
REGULARITY AND CONVERGENCE OF CRYSTALLINE MOTION∗

KATSUYUKI ISHII† AND HALIL METE SONER‡

SIAM J. MATH. ANAL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 30, No. 1, pp. 19–37

Abstract. We consider the motion of polygons by crystalline curvature. We show that “smooth”
polygon evolves by crystalline curvature “smoothly” and that it shrinks to a point in finite time. We
also establish the convergence of crystalline motion to the motion by mean curvature.
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1. Introduction. Several models in phase transitions give rise to geometric
equations relating the normal velocity of the interface to its curvature. The cur-
vature term is related to surface tension and the surface energy is often an anisotropic
function of the normal direction, indicating the preferred directions of the underlying
crystal structure.

When the surface energy is isotropic, the resulting equation is the mean curvature
flow and a variety of techniques have been used to analyze this flow. Huisken [25]
showed that any convex set in higher than two space dimensions, shrinks to a point
smoothly in finite time. We note that Huisken’s method cannot be applied to the
planar motion by mean curvature. Using different methods from those in [25], Gage
and Hamilton [15] and Grayson [24] showed that a smooth planar embedded curve
first becomes convex and then smoothly shrinks to a point in finite time. However,
in general, in dimensions higher than two, embedded hypersurfaces may develop sin-
gularities and a weak formulation of the mean curvature flow is necessary to define
the subsequent evolution after the onset of singularities. Brakke [8] was the first to
study the mean curvature flow past the singularities. Using varifolds in geometric
measure theory, he constructed global generalized solutions that are not necessarily
unique. Almgren, Taylor, and Wang [2] used a time-step energy minimization ap-
proach together with geometric measure theory to analyze a very general class of
equations.

An alternate approach, initially suggested in the physics literature by Ohta, Jas-
naw, and Kawasaki [28], for numerical calculations by Osher and Sethian [26], repre-
sents the evolving surfaces as the level set of an auxiliary function solving an appro-
priate nonlinear differential equation. This level-set approach has been extensively
developed by Chen, Giga, and Goto [9] and Evans and Spruck [12]. Evolution of hy-
persurfaces with codimension greater than one is studied by Ambrosio and Soner [3],
and intrinsic definitions were developed by Soner [29] and Barles, Soner, and Sougani-
dis [7]. Since the level-set equations are degenerate parabolic, the theory of viscosity
solutions by Crandall and Lions [11] is used to define the level-set solutions. For more
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information on viscosity solutions see the survey by Crandall, Ishii, and Lions [10]
and the book by Fleming and Soner [13].

When the surface energy is convex, the evolution law is still degenerate parabolic
and much of the above theory generalizes to these equations as well.

Nonsmooth energies are also of interest, and an interesting class of surface energies—
called crystalline energies—have polygonal Frank diagrams. For these energies, the
corresponding solutions are also polygonal, and the evolution law is a system of ordi-
nary differential equations for the length of each side of the solution (see (2.3) below).
An excellent introduction to crystalline motion is given in the recent book of Gurtin
[22] and in the surveys of Taylor [32] and Taylor, Cahn, and Handwerker [34]. Short
time existence and the other properties of the planar solutions are proved by Angenent
and Gurtin [4] and Taylor [33]. Almgren and Taylor [1] showed that the crystalline
flow is consistent with the variational approach developed in [2]. In a recent preprint
Giga, Gurtin, and Mathias [19] study the classical solutions in three space dimensions
and a deep viscosity theory for graph-like solutions of very general geometric equa-
tions have been developed by Giga and Giga [16] and the references therein. We also
refer to Gurtin, Soner, and Souganidis [23] and Ohnuma and Sato [27], which treat a
relaxed formulation of evolving surfaces by nonconvex interfacial energies.

In this paper, we consider a two-dimensional problem with a crystalline energy
whose level sets are regular n-polygons and show the convergence of these solutions to
the unique smooth solution of the mean curvature flow. This convergence has already
been proved by Girao [20] for convex solutions and by Girao and Kohn [21] for graph-
like solutions. They also obtained the rate of convergence. Here we generalize the
convergence results in [20, 21] to general curves that are not necessarily convex. Our
proof is a set theoretic analogue of the weak viscosity approach of Barles and Perthame
[5, 6]. To describe our approach, let {Ωn(t)}t∈[0,T ) be a sequence of open polygons
each solving a crystalline flow. We define two possible limits:

Ω̂(t) := lim sup
n→∞, s→t

Ωn(s),

Ω(t) := lim inf
n→∞, s→tΩn(s).

(Precise definitions are given in (4.2) below.) Then, with only L∞ estimates, the

Barles–Perthame approach enables us to show that Ω̂ is a viscosity subsolution of the
mean curvature flow, and Ω is a viscosity supersolution of the mean curvature flow.
Since, in two space dimensions, there is a smooth solution to the mean curvature
flow, we show that both of these sets are equal to the smooth solution. This yields
the convergence of Ωn in the Hausdorff topology.

The paper is organized as follows. In the next section, we give the definition of
crystalline motion and prove the existence of a regular solution in section 3. We define
the weak viscosity limits in section 4 and prove their viscosity properties. Convergence
is proved in the final section. Some properties of the viscosity solutions are gathered
in the appendix.

After this work was completed, we were informed of a recent work of Giga and
Giga [17] related to ours. They proved the stability of the periodic graph-like solutions
for the motion by nonlocal weighted curvature. They also proved the motion by
crystalline energy is shown to approximate the motion by regular interfacial energy
if the crystalline energy approximates the regular interfacial energy. We also refer
to Fukui and Giga [14] for an approximation property of the motion by nonsmooth
weighted energy.



REGULARITY AND CONVERGENCE OF CRYSTALLINE MOTION 21

2. Crystalline motion and n-smooth polygons. Here we recall several stan-
dard definitions and equations. Gurtin’s book [22] provides an excellent introduction
to this subject. Also, see [31, 33].

2.1. Surface energy. All geometric flows that we consider are, formally, the
gradient flows of the surface energy functional

I(Γ) :=

∫
Γ

f(~n) ds,(2.1)

where Γ is a Jordan curve in R2, ~n is its outward unit normal vector, and f : S1 →
[0,∞) is the surface energy function. It is customary to extend f to the whole R2 as
a homogeneous function of degree one,

f(x) = |x|f
(
x

|x|
)

∀x 6= 0,

and define

f̂(θ) := f( cos θ, sin θ ).

Then the twice differentiability of f on R2\{0} is equivalent to the twice differentia-

bility of f̂ , and f is convex if and only if f̂(θ) + f̂θ θ(θ) ≥ 0 for all θ.

The Frank diagram of the surface energy f is simply the polar graph of f̂−1, or
equivalently, it is the one-level set of f , i.e.,

F(f) := {x ∈ R2 : f(x) = 1} = {r (cos θ, sin θ) : rf̂(θ) = 1}.

When the surface tension f is smooth and convex, the gradient flow for the functional
I has the form

β(θ)V = (f̂(θ) + f̂θ θ(θ)) κ,(2.2)

where V , κ, (cos θ, sin θ) are, respectively, the normal velocity, the curvature, and
the normal vector of the solution Γ(t), and the given nonnegative function β is the

kinetic coefficient. The mean curvature flow corresponds to f̂ ≡ β ≡ 1, and the other
cases with strictly convex surface energy are qualitatively very similar to the mean
curvature flow.

If f is not convex, we need to modify both f and β to obtain the correct relaxed
equation. This relaxation procedure and the analytical properties of the relaxed
equation was studied by Gurtin, Soner, and Souganidis [23] and, independently, by
Ohnuma and Sato [27]. The common critical hypothesis in these works is the contin-
uous differentiability of the relaxed surface energy function.

2.2. Crystalline flow. Nonsmooth energy functions are of interest in models
for crystal growth, as it is well known that solid crystals can exist in polygonal shapes.
An interesting class of nonsmooth energies are the crystalline energies. The Frank
diagram of crystalline energy is a polygon.

Although the crystalline energies are only Lipschitz continuous, an appropriate
weak formulation of (2.2) is possible and is called the crystalline flow; see [22, section
12.5] for the precise definition. The crystalline flow was derived by Taylor [31] and,
independently, from thermodynamical considerations by Angenent and Gurtin [4].
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Fig. 1. Definition of χi.

Consider a crytalline energy function f , and let Θ := {θ1, . . . , θN} be the angles
corresponding to the corner points of the Frank digram of f . Suppose that the curve
Γ is locally smooth around a point with a normal angle θ∗ 6∈ Θ—say, θ∗ ∈ (θ1, θ2). We
can, then, decrease the energy I(Γ) of Γ by infinitesimally alternating the normal angle
between θ1 and θ2. Therefore, for crystalline energies, we consider only polygonal
solutions with normal angles taking values in Θ.

In this paper, for simplicity, we consider only crystalline energies whose Frank
diagrams are regular n-polygons, and kinetic coefficient β ≡ 1. Then

Θ = Θn :=

{
2πk

n
: k = 0, 1, . . . , (n− 1)

}
.

Here and hereafter θ ∈ Θ means θ ≡ 2πk/n mod 2π for some k ∈ {0, 1, . . . , n − 1}.
The evolution of side i, Li(t), is governed by

Vi(t) = − 2 tan(π/n)

li(t)
χi,(2.3)

where Vi(t), li(t), and χi, are, respectively, the normal velocity, the length, and the
discrete curvature of Li(t). The discrete curvature χi ∈ {−1, 0,+1}. It is equal to +1
if both edges of Li(t) have positive curvature, it is equal to −1 if both edges of Li(t)
have negative curvature, and it is equal to zero otherwise; see Figure 1. (Ω(t) denotes
the domain enclosed by Li(t)

′s.)
We close this subsection by stating the evolution rule for the length, li(t), of the

sides of a solution of the crystalline flow:

d

dt
li(t) =

1

cos2(π/n)

(
2 cos

(
2π

n

)
· χ

2
i

li(t)
− χ2

i+1

li+1(t)
− χ2

i−1

li−1(t)

)
.(2.4)

This equation follows from (2.3) and geometry; see [22, equation (12.39)].

2.3. n-smooth polygons. We continue by defining the notion of a “good” so-
lution of (2.3). For a polygon Γ, let N(Γ) be the total number of sides.

Definition 2.1. We say that a closed polygon Γ is an n-smooth polygon if N(Γ)
is finite and
(1) Γ encloses a simply-connected, bounded, open subset of R2,
(2) for every i = 1, . . . , N(Γ), the normal angle θi of the side i belongs to Θn,
(3) |θi − θi−1| = 2π/n for every i = 1, . . . , N(Γ), where |θi − θi−1| is understood as

the infimum over its representatives.
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The third condition is formally equivalent to the “discrete continuity” of the
normal angle, which explains the term “smooth.”

By definition, any solution of (2.3) satisfies the second condition.
Let

N+(Γ) := {i ∈ {1, . . . , N(Γ)} : χi = 1} ,

N−(Γ) := {i ∈ {1, . . . , N(Γ)} : χi = −1} ,

N0(Γ) := {i ∈ {1, . . . , N(Γ)} : χi = 0} .

Then for any n-smooth polygon Γ,

N+(Γ)−N−(Γ) =

N(Γ)∑
i=1

χi = n(2.5)

is an identity which is the discrete version of∫
C

κ ds = 2π

for a smooth Jordan curve C.

3. Regularity. In this section, we will show that there is a unique n-smooth
solution of (2.3) which evolves smoothly in time (i.e., remains n-smooth) and shrinks
to a point in finite time. This is the discrete analogue of a theorem of Grayson [24] and
Gage and Hamilton [15]. A more general statement is proved by Taylor [33, Theorem
3.1]. For the reader’s convenience, we provide all the details of this result.

Theorem 3.1 (Taylor [33]). Let Γ0 be an n-smooth polygon enclosing an open
set Ω0. Then there exist n-smooth polygons {Γ(t)}t∈[0,T ) solving (2.3) with the initial
condition Γ(0) = Γ0. Moreover Γ(t) shrinks to a point as t ↑ T , and

T =
|Ω0|

2n tan(π/n)
.(3.1)

Remark 3.2. Uniqueness follows from Giga and Gurtin [18] and Taylor [33].
We start with several results toward the proof of Theorem 3.1.
Clearly, for a short time there is a solution Γ(t) satisfying initial data. Let t1 > 0

be the first time this solution is no longer n-smooth. Since, by definition, the normal
angles of any solution take values in Θn (cf. section 2.2), there are two possibilities
at t1: either the length of one or more sides tend to zero or the solution self-intersects
at t1. We will first show that the latter does not happen. Our proof is very similar
to [33, Theorem 3.2(1)].

Lemma 3.3. Let t1 and {Γ(t) = ∂Ω(t)}t∈[0,t1) be as above. Then

lim inf
t↑t1

inf{li(s) : s ∈ [0, t], i = 1, . . . , N(Γ(0))} = 0.

Proof. Suppose the opposite. Then

inf{li(s) : s ∈ [0, t1), i = 1, . . . , N(Γ(0))} > 0.
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Then, by (2.4), each li(·) is smooth on (0, t1) and therefore

Ω(t1) = lim
t↑t1

Ω(t)

exists in the Hausdorff topology. By the definition of t1, Γ(t1) self-intersects. More-
over, for all t ∈ [0, t1],

|θi − θi−1| = 2π

n
, i = 1, . . . , N(Γ(t)) = N(Γ(0)),(3.2)

so that at t1 there are two possibilities: either two sides or two corner points touch
each other. Note that, by (3.2), if a corner point touches a side, then necessarily two
sides also touch each other. The following arguments are very similar to those in [18].

Case 1. Suppose that Li(t1) intersects at Lj(t1).
Then a straightforward analysis argument shows that (χi, χj) = (1,−1) or (χi, χj) =

(−1, 1). Since the analyses of these cases are symmetric, we may assume (χi, χj) =
(1,−1). Then li(t1) ≤ lj(t1).

Subcase (1). li(t1) < lj(t1).
Then for some δ > 0, li(t) < lj(t) in (t1 − δ, t1], and therefore,

α(t) :=
2 tan(π/n)

lj(t)
− 2 tan(π/n)

li(t)
> 0, t ∈ (t1 − δ, t1].

But α(t) is equal to the time derivative of the distance between Li(t) and Lj(t) and
this distance is equal to zero at t1. Hence this case is not possible.

Subcase (2). li(t1) = lj(t1).
Then, the sides adjacent to Li(t) and Lj(t) also touch each other at time t1,

and therefore, there have to be two sides satisfying the assumptions of the previous
subcase, thus yielding a contradiction.

Case 2. Two corner points touch each other.
Let the intersection, xi(t) of Li(t) and Li+1(t) be the same as the intersection

xj(t) of the sides Lj−1(t) and Lj(t). Then the angle between Li(t) and Lj(t) and
the one between Li+1(t) and Lj−1(t) are equal to 2π/n. By rotation, we may assume
that Li(t) and Lj(t) are parallel to the x-axis, and Li+1(t) is aligned with the Lj−1(t)
(cf. Figure 2). Moreover, χk ≥ 0 for k = i, i + 1, j, j − 1. Let Vxi(t) and Vxj (t) be
the velocity vectors of the points xi(t) and xj(t), respectively. Then

(0, 1) · (Vxj − Vxi) ≥ 0,

and the inequality is strict unless χk = 0 for all k = i, i + 1, j, j − 1. Since xi(t1) =
xj(t1), we conclude that χk = 0 for all k = i, i+1, j, j−1. But then Vxi(t) = Vxj (t) = 0
for t < t1 close to t1 and this contradicts the definition of t1.

Our next result is the following lemma.
Lemma 3.4. Let t1 and {Γ(t) = ∂Ω(t)}t∈[0,t) be as above. Suppose t1 is strictly

less than the extinction time. Then as t→ t1, Ω(t) converges to an n-smooth polygon
Ω(t1) in the Hausdorff topology.

Proof. By the previous lemma, there is a side i∗ such that

lim inf
t→t1

li∗(t) = 0.

The main step in this proof is to show χi∗ = 0 if the side Li∗ disappears at t1. So we
suppose that it is equal to +1 or −1. Since the analyses of these cases are similar, we
may assume that χi∗ = 1. Set θ = 2π/n.
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Fig. 2. Case 2.

1. In this step we will show that li∗(·) is continuous on [0, t1]. For future reference,
we will prove that, for any j, lj(·) is continuous on [0, t1]. By (2.4), all sides remain
bounded, and we set

B := lim sup
t→t1

lj(t).

Suppose that

B > lim inf
t→t1

lj(t) := A.

Since lj(·) is continuous in [0, t1), it crosses (A + B)/2 infinitely many times before
t1. In particular, by the mean value theorem, there is a sequence tk ↑ t1 such that

lj(tk) ≥ A+B

2
, lim

k→+∞
l′j(tk) = +∞.

However, by (2.4),

l′j(tk) ≤ 2 cos θ

lj(tk) cos2(θ/2)
≤ C

for some constant C independent of k. Hence A = B.
2. This step closely follows [33, Proposition 3.1].
Since t1 is strictly less than the extinction time, there are at least two sides which

have nonzero length at time t1. Hence there are two sides Lp0
and Lp1

such that
p0 < i∗ < p1, lp0

(t) and lp1
(t) are uniformly positive in [0, t1], and

lim
t↑t1

lj(t) = 0 ∀j = p0 + 1, . . . , p1 − 1.

For any j, let Lj(t) be the line extending Lj(t), xj+1(t) be the intersection between
Lj(t) and Lj+1(t), and θj be the angle between the outward normal and the horizontal
axis. Then, as t ↑ t1, all xp0+1(t), . . . , xq(t) converge to the same point x∗.

We analyze several cases separately.
Case 1. χj 6= 0 ∀ j = p0 + 1, . . . , p1 − 1.
Since we have assumed that χi∗ = 1, χj = 1 ∀ j = p0 + 1, . . . , p1 − 1 and

x∗ ∈
⋂

0≤t<t1

p1⋂
j=p0

{y ∈ R2 : (y − xj(t)) · (cos θj , sin θj) ≤ 0}.
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Fig. 3. Position of x∗.

See Figure 3.
By geometry, |θp0

− θp1
| ≤ π.

Subcase 1. |θp0
− θp1

| < π.
Let y(t) be the intersection between Lp0

(t) and Lp1
(t). We define

d(t) = (y(t)− x∗) · (cos θp0+1, sin θp0+1),

dp0+1(t) = dist(x∗,Lp0+1(t)).

Then dp0+1(t) ≤ d(t) ∀ t ∈ [0, t1) and dp0+1(t1) = d(t1) = 0. Moreover, d(t) is
Lipschitz continuous in t and

d

dt
dp0+1(t) = Vp0+1(t) = −2 tan(θ/2)

lp0+1(t)
.

Hence,

0 ≥ −
∫ t1

t

2 tan(θ/2)

lp0+1(τ)
dτ = dp0+1(t) ≥ d(t) ≥ −‖d′‖L∞(0,t1)(t1 − t) ∀t < t1.

This contradicts the fact lp0+1(t)→ 0 as t ↑ t1.
Subcase 2. |θp0

− θp1
| = π.

We repeat the argument used in the previous case with

d̃(t) = dist(Lp0
(t),Lp1(t)),

d̃p0+1(t) = dist(Lp0+1(t),Lp1(t)).

Case 2. χq = 0 exactly for one q ∈ {p0 + 1, . . . , p1 − 1}.
Then, χj = 1 for j = p0 + 1, . . . , q − 1 and χj = −1 for j = q + 1, . . . , p1 − 1,

or χj = −1 for j = p0 + 1, . . . , q − 1 and χj = 1 for j = q + 1, . . . , p1 − 1. Since the
arguments in both cases are similar, without loss of generality, we consider only the
first possibility.

If |θp0−θq| ≤ π, we argue as in Case 1, using side Lq(t) instead of Lp1(t). We also
argue similarly, when |θq − θp1

| ≤ π. Therefore, we may assume that |θp0
− θq| > π

and that there is a side Lj(t) with q < j < p1, which is parallel to Lp0
(t). Let L be

the line going through x∗ and parallel to both Lp0
(t) and Lj(t). Set

d(t) = dist(Lp0(t),L)− dist(Lj(t),L).

Then 0 = d(t1) and since |θp0 − θq| > π, 0 < d(t) ∀ (0, t1); see Figure 4.
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However, this contradicts the fact that d′(t) > 0 ∀ t sufficiently close to t1.
Case 3. χj = 0 for more than one side.
Suppose that χq and χj are equal to zero. Then x∗ belongs to both Lq(t) and

Lj(t) ∀ t, and therefore, j = q − 1 or q + 1. Since lq(t) converges to zero, at least
one side adjacent to Lq(t) has nonzero discrete curvature. Hence there are two sides
with zero discrete curvature and they are adjacent to each other. As in Case 1, all
the other sides between Lp0

(t) and Lp1
(t) satisfy χk = 1, and we argue as in Case 1.

Therefore, the case χi∗ = 1 is not possible. An entirely similar argument shows
that the case χi∗ = −1 is not possible either. Hence χi∗ = 0 and Li∗−1 and Li∗+1

are parallel, and the normal angle of the “new” side is equal to that of these two
ones.

We are now in a position to prove Theorem 3.1.
Proof of Theorem 3.1. Since Γ(0) is n-smooth for short time, there is an n-

smooth solution Γ(t). Moreover, by Lemma 3.4, this solution remains n-smooth until
one side of Γ(t) vanishes. Let t1 be the first time a side vanishes. Then, Γ(t) is
n-smooth and N(Γ(t)) = N(Γ(0)) ∀ t ∈ [0, t1). By Lemma 3.3, Γ(t1) is also n-smooth
and N(Γ(t1)) ≤ N(Γ(0)) − 2. We repeat this procedure starting from Γ(t1). Since
N(Γ(0)) is finite, we have only to repeat finitely many times.

Let t1 < t2 < · · · < tN be the times at which a side vanishes. Let tN > 0 be the
time when N−(Γ(tN )) = N0(Γ(tN )) = 0. Then, by (2.5), N+(Γ(tN )) = n and Γ(t) is
convex for all t ≥ tN .

We see that Γ(t) shrinks to a point at finite time. Indeed, by (2.5), we can
calculate the rate of change of |Ω(t)|:

d

dt
|Ω(t)| =

∑
i

Vili

= −
∑

i∈N+(Γ(t))

2 tan
π

n
+

∑
i∈N−(Γ(t))

2 tan
π

n

= −2n tan
π

n
.

From the foregoing calculation, we conclude that the solution shrinks to a point at
some time T . Moreover, at time T ,

0 = |Ω(T )| = |Ω0| − 2n tan
π

n
· T,

and (3.1) follows.
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4. Weak viscosity limits. In this section, we will study the properties of the
set-theoretic analogue of the weak viscosity limits of Barles and Perthame [5, 6]. Let
{Γn(t)}t∈[0,T ) be a sequence of n-smooth solutions of (2.3), and let Ωn(t) be the open
set enclosed by Γn(t). Assume that there is a constant R > 0, independent of n,
satisfying

Ωn(t) ⊂ B(0, R),(4.1)

where B(x, r) = {y ∈ R2 : |y − x| ≤ r}. Following [6, 29], for t ∈ [0, T ), we define

Ω̂(t) :=
⋂
r>0
N≥1

cl

 ⋃
|s−t|≤r, 0≤s<T

n≥N

Ωn(s)

 ,(4.2)

Ω(t) :=
⋃
r>0
N≥1

int

 ⋂
|s−t|≤r, 0≤s<T

n≥N

Ωn(s)

 ,

where clA and intA are, respectively, the closure and the interior of the set A. In
view of (4.1), Ω̂(t) is a bounded closed set and Ω(t) is a bounded open set. We will

show that, respectively, Ω̂(t) is a weak subsolution and Ω(t) is a weak supersolution
of the mean curvature flow.

This type of stability results are typical in the theory of viscosity solutions and,
in general, they are a simple consequence of the maximum principle. However, the
crystalline flow is not defined for smooth curves and this fact is the major difficulty
in the following analysis.

The notion of viscosity solutions we use is first introduced by the second author in
[29] and further developed in [7, 30]. Here we only recall the definition; other relevant
definitions and results are gathered in the appendix.

We continue by recalling several definitions that will be used in the subsequent
analysis. For subsets {Ω(t)}0≤t<T in R2, the upper semicontinuous (u.s.c.) envelope
and, respectively, the lower semicontinuous ((l.s.c.) envelope are defined by

Ω∗(t) =
⋂
r>0

cl

 ⋃
|s−t|≤r
0≤s<T

Ω(s)

 , Ω∗(t) =
⋃
r>0

int

 ⋂
|s−t|≤r
0≤s<T

Ω(s)

 , t ∈ [0, T ).

Then, it is clear that (Ω)∗ = Ω and (Ω̂)∗ = Ω̂. For other properties of these envelopes,
see [29, Lemma 3.1].

For a collection of closed subsets {O(t)}0≤t<T with smooth boundary, VO(x, t) is
the normal velocity of ∂O(t) at x and κO(x, t) is the curvature of ∂O(t) at x. We use
the convention that the curvature of a convex curve is nonnegative.

We are now in a position to give the weak (viscosity) definition of the mean
curvature flow we will use. This definition is very similar to the one given in [29]; see
the appendix for the connection between these two definitions.

Definition 4.1. Let {Ω(t)}0≤t<T be a collection of bounded subsets in R2 satis-
fying Ω∗(t) 6= ∅ for every t ∈ [0, T ).

We say {Ω(t)}0≤t<T is a weak subsolution of the mean curvature flow, if for any
closed, smooth subsets {O(t)}0≤t<T ,

VO(x0, t0) ≤ −κO(x0, t0)(4.3)
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at each t0 ∈ (0, T ) and x0 ∈ ∂O(t0) satisfying

Ω∗(t) ⊂⊂ O(t) ∀ t 6= t0,(4.4)

Ω∗(t0) ⊂ O(t0), ∂Ω∗(t0) ∩ ∂O(t0) = {x0}.

Similarly, we say {Ω(t)}0≤t<T is a weak supersolution of the mean curvature flow
if for any closed, smooth subsets {O(t)}0≤t<T ,

VO(x0, t0) ≥ −κO(x0, t0)

at each t0 ∈ (0, T ) and x0 ∈ ∂O(t0) satisfying

O(t) ⊂⊂ Ω∗(t) ∀ t 6= t0, O(t0) ⊂ Ω∗(t0), ∂Ω∗(t0) ∩ ∂O(t0) = {x0}.

Condition (4.4) implies that (x0, t0) ∈ ∂O(t0) × (0, T ) is the strict maximizer of
−dist(x, ∂Ω∗(t)) over all (x, t) ∈ ∂O(t) × (0, T ). A similar conclusion also holds for
supersolutions.

Following is the set theoretic analogue of the Barles and Perthame procedure
[5, 6], [13, section 5], and it is the chief technical contribution of this paper.

Recall that Γn(t) = ∂Ωn(t).

Lemma 4.2. Ω̂ is a weak subsolution of the mean curvature flow, while Ω is a
weak supersolution.

Before we give the proof of this lemma, we will first give a formal proof of the
subsolution property.

In view of our definition of a weak solution, we start with smooth sets {O(t)}0<t<T
and a point (x0, t0) satisfying (4.4). Our goal is to verify (4.3). By (4.4) there are
a subsequence nk and a sequence (xk, tk) → (x0, t0) satisfying Ωnk(tk) ⊂ O(tk) and
that xk ∈ Γnk(tk). Although there are several other cases, assume that xk is the
intersection of Li−1(tk) and Li(tk) of Γnk(tk), and χi = χi−1 = 1. We choose a
coordinate system so that xk is the origin and the Li(tk) side is included in the x1-
axis. Let n1 = (0, 1), n2 = (sin(2π/nk), cos(2π/nk)). Then, the unit normal vector
of ∂O satisfies nO(xk, tk) = (sinα, cosα) for some 0 < α < 2π/nk. By the crystalline
equation (2.3),

Vxk · n1 = Vi = −2 tan(π/nk)

li
,

Vxk · n2 = Vi−1 = −2 tan(π/nk)

li−1
,

and therefore,

Vxk = 2 tan
π

nk

(
1

tan(2π/nk)

(
1

li
− 1

li−1

)
,− 1

li

)
,(4.5)

VO(xk, tk) = Vxk · nO(xk, tk)(4.6)

= − 1

cos2(π/nk)

(
sin(2π/nk − α)

li
+

sinα

li−1

)
.
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Since VO(xk, tk) < 0, we may assume infk∈N κO(xk, tk) > 0. This implies that, as
k → ∞, both li and li−1 converge to zero. By elementary geometry, we obtain a
sharper estimate: for every ε > 0,

li ≤ 2 sinα

κO(xk, tk)− ε , li−1 ≤ 2 sin(2π/nk − α)

κO(xk, tk)− ε
for sufficiently large k. Substitute these into (4.6):

VO(xk, tk) ≤ −κO(xk, tk)− ε
2 cos2(π/nk)

(
sin(2π/nk − α)

sinα
+

sinα

sin(2π/nk − α)

)
≤ −κO(xk, tk) + ε.

In the foregoing argument, we crucially used the assumption that xk is a “convex”
corner point of Γnk . Although this is the most likely situation, other cases may also
arise, and for that we will perturb the test sets O in the preceding proof.

Proof. We will prove only the subsolution property. Proof of the supersolution
case is similar.

Let {O(t)}0<t<T and (t0, x0) be as in (4.4). Our goal is to verify (4.3), i.e.,

v := VO(x0, t0) ≤ −κ := −κO(x0, t0).

If necessary, by perturbing O(·), we may assume that κ 6= 0. We analyze two cases
separately.

Case 1. κ > 0.
For ε > 0, x∗ ∈ R2, and a large constant K, let Dε(t : x∗) be the disk with center

x∗ and radius

Rε(t) =
1

κ− ε + v(t− t0) +K(t− t0)2.

Set

xε0 := x0 −Rε(t0)nO(x0, t0).

By the smoothness of ∂O, for all sufficiently large K, there is a δε such that

O(t) ∩B(x0, 2δ
ε) ⊂ Dε(t : x0) ∩B(x0, 2δ

ε)(4.7)

for all |t− t0| ≤ 2δε. We fix K large enough so that the above inequality holds.
Next we approximate Dε(t : x∗) by regions with polygonal boundaries. Let

Cn :=

{
x ∈ R2 : x ·

(
cos

(
2lπ

n

)
, sin

(
2lπ

n

))
≤ 1 ∀ l = 0, 1, . . . , (n− 1)

}
,

and, for any x∗, set

Dε
n(t : x∗) := {x∗} ⊕Rε(t)Cn.

Since Dε
n(· : xε0) approximates Dε(· : xε0), by (4.4) and (4.7), there are a subsequence

nk and sequences (xk, tk)→ (x0, t0), yk → xε0 satisfying

xk ∈ Γnk(tk) ∩ ∂Dε
nk

(tk : yk),
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Ωnk(t) ∩B(x0, δ
ε) ⊂ Dε

nk
(t : yk) ∩B(x0, δ

ε) ∀ |t− t0| ≤ δε.
A proof of this fact is given in the appendix in Lemma 6.2. To simplify the notations,
we assume that nk = k and write Dk(t) for Dε

nk
(t : yk).

Let xk be on the ith side of Γk(tk). Then the normal velocity, Vi, of this side is
equal to the normal velocity of Dk at tk. Hence,

Vi = v + 2K(tk − t0).

Since Dk(tk) is a regular k-polygon, χi(tk) = 1 and, therefore, the length li(tk) of side
i of Γk(tk) is less than or equal to the length of any side of Dk(tk):

li(tk) ≤ 2Rε(tk) sin
π

k
.

Then, by (2.3) and the foregoing discussion,

v + 2K(tk − t0) = Vi = −2 tan(π/k)

li(tk)
≤ − 1

Rε(tk) cos(π/k)
.

Since Rε(tk) converges to 1/κ and tk → t0, we obtain (4.3) by first letting k → ∞
and then ε ↓ 0.

Case 2. κ < 0.
For small ε > 0 and any x∗, let xε0 := x0 +Rε(t0)nO(x0, t0), and let Dε(t : x∗) be

the complement of the disk with center x∗, radius

Rε(t) =
1

−κ+ ε
+ v(t− t0)−K(t− t0)2.

As in the previous case, there is a δε such that

O(t) ∩B(x0, 2δ
ε) ⊂ Dε(t : xε0) ∩B(x0, 2δ

ε)(4.8)

∀ |t− t0| ≤ 2δε, and for any x∗, we set

Dε
n(t : x∗) := R2 \ {x∗} ⊕Rε(t)Cn.

Then, Dε
n(· : x0) approximates Dε(· : x0), and by (4.4) and (4.8), there are a subse-

quence nk and sequences (xk, tk)→ (x0, t0), yk → xε0 satisfying

xk ∈ Γnk(tk) ∩ ∂Dε
nk

(tk : yk),

Ωnk(t) ∩B(x0, δ
ε) ⊂ Dε

nk
(t : yk) ∩B(x0, δ

ε) ∀ |t− t0| ≤ δε.
Again, we assume that nk = k, write Dk(t) for Dε

nk
(t : yk), and let xk belong to the

ith side of Γk(tk). Since, in this case, the normal velocity of Dk at tk is equal to
v − 2K(tk − t0),

Vi = v − 2K(tk − t0).

If v ≤ 0, (4.3) is immediately satisfied. Hence, we may assume that v > 0. So, for
small ε > 0, Vi > 0, and by (2.3), χi = −1. Consequently, li(tk) is greater than or
equal to the length of any side of Dk(tk):

li(tk) ≥ 2Rε(tk) sin
π

k
,
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and therefore,

v − C(tk − t0) = Vi =
2 tan(π/k)

li(tk)
≤ 1

Rε(tk) cos(π/k)
.

We first let k →∞ and then ε ↓ 0. Since Rε(tk) converges to 1/|κ| = −1/κ, the result
is (4.3).

5. Convergence. Let Γ0 = ∂Ω0 be a twice differentiable Jordan curve and
Γn 0 = ∂Ωn 0 be an n-smooth approximation of Γ0 satisfying

lim
n→∞ dH(Ωn 0,Ω0) = 0,(5.1)

where dH is the Hausdorff distance. For each n, there is a unique n-smooth solution
{Γn(t)}t∈[0,Tn) of (2.3) satisfying the initial condition Γn(0) = Γn 0 by Theorem 3.1.
Moreover,

Tn =
|Ωn 0|

2n tan(π/n)
→ T0 :=

|Ω0|
2π

, n→ +∞.(5.2)

Let Ω̂ and Ω be as in section 4 so that, by construction,

cl Ω(t) ⊂ Ω̂(t) ∀t ∈ [0, T0).(5.3)

Moreover, Ω̂ is a weak subsolution of the mean curvature flow, and Ω is a weak
supersolution of the mean curvature flow. In general space dimension, there is no
comparison between weak sub- and supersolutions; however, in dimension two, there
is always a smooth solution of the mean curvature flow, Γ(t) = ∂Ω(t) and we will
show that

Ω̂(t) ⊂ cl Ω(t) ⊂ cl Ω(t) ∀t ∈ [0, T0).(5.4)

Combining (5.3) and (5.4), we will then obtain the convergence of Ωn to Ω in Hausdorff
topology, thus generalizing the previous convergence results of Girao [20] and Girao
and Kohn [21].

The foregoing outline of our convergence result is entirely analogous to the Barles
and Perthame procedure of proving convergence with very weak L∞ estimates [5, 6].

Theorem 5.1. Let Γn(t) = ∂Ωn(t) be the solution of (2.3) with initial data Γn 0,
and let Γ(t) = ∂Ω(t) be the smooth solution of the mean curvature flow with initial
data Ω0. Assume (5.1); then

lim
n→∞ dH(Ωn(t),Ω(t)) = 0(5.5)

locally uniformly in t ∈ [0, T0).
We begin with the following lemma.
Lemma 5.2. Ω̂(0) ⊂ cl Ω0 ⊂ cl Ω(0).
Proof. We will prove only the first inclusion. Proof of the second inclusion is

similar.
Since dH(Ωn,Ω0)→ 0, for any x0 ∈ Ω0 there are δ0 > 0 and n0 ∈ N satisfying

B(x0, δ0) ⊂⊂ Ωn ∀n > n0.
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Let γn be the regular n-polygon enclosing B(x0, δ0). If necessary, by taking n0 larger,
we may assume that γn ⊂⊂ Ωn ∀ n > n0. Let γn(t) be the solution of the crystalline
flow (2.3) with initial data γn(0) = γn and ωn(t) be the open set enclosed by γn(t).
Then by the containment principle for crystalline motions (cf. Giga and Gurtin [18]),

B (x0, δ0/2) ⊂ ωn(t) ⊂ Ωn(t) ∀n > n0, 0 ≤ t ≤ 1

4
δ2
0 .

Let n→ +∞ and t ↓ 0 to conclude that B(x0, δ0/2) ⊂ Ω(0); therefore x0 ∈ Ω(0).
In our second step, we will show that the smooth mean curvature flow yields a

viscosity sub- and supersolution of the following equation:

ut + F (Du,D2u) = 0, R2 × (0, T ),

where

F (p,X) = −tr((I − p̄⊗ p̄)X)(5.6)

and p̄ = p/|p|. This step is very similar to Evans and Spruck [12, Section 6] and
Ambrosio and Soner [3, section 3].

We refer to Crandall, Ishii, and Lions [10] and Fleming and Soner [13] for infor-
mation on viscosity solutions and to Chen, Giga, and Goto [9], and Evans and Spruck
[12] for the properties of the level set equations.

Let {Γ(t)}0≤t<T0 be a unique smooth mean curvature flow satisfying Γ(0) = Ω0,
and let d(x, t) be the signed distance function to Γ(t), i.e.,

d(x, t) =

{
dist(x,Γ(t)) if x ∈ Ω(t),
−dist(x,Γ(t)) otherwise,

where Ω(t) is the open set enclosed by Γ(t). For a scalar d, d ∧ 0 = min{d, 0} and
d ∨ 0 = max{d, 0}.

Lemma 5.3. For any δ > 0, there are constants σ = σ(δ) > 0 and K = K(δ) > 0
so that the function u(x, t) := e−Kt[(d ∨ 0)(x, t) ∧ σ] is a viscosity subsolution of

ut + F (Du,D2u) = 0 in R2 × (0, T0).

Proof. For δ > 0, there exists a σ = σ(δ) > 0 such that d is smooth in {x ∈ R2 :
|d(x, t)| < 2σ} × [0, T0 − δ], and in this tubular set,

∆d(x, t) =
κ(y, t)

1− κ(y, t)d(x, t)
,(5.7)

where y ∈ Γ(t) is a unique point satisfying |d(x, t)| = |x−y| and κ(y, t) is the curvature
of Γ(t) at y. Since {Γ(t)}0≤t<T0 is a smooth mean curvature flow,

dt −∆d = 0 in Γ(t)× (0, T0).(5.8)

Since

C(δ) := sup{|κ(x, t)| : (x, t) ∈ ∂Ω(t)× [0, T0 − δ]} <∞,
by (5.7) and (5.8), d is a classical subsolution of

dt −∆d−Kd ≤ 0 on {x : 0 ≤ d(x, t) ≤ 2σ} × (0, T0 − δ]
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for some K ≥ C(δ). Since |Dd| = 1, d is also a classical subsolution of

dt + F (Dd,D2d)−Kd = 0 on {x : 0 ≤ d(x, t) ≤ 2σ} × (0, T0 − δ].

Let hε be a bounded smooth function satisfying hε(r) = 0 for r ≤ 0, hε(r) = σ for
r ≥ σ, and as ε ↓ 0, hε(r) converges to (r ∨ 0) ∧ σ. Since F is geometric, i.e.,

F (λp, λA+ µp⊗ p) = λF (p,A), λ, µ ≥ 0,

by calculus, we conclude that uε = e−Kthε(d) is a classical subsolution of

uεt + F (Duε, D2uε) ≤ 0 on R2 × (0, T0 − δ].

We let ε ↓ 0, δ ↓ 0 and use the celebrated stability property of viscosity solutions.
An entirely similar argument yields the following lemma.
Lemma 5.4. For any δ > 0, there are constants σ = σ(δ) > 0 and K = K(δ) > 0

so that the function u(x, t) := eKt[(d ∧ 0)(x, t) ∨ (−σ)] is a viscosity supersolution of

ut + F (Du,D2u) = 0 in R2 × (0, T0).

We are now in a position to complete the proof of Theorem 5.1.
Proof of Theorem 5.1. For notational convenience, we set Ωn(t) = ∅ ∀ n > 1, t >

Tn. Let Ω̂ and Ω be as in section 4, and let T̂ , T be, respectively, the extinction time
of Ω̂(t) and Ω(t). Set T̃ = min{T , T0, T̂}.

By Lemma 5.3, u(x, t) = e−Kt[(d ∨ 0)(x, t) ∧ σ] is a viscosity subsolution of

ut + F (Du,D2u) = 0 in R2 × (0, T̃ − δ),(5.9)

and by Lemma 4.2 and Proposition 6.1, v(x, t) = dist(x,R2\Ω(t)) is a viscosity su-
persolution of (5.9). Moreover, by Lemma 5.2, u(·, 0) ≤ v(·, 0) in R2, and therefore
the comparison principle for solutions of (5.9) (cf. Chen, Giga, and Goto [9], Evans
and Spruck [12]) yields

u ≤ v in R2 × [0, T̃ − δ).

We claim that this inequality implies that

Ω(t) ⊂ Ω(t) ∀t ∈ [0, T̃ − δ).

Indeed, for (x, t) ∈ Ω(t) × [0, T̃ − δ), 0 < u(x, t). Then, by the previous inequality,
0 < v(x, t) and, therefore, x ∈ Ω(t).

Similarly, we show that Ω̂(t) ⊂ cl Ω(t) ∀ t ∈ [0, T̃ − δ), and then we let δ → 0 to
obtain (5.4) on [0, T̃ ).

A lengthy elementary argument shows that (5.4) is equivalent to (5.5). Hence,
(5.5) holds on [0, T̃ ).

By (5.2) and the construction, T ≤ T̂ ≤ T0. The uniform convergence of Ωn to Ω
implies that T̃ = T0.

6. Appendix. In this section we gather several properties of the weak solutions.
Let {Ωn(t)}0≤t<Tn , {Ω̂(t)}0≤t<T , and {Ω(t)}0≤t<T be as in section 4, and let

dn(x, t) (resp., d̂(x, t) and d(x, t)) be the signed distance function for {Ωn(t)}0≤t<Tn
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(resp., for {Ω̂(t)}0≤t<T and {Ω(t)}0≤t<T ). Then the definitions of Ω̂(t) and Ω(t) are
equivalent to

(d̂ ∧ 0)(x, t) = lim sup
(y,s)→(x,t)
n→+∞

(dn ∧ 0)(y, s),

(d ∨ 0)(x, t) = lim inf
(y,s)→(x,t)
n→+∞

(dn ∨ 0)(y, s).

The following weak regularity result in t follows from an attendant modification
of [29, Lemma 7.3]:

lim sup
y→x, s↑t

(d̂ ∧ 0)(y, s) = (d̂ ∧ 0)(x, t), (x, t) ∈ R2 × (0, T ),(6.1)

lim inf
y→x, s↑t

(d ∨ 0)(y, s) = (d ∨ 0)(x, t), (x, t) ∈ R2 × (0, T ).(6.2)

These identities and the techniques of [29, section 14] yield the equivalence between
the weak solutions defined in section 4 and the distance solutions defined by Soner in
[29]. Let F be as in (5.6).

Proposition 6.1. {Ω(t)}0≤t<T is a weak subsolution of the mean curvature flow
satisfying (6.1) if and only if dΩ∗(x, t) ∧ 0 is a viscosity subsolution of

ut + F (Du,D2u) = 0 in R2 × (0, T ).(6.3)

{Ω(t)}0≤t<T is a weak supersolution of the mean curvature flow satisfying (6.2)
if and only if dΩ∗(x, t) ∨ 0 is a viscosity supersolution of (6.3).

We close the appendix by proving an approximation result used in section 4.
Lemma 6.2. Let {O(t)}0≤t<T be a family of closed smooth sets, and let t0 ∈

(0, T ), x0 ∈ ∂O(t0) satisfy (4.4). Let Dε(t) and Dε
n(t : x∗) be the same sets as in

the proof of Lemma 4.1. Assume that Dε(t : xε0) satisfies (4.7). Then there are a
subsequence nk and sequences (xk, tk)→ (x0, t0), yk → xε0 as k → +∞ satisfying

xk ∈ Γnk(tk) ∩ ∂Dε
nk

(tk : yk),

Ωnk(t) ∩B(x0, δ
ε) ⊂ Dε

nk
(t : yk) ∩B(x0, δ

ε) ∀ |t− t0| ≤ δε.

Proof. Fix ε > 0 and recall (Ω̂)∗ = Ω̂. Let dn(x, t) be the signed distance to
Dε
n(t : xε0), d(x, t) be the signed distance to Dε(t : xε0), and let

αn := inf
|t−t0|≤δε

inf{dn(x, t) : x ∈ Ωn(t) ∩B(x0, δ
ε)}.

Choose tn ∈ [t0 − δε, t0 + δε], xn ∈ Ωn(tn) ∩ B(x0, δ
ε) and wn ∈ ∂Dε

n(tn : xε0) such
that

|wn − xn| = |αn|.

Set

yn = xε0 − (wn − xn),
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so that

Ωn(t) ∩B(x0, δ
ε) ⊂ Dε

n(t : yn) ∩B(x0, δ
ε) ∀ |t− t0| ≤ δε.

Since x0 ∈ Ω̂(t0), by the definition of Ω̂, there are a subsequence nk and sequences
(zk, sk)→ (x0, t0) such that

zk ∈ Ωnk(sk).

Then

lim sup
k→∞

αnk ≤ lim sup
k→∞

dnk(zk, sk) = d(x0, t0) = 0.

A similar argument, using (4.7), shows that lim inf αnk ≥ 0. Hence αnk → 0 and,
therefore, ynk → xε0.

It remains to show that (xnk , tnk) → (x0, t0). Suppose that on a further subse-
quence, denoted by nk again,

(xnk , tnk)→ (x̄, t̄) ∈ B(x0, 2δ
ε)× [t0 − δε, t0 + δε].

Since dn converges to d uniformly,

d(x̄, t̄) = lim
k→∞

αnk = 0 ≤ lim
k→∞

dnk(zk, sk) = d(x0, t0).

Since (x0, t0) is the strict minimizer of d, this implies that (x̄, t̄) = (x0, t0).
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