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1. Introduction

It is formally expected that, for a large class of Ginzburg-Landau-type reaction
diffusion equations, the dynamics of the nodal set asymptotically depends only on
the local geometry of the nodal set. More interestingly, the asymptotic behavior of
the solution is determined by the nodal set, thus dominating the other properties of
the solutions. In the case of scalar solutions, this phenomenon is well understood for
several canonical equations. Typically, the solutions form sharp interfaces, called
domain walls, and the time evolution of these sets is governed by geometric equa-
tions. See for instance, [16, 1, 17] and the references therein.

Neu [13] demonstrated this scenario for complex-valued solutions of a nonlin-
ear Schr̈odinger equation and a Ginzburg-Landau-type equation. By formal asymp-
totics, he showed that the zeroes of these complex solutions, which he calls vortices,
persist in time, keeping their original winding number, and the asymptotic vortex
dynamics reduce to a set of ordinary differential equations for the vortex positions.
In particular, vortices with opposite signs attract each other, while the ones with
the same sign repel. His results were extended to the full Ginzburg-Landau model
by Peres & Rubinstein [14] and later by E [6].

The main goal here is to rigorously study the asymptotics of the sequence of
solutionsuε considered byNeu [13] and E [6], in the limitε ↓ 0. Functionsuε

solve a Ginzburg-Landau-type reaction diffusion system



100 R.L. Jerrard & H.M. Soner

uε
t − 1uε = uε

ε2
(1 − |uε|2) in � × (0, ∞)(1.1)

and the boundary condition

uε(x, t) = g(x), ∀ x ∈ ∂�,(1.2)

where� is an open, bounded set inR2 andg is a given function with|g| = 1.
Equation (1.1) is the gradient flow of the Ginzburg-Landau functional

I ε(w) = I ε
�(w) :=

∫
�

eε(w)dx,(1.3)

where, forR2-valued functions of�, the energy densityeε(w) is given by

eε(w) := 1

2
|∇w|2 + 1

ε2
W(w), W(w) = 1

4
(1 − |w|2)2.(1.4)

Recently,Bethuel, Brezis&Helein [3, 4] obtained a very detailed char-
acterization of the Ginzburg-Landau functional in the limitε ↓ 0. In particular,
they showed that, for any open subsetO of R2 and aw : O → R2 with |w| = 1
on ∂O,

I ε
O(w) = π | deg(w; O)|| ln ε| − C,(1.5)

whereC is a constant depending onO and the boundary values ofw. Suppose that
d = deg(g; �) > 0. Bethuel, Brezis & Helein also showed that

inf
{
I ε
�(w) : w = g on ∂O

}
= dπ | ln ε| + min

{
Wg(Ey) : Ey = {y1, . . . , yd} ⊂ �

} + o(ε),

where, asε ↓ 0, |o(ε)|/ε → 0 andWg is the renormalized energy defined in [4]: see
§2, below. Moreover, the zeroes of the minimizers converge, along a subsequence,
to a minimizer ofWg. In [4], it is assumed that� is star-shaped and this restriction
is later removed byStruwe [21], who also gave alternative proofs for several
results of [4]. Further results were obtained byLin [12] and Jerrard [7]. In
particular, Jerrard [7] proved the lower energy bound (1.5) for a smaller class
of functionsw, but with a constantC independentof the boundary values ofw. In
our proof, we will use this version of (1.5) as stated in Lemma 4.1, below.

Formal analyses indicate that, if initiallyuε has isolated vortices, then these
vortices move with velocities of the order of| ln ε|−1. Therefore to obtain nontrivial
vortex dynamics, we rescale the time variable by a factor of| ln ε| and set

vε(x, t) := uε(x, | ln(ε)|t).
Thenvε satisfies the boundary condition (1.2) and

kεv
ε
t − 1vε = vε

ε2
(1 − |vε|2) in � × (0, ∞),(1.6)

where
kε = (| ln(ε)|)−1 .
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Our chief result, Theorem 2.1, is this: Assume that initially there areM isolated
vortices with degree±1. Then, in the limit, these vortices persist and satisfy a set of
ordinary differential equations (2.10) as long as they remain separated. The vortex
equation (2.10) is, in fact, the gradient flow of the renormalized energyWg. Our
key assumption is an energy upper bound:∫

�

eε(v
ε(·, 0))(x)dx 5 Mπ | ln ε| + C.(1.7)

Then, by the standard energy estimate (3.4), this upper bound holds for all later
time.

Bauman,Chen, Phillips&Sternberg [2] obtained the first result in this
direction. They studied the large-time asymptotics of (1.1) onR2, with ε = 1
and showed that, ast → ∞, the solution converges to a point on the unit circle.
Rubinstein & Sternberg [15], studied the dynamics of one vortex in the limit
ε ↓ 0 under several a priori assumptions on the behavior of the solution around
the vortex. They proved that the speed of the vortex, in the original time scaling,
is of order| ln ε|−1. In particular, they assumed that, for all timet , there is exactly
one zero ofuε(·, t) and the degree around this point is equal to 1. Later,Lin [11]
studied the dynamics of|d| vortices, whered is the degree of the boundary datag.
In this case, all vortices have the same sign andLin proved that, in the original
time scaling, they move with a speed of order| ln ε|−1. Our result differs from these
in two key points. We do not assume thatM = |d|, and we rigorously derive the
vortex equation.

One key step in the proof is the lower energy bound∫
�

eε(u
ε(·, t))(x)dx = πM| ln ε| − C(t) ∀ t = 0,

so that the unbounded part of the upper and lower bounds agree. WhenM = |d|,
this lower bound follows from the stationary results. However, in the general case,
one needs to localize the estimates around each vortex. We prove this lower bound
by using the local stationary result ofJerrard and a local regularity result which
states that a local integral bound uniform inε of the energy density implies a uniform
pointwise estimate of the energy in a slightly smaller region. This result, proved
by us in [8], is stated in Lemma 4.2. These two results imply the desired lower
bound, as long as the vortices stay isolated. Then, we show that the vortices remain
separated by the following energy estimate:∫

ηdµε
t 5

∫
ηdµε

0 + | ln ε|
∫ t

0
µε

s (O
ε)ds,

whereOε is an open set not containing the vortices,

dµε
t (x) := Eε(x, t)dx,

Eε(x, t) := eε(v
ε(·, t))(x) = 1

2
|∇vε(x, t)|2 + 1

ε2
W(vε(x, t)),
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andη is a smooth, positive function which is equal to a quadratic function around
each vortex; see (3.5). This estimate withη(x) = |x|2 was first used in [2] and later
in [15]. Our argument is similar to that of [15].

In Lemmas 5.1 and 5.2, we combine all these to conclude that there are vortices
yi(t), depending continuously ont , such that, along a subsequenceεn,

ν
εn
t

∗
⇀ π

M∑
i=1

δ{yi (t)},

where
ν

εn
t := kεµ

εn
t .

In Lemma 5.3, we show that away from the vorticesvεn converges uniformly to a
functionv(x, t), which is explicitly defined in §2. Moreover,Eεn also converges
to 1

2|∇v|2, away from the vortices. Finally, this convergence result and the en-
ergy identity (3.3), with an appropriately chosen test function, yield the ordinary
differential equation (2.10) satisfied by the vortices.

After the completion of this work, we have learned that, independently,Lin
[10] also derived the vortex equation in the case when all the vortices have the same
sign, or equivalently, whenM = d.

2. Main Result

We assume that initial datavε
0 := vε(0, ·) satisfy the following property: There

areM distinct points{aε
1, ..., a

ε
M} ⊂ � and a constantc∗ satisfying:vε

0 = g on∂�,

R0 := 1
3 min

0<ε51

{
min
i |=j

{|aε
i − aε

j |}, min
i

{
dist(aε

i , ∂�)
}}

> 0,(2.1)

di := deg(vε
0; ∂BR0(a

ε
i )) ∈ {−1, +1}, i = 1, ..., M,(2.2)

sup
{
Eε(x, 0) : |x − aε

i | = 1
2R0, i = 1, . . . , M, ε ∈ (0, 1]

}
5 c∗,(2.3)

inf
{|vε

0(x, 0)| : |x − aε
i | = 1

2R0, ∀ i = 1, . . . , M, ε ∈ (0, 1]
}

= 3
4,(2.4) ∫

�

Eε(x, 0)dx 5 Mπ | ln ε| + c∗,(2.5)

|vε
0| 5 1, ε

∥∥∇vε
0

∥∥∞ + ε2
∥∥D2vε

0

∥∥∞ 5 c∗.(2.6)

We further assume that
lim
ε→0

aε
i = ai

exists for alli = 1, . . . , M and

νε
0(dx) := kεE

ε(x, 0)dx
∗
⇀ π

M∑
i=1

δ{ai }(dx).(2.7)
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In view of (2.2) and (2.3),

d := deg(vε
0; ∂�) = deg(g; ∂�) =

M∑
i=1

di.(2.8)

The assumption (2.7) is not restrictive. Indeed it follows from the stationary results
stated in Section 4 and a slightly stronger version of (2.3).

There are initial data satisfying these hypotheses; see Remark 2.1, below.
We continue by introducing several functions. Forθ ∈ R1 andξ = (b, c) ∈ R2,

let
ξ⊥ := (−c, b), En(θ) := (cos(θ), sin(θ)), Et(θ) := (En(θ))⊥,

and for a non-zero vector,x, let θ(x) be the multi-valued function satisfying

En(θ(x)) = x

|x| ∀ x |= 0.

Note that, locally onR2 \ {0}, there are smooth, single-valued representatives of
θ(·) and, moreover, each representative satisfies

∇θ(x) = Et(θ(x))

|x| = x⊥

|x|2 ∀ x |= 0.

ForM distinct pointsEy := {y1, . . . , yM} ⊂ �, set

Θ(x; Ey) :=
M∑
i=1

diθ(x − yi), x |= yi.

Since|vε
0| = |g| = 1 on∂�, for every Ey ⊂ � there is, by (2.8), a single-valued

smooth functionϕ0 defined on∂� satisfying

En (ϕ0 + Θ(x; Ey)) = vε
0 = g(x), x ∈ ∂�.(2.9)

Let ϕ(x) = ϕ(x; Ey) be the solution of

1ϕ = 0 in �
andϕ = ϕ0 on ∂�.

Finally, set

R(Ey) := 1
3 min

{
mini |=j {|yj (t) − yi(t)|}, mini{dist(yi(t), ∂�)}} ,

and letEy(t) := {y1(t), . . . , yM(t)} be the solution of

d

dt
yi(t) = −2di

((∇ϕ
(
yi(t); Ey(t)

))⊥ +
∑
m |=i

dm

ym(t) − yi(t)

|ym(t) − yi(t)|2
)

,(2.10)

on (0, T0) with initial datayi(0) = ai , where

T0 := inf {t > 0 : R(Ey(t)) = 0}.
Our chief result is
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Theorem 2.1. Asε ↓ 0,

νε
t (dx) := kεE

ε(x, t)dx
∗
⇀ π

M∑
i=1

δ{yi (t)}(dx) ∀ t ∈ [0, T0),(2.11)

andvε converges to
En(ϕ(x; Ey(t)) + Θ(x; Ey(t))),

uniformly on any compact subset of
{
(x, t) ∈ � × [0, T0) : x 6= yi(t)

}
. More-

over, there are zeroes,yi,ε(t), of vε(·, t) such that

yi(t) = lim
ε↓0

yi,ε(t) ∀ t ∈ [0, T0).

A lengthy computation shows that the differential equation (2.10) can be rewrit-
ten as

d

dt
yi(t) = −2∇yi (t)W(Ey(t))

whereW(Ey) = Wg(Eyd1, . . . , dM) is the renormalized energy defined byBethuel,
Brezis & Helein [4]: Given Ey, let F(x) be the harmonic function satisfying

∇F · n = g ∧ gτ −
M∑
i=1

di

(x − yi) · n

|x − yi |2 , ∂�,

wheren is the unit, outward normal vector andgτ is the tangential derivative. Note
that∇F(x) = (∇ϕ(x; Ey))⊥. On∂�, set

Φ(x) = F(x) +
M∑
i=1

di ln |x − yi |;

then the renormalized energy is given by ([4, (47) page 21])

W(Ey) = −
∑
i |=j

didj ln |yi − yj | + 1

2π

∫
∂�

Φ(g ∧ gτ )dH 1 −
M∑
i=1

diF (yi).

Remark 2.1.Given any sequenceEaε := {aε
1, . . . , a

ε
M}, there are functionsvε

0 satis-
fying (2.3)–(2.7) and the boundary condition (1.2). Indeed, let

Θε(x) := Θ(x; Eaε) =
M∑
i=1

diθ(x − aε
i ),

and letϕε be a smooth, single-valued function satisfying

En(ϕε + Θε) = g(x), x ∈ ∂�.

Define

vε
0(x) =

M∏
i=1

H

( |x − aε
i |

ε

)
En(ϕε + Θε),
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whereH : R1 → [0, 1] is any smooth, non-decreasing function withH(0) = 0
andH(1) = 1.

Remark 2.2.At T0, two vortices, sayyM−1 andyM , of opposite sign collide (i.e.,

yM−1(T0) = yM(T0), dMdM−1 = −1.

Suppose that, atT0, all other vortices are away fromyM−1(T0) = yM(T0). Then
it is expected that these two vortices cancel each other and the remaining vortices
satisfy the differential equation obtained by deleting these two vortices. Analysis of
this cancellation is an interesting open question. The difficulty is this: at theε level,
the total energy is expected to decrease by 2π | ln ε| at T0. Since in our analysis,
it is crucial that the| ln ε| part of the upper and lower energy estimates agree, our
proof fails afterT0.

A related question is to understand the breakup of initial vortices with degree
greater than one. It is expected that such vortices break up into several degree-
one vortices and then satisfy an augmented differential equation. Our energy-type
estimates of §3, in particular (3.5), show that, in the original time scaling, this
breakup does not happen in finite time.

3. Energy Estimates

Let Eε, µε
t andkε be as in the Introduction. Then (1.6) gives

Eε
t = divpε − kε|vε

t |2,(3.1)

∇Eε = −kεp
ε + div(σ ε),(3.2)

where fori, j = 1, 2,

pε
j =

2∑
α=1

v
ε,α
t vε,α

xj
, σ ε

ij =
2∑

α=1

vε,α
xi

vε,α
xj

.

Let η(x) be a smooth, positive function with∇η(x) = 0 for x ∈ ∂�. As in
[8, §2], multiply (3.1) byη, (3.2) by ∇η and subtract the two identities. After
integrating by parts, we obtain

∂

∂t

∫
η dµε

t

= −kε

∫
η

∣∣vε
t

∣∣2 dx + | ln ε|
∫ (

D2η∇vε · ∇vε − 1ηEε
)

dx.
(3.3)

Forη ≡ 1, the foregoing computation and (2.5) yield the standard energy estimate∫
�

Eε(x, t)dx + kε

∫ t

0

∫
�

|vε
t |2dx

=
∫

�

Eε(x, 0)dx 5 Mπ | ln ε| + c∗.
(3.4)
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The energy estimate (3.3) withη(x) = |x|2 was first used byBauman, Chen,
Phillips & Sternberg [2] and later by Rubinstein & Sternberg [15].
We modify the quadratic function in the following way. LetR0 be as in (2.1) and
chooseη so that

η(x) = 1
2

∣∣x − aε
i

∣∣2 , x ∈ BR0(a
ε
i ),

η(x) = η0 = 1
4R2

0, x ∈ Oε := � \ ⋃
i BR0(a

ε
i ),

∇η(x) = 0, x ∈ ∂�,∥∥D2η
∥∥∞ 5 C.

ThenD2η = I in
⋃

i BR0(a
ε
i ) and therefore

D2η∇vε · ∇vε − 1ηEε = − 2

ε2
W(vε) in ∪i BR0(a

ε
i ).

Moreover, forx ∈ Oε,

D2η∇vε · ∇vε − 1ηEε 5 CEε.

Hence
∂

∂t

∫
ηdµε

t 5 C| ln ε|µε
t (O

ε),

with an appropriate constantC, independent ofε. We integrate this inequality to
obtain ∫

ηdµε
t 5

∫
ηdµε

0 + | ln ε|
∫ t

0
µε

s (O
ε)ds.(3.5)

We close this section by stating pointwise estimates that follow from (2.6) and
the heat kernel representation of the solutionvε (for details see [18, §3]):

|vε| 5 1, ε
∥∥∇vε

∥∥∞ + ε2
∥∥D2vε

∥∥∞ 5 C.(3.6)

4. Stationary Results and Regularity

In this section, we recall and summarize several technical results that will be
used in the next section. The first result is a local lower bound for the energy
functionalI ε. Bethuel, Brezis & Helein [4] studied the minimizers ofI ε

with given boundary data. They obtained lower bounds and the exact asymptotic
behavior of the minimizers in star-shaped domains. Later,Struwe [21] removed
this restriction. Further results were obtained byLin [12, 11] and Jerrard
[7]. The following lemma is a special case of the local lower bound proved by
Jerrard [7].
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Lemma 4.1. Let 0 < ε 5 1, ε < R and w : B̄2R → B1 be a continuously
differentiable function satisfying

|∇w| <
k1

ε
, deg(w; ∂BR) |= 0, |w(x)| = 1

2
∀ |x| ∈ [R, 2R].

Then there is a constantC(k1), depending only onk1, such that∫
B2R

eε(w) dx = π ln

(
R

ε

)
− C(k1).

Moreover, there existsx∗ ∈ BR such thatw(x∗) = 0 and for everyλ ∈ [ε, R]∫
Bλ(x∗)

eε(w) dx = π ln

(
λ

ε

)
− C(k1).

The following pointwise gradient estimate is proved by us in [8].

Lemma 4.2 (Regularity). Let 0 < ε 5 1, ε < R anduε be a solution of(1.1) in
BR × (0, 4R2). Suppose that

sup

{∫
B2R

eε(u
ε(·, t)) dx : t ∈ [0, 4R2]

}
5 k1.(4.1)

Then there is a constantC(k1), depending only onk1, such that

eε(u
ε(·, t))(x) 5 C(k1)

R2
∀ |x| 5 R, t ∈ [R2, 4R2].

Further assume that

eε(u
ε(·, 0))(x) 5 k1 ∀ |x| 5 2R.

Then

eε(u
ε(·, t))(x) 5 C(k1)

R2
∀ |x| 5 R, t ∈ [0, 4R2].

The proof of this lemma consists of two main steps: first, by a monotonicity
result of Struwe [19], we establish this result for smallk1 and then we use a
blow-up argument, similar to the one used byStruwe [20]. For related results in
bounded domains, we refer toChen & Lin [5].

The following result uses the fact that the range of the limit function is the
circle. It is the key step in proving the convergence ofvε away from the vortices.
Our proof closely followsLin [12, 11].

For Ey = {y1, . . . , yM} ⊂ �, recall that

R(Ey) := 1
3 min

{
mini |=j {|yi − yj |}, mini{dist(yi, ∂�)}} ,

and, for{r1, . . . , rM} ⊂ (0, R(Ey) ∧ 1] andr0 ∈ [0, R(Ey) ∧ 1], set

�r0 := {x ∈ � : dist(x, ∂�) > r0} ,

r = min{ri : i = 1, . . . , M},
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O := {
x ∈ �r0 : |x − yi | > ri ∀ i = 1, . . . , M

}
.

In the following lemma, we consider a smooth function

w : � → B1

satisfying the boundary data (1.2). We definedi , Θ(x) = Θ(x; Ey), θi(x) = θ(x −
yi) as in §2 and assume thatε ∈ (0, 1].

Lemma 4.3. Suppose that|w| = 1
2 onO, and that there is a constantk, indepen-

dent ofr, satisfying ∫
O

eε(w)dx 5 π

M∑
i=1

| ln ri | + k,(4.2)

∫
∂Bri

(yi )

eε(w)dH 1(x) 5 k

r3
i

∀ i = 1, . . . , M,(4.3)

∫
∂�r0

eε(w)dH 1(x) 5 k.(4.4)

Then, there is a single-valued, smooth functionϕ defined onO such that

w(x) = |w(x)|En(ϕ(x) + Θ(x)), x ∈ O,(4.5) ∫
O

|∇ϕ|2 5 C + Cε

√| ln r|
r2

,

with a constantC depending only onk, R(Ey) and the boundary datag.

Proof. 1. Since|w| = 1
2 on O, the definition ofΘ(x; Ey) implies that there is a

single-valued, smooth functionϕ defined onO, satisfying (4.5).
Setρ := |w| so that, by (4.2) and (4.5),∫

O

ρ2[1
2|∇Θ|2 + 1

2|∇ϕ|2 + ∇ϕ · ∇Θ
]
dx 5 π

∑M
i=1 | ln ri | + k.(4.6)

SinceΘ is harmonic inO, by integration by parts,∫
O

∇ϕ · ∇Θ =
∫

∂�r0

ϕ∇Θ · n +
M∑
i=1

∫
∂Bri

(yi )

ϕ∇Θ · ni,

wheren and ni are, respectively, the outward unit normal vectors of∂�r0 and
∂Bri (y

i). The definition ofΘ yields∫
∂Bri

(yi )

∇Θ · ni = 0,

and therefore, for anyλ,
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∣∣∣∣ ∫
∂Bri

(yi )

ϕ∇Θ · ni

∣∣∣∣ =
∣∣∣∣ ∫

∂Bri
(yi )

[ϕ − λ] ∇Θ · ni

∣∣∣∣
5 Cri sup

∂Bri
(yi )

|∇Θ · ni | sup
∂Bri

(yi )

|ϕ − λ|.

Fix i and choose

λ = 1

2πri

∫
∂Bri

(yi )

ϕ .

Then, on∂Bri (y
i),

|ϕ − λ| 5 C

∫
∂Bri

(yi )

|∇ϕ|.

Since|w| = 1
2 onO, by (4.3) and (4.5),

|ϕ − λ| 5 C
(|∂Bri (y

i)|)1/2
( ∫

∂Bri
(yi )

|∇ϕ|2
)1/2

5 C

ri
,

with an appropriate constantC. Sinceni = −En(θi),

∇Θ(x) · ni(x) =
M∑

k=1

dk∇θk(x) · ni(x) = −
M∑

k=1

dk

(En(θk(x)))⊥ · En(θi(x))

|x − yk| .

Therefore, on∂Bri (y
i),

∣∣∇Θ(x) · ni(x)
∣∣ 5

M∑
k |=i

dk

∣∣(En(θk(x)))⊥ · En(θi(x))
∣∣

|x − yk| 5 C

R(Ey)
,

which yields ∣∣∣∣ M∑
i=1

∫
∂Bri

(yi )

ϕ∇Θ · ni

∣∣∣∣ 5 C

with a constantC depending only onk, R(Ey) andg.
2. SinceΘ is harmonic inO,∫

∂�r0

ϕ∇Θ · n =
∫

∂�r0

[ϕ − λ]∇Θ · n

for anyλ. Choose

λ = 1

|∂�r0|
∫

∂�r0

ϕ

so that, by (4.4),∣∣∣∣ ∫
∂�r0

[ϕ − λ]∇Θ · n

∣∣∣∣ 5 C sup
∂�r0

|∇Θ|
∫

∂�r0

|∇ϕ| 5 C.

Combine the previous two steps to obtain
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∣∣∣∣∫
O

∇ϕ · ∇Θ

∣∣∣∣ 5 C,(4.7)

with a constantC depending only onk, R(Ey) andg.

3. SetR∗ = R(Ey) ∧ 1. The definition ofΘ yields

∫
O

1
2|∇Θ|2dx =

M∑
i=1

∫ R∗

ri

∫
∂Bτ (yi )

1
2|∇θi |2dH 1(x)dτ

=
M∑
i=1

∫ R∗

ri

π

τ
dτ = π

M∑
i=1

| ln ri | − C,

whereC = πM| ln R∗|. Substitute this and (4.7) into (4.6) and use the fact that
|w| = 1

2 onO to obtain∫
O

1
8|∇ϕ|2 5

∫
O

ρ2[1
2|∇Θ|2 + 1

2|∇ϕ|2 + ∇ϕ · ∇Θ
]
dx + C − ∫

O
1
2ρ2|∇Θ|2

5 C + π

M∑
i=1

| ln ri | −
∫

O

1
2ρ2|∇Θ|2

5 C +
∫

O

1
2

(
1 − ρ2

) |∇Θ|2.

Since

|∇Θ(x, t)| 5 C

r
, x ∈ O,

we conclude by using (4.2) that∫
O

(
1 − ρ2

)
|∇Θ|2 5 C

r2

(∫
O

W(w)dx

)1/2

5 Cε

√| ln r|
r2

. ut

5. Proof of the Main Theorem

We start by showing the localization of the energy.

Lemma 5.1. There are constantst0 > 0, C and functions

yi,ε : [0, t0] → BR0/2(a
ε
i ), i = 1, . . . , M,

such thatvε(yi,ε(t), t) = 0 and for anyε ∈ (0, 1], t ∈ [0, t0], λ ∈ [ε, R0]

µε
t

(
Bλ(y

i,ε(t))
)

= π ln

(
λ

ε

)
− C ∀ i = 1, . . . , M.(5.1)
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Proof. Set
�ε

1 :=
M⋃
i=1

{x ∈ � : |x − aε
i | ∈ (R0, 2R0)}.

1. Forε ∈ (0, 1], set

tε := sup{T = 0 : |vε(x, t)| = 1
2, ∀ (x, t) ∈ �ε

1 × [0, T ]}.
By assumption (2.4),tε > 0. The continuity ofvε, (2.2), and the properties of the
topological degree imply that

| deg(vε(·, t); ∂BR0(a
ε
i ))| = 1 ∀ t 5 tε, ε ∈ (0, 1], i = 1, . . . , M.

We apply Lemma 4.1 tow = vε(·, t) with R = R0. The gradient estimate (3.6)
and Lemma 4.1 imply that for everyt ∈ [0, tε], ε ∈ (0, 1], andi = 1, . . . , M there
exists

yi,ε(t) ∈ BR0(a
ε
i )

satisfyingvε(yi,ε(t), t) = 0 and (5.1) for allλ ∈ [ε, R0] with a constantC inde-
pendent ofε. Then the global energy estimate (3.4) yields

µε
t ({x : |x − yi,ε(t)| = λ, ∀ i = 1, . . . , M}) 5 C + πM ln(R0/λ)(5.2)

for all t ∈ [0, tε], ε ∈ (0, 1], λ ∈ [ε, R0] andi = 1, . . . , M. Set

Tε := sup{T ∈ [0, tε] : yi,ε(t) ∈ BR0/2(a
ε
i ) ∀ t ∈ [0, T ], i = 1, . . . , M}.

Sincevε(yi,ε(t), t) = 0, by (2.4),Tε > 0 for all ε ∈ (0, 1].

2. Letη be as in §3 and letOε be as in (3.5). By takingλ = 1
2R0 in (5.2), we get

µε
t (O

ε) 5 µε
t ({x : |x − yi,ε(t)| = 1

2R0, ∀ i = 1, . . . , M})
5 C ∀ t < Tε.

Then, by (3.5),∫
η dµε

t 5
∫

η dµε
0 + C| ln ε|

∫ t

0
µε

s (O
ε)ds 5

∫
ηdµε

0 + C| ln ε| t

for all t 5 Tε. Since, by (2.7),

lim
ε↓0

kε

∫
η dµε

0 = 0,

there is a sequencec(ε), such that, asε ↓ 0, c(ε) → 0 and∫
η dµε

t 5 [c(ε) + Ct ]| ln ε| ∀ t 5 Tε.

3. Suppose thatTε < ∞. We claim that there exists a constantε1 > 0, explicitly
constructed below, such that, ifε ∈ (0, ε1], then|yi,ε(Tε) − aε

i | = 1
2R0 for some

i ∈ {1, . . . , M}. Indeed for allt < Tε andi ∈ {1, . . . , M}, yi,ε(t) ∈ BR0/2(a
ε
i ) and

for λ = 1
4R0 in (5.2), we get
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µε
t ({x : |x − aε

i | = 3
4R0 ∀ i = 1, . . . , M})

5 µε
t ({x : |x − yi,ε(t)| = 1

4R0 ∀ i = 1, . . . , M})

5 C ∀ t < Tε, ε ∈ (0, 1].

By the regularity result Lemma 4.2 and (2.3), there is a constantC satisfying

Eε(x, t) 5 C2 ∀ (x, t) ∈ �ε
1 × [0, Tε), ε ∈ (0, 1].

In particular, in�ε
1 × [0, Tε), W(vε(x, t)) 5 C2ε2 and therefore

|vε(x, t)|2 = 1 − 2Cε ∀ (x, t) ∈ �ε
1 × [0, Tε).

Set ε1 = min{1, 1/(8C)} so that|vε(x, t)|2 = 3
4 for all ε ∈ (0, ε1], (x, t) ∈

�ε
1 × [0, Tε). By the continuity ofvε, we conclude thattε > Tε, and therefore

|yi,ε(Tε) − aε
i | = 1

2R0 for somei ∈ {1, . . . , M}.
4. By the previous step,

η(x) = c1 := (R0)
2

32
∀ x ∈ BR0/4(y

i,ε(Tε)),

and, by (5.1),∫
η dµε

Tε
= c1µ

ε
Tε

(
BR0/4(y

i,ε(Tε))
)

= c2| ln ε| − c3,

with appropriate constantsc2 andc3. In view of Step 2,

[c(ε) + CTε]| ln ε| = c2| ln ε| − c3.

Chooseε2 ∈ (0, ε1] and t̂0 > 0 so that

[Ct̂0 + c(ε)] | ln ε| 5 c2| ln ε| − c3

for all ε ∈ (0, ε2]. Thereforet̂0 5 Tε and

yi,ε(t) ∈ BR0/2(a
ε
i ) ∀ t ∈ [0, t̂0], ε ∈ (0, ε2], i = 1, . . . , M.

In the foregoing argument we assumed thatTε < ∞; however, ifTε = ∞, the
above conclusion is immediate.

5. Hence, (5.1) holds witĥt0 for all ε ∈ (0, ε2]. However, by (2.4),

t0 := t̂0 ∧ min{Tε : ε ∈ [ε2, 1]} > 0. ut
Let t0 be as in Lemma 5.1 andQ be a dense, countable subset of [0, t0]. By a

diagonalization argument, we choose a subsequence,εn ↓ 0, so that

yi(t) := lim
n→∞ yi,εn(t)(5.3)

exists for allt ∈ Q andi ∈ {1, . . . , M}. Set
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νn
t (dx) := ν

εn
t (dx) = kεnE

εn(x, t) dx,

so that asn → ∞, by (5.1) and (3.4),

νn
t

∗
⇀ π

M∑
i=1

δ{yi (t)} ∀ t ∈ Q.(5.4)

Lemma 5.2. For everyi ∈ {1, . . . , M}, yi(·) extends to a Ḧolder continuous func-
tion, with exponent12, on [0, t0] and (5.4) holds for everyt ∈ [0, t0]. Moreover,
yi,εn converges toyi uniformly on[0, t0].

Proof. 1. Fix i and letφ(x) be a smooth, positive function with compact support
in BR0(ai). Then for anyt ∈ Q,

φ(yi(t)) = lim
n→∞

1

π

∫
φdνn

t .

2. Sincedνε
t = kεE

ε(x, t) dx, by (3.1),

d

dt

∫
φ dνε

t = −kε

[∫
kεφ|vε

t |2 + ∇φ · pε dx

]
5 kε ‖∇φ‖∞

∫
|pε| dx

and therefore, for 05 s 5 t ,∫
φ dνε

t −
∫

φ dνε
s 5 ‖∇φ‖∞ kε

(∫ t

s

∫
�

|∇vε|2dx dt

)1/2 (∫ t

s

∫
�

|vε
t |2dx dt

)1/2

.

3. The energy estimate (3.4) yields∫
�

|∇vε|2dx 5 C[| ln ε| + 1] ∀ t = 0,

∫ t

s

∫
�

|vε
t |2dx dt 5 | ln ε|

[∫
�

Eε(x, s)dx −
∫

�

Eε(x, t)dx

]
.

Using (5.1), withλ = R0, and the energy estimate, we conclude that∫ t

s

∫
�

|vε
t |2dx dt 5 C[| ln ε| + 1] ∀ 0 5 s 5 t 5 t0.

4. Combine the previous two steps to obtain∫
φ dνε

t −
∫

φ dνε
s 5 C ‖∇φ‖∞

√
t − s, ∀ 0 5 s 5 t 5 t0,

and, by Step 1,

φ(yi(t)) − φ(yi(s)) 5 C ‖∇φ‖∞
√

t − s, ∀ s 5 t, s, t ∈ Q.

For anyi ∈ {1, . . . , M}, s < t , s, t ∈ Q ands sufficiently close tot , there is a
smooth functionφ, with compact support inBR0(ai), satisfying
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φ(yi(t)) = 2, φ(yi(s)) = 1, ‖∇φ‖∞ = |yi(t) − yi(s)|−1.

Hence for alls < t sufficiently close tot and fors, t ∈ Q

|yi(t) − yi(s)| 5 C
√

t − s,

and therefore,yi is a Hölder continuous function onQ. We extendyi as a Ḧolder
continuous function on [0, t0].

5. To prove the uniform convergence, lettn be a sequence in [0, t0]. Choose a further
subsequencenk so thattnk

andyi,εnk (tnk
) converge, respectively, tot andyi,∗ for

all i ∈ {1, . . . , M}. Lemma 5.1 implies that, ask → ∞,

ν
nk
tnk

∗
⇀ π

M∑
i=1

δ{yi,∗}.

Then, for anys < t , s ∈ Q, i ∈ {1, . . . , M} andφ as before,

φ(yi,∗) − φ(yi(s)) 5 C ‖∇φ‖∞
√

t − s,

and thereforeyi,∗ = yi(t). ut
Our next result is about the behavior ofvε away from the vortices. LetEn,ϕ(x; Ey)

andΘ(x; Ey) be as in §3. Forr ∈ (0, R0], λ ∈ (0, 1], set

�r := {x ∈ � : dist(x, ∂�) > r} ,

Qr,λ := {
(x, t) ∈ �r × [0, t0] : |x − yi(t)| > λR0 ∀ i = 1, ..., M

}
,

Qr,λ(t) := {
x ∈ �r : (x, t) ∈ Qr,λ

}
,

Qn
r,λ := {

(x, t) ∈ �r × [0, t0] : |x − yi,εn(t)| > 2λR0 ∀ i = 1, ..., M
}
.

The uniform convergence ofyi,εn imply that, for sufficiently largen, Qn
r,λ ⊂ Qr,λ.

Moreover, the energy estimate (5.2) and the regularity result Lemma 4.2 imply that

sup
Qr,λ

Eεn 5 C(λ)

r2
.(5.5)

In particular, there isε(r, λ) > 0 such that

Qr,λ ⊂ 0εn, εn ∈ (0, ε(r, λ)],

where
0ε := {

(x, t) ∈ �̄ × [0, t0] : |vε(x, t)| = 1
2

}
.

Then, forεn ∈ (0, ε(r, λ)] there exists a single-valued, smooth function,ϕεn :
Qr,λ → R1, satisfying

vε(x, t) = |vε(x, t)| En(ϕε(x, t) + Θ(x; Eyε(t))), (x, t) ∈ Qr,λ,

whereEyε(t) = {y1,ε(t), . . . , yM,ε(t)}. Moreover, we may chooseϕεn to be inde-
pendent ofλ, r.
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Lemma 5.3. For λ ∈ (0, 1
2], there are constantsC > 0 andC(λ) > 0 satisfying∫

Qr,λ(t)

|∇ϕεn |2 dx 5 C + C(λ)εn,

for everyt ∈ [0, t0], r ∈ (0, 1
2R0], andεn ∈ (0, ε(r, λ)].

Proof. We suppress the subscriptn in our notation and writeε for εn.
1. Fix λ ∈ (0, 1

2] and fori ∈ {1, . . . , M}, let

k(i) = k(t, i, ε, λ) := inf

{
r

∫
∂Br (yi,ε(t))

Eε(x, t)dH 1(x) : r ∈ [λ2R0, λR0]

}
.

By (5.2) withλ = λ2R0,

I (i) := µε
t ({x ∈ � : |x − yi,ε(t)| ∈ [λ2R0, λR0]})

5 µε
t ({x ∈ � : |x − yj,ε(t)| = λ2R0 ∀ j = 1, . . . , M})

5 C + 2πM| ln λ|,
whereC is a constant independent ofλ, ε, i andt . The definition ofk(i) yields

I (i) =
∫ λR0

λ2R0

k(i)

r
dr = k(i)| ln λ|.

Hence,k(i) 5 C∗ := 2πM + C/ ln 2 and therefore there existsri = ri(λ, t, ε) ∈
[λ2R0, λR0] satisfying∫

∂Bri
(yi,ε(t))

Eε(x, t) dH 1(x) 5 C∗

ri
.

The above argument was first used in this context byStruwe [21].

2. Setr0 = 1
2R0 and fixλ, t andε ∈ (0, ε(r0, λ)]. Set

Θε(x) = Θ(x; Eyε(t)), θε
i (x) = θ(x − yi,ε(t)),

O := {x ∈ �r0 : x |∈
⋃
i

Bri (y
i,ε(t))}.

The local lower bound (5.1) withλ = ri , and the energy estimate (3.4) yield

µε
t (O) 5 µε

t (�) −
M∑
i=1

µε
t (Bri (y

i,ε(t)))

5 C + πM| ln ε| − π

M∑
i=1

ln(ri/ε)

5 C + π

M∑
i=1

| ln ri |.
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Hence the hypotheses of Lemma 4.3 are satisfied and consequently,

sup
t∈[0,t0]

∫
O

|∇ϕε|2 dx 5 C + C(λ)ε ε ∈ (0, ε(r0, λ)],

with constantsC(λ), independent ofε, and withC independent ofε andλ. Since
ε(r, λ) 5 ε(r0, λ) for all r < r0, andQr0,λ(t) ⊂ O for all sufficiently smallε,

sup
t∈[0,t0]

∫
Qr0,λ(t)

|∇ϕε|2 dx 5 C + C(λ)ε, ε ∈ (0, ε(r, λ)].

3. Since�r \ �r0 ⊂ Qr,λ(t) ⊂ 0ε(t) for ε ∈ (0, ε(r, λ)], on �r \ �r0,

|∇ϕεn | 5 C[1 + |∇vεn |].
Hence ∫

�r\�r0

|∇ϕεn |2 5 C

[
1 +

∫
�r\�r0

|∇vεn |2
]

5 C. ut

By redefiningε(r, λ), if necessary, we may assume thatC(λ)ε(r, λ) 5 C and
therefore ∫

Qr,λ(t)

|∇ϕεn |2 dx 5 C,(5.6)

for everyt ∈ [0, t0], r ∈ (0, R0], λ ∈ (0, 1], andεn ∈ (0, ε(r, λ)].
We estimate theL2 norm of ϕεn next. Given the gradient bound (5.6), it is

enough to controlϕεn near the boundary, as in

Lemma 5.4. There are constantsC > 0 andr0 > 0 satisfying∫
∂�r

|ϕεn(x, t) − ϕ(x; Eyεn(t))|2 dH 1(x) 5 C
(
r + εn

r2

)
for everyt ∈ [0, t0], r ∈ (0, r0], andεn ∈ (0, ε(r, 1)].

Proof. We suppress the subscriptn in our notation and writeε for εn. Fix t ∈ [0, t0].

1. Lets∗ := |∂�| andp : [0, s∗] → ∂� be the arc-length parametrization of∂�,
i.e., |p′(s)| = 1 and

∂� = {p(s) : s ∈ [0, s∗]}.
Since∂� is smooth, there isr0 > 0 such that, for everyr ∈ [0, r0],

∂�r = {p(s) − rn(s) : s ∈ [0, s∗]},
wheren(s) is the unit outward normal to∂�.

2. Since
sup{µε

t (� \ �r0) : t ∈ [0, t0], ε ∈ (0, 1]} < ∞,(5.7)

by a covering argument (see [4, §IV.1]), there are{s1,ε, . . . , sNε,ε} ⊂ [0, s∗] and
constantsC, N∗ satisfying

Nε 5 N∗,
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{x ∈ � \ �r0 : |vε(x, t)| < 1
2} ⊂ {p(s) − rn(s) : r ∈ [0, r0], s ∈ I ε},

where
I ε :=

⋃
i

[si,ε − Cε, si,ε + Cε] ∩ [0, s∗].

3. Fix r ∈ (0, r0]. For ε ∈ (0, ε(r, 1)], we extendϕε to a smooth, single-valued
function on

�r,1 ∪ {(x, t) ∈ �̄ × [0, t0] : x = p(s) − ρn(s) for somes |∈ I ε ρ ∈ [0, r]}.
Moreover, we may chooseϕε so thatϕε(x, t) = ϕ(x; Eyε(t)) for x ∈ ∂� and, as
ε ↓ 0,

ϕ(x; Eyε(t)) → ϕ(x; Ey(t)),

uniformly in x ∈ ∂�.

Sinceϕ(x; Eyε(t)) is smooth,∫ s∗

0
|ϕ(p(s); Eyε(t)) − ϕ(p(s) − rn(s); Eyε(t))|2 ds 5 Cr2

and therefore
α 5 α̂ + Cr2,

where

α :=
∫

[0,s∗]\I ε

|ϕε(p(s) − rn(s), t) − ϕ(p(s) − rn(s); Eyε(t))|2ds,

α̂ := 2
∫

[0,s∗]\I ε

|ϕε(p(s), t) − ϕε(p(s) − rn(s), t)|2 ds.

4. For s |∈ I ε, |vε(p(s) − rn(s), t)| = 1
2 and ϕε(p(s) − rn(s), t) is defined.

Moreover, at(p(s) − rn(s), t)

|∇ϕε| 5 C[1 + |∇vε|].
By (5.7),

α 5 α̂ + Cr2

5 2r

∫
[0,s∗]\I ε

∫ r

0
|∇ϕε(p(s) − ξn(s), t)|2 dξ ds + Cr2

5 Cr

∫
[0,s∗]\I ε

∫ r

0
[1 + |∇vε(p(s) − ξn(s), t)|2] dξ ds + Cr2

5 Cr

∫
�\�r0

[1 + |∇ϕε|2] dx + Cr2

5 Cr.

(5.8)

5. Since|I ε| 5 N∗Cε, by (5.8), there iŝs ∈ [0, s∗] \ I ε such that

|ϕε(p(ŝ) − rn(ŝ), t) − ϕ(p(ŝ) − rn(ŝ); Eyε(t))|2 5 Cr.
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By (5.5), for anys ∈ [0, s∗]

|ϕε(p(s) − rn(s), t) − ϕ(p(s) − rn(s); Eyε(t))|2

5 C

r2
+ 2|ϕε(p(ŝ) − rn(ŝ), t) − ϕ(p(ŝ) − rn(ŝ); Eyε(t))|2

5 C

r2
+ Cr.

Hence ∫
I ε

|ϕε(p(s) − rn(s), t) − ϕ(p(s) − rn(s); Eyε(t))|2 ds

5 |I ε|
(

C

r2
+ Cr

)
5 C

(
1

r2
+ r

)
ε. ut

Again we may assume thatε(r, 1)r−2 5 r and therefore∫
∂�r

|ϕεn(x, t) − ϕ(x; Eyεn(t))|2 dH 1(x) 5 Cr(5.9)

for everyt ∈ [0, t0], r ∈ (0, R0], andεn ∈ (0, ε(r, 1)]. By the Sobolev embedding
theorem, (5.6) and (5.9) yield∫

Qr,λ(t)

|ϕεn(x, t)|2 dx 5 C(5.10)

for everyt ∈ [0, t0], r ∈ (0, R0], λ ∈ (0, 1] andεn ∈ (0, ε(r, λ)].
Set

U := {(x, t) ∈ � × [0, t0] : x |= yi(t) ∀ i = 1, . . . , M}.
Proposition 5.5. Asn → ∞, vεn converges to

v(x, t) = En(ϕ(x; Ey(t)) + Θ(x; Ey(t))),

uniformly on compact subsets ofU . Moreover,|∇vεn |2 and2Eεn converge to|∇v|2
strongly inL1

loc(U).

Proof. We suppress the subscriptn in our notation and writeε for εn.

1. Letrm be any sequence tending to zero and setQm := Qrm,rm , ε(m) := ε(rm, rm)

and so forth. By (5.6) and (5.10),

sup{
∫

Qm(t)

|ϕε(x, t)|2 + |∇ϕε(x, t)|2dx :

t ∈ [0, t0], ε ∈ (0, ε(m)], m = 1, 2, . . .} < ∞,

(5.11)

whereQm(t) is the t cross section ofQm. We use this estimate and (5.5) in a
diagonal argument to construct a subsequence,εk ↓ 0, andϕ such that, for every
m,
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ϕεk → ϕ strongly inL2(Qm),

∇ϕεk ⇀ ∇ϕ in weak∗L∞(Qm).

SinceU = lim Qm, it follows thatϕ is defined onU . In view of (5.11)ϕ extends
to � × [0, t0] and it satisfies

sup
t∈[0,t0]

∫
�

|ϕ|2 + |∇ϕ|2 dx < ∞.

Moreover, for everym,

vεk (x, t) → v(x, t) := En(ϕ(x, t) + Θ(x; Ey(t))) in L2(Qm),

and∇vεk converges to∇v in the weak∗ topology ofL∞(Qm).

2. Fix m and recall thatkε = | ln ε|−1. We claim thatϕ(x, t) = ϕ(x; Ey(t)) and
thatϕεk converges toϕ uniformly onQm. Indeed, lettk → t∗ ∈ (0, t0]. For all k
satisfyingεk 5 ε(m), set

wk(x, t) := ϕεk (x, t kεk
+ tk), (x, t) ∈ Gk

m,

Θk(x, t) := Θεk (x, t kεk
+ tk), (x, t) ∈ Gk

m,

ρk(x, t) := |vεk (x, t kεk
+ tk)|, (x, t) ∈ Gk

m,

where
Gk

m = {(x, t) : (x, t kεk
+ t∗) ∈ Qm},

and, for sufficiently largek,

Q∗
m × [−t∗k , 0] ⊂ Gk

m, t∗k = t∗| ln εk|,
Q∗

m = {x ∈ �rm : |x − yi(t∗)| = rm+1R0 ∀ i = 1, . . . , M}.
Moreover,wk satisfies

uεk (x, t + tk| ln εk|) = ρk(x, t)En(wk(x, t) + Θk(x, t)),

whereuε is the solution of the Ginzburg-Landau equation (1.1) in the original
unscaled variables. From (1.1) we obtain

(ρk)2 wk
t − ∇ ·

(
(ρk)2∇(wk + Θk)

)
= 0 in Gk

m(5.12)

and, by Step 3 of Lemma 5.2,∫ t∗
k

0

∫
�

|uεk
t |2 dx dt < C,

with a constantC independent ofk. Sinceρk = 1
2 onGk

m,∫ 0

−t∗
k

∫
Q∗

m

|wεk
t + Θk

t |2 dx dt < C.
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From (5.11) and (5.5), we also know that

sup
m,k,t

{ ∫
Q∗

m

|wk|2 + |∇wk|2 dx

}
< ∞,

and, by (5.5),
sup
k

‖∇wk‖L∞(Gk
m) 5 C(m).

Since, onQ∗
m × (−∞, 0], Θk is uniformly smooth in thex variable, the family

{wk + Θk}∞k=1 is precompact inC1/4
loc (Q∗

m × (−∞, 0]). Moreover, ask → ∞, Θk

uniformly converges to
Θ(x) := Θ(x; Ey(t∗)).

Hence there are a subsequence, denoted byk again, and a bounded functionw
defined on� × (−∞, 0] such that for everym, wk converges uniformly tow on
every compact subset ofQ∗

m × (−∞, 0] and

sup
t50

∫
�

|w|2 + |∇w|2 dx < ∞,

∫ 0

−∞

∫
�

|wt |2 dx dt < ∞.

Note thatΘ is harmonic inU and, by (5.5),ρk converges to 1 inH 1
loc(Q

∗
m ×

(−∞, 0)). We letk → ∞ in (5.12) and conclude thatw satisfies the heat equation
on Q∗

m × (−∞, 0]. In view of our estimates,w is a solution in� × (−∞, 0].
Moreover, by (5.9),

w(x, t) = ϕ(x; Ey(t∗)), x ∈ ∂�.

Since, by definition,ϕ(x; Ey(t∗)) is harmonic in�, standard uniqueness results for
the heat equation imply that

w(x, t) = ϕ(x; Ey(t∗)), (x, t) ∈ � × (−∞, 0].

This proves our claim thatϕ(x, t) = ϕ(x; Ey(t)) and thatϕεk converges uniformly
to ϕ. Moreover, since the limit is independent of the subsequence,ϕε is convergent
along the original sequence.

3. Let tε → t∗ be given. We claim that, for anym andT > 0,

lim
ε↓0

∫ 0

−T

∫
Qm(tε)

Eε(x, t kε + tε) dx dt = T

∫
Qm(t∗)

1
2|∇v(x, t∗)|2 dx.

This convergence result is very similar to the convergence results proved by us [8,
Lemma 6.1], so we only give the outline of its proof. Forε sufficiently small, set
O = Qm(tε),

Ẽε(x, t) := Eε(x, t kε + tε) = eε(u
ε(·, t + | ln ε|tε))(x), (x, t) ∈ � × [−T , 0].

We compute

Ẽε
t − 1Ẽε + |D2uε|2 + 4

ε2
|uε∇uε|2 + 4|uε|2

ε4
W(uε) = 2

ε2
(1 − |uε|2)|∇uε|2
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(see [8] for details). Moreover, by the regularity result, there is an open setQ̂,
containingŌ × [−T , 0], so thatẼε is bounded onQ̂, uniformly in ε. Hence,

Ẽε
t − 1Ẽε + |D2uε|2 + W(uε)

ε4
5 C,(5.13)

and therefore

sup
ε

∫ 0

−T

∫
O

|D2uε|2dx dt < ∞,

lim
ε↓0

∫ 0

−T

∫
O

W(uε)

ε2
dx dt = 0.

These estimates, together with the uniform gradient and time derivative estimates
of uε, imply the claimed convergence of the energy; see [8, Lemma 6.1].
4. To complete the proof of this lemma, it suffices to show that

lim
ε↓0

∫
Qm

Eε(x, t) dx dt =
∫

Qm

1
2|∇v|2 dx dt.(5.14)

For sufficiently smallε, let Mε be the smallest integer greater thant0| ln ε|,

t lε = l

| ln ε| , l = 0, 1, . . . , Mε,

and, fort ∈ [t l−1
ε , t lε],

gε(t) := | ln ε|
∫ t lε

t l−1
ε

∫
Qm(tlε)

Eε(x, s) dx ds

=
∫ 0

−1

∫
Qm(tlε)

Eε(x, τ kε + t lε) dx dτ.

SinceEε is bounded inQm,

lim
ε↓0

∫
Qm

Eε dx dt = lim
ε↓0

∫ t0

0
gε(t) dt.

For t ∈ [0, t0], let l(t, ε) be the smallest integer greater thant . Then, asε ↓ 0,
t
l(t,ε)
ε → t and, by Step 6,

gε(t) →
∫

Qm(t)

1
2|∇v(x, t)|2dx dt.

Moreover,gε is bounded by a constantK(m) independent ofε. Therefore, (5.14)
follows from the dominated convergence theorem. ut
Proof of Theorem 2.1.Let t0 be as in Lemma 5.1 andεn, yi(t) be as in (5.3). By
(2.7),yi(0) = ai for eachi. We first show thatEy(·) is a solution of (2.10) on [0, t0].

Fix i andt ∈ [0, t0]. Without loss of generality, assume thati = 1 andy1(t) = 0.
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1. Let φ be a smooth function with∇φ compactly supported in�. Sincedνε
t =

kεE
ε(x, t)dx, by (3.3),

d

dt

∫
O

φdνε
t = −

∫
O

(kε)
2φ|vε

t |2 +
∫

O

D2φ∇vε · ∇vε − 1φ Eε dx.

Steps 1 and 3 of Lemma 5.2 yield

φ(y1(s)) − φ(0) = lim
ε↓0

1

π

∫ s

t

∫
O

D2φ∇vε · ∇vε − 1φEεdxdτ ∀ s ∈ [0, t0].

If the support ofD2φ does not include{y1(τ ), . . . , yM(τ)} for all τ ∈ [t, s], by
Lemma 5.3,

φ(y1(s)) − φ(0) = 1

π

∫ s

t

∫
O

D2φ∇v · ∇v − 1

2
1φ|∇v|2dx dτ.(5.15)

2. ForA ∈ R2 andδ ∈ (0, 1
4R0], let φδ = (A · x) H(|x|), where, forr = 0,

H(r) :=


1, r ∈ [0, δ],

2 − r/δ, r ∈ [δ, 2δ]

0, r = 2δ.

We calculate

D2φδ = (A · n)n ⊗ n rH ′′(r) + [n ⊗ A + A ⊗ n + (A · n)(I − n ⊗ n)] H ′(r),

wherer = |x|, n = En(θ) = x/r and⊗ is the tensor product. Althoughφδ is not
smooth enough, by an approximation argument, we use (5.15) withφ = φδ. For all
s sufficiently close tot , we find that

φ(y1(s)) − φ(0) = [y1(s) − y1(t)] · A

= 1

π

∫ s

t

[I1(τ, δ) + I2(τ, δ) + I3(τ, δ)] dτ · A,
(5.16)

where

I1(s, δ) = 1

δ

∫
B2δ\Bδ

(1
2|∇v|2 + |∇v · n|2) n − 2(∇v · n) · ∇v dx,

I2(s, δ) = 2
∫

∂B2δ

(|∇v · n|2 − 1
2|∇v|2)n dH 1(x),

I3(s, δ) = −
∫

∂Bδ

(|∇v · n|2 − 1
2|∇v|2)n dH 1(x).

Since the left-hand side of (5.16) is independent ofδ and since (5.16) holds for all
A ∈ R2,

y1(s) − y1(t) = lim
δ↓0

1

π

∫ s

t

[I1(τ, δ) + I2(τ, δ) + I3(τ, δ)] dτ(5.17)

for all s sufficiently close tot .
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3. Recall thatEt(θ) := (En(θ))⊥ and

Φ := ϕ +
M∑
i=1

diθi, θi(x, s) := θ(x − yi(s)).

Then,v = En(Φ) and, forα = 1, 2,

∇vα =
(

∇ϕ +
M∑
i=1

di∇θi

)
(Et(Φ))α

=
(

∇ϕ +
M∑
i=1

diEt(θi)|x − yi(s)|−1
)(

Et(Φ)

)
α

.

We evaluate the following functions atx = r En(θ):

|∇v|2 = 1

r2
+ 2d1

r

(
− (∇ϕ)⊥ +

M∑
i=2

di

En(θi)

|x − yi(s)|
)

· En(θ) + E1(x),

∇vα · En(θ) =
(

∇ϕ +
M∑

i=2

di

Et(θi)

|x − yi(s)|
)

· En(θ)

(
Et(Φ)

)
α

,

|∇v · En(θ)|2 = E2(x),

(∇v · En(θ)) · ∇v =
2∑

α=1

(∇vα · En(θ))∇vα

= d1

r

(
∇ϕ +

M∑
i=2

di

Et(θi)

|x − yi(s)|
)

· En(θ) Et(θ) + E3(x),

whereE1,E2 andE3 are bounded functions. We use these identities in the definition
of I1(s, δ):

I1(s, δ) = k1(s, δ) δ + 2d1

δ

∫ 2δ

δ

∫ 2π

0

1

2
(B(s, x) · En(θ))En(θ)

− (A(s, x) · En(θ))Et(θ) dθ dr,

wherek1(s, δ) is bounded and

B(s, x) = −(∇ϕ)⊥ +
M∑

i=2

di

En(θi)

|x − yi(s)| ,

A(s, x) = ∇ϕ +
M∑

i=2

di

Et(θi)

|x − yi(s)| ;

observe that(A(s, x))⊥ = −B(s, x). Since for a fixedγ ∈ R2,
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∫ 2π

0
(γ · En(θ))En(θ) dθ = πγ,

∫ 2π

0
(γ · En(θ))Et(θ) dθ = πγ ⊥,

asδ ↓ 0, it follows that
I1(s, δ) → 3πd1B(s, 0),

uniformly in s ∈ [0, t0]. A similar calculation shows that

I2(s, δ) = k2(s, δ) δ − 2d1

∫ 2π

0
(B(s, x) · En(θ))En(θ) dθ

and, therefore, asδ ↓ 0, I2(s, δ) → −2πd1B(s, 0), uniformly in s ∈ [0, t0].
Similarly, asδ ↓ 0, I3(s, δ) → πd1B(s, 0), uniformly in s ∈ [0, t0] and, by (5.17),

y1(s) − y1(t) = 2d1

∫ s

t

B(τ, 0)dτ,

for all s sufficiently close tot . SinceB is continuous,

d

dt
y1(t) = 2d1B(t, y1(t)) ∀ t ∈ [0, t0].

4. In the previous steps, we have proved Theorem 2.1 on [0, t0]. Since the family
of functions{vε(·, t0)} satisfies the assumptions (2.2)–(2.7), we complete the proof
of the theorem by an iterative argument.ut
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