ (), 9)}} ,
and lety(r) := {y(®), ..., y™ ()} be the solution of

Y = yi(t) )

d i _ . i -9 L1
(2.10) Ey (t) = —2d; ((V(p(y (); }’(t))) + de [y™ () — yi(1)|?

m=i
on (0, Tp) with initial datay’ (0) = a;, where
To:=inf{t >0 : R(y()) =0}

Our chief result is
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Theorem 2.1. Ass | O,

M
(2.11)  vE(dx) 1= ke ES(x, Ddx = 70 80 (dx) V1 € [0, To),
i=1
andv® converges to
n(p(x; y(1) + O(x; (1)),
uniformly on any compact subset {ﬂx HeQx[0,Ty : x# yi(t)}. More-
over, there are zeroes!¢ (1), of v°(-, t) such that

Y = lim YoE(@t) Vi el0, To).

A lengthy computation shows that the differential equation (2.10) can be rewrit-
ten as

d -
Eyl(t) ==2V,i W)

whereW () = W,y (yd1, ..., dy)istherenormalized energy defined BETHUEL,
BrEezis & HELEIN [4]: Giveny, let F(x) be the harmonic function satisfying

X x—y)en
VF~n:gAgr—Zd,~—.2,
= =Y

082,

wheren is the unit, outward normal vector agd is the tangential derivative. Note
thatVF (x) = (Vo(x; y))*. Onag, set

M
®(x)=F(x)+ Y _diIn|x —y'|;
i=1

then the renormalized energy is given by ([4, (47) page 21])

M

- i, 1 Sl i
WG ==Y ddnly =yl + 5o [ 0nzod st =3 a0,
iFj i=1
Remark 2.1Given any sequenag := {af, ..., a},}, there are functions; satis-

fying (2.3)—(2.7) and the boundary condition (1.2). Indeed, let
M
O (x) 1= O(x;d") = Y _dif(x —af),
i=1
and letyp® be a smooth, single-valued function satisfying
n(p® + 0% =gx), xedQ.

Define
M Ix — af|
& = H MRS i & @8 ,
Vg () i|:1| ( - )n(fp +©O%)
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whereH : R! — [0, 1] is any smooth, non-decreasing function wh0) = 0
andH (1) = 1.

Remark 2.2At T, two vortices, say™ 1 andy™, of opposite sign collide (i.e.,
Y1) = yM(To),  dudy-1=—1.

Suppose that, dfy, all other vortices are away froy” ~1(Tp) = yM (Tp). Then

it is expected that these two vortices cancel each other and the remaining vortices
satisfy the differential equation obtained by deleting these two vortices. Analysis of
this cancellation is an interesting open question. The difficulty is this: atlgel,

the total energy is expected to decrease byl ¢| at Tp. Since in our analysis,

it is crucial that the In ¢| part of the upper and lower energy estimates agree, our
proof fails after7yp.

A related question is to understand the breakup of initial vortices with degree
greater than one. It is expected that such vortices break up into several degree-
one vortices and then satisfy an augmented differential equation. Our energy-type
estimates of 83, in particular (3.5), show that, in the original time scaling, this
breakup does not happen in finite time.

3. Energy Estimates

Let E®, u andk, be as in the Introduction. Then (1.6) gives

(3.1) Ef = divp® — ke [vf|?,

(3.2) VE?® = —k.p° +div(c?®),
where fori, j =1, 2,

2 2
& __ & ea & __ g,a &
pj = [ ij , Uij = E le_ ij .
a=1

a=1

Let n(x) be a smooth, positive function witfin(x) = 0 for x € Q. As in
[8, 82], multiply (3.1) byn, (3.2) by Vi and subtract the two identities. After
integrating by parts, we obtain

9
(3.3) 9

&

dug
=—kS/n|vf|2dx+|lns|/(Dznvvf-VvE—AnEf) dx.

Forn = 1, the foregoing computation and (2.5) yield the standard energy estimate

t
/Eg(x,t)dx+k$/ f v 2dx
Q 0 JQ

=/ E¢(x,0dx < Mn|Ing| + c*.
Q

(3.4)
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The energy estimate (3.3) with(x) = |x|2 was first used byBAUMAN, CHEN,
PHILLIPS & STERNBERG [2] and later by RUBINSTEIN & STERNBERG [15].
We modify the quadratic function in the following way. LR be as in (2.1) and
choose; so that

2

n(x) =3 |x—af[", x e Bgylaf),
n(x) Zno=%R3,  xe€0°:=Q\ Brla).
Vn(x) =0, x € 012,
| D%, < C.

ThenD?n = I in|J; Bg,(af) and therefore
2 & & & 2 & B &
DnVv® - Vv® — AnE® = —?W(v ) in U; Bgy(a;).

Moreover, forx € 0O¢,
D?nVe - Vvf — AnE® < CE®.

Hence
K]
Efnduf < ClIne|u; (0%,

with an appropriate constant, independent of. We integrate this inequality to
obtain

t
(3.5) /ndu,f < /ndu8+||n8|/0 us(0%)ds.

We close this section by stating pointwise estimates that follow from (2.6) and
the heat kernel representation of the solutifrffor details see [18, §3]):

(3.6) WIS e |Vof| +e2| DR S C.

4. Stationary Results and Regularity

In this section, we recall and summarize several technical results that will be
used in the next section. The first result is a local lower bound for the energy
functional 7°. BETHUEL, BrEzIS & HELEIN [4] studied the minimizers of®
with given boundary data. They obtained lower bounds and the exact asymptotic
behavior of the minimizers in star-shaped domains. LeieRUwE [21] removed
this restriction. Further results were obtained iy~ [12, 11] and JERRARD
[7]. The following lemma is a special case of the local lower bound proved by
JERRARD [7].
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Lemma4.1l.Let0 < ¢ < 1, ¢ < Randw : By — B be a continuously
differentiable function satisfying

k 1
IVw| < =, degw; dBg) % 0, W) 25 Vixl € [R.2R].
£

Then there is a constaxt(ky), depending only oks, such that

/ es(w)dx = mIn <5) — C(kp).
Bag €

Moreover, there exists* € B such thatw(x*) = 0 and for everny € [¢, R]

/ es(w)dx Z mln (&> — C(kp).
By () £

The following pointwise gradient estimate is proved by us in [8].
Lemma 4.2 Regularity). Let0 < ¢ £ 1, ¢ < R andu® be a solution of1.1)in
Br x (0, 4R?). Suppose that
(4.1) sup{/ ex(uf(,0)dx  t €0, 4R } < k.

Bag

Then there is a constaxt(k1), depending only oks, such that

C (k1)
R2

e Wl (-, 1)) (x) < Vx| < R, t € [R? 4R?].

Further assume that
e (-,0)(x) S k1 Vx| £2R.

Then

ee(ue(-, 1))(x) < %kzl) Vix| £ R, 1 € [0,4R?.

The proof of this lemma consists of two main steps: first, by a monotonicity
result of STRUWE [19], we establish this result for smal} and then we use a
blow-up argument, similar to the one used ByrRUWE [20]. For related results in
bounded domains, we refer tOHEN & LIN [5].

The following result uses the fact that the range of the limit function is the
circle. It is the key step in proving the convergenca/ofiway from the vortices.
Our proof closely followsLin [12, 11].

Fory = {y%, ..., yM} c Q, recall that

R(3) := 2min{min.¢;{|y" — y/[}, min;{dist(y’, a)}},
and, for{ry, ..., ry} C (0, R(y) A 1] andrg € [0, R(y) A 1], set
Qo = 1{x € Q : dist(x, Q) > ro},

r=min{r; :i=1..., M},
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O={xeQqy:lx—y|>r Yi=1l.. M}
In the following lemma, we consider a smooth function
w2 — B

satisfying the boundary data (1.2). We defihe® (x) = O (x; ¥), 6;(x) = 6 (x —
y') as in 82 and assume that (0, 1].

Lemma 4.3. Suppose thaiw| 2 % on O, and that there is a constakt indepen-
dent ofr, satisfying

M
(4.2) / es(w)ydx < m Z [Inr;| +k,
0 i=1
1 k .
(4.3) es(W)d. I (x) < - Vi=1l....M,
3By, (') r;
(4.4) / ee(w)d- T (x) < k.
A,
Then, there is a single-valued, smooth functjotlefined onO such that
(4.5) wx) = lw@lpx) +Ox)), xeO,
JlInr|

/|V¢|2§C+C8 5
o0 r
with a constantC depending only ok, R(y) and the boundary data.

Proof. 1. Since|w| = % on O, the definition of® (x; y) implies that there is a
single-valued, smooth functigndefined onO, satisfying (4.5).
Setp := |w| so that, by (4.2) and (4.5),

(4.6) /Opz[%|v@|2+%|V¢|2+V¢~V(~)]dx§nzini1|lnr,-|+k.

Since® is harmonic inO, by integration by parts,
M

/w-Vsz q)V@-n—i—Z/ VO -n',
0 a0 3By, (y)

0 i=1

wheren and n' are, respectively, the outward unit normal vectorsie¥,, and
9B, (¥"). The definition of® yields

/ Ve -n' =0,
0B, ()

and therefore, for any,
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=‘/ [p —A] VO - n!
3By, (y')

< Cr;i sup |[VO -n'| sup |¢— Al
3By, () 3By, ()

= [
- ¢
2nri Jag, o)

|¢—A|§C/ |Vel.
8Bri(yl)

Since|w| = 3 on 0, by (4.3) and (4.5),

‘ / oVE nl
3By, (y')

Fix i and choose

Then, ond B, (v'),

1/2
. 12 C

lo — Al < C(19B, (Y)) / </ , |V<p|2> < —,
3By, () i

1

with an appropriate constadt Sincen’ = —(6;),

M L
VO@) -0 (x) = devek(x) i () = Zd (1O (X)) - n(H; (x))'

P lx — y&|
Therefore, o B,, ("),

Zd |(71(01<(X)))L 1(6; (X))|
Ix — yK| - UY

/\

Vo) -n'(x)| <

k=i

which yields
M

> eve
i=1 BBri ")

n'|<cC

with a constant depending only o, R(y) andg.
2. Since® is harmonic inO,

Jo

¢V@~n=/ [0 —AIVO -n
a2,

0 0

for anyi. Choose
1

 1020] Joa
so that, by (4.4),

‘/ [¢p —AIVO -n
9%,

Combine the previous two steps to obtain

<C suplvel | Vel SC.
3%, 9%,
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4.7) sC,

/V(p~V(~)
0

with a constant depending only o, R(y) andg.
3. SetR* = R(y) A 1. The definition of® yields

M R*
f iive2dx 2 Z/ / 1|V6;12d. 96  (x)dt
0 = JoB.(y)

M R*JT M
=Z/ Tir=7Y nnl - C,
iz T i=1

whereC = 7 M|In R*|. Substitute this and (4.7) into (4.6) and use the fact that
lw| = 3 on O to obtain

/%|V¢|2§/ P?[3IVO? + Vo2 + Vg - VOldx + C — [, 3p?IVE|?
o o

M

SCHxr ) |ing —/ 1p2ve)?
i=1 0

< c+/ $(1-p?) VO
o
Since

C

Vo, nl=—, xe€O0,
r

we conclude by using (4.2) that

C 1/2 J1In
(1— ,02) VO] < = W (w)dx < Ce nr
0 2 \Jo 2

r

5. Proof of the Main Theorem
We start by showing the localization of the energy.
Lemma5.1. There are constantg > 0, C and functions
y"€ 1[0, 10] = Bryj2(af), i=1,..., M,

such thaw? (y"4(r), ) = 0 and for anye € (0, 1], ¢ € [0, t0], A € [&, Ro]

(5.1) Mf(BA(yi’g(t))) > xln (g) -C Vi=1...,M.
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Proof. Set M
Qf = U{x €Q : |x —daf| € (Ro, 2R0)}.
i=1
1. Fore € (0, 1], set
toi=supT 20 : p(x,0)| =3, V(x,1)eQx[0,T].

By assumption (2.4), > 0. The continuity ofv®, (2.2), and the properties of the
topological degree imply that

|degv®(-,1); 0Bry(a®))| =1 Vi<t e (0,1, i=1...,M.

We apply Lemma 4.1 taw = v°(-, ) with R = Rp. The gradient estimate (3.6)
and Lemma 4.1 imply that for everye [0, 7,], ¢ € (0, 1], andi = 1, ..., M there
exists '

yE(t) € Bry(ay)

satisfyingv® (y"¢(t), t) = 0 and (5.1) for all. € [, Ro] with a constaniC inde-
pendent ot. Then the global energy estimate (3.4) yields

(5.2) Wx:lx—y"*¥@|=x, Vi=1...,M}) < C+aMIn(Ro/L)
forallr € [0,1], ¢ € (0,1], A € [e, Ro]Jandi =1, ..., M. Set
T. :=sufT €[0,t] : y"*(t) € Bryja(af) Vte[0,T],i=1..., M}

Sincev® (y"¢(1),t) = 0, by (2.4),T, > Oforalle € (0, 1].
2. Lety be as in §3 and leD® be as in (3.5). By taking = 3R in (5.2), we get

ui(0%) S pui(fx @ lx =y @) 2 3Ro, Vi=1...,M}
<C Vi<T,.
Then, by (3.5),
t
/nduf < /ndu8+C||n8|/ us(0%ds < /ndu%—f-ClInslt
0
forallt < T,. Since, by (2.7),
lim k dug =0,
€10 & / nakg
there is a sequenese), such that, as | 0,c(¢) — 0 and
/nduf <c(e)+Ct]lIng] Vi< T,
3. Suppose thdf, < co. We claim that there exists a constant> 0, explicitly
constructed below, such thatsfe (0, 1], then|y"*(T,) — a?| 2 LRy for some

i €{l,...,M}. Indeedforalk < T, andi € {1, ..., M}, y"¢(t) € Bgy2(af) and
for » = ZRoin (5.2), we get



112 R.L.JERRARD & H.M. SONER

wi(x t lx—afl 23Ry Yi=1,...,M})
Sui(x s =y OIZ R0 Vi=1..., M)
<C Vi<T,, ¢€(0,1]
By the regularity result Lemma 4.2 and (2.3), there is a congias#tisfying
ES(x,1) £C? V(x,1) e Qx[0,T), &€ (0,1]
In particular, inQ§ x [0, T;), W (v®(x, 1)) < C?¢2 and therefore
W, 02> 1-2Ce V(x,1) € Qf x[0,Te).

Sete; = min{1, 1/(8C)} so that|v®(x, 1)|? = %for all ¢ € (0,21], (x,1) €
Q] x [0, Ty). By the continuity ofv®, we conclude that, > T, and therefore
Iy"¢(T) — af| = 1Ro for somei € {1,..., M}.

4. By the previous step,

(Ro)?
32

nx) = e = V x € Bry/a(y"¢(Tp)),

and, by (5.1),

/nd/fn > c10f, (Brosa(y"* (T%))) Z calIne| — ca,
with appropriate constants andcs. In view of Step 2,
[c(e) + CTc]|Ing| = c2|Ing| — c3.
Chooses; € (0, £1] andfp > 0 so that
[Clo+ce)]|Inel £ collng| —c3
for all ¢ € (0, e2]. Thereforefp < T, and
y"(t) € Bryj2(af) Yt el0,fo], e € O], i =1,..., M.

In the foregoing argument we assumed tiiat< oo; however, ifT, = oo, the
above conclusion is immediate.

5. Hence, (5.1) holds withy for all & € (0, 2]. However, by (2.4),
to:=foAmin{T, : e c[ex, 1]} > 0. O

Let o be as in Lemma 5.1 an@ be a dense, countable subset aftf]. By a
diagonalization argument, we choose a subsequence, so that

(5.3) Y0 = lim y"er(e)

existsforallr € Q andi € {1, ..., M}. Set
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v (dx) = v;"(dx) = ke, E®"(x, 1) dx,
so that as — oo, by (5.1) and (3.4),
. M
i=1

Lemma 5.2. Foreveryi € {1,..., M}, y'(-) extends to a Blder continuous func-
tion, with exponen%, on [0, o] and (5.4) holds for everyr € [0, rg]. Moreover,
yien converges tg' uniformly on[0, 7].

Proof. 1. Fixi and let¢ (x) be a smooth, positive function with compact support
in Bry(a;). Then forany € Q,

: . 1
¢(y' (1) = lim —/cﬁdvf.
n—oo
2. Sincedvi = k.E®(x,t)dx, by (3.1),
d
5 [eavi=—& [/kg¢|vf|2+V¢-p8dx} < ke 19l [ 1971
and therefore, for & s < ¢,

t 1/2 t
f¢duf—/¢dv§ < |IVP o ke <f / |va|2dxdt) (/ f |vf|2dxdz>
K Q s Q

3. The energy estimate (3.4) yields

1/2

/ IVve)%dx S C[|Ing|+1] V=0,
Q

t
//|vf|2dxdt§|lne|[/ Eg(x,s)dx—f Ee(x,t)dx:|.
s Q Q Q

Using (5.1), withx = Rg, and the energy estimate, we conclude that
/t/;2|vf|2dxdt <C[lInel+1] YO<s<r<r.
s
4. Combine the previous two steps to obtain
[oavi = [saviscivolavi=s, vosssi<n,
and, by Step 1,

PO ) — ¢ () SCIVPllovt—s, Vst s,te0.

Foranyi € {1,..., M}, s <t,s,t € Q ands sufficiently close ta, there is a
smooth functionp, with compact support iB,(a; ), satisfying
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$G M =2 $G' N =1 [Vl =Y (®) =y ()
Hence for alls < ¢ sufficiently close ta and fors,t € Q
V' (@0 =y () S CVi =,

and thereforey’ is a Holder continuous function o®. We extendy’ as a Holder
continuous function on [Qo].

5. To prove the uniform convergence,debe a sequence in [&]. Choose a further
subsequencey so thats,, andy"“« (1,,) converge, respectively, toandy"* for

alli e {1,..., M}. Lemma 5.1 implies that, d&s— oo,
M
vt’ffk Ax Z 8(yiy-
i=1
Then, forany < ¢,s € Q,i € {1,..., M} and¢ as before,

P — (Y (5)) £ CIVPllop VT — s,
and therefore™* = yi(r). 0O

Our next result is about the behaviondfaway from the vortices. Let, ¢ (x; ¥)
and® (x; y) be as in 83. For € (0, Rg], A € (0, 1], set

Q, = {x € Q:dist(x, 0Q) > r},
O i={(x,1) e x[0,10] : |x =y ()| > ARo Vi=1,.., M},
0ra(1) i={x € Q: (x,1) € Oy},
0, ={(x.0) e Q x[0,10] : |x — y"™ (1) > 2ARo Vi =1,.., M}.

The uniform convergence of ¢ imply that, for sufficiently large:, 075 C Q.
Moreover, the energy estimate (5.2) and the regularity result Lemma 4.2 imply that

(5.5) sup E® < C(;).

Qr,)» r

In particular, there is(r, A) > 0 such that
Q}’,)\ C FS”» gl’l € (Os 8(}", )‘4)]’

where B
= {0 eQx[01] : v, 0 =3}

Then, fore, € (0, (r, 1)] there exists a single-valued, smooth functigr: :
0, — R, satisfying

v, 1) = [oF (x, D] (e" (x, 1) + O (s (1), (x, 1) € O,

whereyé(r) = {yL¢(t), ..., yM-¢(¢)}. Moreover, we may choosg™ to be inde-
pendent of, r.
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Lemma 5.3. For A € (0, %], there are constant§ > 0 andC (1) > 0 satisfying

/ [Vt 2dx < C + C(Wep,
Qr,k(t)

for everyr € [0, o], r € (0, 3Ro], ande, € (0, (r, A)].
Proof. We suppress the subscriptn our notation and write for ¢,,.
1. Fix1 € (0, 3] and fori € {1, ..., M}, let

k(i) = k(t,i, &, A) :=inf {r/ ES(x,1)d. T (x) : r € [AZRO,ARO]}.
ad

B (y"¢ (1))
By (5.2) with» = ARy,

1G) = p{({x € Q: |x — y"*(1)| € [\*Ro, ARq]})

A

uix € Qilx =y f( Z 2R Vj=1,..., M}

A

C+2nM|InA|,

whereC is a constant independentife, i ands. The definition ofk(;) yields

ARo k(i

I(i)ﬁ/ ﬂairzk(i)|lnk|.
MRy T

Hencek(i) £ C* ;= 2x M + C/In 2 and therefore there exists=r; (1, 1, ¢) €

[A2Ro, A Ro] satisfying

C*
f ES(x,t)d. 7 (x) < —.
3By, (v (1)) i

1

The above argument was first used in this contexSowrUwE [21].

2. Setrg = 3 Ro and fix, r ande € (0, e(ro, A)]. Set
O (x) = O(x; Y5 (1), 6F(x) = O(x — y"(1)),

0 :={xeQy:x&|JB, "))

The local lower bound (5.1) with = r;, and the energy estimate (3.4) yield

M
1 (0) S pf(Q) = Y i (B (37 (1))
i=1
M
< C+naM|lng| —nZln(rl-/s)
i=1
M
SCHm )y |Inn
i=1
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Hence the hypotheses of Lemma 4.3 are satisfied and consequently,
sup | |Vel2dx S C+CMe ¢ € (0, e(ro, ],
te[0,10] YO
with constant< (1), independent of, and withC independent of andA. Since
e(r, 1) < e(ro, 1) forall r < rg, andQ,, () C O for all sufficiently smalle,
sup IVe®12dx < C+Che, €€ (0,e(r ).
1€[0,10] ¥ Qr, 1. (1)

3. Since2, \ 2, C O, (1) CTe(@) fore € (0, e(r, M)], ON 2, \ Ry,
Ve = C[1 + |Vu™].

/ |Vgn|? < c[1+/ |Vv8”|2] <C.o
Q\y Qr\q

By redefininge (r, 1), if necessary, we may assume tidai)s(r, A) < C and
therefore

(5.6) f Vet Pdx < C.
Qr,k(t)

for everyt € [0, 1], € (O, Ro], A € (0, 1], ande,, € (0, e(r, 1)].
We estimate the.?2 norm of ¢® next. Given the gradient bound (5.6), it is
enough to controp®s near the boundary, as in

Hence

Lemma 5.4. There are constant§ > 0 andrg > 0 satisfying
[ trn - g apPazeto s ¢ (r+ %)
9Q, r

for everyr € [0, o], r € (O, ro], ande, € (O, e(r, 1)].

Proof. We suppress the subscripin our notation and write for ¢,,. Fix ¢ € [0, fg].

1. Lets* :=|0Q]andp : [0, s*] — 92 be the arc-length parametrizationas®,
i.e.,|p'(s)l =1and
0Q = {p(s) : s €[0,s*]}.

Sinced 2 is smooth, there igy > 0 such that, for every € [0, rg],
0, = {p(s) —rn(s) : s €0, s*]},
wheren(s) is the unit outward normal t8<2.

2. Since
(5.7) suplus (2\ ©24,) 1 1 €[0, 0], € € (0, 1]} < oo,

by a covering argument (see [4, §IV.1]), there &rk?, ..., sV=¢} [0, s*] and
constants”, N* satisfying
NE g N*s
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{x e Q\Qy @ V(x,0)| < %} C{p(s) —rn(s) : r €[0,ro], s € I¢},

where ' _
I = J[s" = Ce.s"* + Ce] N[0, 5*].
i

3. Fixr € (0, rg]. Fore € (0, e(r, 1)], we extendp® to a smooth, single-valued
function on

Q1U{(x,1) e 2x[0,20] : x = p(s) — pn(s) for somes & I p € [0, r]}.

Moreover, we may choosg® so thatp®(x, 1) = ¢(x; y°(¢)) for x € 3Q and, as
e} 0,
@(x; ¥ (1)) = @(x: ¥(1)),

uniformly inx € 992.
Sinceg(x; ¥¢ (1)) is smooth,

*

fo l9(p(s); ¥5(1)) — @(p(s) — rn(s); ¥ ()| ds < Cr?
and therefore

where

o= f 10 (p(s) — rns). 1) — p(p(s) — rn(s): 3°(1)IPds.
[0,s*]\1¢

Q=2 9% (p(s), 1) — ¢ (p(s) — rn(s), )| ds.
[0,s*]\I¢

4. Fors & I¢, |U€(p(s) —rn(s), t)| 2 % and(pg(p(s) —rn(s),t) is defined.
Moreover, at(p(s) — rn(s), t)

IVl < C[1+ |Vo°].

By (5.7),
a<a+ Cr?
<2 / f IVe* (p(s) — En(s), 1)|* d& ds + Cr?
[0,s*]\1¢ JO
(58 <Cr f[o » /O L4 1905 (pls) — £n(s), O] dE ds + Cr?

SCr/ [1+ |V¢®|?] dx + Cr?
Q\Q2,

0
<Cr.

5. Since|I¢| £ N*Ce, by (5.8), there i$ € [0, s*] \ I¢ such that

105 (p(5) — rn(3), ) — p(p() — rn($); ¥ (1)1> < Cr.
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By (5.5), for anys € [0, s*]

0% (p(s) — ru(s), ) — @(p(s) — ra(s); ¥ (1)

A

¢ 3 a a a 8. 2E 2
] +2|¢° (p(8) —rn(8), 1) — @(p(S) —rn(s); y°(1))|

A

< +C
— r.
72
Hence

/IS l9° (p(s) = rn(s). 1) — @(p(s) — rn(s); ¥ (1)) ds

C 1
§|I‘€|<—2+Cr>§C<—2+r>8. O
r r

Again we may assume thar, 1)r—2 < r and therefore
(5.9) / o (x, 1) — @(x; Y (1)) | d. 76 (x) < Cr
0%,

for everyt € [0, 1o], r € (0, Ro], ande, € (0, &(r, 1)]. By the Sobolev embedding
theorem, (5.6) and (5.9) yield

(5.10) / 6 (. D2 dx < C
O (1)

for everyt € [0, ro], r € (0, Ro], A € (0, 1] andg, € (0, e(r, 1)].
Set

U:i={(x,1)eQx[0,10] : x*+y'(t) Vi=1...,M}.
Proposition 5.5. Asn — oo, v®" converges to

v(x, 1) =np(x; (1) + O (x; (1)),

uniformly on compact subsetsif Moreover|Vvé |2 and2E# converge tdVv|?
strongly inL (U).
Proof. We suppress the subscriptn our notation and write for ¢,,.

1. Letr,, be any sequence tending to zero and®gt= Q,., .. £(m) = €(rm, rm)
and so forth. By (5.6) and (5.10),

sup{ l9f (x, D% + |Vg® (x, 1)|%dx -
Om

Q)

(5.11)
t€[0,n0], e €(0,e(m)], m=1,2,...} < oo,

where Q,,(¢) is ther cross section ofD,,. We use this estimate and (5.5) in a
diagonal argument to construct a subsequesice, 0, andy such that, for every
m1
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) strongly inL2(Q,,),
Vet — Vo  inweak*L>®(Q,,).

SinceU = lim Q,,, it follows thate is defined orlJ. In view of (5.11)¢ extends
to 2 x [0, fro] and it satisfies

sup lol? + Vol dx < oo.
te[0,r0] /2

Moreover, for everyn,
V(1) = v(x, ) = di(e(x, 1) + O F(1) in LA(Qw).
andVvé converges toVv in the weak topology of L*°(Q,,).

2. Fix m and recall thak, = |Ine|~1. We claim thatp(x, 1) = ¢(x; ¥(r)) and
thatp®* converges t@ uniformly on Q,,. Indeed, let;, — t* € (0, 1o]. For all k
satisfyings; < e(m), set

wh(x, 1) 1= % (x, they + 1), (x,1) € GX,
OF(x. 1) = O (x, the + 1), (x.1) € G}y,

PK(x, 1) i= o (x, they + 1), (x, 1) € GX,,

where
Gy, ={(x.1) © (x.tke +1*) € Qu}.

and, for sufficiently largé,
OF x [—1f,0] C GX, 1 =r*|Ing,
O ={xeQ, : Ix—yY U Zrm1Ro Yi=1,..., M}
Moreover,w* satisfies

u (x, t + el Ineg]) = pF(x, DAk (x, 1) + O (x, 1)),

whereu? is the solution of the Ginzburg-Landau equation (1.1) in the original
unscaled variables. From (1.1) we obtain

(5.12) W2 wk —v. ((pk)ZV(wk + @k)) -0 in Gk

and, by Step 3 of Lemma 5.2,

i
/ / luf*|?dx dt < C,
0 Q

with a constant independent of. Sincep* > 3 on G%,,

0
/ / |w,8k+(~)tk|2dxdt<C.
_tlz‘ *

m
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From (5.11) and (5.5), we also know that

Sup{/ |wk|2+|Vwk|2dx} < o0,

m,k,t

and, by (5.5), .
SILCJPHVU) ”LOO(G];,,) § C(m)

Since, onQ}, x (—o0, 0], O is uniformly smooth in ther variable, the family
{wk + ©*)% , is precompact irCli/c“(Q:‘n x (—o0, 0]). Moreover, agk — oo, @F
uniformly converges to

O(x) := O(x; y(t)).

Hence there are a subsequence, denotekl &dgain, and a bounded functian
defined onQ x (—oo, 0] such that for everyrz, w* converges uniformly tav on
every compact subset @f, x (—oo, 0] and

0
supf lw|® + |Vw|? dx < oo, f / lw, |2 dx dt < .
—00 JQ

t<0JQ

Note that® is harmonic inU and, by (5.5),0* converges to 1 irH (0}, x
(—00, 0)). We letk — oo in (5.12) and conclude that satisfies the heat equation
on Q} x (—o0,0]. In view of our estimatesy is a solution inQ2 x (—oo, 0].
Moreover, by (5.9),

w(x, ) =ex; (%), x €.

Since, by definitiong(x; ¥(t*)) is harmonic in%2, standard uniqueness results for
the heat equation imply that

wx, ) =@ y@"), (x,1) € Qx (~00,0]

This proves our claim that(x, 1) = ¢(x; y(¢)) and thatp® converges uniformly
to ¢. Moreover, since the limit is independent of the subsequeside,convergent
along the original sequence.

3. Lett, — t* be given. We claim that, for any andT > 0,

0
Iim/ / Ea(x,tkg—l—ts)dxdt:T/ $IVu(x, %)% dx.
el0J T J 0, (te) Om (%)

This convergence result is very similar to the convergence results proved by us [8,
Lemma 6.1], so we only give the outline of its proof. Fosufficiently small, set

0= Qm(ts),

EN‘E(X, t) = Eé‘(x’ tké‘ +t8) = e&‘(ug('s t+ | In8|t8))(-x)7 (X, t) € Q2 x [_T7 O]

We compute

€12
Ef — AE® + |D%u®? + |€v %+ Au |W( &) = 2(1 [u® %) | Vut|?
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(see [8] for details). Moreover, by the regularity result, there is an ope set
containingO x [—T, 0], so thatE? is bounded orQ, uniformly ine. Hence,

~ ~ W (uf
(5.13) E? — AE® + |D%uf)? + # <c,
&

and therefore

0
sup/ /|D2u52dxdt<oo,
e J-tJo

0 &
. w
I|m/ / (Z )dxdtzo.
0 J_17Jo &

These estimates, together with the uniform gradient and time derivative estimates
of u®, imply the claimed convergence of the energy; see [8, Lemma 6.1].
4. To complete the proof of this lemma, it suffices to show that

(5.14) |i5r5f Es(x,odxdt:/ $IVv[?dxdt.
&

For sufficiently smalk, let M, be the smallest integer greater tharin ¢/,

l l

f=—0,
£ lneg

[=0,1,..., M,,

and, forr e [¢/~1, 4],

1
ge(t) == ||n8|/ / Ef(x,s)dxds
o))

0
Z// Ef(x, Tk +1t!)dx dr.
-1J Q@b

SinceE* is bounded inQ,,,,
fo
lim Efdxdt =Ilim t)dt.
20 )y, X 5¢0/0 g:(1)

Forr € [0, tg], let I(z, £) be the smallest integer greater thaThen, ass | O,
¥ _ t and, by Step 6,

g:(t) —> / %|Vv(x, t)|2dx dt.
Om (1)
Moreover,g. is bounded by a constait(m) independent of. Therefore, (5.14)

follows from the dominated convergence theorem. o

Proof of Theorem 2.1.Let 7o be as in Lemma 5.1 ang, yi(¢) be asin (5.3). By
(2.7),y'(0) = a; for eachi. We first show thaf (-) is a solution of (2.10) on [Qyg].
Fixi andr € [0, 10]. Without loss of generality, assume that 1 andy(r) = 0.
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1. Let¢ be a smooth function witlv¢ compactly supported i. Sincedv; =
ke E€(x, t)dx, by (3.3),

i/ pdve = —/ (k8)2¢|vf|2+/ D?¢pVve - Vv© — A E¢ dx.

dt Jo 0 o

Steps 1 and 3 of Lemma 5.2 yield

d(yi(s)) — ¢(0) = lim lf / D?¢Vv® - Vv© — ApE®dxdt Vs €0, 1o].
elom Ji Jo

If the support ofD?%¢ does not includdy’(7), ..., yM (1)} for all T € [, s], by
Lemmab5.3,

(5.15) $(yX(s)) — $(0) = = / ' / D26Vo - Vo — L ap|Voldx dr.
T Jr Jo 2

2. ForA e R2ands € (0, 1Rg], let ¢s = (A - x) H(|x|), where, forr > 0,

1, r €0, 4],
H(@)=132-r/s, r €8, 28]
0, r=26.

We calculate
D2¢5 =A-nm@nrH' N +mMQA+AQn+(A-n)I —n@n)] H' (),

wherer = |x|, n = 71(6) = x/r and® is the tensor product. Althougps is not
smooth enough, by an approximation argument, we use (5.15witlps. For all
s sufficiently close ta, we find that

Pp(yH(s) — (0) = [yH(s) — y ()] - A
(5.16) 1
= —[ [I1(z, 8) + I2(7, 8) + I3(t, 8)]dT - A,
where T

1
I1(s,8) = _f GIV2+|Vv-nP)n — 2(Vv-n) - Vvdx,
8 Bos\Bs

Ix(s, 8) = 2/ (IVv - n|? = 3|VuPnd. 71 (x),
dBos

I3(s,8) = — . (Vv -nl?— %|Vv|2)n d. 771 (x).
S

Since the left-hand side of (5.16) is independent ahd since (5.16) holds for all
A € R?,

(5.17) i) — v = lim = / Ut 8) + Iz, 8) + Ia(x, 8)] d
sLom J,

for all s sufficiently close ta.
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3. Recall that (®) := (71(0))* and
® =9+ Zdiei, 0; (x, 8) 1= 0(x — y'(s)).
Then,v = n(®) and, fore = 1, 2,

M
V¥ = <V<p + ZdiV9i>(?(‘p))a

i=1
M .
= (w + Y it @))x -y (s)|1) (t(@)) :
i=1 @
We evaluate the following functions at= r7(9):

1 2d M i (6; .
IVu|? = ") + Tl< — (Vo) + ZCL’%) -n(0) + E1(x),

Vo - 7i(0) = <V¢+Zd t(i)( )|> .ﬁ(@)(?(cb)) ,

=2
Vv -i(0)[% = Ea(x),

2
(Vv -7i(0)) - Vv = Z(W’ - (0) Vo
a=1

_ 4 (v " Zd ’(9,)( )|) (0 7(6) + Eav),

whereE1, E» andE3 are bounded functions. We use these identities in the definition
of I1(s, 8):
28 271
I (s, 8) = ka(s, 8)8+ — / —(B(s x) - 1(0))n(0)

— (A(s, x) - 1(9))1(0) do dr,

wherek1(s, §) is bounded and
n(6;)
B(s,x) = —(Vo)" + ) d; et
; =y ()]

76

A(s, x) = V¢+Zd, e

observe thatA(s, x))= = —B(s, x). Since for a fixeds € R?,
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2 2
/0 (y -n(0)n6)do =y, /o (y - 1(0)I(O)do = wy*,

asé | 0, it follows that
I1(s,8) — 3md1B(s, 0),

uniformly in s € [0, 10]. A similar calculation shows that
2
Ix(s, 8) = ka(s,8) 8 — 2d1/ (B(s, x) - n(9)n(9) do
0

and, therefore, a8 | 0, I2(s,8) — —2md1B(s,0), uniformly ins € [0, 7).
Similarly, ass | 0, I3(s, 8) — md1B(s, 0), uniformly ins € [0, o] and, by (5.17),

N
yHs) =yt =244 f B(z, O)dx,
t
for all s sufficiently close ta. SinceB is continuous,

j—tyl(f) = 2d1B(t, y(t)) Vit €0, tq].

4. In the previous steps, we have proved Theorem 2.1 og][(Bince the family
of functions{v® (-, tp)} satisfies the assumptions (2.2)—(2.7), we complete the proof
of the theorem by an iterative argument.oo
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