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Optimal Replication of
Contingent Claims under
Portfolio Constraints

Mark Broadie
Columbia University

Jaksa Cvitanic
Columbia University

H. Mete Soner
Carnegie Mellon University and Bogazici University

We determine the minimum cost of super-
replicating a nonnegative contingent claim when
there are convex constraints on porifolio
weights. We show that the optimal cost with con-
straints is equal to the price of a related claim
without constraints. The related claim is a dom-
inating claim, that is, a claim wbose payoffs are
increased in an appropriate way relative to the
original claim. The results bold for a variety of
options, including some path-dependent options.
Constraints onthe gamma of the replicating port-
Jolio, constraints on portfolio amounts, and con-
straints on the number of shares are also con-
sidered.

Since the pioneering option pricing work of Black and
Scholes (1973) and Merton (1973), much research has
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focused on relaxing the assumptions of a perfect market. The types
of market imperfections that have been studied include transactions
costs, differential borrowing and lending rates, trading restrictions, and
leverage constraints. Although there is an extensive transactions cost
literature,! option hedging under portfolio (or leverage) constraints
has received much less attention. Naik and Uppal (1994) first studied
the effects of leverage constraints on the pricing and hedging of stock
and bond options in discrete time.?

In this article we extend the work of Naik and Uppal (1994 to the
continuous-time framework. In particular, we solve for the minimum
cost portfolio which super-replicates the payoff of a contingent claim
when there are convex constraints on the portfolio weights. Super-
replication allows the hedging strategy to generate portfolio values
that strictly exceed the contingent claim payoff in some states. Ediris-
inghe, Naik, and Uppal (1993) noted that a super-replication may be
much cheaper than exact replication. Our solution is fairly simple and
intuitively appealing. To price an option with portfolio constraints we
first create a dominating claim, that is, one whose payoffs are in-
creased in an appropriate way relative to the original claim. We show
that the price of the original claim with constraints is the price of
the dominating claim without constraints. The latter can be priced us-
ing standard risk-neutral valuation procedures. This solution provides
an intuitive view of the increased cost due to constraints, namely
the additional hedging cost arises from pricing a claim with a higher
payoff. Our solution applies to a wide variety of contingent claims,
including American options, options on multiple assets, and some
path-dependent options (e.g., lookback options). The solution offers
numerical advantages as well.

The dominating claim solution ties together two strands of liter-
ature on portfolio constraints. It joins the finance literature initiated
in Naik and Uppal (1994) with the mathematical finance literature in
Cvitani¢ and Karatzas (1993), Bardhan (1995), El Karoui and Quenez
(1995), and Karatzas and Kou (1995, 1996). Naik and Uppal (1994)
derive an explicit recursive solution to a linear programming formula-
tion of the minimum cost hedging problem with leverage constraints.
The latter articles derive an abstract stochastic control representation
for the same problem in continuous time and provide some bounds

-

The effect of transaction costs on option pricing and hedging has been studied in discrete time in
Leland (1985), Boyle and Vorst (1992), Edirisinghe, Naik, and Uppal (1993), Boyle and Tan (1994),
and Rutkowski (1996). Continuous-time transaction costs are treated in Flesaker and Hughston
(1993), Wilmott, Dewynne, and Howison (1993), Soner, Shreve, Cvitani¢ (1995), and Cvitani¢ and
Karatzas (1996), and Barles and Soner (1998).

2 In somewhat different contexts, leverage constraints are also studied in Grossman and Vila (1992)
and Marin and Olivier (1996).
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and complex approximation schemes for calculating them. In Karatzas
and Kou (1996, 1998) it is shown that the minimum cost of super-
replication for the buyer, and the corresponding cost for the seller
of a claim, form an interval collapsing to the Black—Scholes price if
there are no constraints. There is no arbitrage in the constrained mar-
ket if and only if the price of the claim is contained in the interval.
The dominating claim approach provides an explicit solution to the
continuous-time stochastic control formulation and represents an ex-
tension of the discrete-time linear programming solution given in Naik
and Uppal (1994).3

The model and the main results of the article are given in the next
section. Examples and illustrations are given in Section 2. Constraints
on the gamma of the portfolio are treated in Section 3. Extensions to
path-dependent options and alternative types of constraints are given
in Section 4. Proofs are deferred to the Appendix.

The Model and Main Results

We consider a Black-Scholes—Merton financial market consisting of a
riskless bond and d risky assets which are traded continuously on the
finite time span [0, 7). The bond price and the d-dimensional vector
of asset prices evolve according to the stochastic differential equations

dB[ = VB;df (1)
d

as| = S} |wdt+Y oydw} |, @
j=1

with initial conditions By = 1 and S} > 0 given. In Equation (2),
w = (W', ..., W% is a d-dimensional standard Brownian motion
defined on a complete probability space (€2, F, P), with the filtration

{F};=0 which is the P-augmentation of the natural filtration F¥ =
o{Ws:0 <s <t} generated by W. The parameters of the market are

the interest rate » > 0, the vector of return rates u = (i1, ..., ta),
and the nonsingular volatility matrix o = {oijhi<ij<a. Let S; denote
the vector of asset prices (S 1., S,d ).

A porifolio process is represented by the vector 7, = (e}, ... wdy,

where 7/ is the proportion of wealth held in asset i at time ¢. Also

let 70 =1 — "% 7/ represent the proportion of wealth held in the

3 The linear programming approach is also discussed in Musiela and Rutkowski (1997).

* Throughout the article we use superscripts to indicate a dimension, not to indicate a power. The
results of this article also carry through with a constant dividend yield 8’ for asset i, i =1,...,d
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riskless bond. We model portfolio constraints by requiring 7, € C,
where C is a given closed convex set in R?. Throughout the article
we assume that the portfolio value process is nonnegative. In this
case, the no-borrowing constraint, 7% > 0, is equivalent to setting
C={m eR?: Y% 7' <1} Short selling of assets can be restricted
by setting C = {wr € R? : x' > —/;}. Taking /; = 0 for all i prohibits
short sales in all assets. The ratio of debt to equity can be restricted
in a similar fashion.

Let b : Ri — R, be a given lower semicontinuous payoff function.’
First we focus on European contingent claims whose payoff at time
T is b(St). Later we analyze American claims whose payoff is b(S;)
when exercised at time #. Consider a seller of the European claim
b who wants to hedge his short position as cheaply as possible by
trading in the underlying assets and riskless bond while satisfying
restrictions on the composition of the hedging portfolio. In particular,
the seller wishes to super-replicate the claim in the least expensive
way while keeping the super-replicating portfolio process m; in C for
all ¢ € [0, T1.% By super-replication we mean that the wealth process
almost surely dominates the value of the claim b(Sy) at time ¢t = T.
We consider super-replication since exact replication is generally not
possible when there are portfolio constraints, and even when exact
replication is possible super-replication may be cheaper.

Definition 1. Define the seller’s cost of the claim b to be the minimum
initial amount of money (possibly infinite) which is needed to super-
replicate b(St) with a self-financing porifolio strategy m; which satisfies
7 € C forallt €10, T1. Denote by P(t, S;) the corresponding minimum
super-replicating value process for the seller at time t.

For exact definitions of self-financing strategies and precise math-
ematical descriptions of the above definition we refer the interested
reader to Karatzas and Kou (1996). Moreover, it is shown there that
the defined processes and values exist, unless they are infinite.

To state our results in this general framework, we need to intro-

> Recall that b : Ri — R, is lower semicontinuous means

b(x) < liminfb(y) for all x € RY.

d
yeRy

¢ Similarly, we could consider the problem from the perspective of the buyer of the claim. The buyer
wishes to borrow the maximum amount of money against the claim and hedge his long position
by trading in the underlying assets and riskless bond while satisfying portfolio restrictions. Thus
the buyer wishes to borrow the maximum amount in order to super-replicate —b(Sr) at time 7'
while satisfying 7, in C for all ¢ € [0, T]. All of the results of this article carry over to the buyer’s
case with the appropriate modifications.
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duce the support function §(v) = Sup, o (—m'v) of —C, defined on

its effective domain ¢ = {v € R? : §(v) < oo}, which is a closed
convex cone (see, e.g., Rockafellar 1970). The function § is positively
homogeneous and convex. We assume that it is continuous and that
0 € C, so that § is nonnegative. Denote by D the set of all progres-
sively measurable processes v; taking values in C. Also introduce for
a given process v, in R?, the auxiliary shadow economy vector of
asset prices S;(v) by

d .
dsl(v)y =S/ (v) |:(r —v)dt + Za,jdw/,]:l ) (3)
j=1

With these definitions and assumptions, we restate Theorem 6.4 from
Cvitani¢ and Karatzas (1993), as follows:

Theorem 1. The value process for the seller is given by

P(t, St) — SUpE [b(ST(V))e—j; (r+8(vy))ds
veD

Si(v) = Sr] . 4)

We will show that this complex looking stochastic control problem
has a simple solution. Given a claim & and a closed convex set of

portfolio constraints C, we define the dominating claim b by

l;(S) = sup b(SeV)e W), (5)
veC
where Se™ = (Sle™',..., 5% ). (We use the same notation for

the componentwise product of two vectors throughout the article.)
Since 0 € C, it follows from Equation (5) that l;(S) > b(S) for all
S € R4, which justifies the term dominating. In what follows we use
the term Feynman-Kac assumptions to refer to those assumptions
under which the relevant expected values satisfy the corresponding
PDEs. A set of such assumptions is given in Duffie (19906).

Here is our main result:

Theorem 2. The seller’s cost P(t,S;) of super-replicating the claim
b(St) with the closed convex set of constraints C is the Black-Scholes
cost function for the dominating claim b(Sr) without constraints.

In particular, if b satisfies the Feynman—Kac assumptions, denoting
a=oa’, P(t,S) is the solution to the PDE

d

1E o .
Pt s DD ayS'SPas +r (Z S'Pgi — P) =0, 6)

i=1 j=1 i=1
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with the terminal condition
P(T,S) = b(S), SeR’. @)

Moreover, the corresponding self-financing porifolio sirategy satisfies
the constraints m; € C for all t € [0, T). In particular, under the
Feynman—Kac assumptions, it is given by
i i Psi(2, )
w) =

= rm, 1= ,...,d. (8)

The proof of Theorem 2 is given in the Appendix. It should be
remarked that from the results in Karatzas and Kou (1996), it follows
that if P(¢, S;) = 0 in Equation (8), then we can take 7, to be equal to
any vector in C. Using a result from Karatzas and Kou (1998), stating
that for American options one gets the same type of representation as
in Equation (4) by taking an additional supremum over all stopping
times, we get

Corollary 1. The seller’s cost P(t, S;) for super-replicating an Ameri-
can claim b(S;) with closed convex constraints C is the cost function

of the unconstrained American dominating claim B(St).

. Examples

We first consider the case of a single asset, that is, d = 1, and con-
straints of the type

C=I[-1ul )

with 0 </, 4 < +00, and with the understanding that the interval C
is open to the right (left) if # = 400 (respectively, if / = +00). Here /
represents the limit imposed on short selling and « the limit imposed
on borrowing. The support function §(v) can be written compactly as

sy =t +uv”. (10)
The effective domain C is given by

~ R if I, u < o0,
C =110, 00) if u =400, (11)
(—o00,0] ifl=+4o00.

Next we proceed to solve for the dominating claim for standard call
options, put options, and digital options. Later we consider options on
multiple assets and lookback options. Examples are given for Ameri-
can and European options.
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Figure 1
Standard call option .
Mlustration of b(S) = (S — K)* (with K = 100) and b(S) for several values of u.

2.1 Standard call option

The payoff function of a call option is b(S) = (S — K)™. In this case
short-selling constraints do not matter, that is, b does not depend on
l. For u < 1, B(S) = o0, for u = 1, l;(S) = S, and for u = o0
l;(S) = b(S). For 1 < u < oo, ordinary calculus gives

)

. S—K if § > Kt
b(S) = K (u—1)8 u . Ku (12)
=i (—“"Ku ) ifs < &

Figure 1 illustrates b for several values of u. As the borrowing
constraint is tightened, that is, as # decreases, l;(S) increases, and so
does the seller’s cost. For fixed u, the effect of the constraint decreases
as the option moves in-the-money, that is, as S increases beyond K.
This is reasonable, since replicating an in-the-money option requires
less leverage than an at-the-money option.

Figure 2 illustrates how the delta of the portfolio strategy varies for
several values of u. Recall that the delta is the number of units of the
asset in the super-replicating portfolio. From Equation (8), the delta is

A(Sy) = T P(t, S)/S: = Ps(t, Sy). For deep in-the-money options, the
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Figure 2

Standard call option

Mlustration of A(S) for several values of u. The option parameters are K = 100, » = 0.05, 0 = 0.3,
and T = 0.25.

portfolio delta decreases as the borrowing constraint is tightened, that
is, as u decreases. The reverse happens for deep out-of-the-money
options. The results in Figure 2 are consistent with the observations
in Naik and Uppal (1994). The gamma of the portfolio is defined by
I'(S) = dA(S;)/dS;. Figure 3 shows how the gamma of the portfolio
varies with S and u. For a large range of asset prices § around the strike
K, the gamma decreases as the borrowing constraint is tightened.
However, the pattern reverses for deep out-of-the-money and in-the-
money options. We will return to the gamma of the portfolio in the
next section.

In Naik and Uppal (1994), for the limited borrowing European call
case in a discrete-time framework, the authors find a “critical stock
price” boundary, that is, a curve below which the constraint is bind-
ing and above which it is not. Here, in continuous time, the con-
straint is never binding for ¢ < T'. Indeed, using Equation (12) one

can check that § %(S)/é(S) < u, for all § > 0, with strict inequal-
ity for some S. Then using an argument similar to the one after the
proof of Theorem 2 in the Appendix, the strong maximum principle
implies that portfolio process m; of Equation (8) satisfies m; < u for
t<T.
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Figure 3
Standard call option
Hlustration of I'(S) for several values of 1. The option parameters are K = 100, » = 0.05, 0 = 0.3,
and T = 0.25.

Numerical results for European call options are given in Table 1.
To be specific, consider the case with K = 100 and ¢ = 0.3. In the
unconstrained case, u = oo, the option is initially worth 9.635, the
delta is 0.589, and 7 = 6.11. If 7} is restricted to 20 or less, the
minimum super-replication cost rises to 9.863, restricted to 10 or less
the cost rises to 10.509. In the case m!' < 1, the seller must hold the
stock alone and the minimum cost for super-replication is Sy = 100.
Table 1 shows that constraints have a greater relative and absolute
impact for lower volatilities than higher volatilities. This observation
is consistent with Figure 1, which shows that bis significantly different
from b for S near K, while b is equal or approximately equal to b for
S > K and § € K. When & is near K, the probability that Sy will be
close to K is larger under low volatility than high volatility. Hence low
volatility leads to terminal asset prices where b differs from b, that is,
the impact of constraints tends to be greater when volatility is low.

2.2 Standard put option

The payoff function of a put option is b(S) = (K — S)*. In this case
borrowing constraints do not matter, that is, b does not depend on
u,Forl=oo,5=bandforl=0,13=K.For0<l< 00, the
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Table 1
Minimum super-replication cost for European options
K u o=0.2 0 =03 o =04
00 13.499 (0.840) 15.486 (0.764) 17.763 (0.727)
20 13.681 (0.827) 15.656 (0.759) 17.907 (0.724)
90 10 14.155 (0.796) 16.119 (0.745) 18.319 (0.717)
5 15.963 (0.707) 17.812 (0.698) 19.859 (0.691)
2 29.056 (0.581) 29.790 (0.595) 30.817 (0.613)
1 100.000 (1.000) 100.000 (1.000) 100.000 (1.000)
00 6.889 (0.598) 9.635 (0.589) 12.385 (0.591)
20 7.211 (0.591) 9.863 (0.587) 12.560 (0.591)
100 10 8.058 (0.571) 10.509 (0.579) 13.076 (0.588)
5 10.891 (0.522) 12.821 (0.553) 15.021 (0.574)
2 26.151 (0.523) 26.812 (0.536) 27.756 (0.554)
1 100.000 (1.000) 100.000 (1.000) 100.000 (1.000)
00 2.906 (0.335) 5.587 (0.411) 8.370 (0.457)
20 3.255 (0.343) 5.831 (0.414) 8.555 (0.459)
110 10 4.247 (0.353) 6.560 (0.418) 9.124 (0.462)
5 7.526 (0.372) 9.218 (0.424) 11.322 (0.465)
2 23.773 (0.475) 24.375 (0.487) 25.239 (0.504)
1 100.000 (1.000) 100.000 (1.000) 100.000 (1.000)

Option parameters: S = 100, » = 0.05, and T = 0.5. A given in
parentheses.

dominating claim is given by

: Kl
K-S lfSSH-_l’

I;(S)= K x \ . Kl
T+ ((1+1>s) if $ > 77

13)

2.3 Digital call option

A digital call option pays $D at maturity if S7 > K and zero otherwise.
Its payoff function can be written compactly as b(S) = D1s-k}. For
all0 </ <ooand 0 < u < 0o, the dominating claim is given by

D ifS > K,

D(3)" fS<K.

b(s) = { (14)

Numerical results for four different types of options are given in
Table 2. For American calls to have value in excess of their European
counterparts, a constant dividend rate of § = 10% is used. For standard
European calls, setting # = 40 increases the super-replicating cost
relative to the unconstrained case by a few cents. But for European
digital calls, the effect on the price is much larger, for example, over
50 cents when o = 20%. Even mild constraints on the replicating
portfolio can have significant price implications for digital options. For
European digital options in the extreme case of # = 0, the optimal
strategy is to invest De™"7 in the riskless bond. For American digital
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Table 2
Minimum replication cost for American calls, European and American
digital calls
Option u o =02 oc=03 o =04
00 1.567 (0.207) 3.800 (0.307) 6.307 (0.369)
40 1.636 (0.211) 3.854 (0.308) 6.349 (0.370)
Standard 20 1.860 (0.220) 4.023 (0.312) 6.482 (0.372)
European 10 2.763 (0.245) 4.715 (0.322) 7.029 (0.378)
call 5 5.874 (0.292) 7.304 (0.344) 9.187 (0.390)

2 21.511 (0.430) 22,056 (0.441) 22.839 (0.457)
1 95.123 (0.951) 95.123 (0.951) 95.123 (0.951)

00 1.637 (0.219) 3.923 (0.320) 6.471 (0.382)

40 1.699 (0.222) 3.971 (0.321) 6.509 (0.383)

Standard 20 1.912 (0.230) 4.129 (0.324) 6.632 (0.384)
American 10 2.792 (0.250) 4.794 (0.331) 7.155 (0.388)
call 5 5.878 (0.293) 7.336 (0.348) 9.259 (0.397)
2 22.727 (0.455) 22.727 (0.455) 22.841 (0.457)

1 100.000 (1.000) 100.000 (1.000) 100.000 (1.000)

00 1.740 (0.018) 2.442 (0.015) 2.784 (0.012)

40 2.256 (0.021) 2.834 (0.016) 3.091 (0.012)

European 20 2.851 (0.022) 3,255 (0.016) 3.413 (0.013)
digital 10 3,981 (0.022) 4.080 (0.016) 4.055 (0.013)
call 5 5.558 (0.019) 5.369 (0.015) 5.143 (0.012)
2 7.516 (0.012) 7.241 (0.010) 6.940 (0.008)

1 8.505 (0.007) 8.302 (0.006) 8.074 (0.005)

0 9.753 (0.000) 9.753 (0.000) 9.753 (0.000)

00 4.111 (0.045) 5.796 (0.037) 6.712 (0.031)

40 4.222 (0.044) 5.836 (0.037) 6.730 (0.030)

American 20 4,506 (0.043) 5.947 (0.036) 6.782 (0.030)
digital 10 5.226 (0.039) 6.283 (0.033) 6.958 (0.028)
call 5 6.399 (0.031) 6.970 (0.028) 7.384 (0.025)
2 8.264 (0.017) 8.264 (0.017) 8.279 (0.016)

1 9.091 (0.009) 9.091 (0.009) 9.091 (0.009)

0 10.000 (0.000) 10.000 (0.000) 10.000 (0.000)

Option parameters: Sy = 100, K = 110, r = 0.05, § = 0.10, and T = 0.5. A
given in parentheses. For the digital options D = 10.

calls with # = 0, an amount equal to the initial asset price Sy is
invested in the riskless bond.

2.4 Options on multiple assets

With multiple assets there are many economically reasonable sets of
constraints. We focus on two types of constraints in the case d = 2.
First, suppose that borrowing is restricted. This can be modeled by
taking €, = {7 € R? : ! 4+ 72 < u}. Second, we consider bounds
on the first asset only, that is, C; = {7 € R? : ! < u}. The payoff
of a call option on the maximum of two asset prices is b(S!, §%) =
(max(S?, %) — K)T. With constraints C; and # > 1, it can be shown

09
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Table 3
Minimum replication cost for European max options on two
assets
Constraints u o =02 o =04
00 11.65 (0.44, 0.44) 21.56 (0.46, 0.46)
20 11.90 (0.43, 0.43) 21.72 (0.46, 0.46)
G 10 12.55 (0.41, 0.41) 22.18 (0.45, 0.45)
5 14.96 (0.35, 0.35) 23.86 (0.43, 0.43)
2 30.29 (0.30, 0.30) 36.37 (0.36, 0.36)
1 107.97 (0.54, 0.54) 115.85 (0.58, 0.58)
0 11.65 (0.44, 0.44) 21.56 (0.46, 0.46)
20 11.80 (0.44, 0.43) 21.65 (0.46, 0.46)
G 10 12.25 (0.43, 0.41) 21.93 (0.46, 0.45)
5 14.02 (0.41, 0.34) 23.09 (0.45, 0.43)
2 26.78 (0.49, 0.09) 32.36 (0.47, 0.28)
1 100.00 (1.00, 0.00) 100.23 (0.99, 0.02)
Option parameters: §; = § = 100, K = 100, » = 0.05,

o) =0, =0,p=0.0,and T = 0.5. (A!, A?) given in parentheses.

that the dominating claim is given by

A max(S!, $%) — K if max(s!, §%) > f—”l,
b(Sl, SZ) = K (11—1) max(S',5%) u K
A (’T-) if max(s', §%) < £

15)

With constraints C; and ©# > 1, the dominating claim is given by

S'—K if 1> L& 51> g2
§*—K if 1> KL 52> g1,
l;Sl,S2 = K [ (u=DS" e el K 1 2
( ) M—l(llKll lfS < u,_ule ZS )
u
max (52 -K, X (-———("}251) ) if $T < £ 52 > s,
(16)

Numerical results for European max options on d = 2 assets are
given in Table 3. Since C; C C,, the minimum replication cost is
higher with constraints C; compared to C,. As with the other ex-
amples, the absolute and relative impact of the constraints is greater
at lower volatilities than at high volatilities. With constraints C; and
u = 1, the option cost equals the common value of the initial asset
prices plus the value of an exchange option [see Margrabe (1978)].

The examples in this section illustrate both the generality and ease
of applicability of Theorem 2 and Corollary 1. As we saw in Figure 3,
the gamma of the replicating portfolio typically decreases as the port-
folio constraints are tightened. In the next section we consider the
problem of directly constraining the gamma of the super-replicating
portfolio.
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. Gamma Bounds

In this section we set d = 1 for simplicity and consider only European
claims of the form b(S(7)). It is often of practical interest to have some
bounds on the “gamma” of the hedging portfolio, namely Pgg(-). This
is because if gamma is too large, so is the trading volume. A con-
servative way of approaching the problem is to notice that function
(t,S) > S%Pss(t, S)—gS%e™ @+ also solves the Black—Scholes equa-
tion (here, g is a positive constant). Therefore, if the terminal condition
b(S) has a second derivative in § bounded above by & = ge e~ T+
the corresponding gamma will satisfy Pss(t, S) < ge™'@"+" for any
0 <t < T and S > 0 by the maximum principle. In pamcular gamma
will satisfy Pss(t, S) < g. However, this is not necessarily the least ex-
pensive way of bounding gamma from above. In order to find the least
expensive way, one would have to find the function that always sat-
isfies Black-Scholes PDE as inequality, with equality if Pss(2, S) < g.
In other words, this is related to an American option problem, with
the condition Pss < g. Finding an analytical solution to this problem
seems quite difficult. Instead we illustrate the conservative approach
described above. More precisely, if the payoff is given by b(S), we
look for the minimal function b dominating & and having a prescribed
bound on the second derivative, if such exists. We show that this in-
deed will be the case, if we only prescribe an upper bound on gamma.
Roughly speaking, this is because the second derivative of the min-
imum of two functions is smaller than the minimum of their second
derivatives. This is not the case for a lower bound (although in many
cases convexity will be preserved, and the lower bound will be zero).

What follows is a rough description of how to construct such b.
All the statements can be proved, under reasonable conditions, using
standard arguments of optimal stopping [see, e.g., Oksendal (1992)].
Consider the following optimal stopping problem

b(s) = sup E°[b(S(7))]

where 7 is a stopping time on an infinite horizon, and dS = Sd W,
S§(0) = s. Then b(s) is the smallest superharmonic function (i.e., satis-
fying bss < 0), such that b>b. Similarly, the smallest function b>b

for which bgg < g is the value function (under some conditions) of
the optimal stopping problem

b(s) = sup E° [b(S(r)) —~ % / ‘ Sz(t)dt]
T 0

To solve this problem, one looks for the function for which 135 s =g in
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the continuation region, with inequality outside, and which dominates
b. Typically the solution is of the quadratic form inside the continua-
tion region, and equal to b(s) on the boundary and outside, and one
uses the smooth fit conditions to get the coefficients (matching the
first derivatives).

Let us consider the case of the European call b(S) = (S — K)™.
Assume first that K — 1 / (2g) > 0. We look for a pair (sg, $1), So < K,
51 = K, and a function b(S), such that b(S) = aS%+ bS + c on [sy, s1],
b(S) = b(S) for S < sy and § > sy, % (s)) = b'(s;), i = 0,1, and such
that b (8) = g on (sp, s1). It is straightforward to see that the unique
function satisfying those conditions is described by

~ 2
13(5):%(5—( _2%@)) , for SG[K—% K+ g] 17)

and is otherwise equal to b(S). In the case K — 1/(2g) < 0, we don’t
have to worry about smooth fit at zero, so we draw a parabola going
through origin and smoothly hitting § — K. The solution is

b(S) = —52+( \/ZKg) s, for S <+/2K/3, (18)

and 5(5) = § — K otherwise.

To recap, the function b given by Equation (17) or (18) defines
a payoff which dominates 5(S) and whose Black—Scholes hedging
strategy will have its gamma no greater than ge7 =9+ at time .
In pamcular the gamma of the hedging portfolio will not exceed
geT@+) = g Similarly, if one prices an American option with the
payoff (at time ) b(S)eT="@*+" such that bss(S) < g, the corre-
sponding gamma will not exceed ge”~D@*+" at time ¢.

3.1 Example
Consider a European call option to be super-replicated by a portfolio
whose gamma should not exceed g = 0.01. Suppose for illustration
that K = 100, 7 = 5%, 0 = 30%, and T' = 0.5. Set § = ge~7@*+" =
0.00932. Since K — 1/(28) > 0, set b according to Equation (17). At
the maturity of the option it is guaranteed that the portfolio gamma
is bounded above by § < g. For 0 < ¢t < T it is guaranteed that the
gamma is bounded above by g. In fact, at = 0 the maximum value
of gamma is 0.00995, that is, slightly less than the desired bound of
0.01. See Figure 4 for an illustration.

This example illustrates several difficult features of the problem.
Bounding the terminal gamma by g does not lead to a bound of g on
the portfolio gamma for t < T'. The conservative approach illustrated
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Illustration of gamma for the b option for several values of ¢
The European call option parameters are K = 100, » = 0.05, 0 = 0.3, and 7' = 0.5.

here is clearly not optimal, since the portfolio gamma is bounded
above by a constant that is strictly smaller than g. Finally, notice in
Figure 4 that the maximum value of gamma depends on §, so an
exact procedure would need to account for this dependence. One
could discretize the problem and formulate a linear program to solve
the discrete problem as in Naik and Uppal (1994).

In the previous example, the unconstrained Black—Scholes option
value is $9.635 and the option gamma is 0.0183 at time ¢ = 0. Con-
straining the super-replicating portfolio gamma to 0.01 and applying
the conservative approach outlined above leads to a replication cost
of $16.506. The effect on the option value is large because the termi-
nal value of gamma with § = K is infinite. Table 4 shows how the
super-replication cost varies with the gamma constraint for a range of
option parameters.

4. Extensions

In this section we briefly consider extensions of the results to path-
dependent options. We also consider constraints on portfolio amounts
and constraints on the number of units (e.g., shares) of each asset.
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Table 4

Super-replication cost for European options with a constraint
on gamma

K g o=0.2 o=03 o =0.4

00 13.499 (0.840) 15.486 (0.764) 17.763 (0.727)

0.20 13.523 (0.838) 15.507 (0.764) 17.782 (0.726)

90 0.10 13.595 (0.834) 15.572 (0.762) 17.837 (0.726)
0.05 13.879 (0.818) 15.824 (0.756) 18.059 (0.723)

0.02 15.680 (0.740) 17.453 (0.721) 19.525 (0.706)

0.01 20.582 (0.639) 22.028 (0.651) 23.865 (0.661)

o 6.889 (0.598) 9.635 (0.589) 12.385 (0.591)

0.20 6.920 (0.597) 9.657 (0.589) 12.403 (0.591)

100 0.10 7.013 (0.597) 9.723 (0.589) 12.456 (0.591)
0.05 7.375 (0.594) 9.983 (0.588) 12.666 (0.591)

0.02 9.576 (0.575) 11.682 (0.584) 14.083 (0.592)

0.01 15.006 (0.544) 16.506 (0.563) 18.451 (0.581)

00 2.906 (0.335) 5.587 (0.411) 8.370 (0.457)
0.20 2.931 (0.336) 5.605 (0.411) 8.385 (0.458)
110 0.10 3.003 (0.339) 5.660 (0.412) 8.429 (0.458)
0.05 3.291 (0.349) 5.876 (0.417) 8.607 (0.461)
0.02 5.179 (0.399) 7.345 (0.440) 9.835 (0.474)
0.01 10.360 (0.448) 11.872 (0.472) 13.864 (0.498)

Option parameters: S, = 100, » = 0.05, § = 0.0, and 7" = 0.5. A
given in parentheses.

4.1 Path-dependent options

We first consider lookback options with payoffs that depend on the
terminal asset price as well as the maximum or minimum price over a
given time period. For example, the payoff of a lookback call option
is b(St,S_) = Sy — S_, where S_ = ming<¢<7r S;. Theorem 2 is not
directly applicable in this case. For these and other path-dependent
options, there is an abstract formula corresponding to Equation (4);
see Cvitani¢ and Karatzas (1993) or Karatzas and Kou (1996). It is
easier in this case to use the PDE arguments indicated in the Appendix,
if one knows the PDE of the option in the unconstrained case. In the
lookback call case, it can be checked that

5(S,y) = sup {[Se“’ — min(y, Se_")]e_‘s(")} , (19)

v<0

where in fact min(y, Se™") = y on the domain y < § and for v < 0.
That this is the lower bound follows from an argument such as the
one of the proof of Theorem 2, part (ii). To see that the value of
this bound can be replicated, one can use the maximum principle for
PDEs again, and the fact that the corresponding value function here is
a function of (§, ) defined on § > y, and the PDE is again the Black—
Scholes PDE in the § variable for each y (with Neumann boundary
conditions), and the replicating portfolio is given by Equation (8) [see
Wilmott, Dewynne, and Howison (1993)].
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Table 5

Minimum replication cost for European lookback

call options

u o =02 0=03 o =04

o] 11.95 (0.12) 16.91 (0.17) 21.65 (0.22)

20 12.10 (0.12) 17.01 (0.17) 21.72 (0.22)

10 12,57 (0.13) 17.33 (0.17) 21.96 (0.22)
5 14.66 (0.15) 18.78 (0.19) 23.05 (0.23)

2 28.64 (0.29) 30.67 (0.31) 32.99 (0.33)
1 100.00 (1.00) 100.00 (1.00) 100.00 (1.00)

Option parameters: S = 100, » = 0.05, and 7' = 0.5. A
given in parentheses.

If 4 = oo, Equation (19) gives b=b11<u< oo, bis of the
form as in Equation (12), with K replaced by y. Numerical results are
given in Table 5.

Unfortunately, although we were “lucky” in the case of lookback
options, it seems unlikely that there is a general result for path-
dependent options, and so the analysis has to be done on a case-
by-case basis. The reason is partly because the PDEs for the pricing
function differ from one path-dependent option to another. To obtain
results on the seller’s cost with constraints, one would have to find a
corresponding PDE for the price without constraints and then check
whether there is a (minimal) way of modifying boundary conditions
so that the constraints become satisfied. It has recently been shown
in Wystup (1997) that this is possible for barrier options.

4.2 Constraints on portfolio amounts

Suppose instead of constraints on portfolio weights, that there are
constraints on portfolio amounts, described by set C. In this case it is
possible to show, using methods of Cvitani¢ and Karatzas (1993), that
the (dominating) value process for the seller is given by

T
P(t,S;) =supE [b(ST(v))e"'(T_’) — f e "S8(vy)ds

veD t

S;(U) = S[] .

(20)
This corresponds to the terminal payoff

b(S) = sup{b(Se™") — s(v)}.

veC

Again, by similar arguments as in the case with constrained portfolio
weights (provided in the Appendix), the Black—Scholes price of this
payoff gives the minimal seller’s cost of super-replication.

In case d = 1, with constraints C = [—/, u] and U < 00, for those
payoffs for which sb(s) — 00 as s — 00, we have b(S) = oo, that is,
super-replication is impossible. On the other hand, for example, for
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the put option b(S) = (K — S)T, we get l;(S) = b(S) if K <! and, if
I <K,

R K-S if§ <1,
b(S) = {K —1+1log(/s) ifl<S <k,
0 if § > 1eK/1-1,

4.3 Constraints on the number of shares

Assume for simplicity that d = 1. Requiring that the number of shares
of the stock in the hedging portfolio takes values in C at time ¢ is
equivalent to requiring that the portfolio amounts take values in S; - C.
Since the results of Cvitani¢ and Karatzas (1993) extend to random
constraint sets, denoting by §(v, S;) the (random) support function of
the set =S, - C, we get, from Equation (20)

T
P(t, S,)=supE[b(ST(v))e_’(T_’)— f eS8 (vs,Ss(v))ds

veD t

S;(U) =S[:| .

In case d = 1 we have §(v, S) = §(v)S and, as in the Appendix, by
taking limits as t — T, it is seen that the terminal payoff has to be

b(S) = sup {b(Se_") —8(v)S ! —ve“’ } .

veC

Again, the seller’s price is given by the Black—Scholes price
of IQ(S ).

The example of European call, b(S) = (S — K)™T, with constraints
C = [—1, ul, is not very interesting. If # < 1 then super-replication is
impossible, and if # > 1 the constraint is redundant, that is, 5(5) =
b(S). In the case of the put, b(S) = (K — S)¥, the constraint is redun-
dant if / > 1, and if / < 1, the dominating payoff is another put-like
payoff, b(S) = (K —1S)*. Formally speaking, we are fitting the small-
est piecewise linear function E(S ) dominating b(S), and with the slope
between —/ and u.

Appendix

Proof of Theorem 2
() We first show, using results from Cvitani¢ and Karatzas (1993),

that portfolio & that replicates b(Sr), also satisfies the constraints. Let
v € D and observe that, from the properties of the support function
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and the cone property of C,

b="b

T T
/ S(vg)ds > 6 (f vsds> ,
t t

r .
/ veds is an element of C,
t
here [ veds = ([" vld "vddsy. M , we h
where [ vids = ([ vlds, ..., [ vlds)'. Moreover, we have

. . r l'd
Sh0) = Shoye
because the processes on the left-hand side and the right-hand side
satisfy the same linear SDE. Then, for every v € D, we have (setting
t = 0 without loss of generality)

Elb(Sr)e™ o TR < g (s, o ey w91y

<
< Elsup b(Sr(0)e™")e*Me~'T)
veC
= Elb(Sr(0))e™""]
= E[b(Sr(0)e™"T]. QD

Therefore the supremum (over D) of the initial expression is obtained
for v = 0. Similarly for conditional expectations of Equation (4). Now
it follows from Theorems 6.6 and 6.7 in Cvitani¢ and Karatzas (1993)
that b(Sr) can be replicated by a portfolio that satisfies the constraints.
Moreover, under Feynman—Kac assumptions, its value function is the
solution to Equations (6) and (7), and the portfolio is given by Equa-
tion (8).

(i) To conclude we have to show that to hedge b(Sy) we have
to hedge at least 5(57). Denote by P(t, Sy; b) the value function cor-
responding to claim b(Sr), that is, P(, S;; b) = P(¢, S;) of Equation
4.

It remains to prove that the left limit of P(¢, S; b) at ¢t = T is larger
than 13(57). For this, let {v¥} be the maximizing sequence in the cone
C attaining H(S), that is, such that b(Se™")e=*¥) converges to b(S) as
k goes to infinity. Then, using (for fixed ¢t < T) constant deterministic
controls v¥/(T — t) in Equation (4), we get

P, 5;b) 2 B [b(Sr@e™)e Ve T 5,0) = 5],
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and hence by lower semicontinuity of b
liminfP(¢, §; b) = b(Se™)e .
t—
Now letting & increase to infinity finishes the proof. u

Here is a sketch of a PDE proof for part (i) in the proof above:
Let P be the solution to Equations (6) and (7). For a given v € C,
consider the function W, = (SPs)'v + (V)P = Z;Ll S'Psivi + 8(v)P,
where Ps is the vector of partial derivatives of P with respect to S,
i =1,...,d. By Theorem 13.1 in Rockafellar (1970), to prove that
portfolio w of Equation (8) takes values in C, it is sufficient (and
necessary) to prove that W, is nonnegative for all v € C. It is not
difficult to see (assuming enough smoothness) that W, solves the PDE
[Equation (6)], too. Moreover, it is also possible to check that the vector
5135(5) belongs to the set 13(5) xC={xeR?: x= l;(S)C; c e},
which implies W, (S, T') > 0. So, by the maximum principle, W, > 0
everywhere.
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