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Abstract. In a market with transaction costs, generally, there is no nontrivial
portfolio that dominates a contingent claim. Therefore, in such a market, prefer-
ences have to be introduced in order to evaluate the prices of options. The main
goal of this article is to quantify this dependence on preferences in the specific
example of a European call option. This is achieved by using the utility function
approach of Hodges and Neuberger together with an asymptotic analysis of par-
tial differential equations. We are led to a nonlinear Black-Scholes equation with
an adjusted volatility which is a function of the second derivative of the price it-
self. In this model, our attitude towards risk is summarized in one free parameter
a which appears in the nonlinear Black-Scholes equation : we provide an upper
bound for the probability of missing the hedge in terms ofa and the magnitude
of the proportional transaction cost which shows the connections between this
parametera and the risk.
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1 Introduction

In a complete financial market without transaction costs, the celebrated Black-
Scholes no-arbitrage argument [5] provides not only a rational option pricing for-
mula but also a hedging portfolio that replicates the contingent claim. However,
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the Black-Scholes hedging portfolio requires continuous trading and therefore, in
a market with proportional transaction costs, it is prohibitively expensive. In fact,
in such a market, there is no portfolio that replicates the European call option
and we are forced to relax the hedging condition, requiring the portfolio only to
dominate rather than replicate the value of the option. With this relaxation there
is always the trivial dominating hedging portfolio of holding one share of the
stock on which the call is written. A straightforward arbitrage argument indicates
that any viable option price should not be larger than the smallest initial capital
that can support a dominating portfolio. Although this approach to option pricing
has provided interesting results in markets without transaction costs but with con-
straints (see Cvitanič-Karatzas [12], Karatzas-Kuo [18], Broadie-Cvitanič-Soner
[7]), in the presence of transaction costs, Soner-Shreve-Cvitanič [22] proved that
the minimal hedging portfolio that dominates a European call option is the trivial
one; thus showing the necessity of an alternate relaxation of perfect hedging in
markets with transaction costs.

Several such relaxations have already been proposed. Leland [20] considers
a model that allows transactions only at discrete times. By a formalδ-hedging
argument, he derives an option price that is equal to a Black-Scholes price but
with an adjusted volatility

σ̂ = σ

(
1 +

√
2
π

µ

σ
√
∆t

) 1
2

,

whereσ is the original volatility,µ is the proportional transaction cost and∆t
is the transaction frequency. In this formula, bothµ and∆t are assumed to be
small while keeping the ratioµ/

√
∆t order one. For typical market numbers,

this is indeed the case. For instance : withσ = 0.2, µ = 0.01 and one transaction
a week, the Leland volatility, ˆσ, is equal toσ times 1.13.

One crucial step in Leland’s very interesting argument is the implicit use of
the approximation

W(t +∆t) − W(t) ≈
√

2
π

√
∆t ,

whereW(·) is the standard one-dimensional Brownian motion. Clearly, as∆t ↓ 0,
W(t + ∆t) − W(t) converges to zero like

√
∆t , but a convincing argument for

the following approximation

W(t +∆t) − W(t) ≈ c∗ √
∆t ,

with an arbitrary constantc∗, can also be made. Then the resulting option price
has the adjusted volatility

σ̂(c∗) = σ

(
1 + c∗ µ

σ
√
∆t

) 1
2

.(1.1)

The “optimal” choice ofc∗ is an interesting question related to the risk inherent
in markets with transaction costs (see also Kusuoka [19]).
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Leland’s derivation assumes the convexity of the resulting option price. Re-
cently, an extension of this approach to general prices is obtained by Avellaneda
and Paras [1].

In a second approach [6], Boyle and Vorst study the option pricing problem
in discrete time with a binomial tree model for the value of the stock. Using a
central limit theorem, they show that, as the time step∆t and the transaction
costµ tend to zero, the price of the discrete option converges to a Black-Scholes
price with adjusted volatility ˆσ(1). However, one should note that, here∆t is
equal to the mean time length for a change in the value of the stock, not the
transaction frequency. In a related paper [4], Bensaid-Lesne-Pagès-Scheinkman
investigate the discrete time, dominating policies.

A completely different approach to option pricing is to introduce preferences.
In [17], Hodges and Neuberger consider the difference between the maximum
utility from final wealth when there is no option liability and when there is such
a liability. Then, they postulate that the price of the option should be equal to
the unique cash increment which offsets this difference. Remarkably, in the ab-
sence of market frictions, the option price obtained from utility maximization is
equal to the Black-Scholes price. Hence, the utility maximization approach pro-
vides an extension of the Black-Scholes option pricing theory. In the presence of
transaction costs, this theory is further developed by Davis-Panas-Zariphopoulou
[14].

Clearly the price defined this way depends on the particular utility function,
on the initial wealth and the portfolio of the investor, and on the mean return
rate of the stock. Constantinides and Zariphopoulou [9] modified the original
definition and obtained universal bounds independent of the utility function.

In this paper, we will use the utility maximization definition and asymptotic
analysis to derive an option pricing formula. We will also provide an upper
estimate on the probability of missing the hedge by a given amount. This latter
result, might be used to choose the utility function necessary in the approach of
Hodges and Neuberger.

In our analysis, we use the exponential utility function

U ε(ξ) := 1 − exp(−ξ

ε
), ξ ∈ R1,

with a parameterε > 0, where 1/ε is equal to the product of the risk-aversion
factor and the number of options to be sold (a brief discussion of this is given
in Sect. 2.1 below). We letµ be the proportional transaction cost,p be the stock
price at timet , andΨ ε,µ(p, t) be the option price with utility functionU ε and,
then, study the behavior ofΨ ε,µ as

ε ↓ 0, µ ↓ 0,
µ√
ε

= a,

where a is any constant. In Theorem 3.1, we show that the limiting price
Ψ (p, t : a) solves a nonlinear Black-Scholes equation
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Ψt + rpΨp +
1
2
σ2 p2Ψpp

[
1 + S

(
er (T−t) a2 p2Ψpp

)]
= rΨ,(1.2)

with the usual terminal condition

Ψ (p,T : a) = (p − q)+,(1.3)

whereS(·) is a nonlinear function defined in Sect. 3,r is the constant interest
rate, σ is the constant volatility, and, respectively,T and q are the maturity
and the strike price of the European call option. So formally,Ψ is equal to a
Black-Scholes price with variable volatility

σ(p, t) = σ
[
1 + S

(
er (T−t) a2 p2Ψpp(p, t : a)

)] 1
2 .

In contrast to (1.1), this volatility adjustment depends on the second derivative
of the price. Since as in the Black-Scholes theory, the optimal hedge is nearly
equal toΨp, we expect to transact more in regions with highΨpp and therefore,
this dependence of the volatility adjustment onΨpp is natural.

In the foregoing discussion the parametera is given by,

a =
µ√
ε

= µ
√
γ N ,

whereγ is the risk aversion factor,N is the number of options to be sold, and
µ is the proportional transaction cost (see Sect. 2.1). Therefore, the choice ofa
depends on how much risk we are willing to take. In our second main result,
Theorem 3.2, we quantify this statement. Letw(·) andP(·) be, respectively, the
wealth and stock price processes. We show that, fort < T andk > 0,

min IP (w(T) ≤ −k | w(t) = Ψ (p, t : a),P(t) = p )

≤ exp

(
− a2

µ2

[
k + O(

µ2

a2
)

] )
,

where O(r ) denotes any function of one variable satisfyingO(r ) → 0 , as
r ↓ 0, and the minimum is taken over all portfolios. (A precise statement and the
definition of the wealth process are given in Sect. 3;w(T) is the wealth after the
option liability is paid off).

In a recent paper [23], Whalley and Wilmott study the limit ofΨ ε,µ, asµ ↓ 0,
while keepingε fixed. Using formal, matched asymptotics, they obtain detailed
information about the dependence ofΨ ε,µ and the optimal hedging strategy on
the parameterµ. Their results are formal and are quite different from ours.

The paper is organized as follows. The model is described in the next section
and the main results are summarized in Sect. 3. A formal derivation of (1.2) and
a discussion of fixedµ is also given in that section. Section 4 is devoted to the
proof of the convergence result and we close the paper with a discussion of a
formal hedging policy and applications to other contingent claims.
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2 The model

We consider a financial market which consists of one money market and one
stock, the price of which evolves according to

dP(s) = P(s) [αds + σdW(s)] , s ∈ [t ,T],(2.1)

with initial data P(t) = p. Here W(·) is a standard one-dimensional Brownian
motion,α is the constant mean return rate andσ is the constant volatility. For
simplicity we set the interest rate,r , to zero and discuss the non-zero interest
rate case in Sect. 3.1 below.

Following Constantinides [8], we letX(·) andY(·), respectively, be the pro-
cesses of dollar holdings in the money market and the shares of stocks owned.
A trading strategyis a pair (L(·),M (·)) of adapted, left continuous, nondecreas-
ing processes withL(t) = M (t) = 0, which are interpreted as, respectively, the
cumulative transfers, measured in shares of the stock, from money market to
stock and vice versa. Given a proportional transaction costµ ∈ (0,1) and ini-
tial valuesx, y, the corresponding portfolioX(s) = X(s; t , x, y,L(·),M (·)) and
Y(s) = Y(s; t , x, y,L(·),M (·)) evolves according to

X(s) = x −
∫ s

t
P(τ ) (1 +µ)dL(τ )

+
∫ s

t
P(τ ) (1 − µ)dM (τ ) , s ∈ [t ,T],(2.2)

Y(s) = y + L(s) − M (s), s ∈ [t ,T].(2.3)

The utility maximization approach of Hodges and Neuberger to pricing a
European call option with maturityT and strike priceq is the following. LetU
be a utility function, i.e., a concave nondecreasing function on the real line. First
consider the optimization problem of maximizing the expected utility from final
wealth when there are no option liabilities. The resulting value function is given
by,

V f (x, y,p, t) := sup
L(·),M (·)

E{ U (X(T) + Y(T)P(T)) }.(2.4)

In the second problem, we suppose that we have soldN European call options.
Then our final wealth will be

X(T) + Y(T)P(T) − N (P(T) − q)+ ,

and the value function is given by,

V (x, y,p, t) := sup
L(·),M (·)

E{ U
(
X(T) + Y(T)P(T) − N (P(T) − q)+

) }.

(2.5)

Hodges and Neuberger postulate that the price of each option is equal to the
maximal solutionΛ of the algebraic equation (in fact, the unique solution in
most cases)
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V (x + NΛ, y,p, t) = V f (x, y,p, t).

Clearly Λ depends on the initial data (x, y,p, t), and also onN and the utility
function U (·).

In the foregoing formulation, we neglect the transaction cost of settling the
option in cash. However, this difference is not important as the resulting error is
proportional to the option price times the transaction costµ. A brief discussion
of this point is given in Sect. 5.2.

Optimal control problems of the above type have been studied extensively: we
refer the reader, in particular, to Davis-Norman [13], Davis-Panas-Zariphopoulou
[14], Fleming-Soner [16], Shreve-Soner [21], Zariphopoulou [24], [25].

2.1 Exponential utility and scaling

Following Hodges-Neuberger [17] and Davis-Panas-Zariphopoulou [14], we re-
strict our attention to exponential utility functions

Uγ(ξ) := 1 − e− γξ, ξ ∈ R1,

where the parameterγ > 0 is the risk-aversion factor. Then the option priceΛ
is a function of the initial data (x, y,p, t) andγ, N . By the linearity of the state
equations (2.2) and (2.3),

Λ(Nx,Ny,p, t ; γ,N ) = Λ(x, y,p, t ; γN ,1).

Hence sellingN options with risk-aversion factor ofγ yields the same price
as selling only one option with risk-aversion factor ofγ N . (We will show, in
Proposition 2.1 below, thatΛ is independent ofx ).

2.2 Asymptotic analysis

The foregoing scaling argument leads us to consider the asymptotic analysis as
γ N tends to infinity. So we set

ε =
1
γ N

,

U ε(ξ) = 1− e− ξ/ε .

Then the two optimization problems of Hodges and Neuberger take the form:

vε,f (x, y,p, t) = 1− inf
L(·),M (·)

E exp

(
−1
ε

[X(T) + Y(T)P(T)]

)

vε(x, y,p, t) = 1− inf
L(·),M (·)

E exp

(
−1
ε

[
X(T) + Y(T)P(T) − (P(T) − q)+

])
.

The superscriptf in vε,f indicates that the first optimization problem isfree from
the option liability. To simplify the analysis, we definezε andzε,f by,
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vε,f (x, y,p, t) = 1 − exp

(
−1
ε

[x + yp − zε,f (x, y,p, t)]

)
,

vε(x, y,p, t) = 1 − exp

(
−1
ε

[x + yp − zε(x, y,p, t)]

)
.

It is clear that

zε,f (x, y,p,T) = 0, zε(x, y,p,T) = (p − q)+ ,(2.6)

and the option priceΛ is given by,

Λ(x, y,p, t ;
1
ε
,1) = zε(x, y,p, t) − zε,f (x, y,p, t).

We gather several properties ofzε andzε,f into the following proposition.

Proposition 2.1. For any ε > 0, zε and zε,f are independent of x and they are
continuous viscosity solutions of

max{−zt − 1
2
σ2p2zpp − 1

2ε
σ2p2(zp − y)2 − αp(zp − y) ; |zy| − µp } = 0,

(2.7)

in R1 × (0,∞) × (0,T). Moreover,

− ε α2

2σ2
(T − t) ≤ zε,f (y,p, t) ≤ zε(y,p, t) ,

zε,f (y,p, t) ≤ µp|y|, zε(y,p, t) ≤ p + µp|y − 1|,
and

ϕ(p, t) − ε α2

2σ2
(T − t) ≤ zε(y,p, t) ,

whereϕ is the Black-Scholes price.

Proof. 1.Let vε andvε,f be the value functions defined above. Then, by the theory
of stochastic optimal control,vε and vε,f are the unique continuous viscosity
solutions of the dynamic programming equation

min{ −vt − 1
2
σ2p2vpp − αpvp ; −vy + p(1 +µ)vx ;

vy − p(1 − µ)vx } = 0 .(2.8)

See, for instance Fleming and Soner [16], for a proof of these facts. We now
derive (2.7), by using the definitions ofzε andzε,f and calculus. By uniqueness,
zε and zε,f defined fromvε and vε,f , are uniquely characterized as the unique
continuous viscosity solutions of (2.7).

Note that the coefficients of (2.7) and the terminal data (2.6) are independent
of the x variable. Hence there is a unique continuous viscosity solution of (2.7)
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and the terminal data (2.6) which is independent ofx, and therefore, by unique-
ness,zε andzε,f are independent ofx as well. A more intuitive proof of this fact
is given in [14].

2. Setz(y,p, t) := − ε α2

2σ2
(T − t). We directly calculate that

−zt − 1
2
σ2p2zpp − 1

2ε
σ2p2(zp − y)2 − αp(zp − y)

= − ε α2

2σ2
− 1

2ε
σ2p2y2 + αpy = −σ2

2ε

(
py − αε

σ2

)2
≤ 0.

This calculation shows that

V (x, y,p, t) := U ε(x + yp − z(y,p, t))

is a smooth supersolution of the dynamic programming equation (2.8) and, by a
classical verification theorem (see, for instance [16]),vε,f ≤ V . This inequality
yields zε ≥ z.

3. Suppose thaty = 1. ChooseL̂ ≡ M̂ ≡ 0. Then (̂X(s), Ŷ(s)) = (x,1) solves
(2.2), (2.3) and, therefore,

vε(x,1,p, t) = 1 − exp

(
−1
ε

[x + p − zε(1,p, t)]

)

= supE {U ε(X(T) + Y(T)P(T) − (P(T) − q)+)}

≥ E
{

U ε(X̂(T) + Ŷ(T)P(T) − (P(T) − q)+ )
}

= E {U ε(x + P(T) − (P(T) − q)+)} ≥ U ε(x) = 1− exp
(

−x
ε

)
.

Hencezε(1,p, t) ≤ p.
Now suppose thaty > 1. ChoosêL ≡ 0 andM̂ (s) = y−1 for all s > t so that

the solution of (2.2), (2.3) is given by, (X̂(s), Ŷ(s)) = (x + p(1−µ)(y − 1),1) for
all s > t . Then, a similar argument shows thatzε(y,p, t) ≤ p + pµ(y − 1). When
y < 1, we chooseM̂ ≡ 0 andL̂(s) = 1 − y and argue as before to complete the
proof of the upper bound forzε. The upper bound forzε,f is proved similarly,
after observing thatzε,f (0,p, t) ≤ 0.

4. Set

z(y,p, t) := ϕ(p, t) − ε α2

2σ2
(T − t).

We proceed as in Step 2 using the fact thatϕ satisfies the linear Black-Scholes
equation. This calculation shows that

V (x, y,p, t) := U ε(x + yp − z(y,p, t)) ≤ vε(x, y,p, t),

and therefore,zε ≥ z. ut
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We close this section by a technical lower bound onzε. This estimate will
be used in the proof of Lemma 4.2, and its proof is given in Appendix B.

Lemma 2.2. For anyµ ≤ 1/2 and0< η ≤ T , there exists a constant K(η) such
that

zε(y,p, t) ≥ µp|y| − K (η)Tε ,

for any 0 ≤ t ≤ T − η, p ∈ (0,∞) and y∈ R1.

3 The main theorem

In this section, we state the main convergence result. Its proof is given in Ap-
pendix B.

Theorem 3.1. Suppose thatµ = a
√
ε for some constant a> 0. Asε ↓ 0,

zε,f → 0, zε → Ψ,

whereΨ is the unique solution of the nonlinear Black-Scholes equation(1.2)with
the terminal data(1.3) which satisfies

lim
p→+∞

Ψ (p, s)
p

= 1 ,(3.1)

uniformly for s∈ [0,T].
The nonlinear volatility correction S(A) is the unique solution of

d
dA

[S(A)] =
S(A) + 1

2
√

AS(A) − A
, ∀ A 6= 0,(3.2)

with S(0) = 0.

In what follows, when the dependence ona is important, we will use the
notationΨ (p, s : a), in all other cases, we will employ the notationΨ (p, s).

In the Appendix, it is shown that the functionA 7→ A(1 + S(A)) is non-
decreasing inR1. This implies that the nonlinear Black-Scholes equation (1.2)
is a degenerate parabolic equation and the theory of viscosity solutions applies
to this nonlinear equation.

In Theorem 3.1, the convergence ofzε,f to zero is an immediate consequence
of Proposition 2.1. The behavior ofzε,f , as ε → 0 with a fixed µ, is also
interesting and partially studied in [22].

A straightforward analysis of the ordinary differential equation (3.2) implies
that

lim
A→∞

S(A)
A

= 1, lim
A→−∞

S(A) = −1.

Since none of the above properties will be used in our analysis, we omit their
proofs.

Remark.The nonlinear extension of the Leland’s equation obtained by Avellaneda
and Paras [1] has the same from as (1.2) with a nonlinear function



378 G. Barles, H.M. Soner

Ŝ(A) =

√
2
π

µ

σ
√
∆t

A
|A| ,

where, as in the Introduction,∆t is transaction frequency.
An immediate corollary of Theorem 3.1 is an upper bound for the probability

of missing the hedge by a given constantk.

Theorem 3.2. For given constants a, k > 0, and initial data X(t) = x, Y(t) = y,
P(t) = p,

inf
L(·),M (·)

IP
(
X(T) + Y(T)P(T) − (P(T) − q)+ ≤ −k

)

≤ exp

(
− a2

µ2

[
k + x + yp − Ψ (p, t : a) + O(

µ2

a2
)

] )
,(3.3)

where O(r ) denotes any function of one variable satisfying O(r ) → 0 , as r ↓ 0.

Proof. This is a simple consequence of Chebyshev’s inequality. Set

ε =
µ2

a2
, Z(T) = X(T) + Y(T)P(T) − (P(T) − q)+, F (ξ) = e−ξ/ε.

Then

inf
L(·),M (·)

IP (Z(T) ≤ −k) = inf
L(·),M (·)

E
(
11{Z(T)≤−k}

) ≤ inf
L(·),M (·)

E

(
F (Z)

F (−k)

)

= (1 − vε(x, y,p, t)) e−k/ε = exp(−1
ε

[k + x + yp − zε(y,p, t)])

= exp

(
− a2

µ2

[
k + x + yp − Ψ (p, t : a) + O(

µ2

a2
)

] )
.

In the last step, we used the asymptotic behavior ofzε as described in Theo-
rem 3.1. ut

Note that, if there exists an optimal policy (L∗(·),M ∗(·)), then the above
theorem can be applied to this policy to obtain an estimate without the infimum
in (3.3).

3.1 Non-zero interest rate

In this case, the state equation (2.2) has the form:

d
ds

X(s) = rX (s) − P(s) (1 +µ)dL(s) + P(s) (1 − µ)dM (s) , s ∈ [t ,T].

Set
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X̃(s) := er (T−s)X(s), Ỹ(s) := Y(s), P̃(s) := er (T−s)P(s),

so that the triplet (̃X(s), Ỹ(s), P̃(s)) solves the equations (2.1), (2.2), (2.3) with
mean return rate ˜α = α− r and initial data

(X̃(t), Ỹ(t), P̃(t)) = (x̃, ỹ, p̃) := (er (T−t)x, y,er (T−t)p).

Define

ṽε,f (x̃, ỹ, p̃, t) := 1 − inf
L(·),M (·)

E exp

(
−1
ε

[
X̃(T) + Ỹ(T)P̃(T)

])
,

ṽε(x̃, ỹ, p̃, t) := 1− inf
L(·),M (·)

E exp

(
−1
ε

[
X̃(T) + Ỹ(T)P̃(T) − N (P̃(T) − q)+

])
.

Since (̃X(T), Ỹ(T), P̃(T)) = (X(T),Y(T),P(T)), it is clear that

vε(x, y,p, t) = ṽε(er (T−t)x, y,er (T−t)p, t),

vε,f (x, y,p, t) = ṽε,f (er (T−t)x, y,er (T−t)p, t).

We define ˜zε and z̃ε,f as in Sect. 2, so that, by Theorem 3.1,

Ψ̃ (p̃, t : a) := lim
ε↓0

(
z̃ε(ỹ, p̃, t) − z̃ε,f (ỹ, p̃, t)

)
solves the nonlinear Black-Scholes equation (1.2) withr = 0.

Recall that the option priceΛε(y,p, t) is defined to be the unique solution of
the algebraic equation:

vε(x +Λε, y,p, y) = vε,f (x, y,p, t).

Hence,

Λε(y,p, t) = e−r (T−t)
[
z̃ε(y,er (T−t)p, t) − z̃ε,f (y,er (T−t)p, t)

]
and

Ψ (p, t : a) := lim
ε↓0

Λε(y,p, t)

= e−r (T−t) lim
ε↓0

[
z̃ε(y,er (T−t)p, t) − z̃ε,f (y,er (T−t)p, t)

]

= e−r (T−t)Ψ̃ (er (T−t)p, t : a).

Since Ψ̃ solves (1.2) withr = 0, it is straightforward to show thatΨ satisfies
(1.2) with the non-zero interest rater .
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3.2 Formal derivation of (1.2)

In this subsection, we give a formal derivation of the nonlinear Black-Scholes
equation (1.2). A rigorous proof of convergence will be given in the Appendix.

We start our formal derivation by assuming thatzε has the form

zε(y,p, t) ≈ Ψ (p, t) + εC(r ε,A),(3.4)

whereΨ andC are two functions to be determined, and

r ε = r ε(y,p, t) := ap
Ψp(p, t) − y√

ε

A = Aε(p, t) := a2p2Ψpp(p, t).

We will use (2.7) to derive the equations satisfied byΨ and C . So we start
by obtaining approximate expressions for the derivatives ofzε, by differentiating
(3.4). In the following computations, we assume thatr ε is order one and keep
only the terms that are order one. But, since the coefficient of thezε

p term in (2.7)
is ε−1, we keep the terms of order

√
ε in the expansion ofzε

p . After recalling that
µ = a

√
ε, the resulting expressions are:

zε
t ≈ Ψt zε

y ≈ µpCr

zε
p ≈ Ψp + εr ε

pCr = Ψp + ε

(
r ε

p
+

apΨpp√
ε

)
Cr ≈ Ψp +

√
ε

(
A
ap

)
Cr

zε
pp ≈ Ψpp + ε(r ε

p)2Crr ≈ Ψpp +

(
A
ap

)2

Crr .

Then, the gradient constraint,|zε
y | ≤ µp, in (2.7) is equivalent to

|Cr | ≤ 1.

Set

I ε := −zε
t − 1

2
σ2p2zε

pp − 1
2ε
σ2p2(zε

p − y)2 − αp(zε
p − y)

so that

I ε ≈ −Ψt − 1
2
σ2p2

(
Ψpp +

A2

a2p2
Crr

)

− 1
2ε
σ2p2

(
Ψp − y +

√
ε

A
ap

Cr

)2

− αp(Ψp − y)

= −Ψt − 1
2
σ2p2Ψpp − σ2

2a2
A2Crr − σ2

2a2
(r ε + ACr )2 − α

√
ε

r ε

a

≈ −Ψt − 1
2
σ2p2Ψpp − σ2

2a2

[
A2Crr + (r ε + ACr )2

]
.
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Then, (2.7) is equivalent to

max

{
−Ψt − 1

2
σ2p2Ψpp − σ2

2a2

[
A2Crr + (r ε + ACr )2

]
; |Cr | − 1

}
= 0,

for all p, t and r ε. Since this equation holds for ally and therefore for allr , we
conclude that there is a functionH of A, so that

−Ψt (p, t) − 1
2
σ2p2Ψpp(p, t) = H (A(p, t)),

and

max

{
H (A) − σ2

2a2

[
A2Crr + (r + ACr )2] ; |Cr | − 1

}
= 0.

Set

S(A) :=
2a2

Aσ2
H (A),

and recall the definition ofA(p, t). This implies thatΨ is a solution of (1.2).
Without any additional conditions, the equation

max
{−A2Crr (r ; A) − (r + ACr (r ; A))2 + AS(A) ; |Cr (r ; A)| − 1

}
= 0,(3.5)

has more than one solution. For instance,S(A) = 0 with C(r ; A) = r or C(r ; A) =
−r are two solutions different than the solution constructed in the Appendix.
To characterize the latter as the unique solution, we observe that, in view of
Proposition 2.1 and Lemma 2.2,zε behaves likeµp|y| for sufficiently large|y|.
Therefore, in order to match this behavior,C(r ; A) should satisfy

lim
|r |→∞

C(r ; A)
|r | = 1 .(3.6)

In Appendix A, we show that, for anyA /= 0, there exists a unique pair
(C(r ; A),S(A)) such thatC(r ; A) is a smooth solution of (3.5) which satisfies
(3.6) andC(0;A) = Cr (0,A) = 0, and we explicitly construct this solution. We
need to impose these last conditions to have a unique solution for the variational
inequality (3.5) (notice in particular thatC is defined only up to a constant).
Our choice is motivated by the fact that, atp = 0, zε, zε

y andΨ vanish. Finally,
the caseA = 0 is a degenerate case but it will not be used in the proof of
Theorem 3.1.

4 Concluding remarks

4.1 Optimal hedge

The theory of singular optimal control [16, Sect. VIII], provides us with a general
strategy of constructing optimal controls (also, see [21]). In this particular prob-
lem, the optimal state process (X∗(·),Y∗(·),P(·)) has to stay within the so-called
continuation region
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C (t) := { (x, y,p) ∈ R1 × R1 × [0,∞) : |zε
y (y,p, t)| < µp }.

Since

zε(y,p, t) ≈ Ψ (p, t : a) + εC(ap
Ψp(p, t) − y√

ε
; a2p2Ψpp(p, t)),

zε
y (y,p, t) ≈ −µpCr (· · ·) ,

by (A.4),

C (t) ≈ { (x, y,p) : |Cr (ap
Ψp(p, t : a) − y√

ε
; a2p2Ψpp(p, t : a))| < 1 }.

= { (x, y,p) : |Ψp(p, t : a) − y| <
√
ε

ap
g(a2p2Ψpp(p, t)) }.

In summary, the optimaly∗ is approximately equal toΨp(p, t : a) and the
optimal strategy is to keepY∗(s) in the interval

[Ψp(P(s), s : a) − Γ (P(s), s), Ψp(P(s), s : a) + Γ (P(s), s)],

for all s ∈ [t ,T]. Here

Γ (p, t) =

√
ε

ap
g(a2p2Ψpp(p, t)),

whereg is as in (A.4)

4.2 Higher order correction

In view of the formal argument given in Section 3.3, partially justified by the
perturbed test function argument introduced in the proof of Theorem 3.1, we
expect that

zε(y,p, t) ≈ Ψ (p, t : a) + εC(ap
Ψp(p, t) − y√

ε
; a2p2Ψpp(p, t)).

Sinceµ = a
√
ε andC(r ; A) ≈ |r | for large |r |, we simplify the above approxi-

mation as follows:

zε(y,p, t) ≈ Ψ (p, t : a) + µp|Ψp(p, t) − y| .(4.1)

Although in practiceµ is small, this additional correction term might be signifi-
cant, as indicated in the following example:

Example.Consider a European call option of one year maturity with strike price
q = $40 and market parameters

σ = 0.2, µ = 0.01, r = 0.
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Then, for mostt > 0, Ψp(40, t) is greater than a half and, atp = 40, y = 0, the
correction term is at least $0.2 while the Black-Scholes price att = 1 is

ϕ(40,1) = $3.17,

and
Ψ (40,1 : 0.02) = $3.86, Ψ (40,1 : 0.03) = $4.13.

We computedΨ by using a simple, explicit, finite difference scheme. Since the
diffusion coefficient is very large whenp is near the strike price andt is close to
the maturity, we used a very small time step near the maturity. For thea value,
we just simply used several integer multiples ofµ.

Since the optimal hedgey∗ is approximately equal toΨp, the correction
µp|Ψp − y| is simply equal to the initial cost of moving our stock holdings from
the initial valuey to its optimal valuey∗ = Ψp.

4.3 Other contingent claims

In this paper, we have developed a pricing technique which depends on asymp-
totic analysis and utility maximization. This methodology equally applies to other
call or put options. One specific example is the cash-settled European call option.
In that example, our final wealth is given by,

w(T) := X(T) + Y(T)P(T) − µ|Y(T)P(T)| − (P(T) − q)+ .

Let vε,f andzε,f be as in Sect. 2 and define

v̂ε(x, y,p, t) := sup
L(·),M (·)

E U ε (w(T))

:= 1 − exp

(
−1
ε

[x + yp − ẑε(x, y,p, t)]

)
.

Set Λ̂ε be the corresponding option price. Then,

Λ̂ε = ẑε − zε,f ≥ zε − zε,f = Λε

and a minor modification of our proof shows that, asε ↓ 0, Λ̂ε converges toΨ
as well.

4.4 Numerical experiments

In this subsection, we summarize the results of few numerical experiments we
have done with the nonlinear Black-Scholes equation (1.2). For comparison, we
have also computed the call prices with the Leland correction. As in Leland’s
paper [20], we used

σ = 0.2, r = 10%, T = 1 year,
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Table 1. Leland correction with weekly transactions

µ = 0.0 µ = 0.0025 µ = 0.01 µ = 0.04

Strike Call Price Call Price Call Price Call Price

80 27.97 28.00 28.10 28.58

90 19.93 20.01 20.22 21.12

100 13.27 13.35 13.64 14.92

110 8.09 8.22 8.62 10.10

120 4.67 4.78 5.14 6.58

Adjusted volatility σ̂ 0.2 0.2034 0.2134 0.2492

Table 2. Leland correction with monthly transactions

µ = 0.0 µ = 0.0025 µ = 0.01 µ = 0.04

Strike Call Price Call Price Call Price Call Price

80 27.97 28.05 28.25 29.42

90 19.93 20.12 20.53 22.42

100 13.27 13.49 14.09 16.60

110 8.09 8.43 9.16 11.98

120 4.67 4.95 5.66 8.48

Adjusted volatility σ̂ 0.2 0.2070 0.2265 0.2918

in all our computations. We have computed the call price when the current price
is $ 100 and varied the strike from $80 to $ 120.

Table 1 summarizes the call prices with Leland correction when the transac-
tion frequency is once a week. Results with monthly transactions are tabulated
in Table 2. Call prices computed by the nonlinear equation (1.2) are summarized
in Table 3. The only additional parameter needed for (1.2) is thea value. In
particular, the transaction cost valueµ does not appear explicitly in these com-
putations. However, the value ofµ is clearly very important for the the upper
bound of the “missed-hedge” probability (3.3). To indicate this dependence, in
the last two rows of Table 3, we tabulate the quantity
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Table 3. Nonlinear Black-Scholes

a = 0.0 a = 0.005 a = 0.01 a = 0.015 a = 0.02

Strike Call Price Call Price Call Price Call Price Call Price

80 27.96 28.17 28.33 28.48 28.64

90 19.92 20.44 20.79 21.11 21.40

100 13.23 14.03 14.56 15.02 15.44

110 8.08 9.13 9.76 10.30 10.79

120 4.62 5.64 6.28 6.82 7.31

β1, µ = 0.0025 0.0 0.0018 10−7 2.4 × 10−16 1.6 × 10−28

β1, µ = 0.01 0.0 0.78 0.37 0.11 0.018

βk := exp

(
− a2

µ2
k

)
,

with k = 1. These numbers are the asymptotics upper bounds for the “missed-
hedge” probability

IP
[
X(T) + Y(T)P(T) − (P(T) − q)+ ≤ −k |w(t) = Ψ (p, t : a)

]
,

wherew(t) = X(t) + Y(t)P(t) is the initial wealth.
Numerical methods we use to compute the call prices with linear volatility

and the nonlinear volatility are slightly different. This accounts for the small
discrepancy observed for the call values withµ = 0.0 in Tables 1 and 2, and
the call values in Table 3 with a=0.0. In both computations, we have used an
explicit finite difference scheme. However, since the nonlinear volatility is very
large near the maturity and the strike price, we used a smaller time step near the
maturity and then increased the time step for larger time values. For the lateral
boundary conditions, we used a Dirichlet data atS = 250 : we impose the Call
Price at $ 250 and at timet to be (250− Strike)× e−r (T−t).

Appendix A

In this section, we solve the variational inequality

max
{ −A2Crr (r ) − (r + ACr )2 + AS(A) ; |Cr | − 1

}
= 0,∀ r ∈ R1,(A.1)

with the conditions

lim
|r |→∞

C(r ; A)
|r | = 1 and C(0;A) = Cr (0;A) = 0 ,(A.2)
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whereA is a given parameter and the unknowns are the scalar functionC(·; A)
and the constantS(A).

Note that the parameterr in this section, is not the interest rate but rather an
independent variable.

We first construct a solution. FixA ∈ R1, A /= 0 and set

W(r ) := Cr (r ; A)

so thatW solves

max
{ −A2Wr (r ) − (r + AW)2 + AS(A) ; |W| − 1

}
= 0, ∀ r ∈ R1.

We expectW to be an nondecreasing, odd function. Therefore, we look for
constantsS(A) > 0, g > 0 and a continuously differentiable function

W : [0,∞) → [0,∞)

satisfying

A2Wr (r ) + (r + AW(r ))2 = AS(A), r ∈ (0, g),(A.3)

W(r ) = 1, r ∈ [g,∞),

W(r ) ≤ 1, A2Wr (r ) + (r + AW(r ))2 ≥ AS(A), r ∈ (0,∞),

with boundary dataW(0) = 0. The smoothness ofW implies thatWr (g) = 0 and,
by (A.3), √

AS(A) = g + A.

We analyze three cases separately.

Case I: A> 0. Set
λ = (AS(A) + A)

1
2 ,

so that (A.3) yields

W(r ) =
1
A

[
λ tanh

(
λr
A

)
− r

]
, r ∈ [0, g].

Then, we solve forS(A) by using the identityW(g) = 1. This yields the following
algebraic equation forS(A) > 0:

0 = F (S(A),A) := tanh−1

(√
S(A)

1 + S(A)

)
−
√

1 + S(A)
(√

S(A) −
√

A
)
.

By differentiating the identityF (S(A),A) = 0 with respect toA, we derive the
following differential equation forS(A) :

S′(A) = − FA(S(A),A)
FS(S(A),A)

=
1 + S(A)

2
√

S(A)A − A
.
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Case II: A< 0. Set
λ = (−AS(A) − A)

1
2 .

Then, by (A.3),

W(r ) =
1
A

[
λ tanh

(
− λr

A

)
− r

]
, r ∈ [0, g].

and the identityW(g) = 1 yields the following algebraic equation forS(A) < 0:

0 = F (S(A),A) := tanh−1

(√
−S

1 + S

)
−

√
1 + S

(√−S +
√−A

)
.

In this case, the differential equation forS(A) is:

S′(A) = − FA(S(A),A)
FS(S(A),A)

=
1 + S(A)

2
√

S(A)A − A
.

Case III: A = 0. This is a degenerate case. A lengthy omputation shows that
S(A) → 0 whenA → 0 and we setS(0) = g(0) = 0, W ≡ 1.

For anyA, set

C(r ; A) :=
∫ |r |

0
W(ξ) dξ , r ∈ R1.

Then,C solves (A.1), even in the caseA = 0. We also note that, by the construc-
tion of C ,

|Cr (r ; A)| < 1 ⇔ |r | < g(A),(A.4)

rCr (r ; A) ≥ 0,(A.5)

for any r andA and that, for everya > 0,

inf
r ,|A|≤a

{ C(r ; A) − |r | } ≥ − ∞.(A.6)

Finally, for A /= 0, we compute

d
dA

[A(1 + S(A))] = (1 + S(A))
2
√

AS(A)

2
√

AS(A) − A
;

but an easy analysis shows that

1 + S(A) ≥ 0 and 2
√

AS(A) − A ≥ 0 for anyA /= 0,

and therefore
d

dA
[A(1 + S(A))] ≥ 0 if A /= 0.

This implies thatA(1+S(A)) is a nondecreasing function ofA since it is continuous
at A = 0.

We conclude this Appendix by showing the uniqueness of the pair
(C(r ; A),S(A)). To this end, we consider two solutions (C(r ; A),S(A)) and
(C ′(r ; A),S′(A)) of (A.1)-(A.2). Forµ < 1, close to 1, we introduce the function
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r 7→ µC(r ; A) − C ′(r ; A) .

Because of (A.2), this function achieves its maximum onR1 at some point ¯r .
SinceC andC ′ are smooth,

µCr (r̄ ; A) = C ′
r (r̄ ; A) and µCrr (r̄ ; A) ≤ C ′

rr (r̄ ; A) .

But, since |Cr (r̄ ; A)| ≤ 1 and µ < 1, this implies that|C ′
r (r̄ ; A)| < 1 and,

therefore,
−A2C ′

rr (r̄ ; A) − (r̄ + AC′
r (r̄ ; A))2 + AS′(A) = 0 .

Multiply the equation byµ and then subtract it from the preceding equality. The
result is:

(r̄ + AC′
r (r̄ ; A))2 − µ(r̄ + ACr (r̄ ; A))2 + µAS(A) − AS′(A) ≤ 0 .

An algebraic computation, usingµ < 1, |Cr (r̄ ; A)| < 1, yields

µAS(A) − AS′(A) ≤ (µ− 1)r̄ 2 + µ(1 − µ)A2[Cr (r̄ ; A)]2

≤ µ(1 − µ)A2 .

Letting µ to 1, we first obtain thatS(A) = S′(A) and then the fact thatC(r ; A) =
C ′(r ; A) follows from an ODE argument.

Appendix B

In this section, we give a proof of our convergence result. The chief tool of
our analysis is the theory of viscosity solutions of Crandall and Lions [11]. In
particular, we will use the weak viscosity limits of Barles and Perthame [3] and
the perturbed test function method of Evans [15]. For information on the theory
of viscosity solutions, we refer the reader to the “User’s Guide” of Crandall et
al. [10], and to Fleming and Soner [16] for its applications to optimal stochastic
control.

Following Barles and Perthame [2], for (y,p, t) ∈ R1 × [0,∞) × [0,T], we
define

z∗(y,p, t) := lim sup
ρ↓0

lim sup
ε↓0

Z+(y,p, t ; ε, ρ),

where

Z+(y,p, t ; ε, ρ) := sup{ zε(ŷ, p̂, t̂) : |y − ŷ| + |p − p̂| + |t − t̂ | ≤ ρ },
and

z∗(y,p, t) := lim inf
ρ↓0

lim inf
ε↓0

Z−(y,p, t ; ε, ρ),

where

Z−(y,p, t ; ε, ρ) := inf{ zε(ŷ, p̂, t̂) : ŷ ∈ R1, |p − p̂| + |t − t̂ | ≤ ρ }.
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In view of Proposition 2.1,z∗ andz∗ are well-defined, and, by its definition,
z∗ is independent ofy. Moreover, since|zε

y | ≤ µp,

zε(y1,p1, t1) − zε(y2,p1, t1) ≤ µp1|y1 − y2| ,
for any y1, y2 ∈ R1, p1 ∈ [0,∞] and t1 ∈ [0,T] and, therefore,z∗ is also
independent ofy.

By Proposition 2.1 and the definitions ofz∗ andz∗,

z∗(0, t) = z∗(0, t) = 0 ∀t ∈ [0,T],(B.1)

and
ϕ(p, t) ≤ z∗(p, t) ≤ z∗(p, t) ≤ p,(B.2)

for any p ∈ [0,∞) and t ∈ [0,T]. Therefore, since the property (3.1) is satisfied
by the Black and Scholes priceϕ, it is also satisfied byz∗ andz∗.

Our method of proof, which is standard in the theory of viscosity solutions,
is this: we will first show thatz∗ and z∗ are, respectively, a subsolution and a
supersolution of (1.2)-(1.3). We will then use a comparison theorem to conclude
thatz∗ andz∗ are both equal to the unique continuous solutionΨ of the nonlinear
Black-Scholes equation (1.2)-(1.3) satisfying the growth condition (3.1). In the
theory of viscosity solutions, it is often the case that the proofs of the subsolution
and the supersolution properties are very similar to each other. Interestingly, this
is not the case here, partly because the definitions ofz∗, z∗ and the estimates on
zε are not symmetric.

We start our analysis by proving thatz∗ is a viscosity subsolution of (1.2)-
(1.3). Here we claim that the terminal condition (1.3) is achieved only in the
viscosity sense. For a discussion of generalized boundary conditions, see [16,
Sect. II.13]. The definition of this generalized viscosity property is also given in
the proof of the following lemma.

Lemma B.1. z∗ is a viscosity subsolution of(1.2)-(1.3)with r = 0.

Proof. Let w(p, t) be a smooth test function and assume that (p0, t0) ∈ (0,∞) ×
[0,T] is a strict local maximizer of the differencez∗ −w on [0,∞) × [0,T]. By
adding a small quadratic term, if necessary, we may assume that

wpp(p0, t0) /= 0.(B.3)

In order to verify thatz∗ is a viscosity subsolution, we need to prove the fol-
lowing: if t0 < T, then

− wt − 1
2
σ2 p2wpp

[
1 + S

(
a2 p2wpp

)] ≤ 0,(B.4)

at (p0, t0), and if t0 = T, then we have to show that either (B.4) holds at (p0, t0)
or z∗(p0, t0) ≤ (p0 − q)+.

1. Now suppose thatt0 = T. If z∗(p0,T) ≤ (p0 − q)+, then there is nothing to
prove. So we assume that eithert0 < T or, t0 = T andz∗(p0,T) > (p0 − q)+.
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2. Recall thatµ = a
√
ε . For ε and 0< δ � 1, set

A := Aδ(p, t) = a2 p2 (1 + δ)2 wpp(p, t),

and

r ε,δ(y,p, t) := (1 +δ)ap
(wp(p, t) − y)√

ε
,

wε,δ(y,p, t) := w(p, t) + εC(r ε,δ(p, t); Aδ(p0, t0) ),

whereC(·; A) is a smooth solution of

max
{ −A2Crr (r ) − (r + ACr )2 + AS(A) ; |Cr | − 1

}
= 0, ∀ r ∈ R1.

This solution is constructed in Appendix A.
To simplify the notation, setA0 := Aδ(p0, t0). Note that, sincep0 > 0 and

wpp(p0, t0) /= 0, A0 /= 0.

3. Fix δ. We claim that there is a sequenceεn ↓ 0 and local maximizers
(yn,pn, tn) ∈ R1 × (0,∞) × [0,T) of the function

(y,p, t) 7→ zεn (y,p, t) − wεn,δ(y,p, t) − |y − wp(p, t)|4

satisfying

(pn, tn) → (p0, t0), zεn (yn,pn, tn) → z∗(p0, t0) andyn → wp(p0, t0).(B.5)

Indeed, (wp(p0, t0),p0, t0) is a strict local maximizer of the function

(y,p, t) 7→ z∗(p, t) − w(p, t) − |y − wp(p0, t0)|4 ,

and

z∗(p, t) = lim sup
ρ↓0

lim sup
ε↓0

Z+(y,p, t ; ε, ρ)

for any y ∈ R1, p ∈ [0,∞) and t ∈ [0,T]. Moreover,wε,δ converges locally
uniformly to w in R1 × [0,∞) × [0,T]. Then, the existence of such sequences
εn and (yn,pn, tn) is proved in the Appendix of Barles and Perthame [2].

We claim thattn < T for all sufficiently largen. Indeed, ift0 < T, then this
claim follows from the convergence oftn to t0. So we may assume thatt0 = T
andz∗(p0,T) > (p0 − q)+. Suppose thattn = T. Then,

(p0 − q)+ < z∗(p0,T) = lim zεn (yn,pn,T) = lim(pn − q)+ = (p0 − q)+ .

Hence,tn < T for all sufficiently largen.

4. By calculus, at (yn,pn, tn),
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zεn
p = wεn,δ

p = wp +
√
εn

a(1 + δ)pn
A Cr (· · ·) + E1,

zεn
pp ≤ wεn,δ

pp = wpp +

(
A

a(1 + δ)pn

)2

Crr (· · ·) + E2

zεn
t = wεn,δ

t = wt + E3,

where (· · ·) = (r εn,δ(yn,pn, tn); A0),

E1 := εn
r εn,δ

pn
Cr (· · ·) + 4(wp − yn)3wpp

E2 := Crr (· · ·)[εn
(r εn,δ)2

p2
n

+ 2
√
εn a(1 + δ)r εn,δwpp]

+a(1 + δ)
√
εn Cr (· · ·)[2wpp + pnwppp]

+4(wp − yn)3wppp + 12(wp − yn)2(wpp)2

E3 := a(1 + δ)pn
√
εn wptCr (· · ·) + 4(wp − yn)3wpt.

By Proposition 2.1, at (yn,pn, tn),

0 ≥ −zεn
t − 1

2
σ2p2

nzεn
pp − 1

2εn
σ2p2

n(zεn
p − yn)2 − αpn(zεn

p − yn)

= −zεn
t − 1

2
σ2p2

nzεn
pp − 1

2εn
σ2
[
pn(zεn

p − yn) +
αεn

σ2

]2
+
α2εn

2σ2

≥ −wt − 1
2
σ2p2

n

[
wpp +

A2

a2(1 + δ)2p2
n

Crr (· · ·)
]

+ F1

−σ2 p2
n

2εn

[
wp − yn +

√
εn

a(1 + δ)pn
(ACr (· · ·) + F2)

]2

,

where

F1 := −1
2
σ2p2

nE2 − E3 +
α2εn

2σ2

F2 :=
a(1 + δ)√

εn
(pnE1 +

αεn

σ2
)

= a(1 + δ)
√
εn (r εn,δCr (· · ·) +

α

σ2
).

We rewrite this inequality as follows:
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0 ≥ −wt − σ2

2
p2

nwpp(B.6)

− σ2

2(1 +δ)2a2

[
A2Crr (· · ·) +

(
r εn,δ + ACr (· · ·) + F2

)2
]

+ F1.

5. Let o(1) be any sequence converging to 0 asn → ∞. By (B.5), r εn,δ =
o(1)/

√
εn, and consequently,E1 =

√
εno(1), E2 = o(1), E3 = o(1), and

lim
n→∞ |F1| + |F2| = 0.

A similar argument shows that,A − A0 = o(1).
Moreover, by Proposition 2.1,

µpn = a
√
εn pn ≥ |zεn

y | = |a√
εn pn(1 + δ)Cr (r εn,δ; A0) + 4(wp − yn)3|

In Appendix A, it is shown thatrCr (r ,A) ≥ 0 for any r ∈ R1 and A /=
0. Therefore,Cr (r εn,δ; A0) and 4(wp − yn)3 have the same sign and the above
inequality implies that

|Cr (r εn,δ; A0)| < 1.

Hence, by (A.4),
|r εn,δ| ≤ g(A0).

This inequality implies thatr εn,δ remains bounded, independently ofn andδ.

6. Since|Cr (r εn,δ; A0)| < 1, by (A.1),

A2
0Crr (r εn,δ; A0) +

(
r εn,δ + A0Cr (r εn,δ; A0)

)2
= A0S(A0).

Therefore, by the estimates of Step 5,

A2Crr (· · ·) +
(
r εn,δ + ACr (· · ·) + F2

)2 ≤ A0S(A0) + o(1).

Here we have strongly used the fact thatr εn,δ is bounded independently ofn and
δ.

We use this in (B.6). The result is:

−wt − σ2

2
p2

nwpp − σ2

2
p2

0wpp(p0, t0)S
(
a2(1 + δ)p2

0wpp(p0, t0)
)

≤ σ2

2(1 +δ)2a2
o(1) + F1.

We complete the proof of the lemma, after lettingn → ∞ and thenδ ↓ 0. ut
We continue by proving the supersolution property toz∗. As remarked earlier,

parts of the following proof is substantially different than the proof of Lemma
4.1.

Lemma B.2. z∗ is a viscosity supersolution of(1.2)-(1.3)with r = 0.
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Proof. Sincezε is larger than the Black-Scholes priceϕ minusεα2/2σ2,

z∗(p,T) ≥ ϕ(p,T) = (p − q)+

and, therefore,z∗ is a supersolution of (1.3).
To prove the viscosity property, we have to show the following: letw(p, t) be

a smooth test function and (p0, t0) ∈ (0,∞) × [0,T) be astrict global minimizer
of the differencez∗ − w on [0,∞) × [0,T], then we need to show that

− wt − 1
2
σ2 p2wpp

[
1 + S

(
a2 p2wpp

)] ≥ 0,(B.7)

at (p0, t0).

1. For ε and 0< δ � 1, set

A := Aδ(p, t) = a2 p2 (1 − δ)2 wpp(p, t),

A0 = Aδ(p0, t0),

and

r ε,δ(y,p, t) := (1 − δ)ap
(wp(p, t) − y)√

ε
.

As in the proof of Lemma 4.1, we may assume thatwpp(p0, t0) /= 0 and therefore
A0 /= 0.

Chief difference between this proof and the proof of Lemma 4.1 is this: in
Step 3 of that proof, we used the perturbation|y−w(p, t)|4 to construct a sequence
of approximate maximizers. For technical reasons that will become clear in Step
3 below, we can not employ such a perturbation technique in this proof. We
overcome this difficulty by using Lemma 2.2 and by appropriately truncatingC .
For this purpose, letC(r ; A) be as in Appendix A and letχ : R1 → R1 be a
smooth concave increasing function satisfying:

χ(t) = t if t ≤ R,
d
dt
χ(t) = 0 if t ≥ 2R,

whereR> C(g(A0); A0) is chosen so that̃C := χ(C) satisfies

−A2
0C̃rr − (r + A0C̃r (r ,A0))2 ≤ −A0S(A0) ,

for all r . The cut-off functionχ truncatesC only in the region where|Cr | = 1
while keeping the main properties ofC . The existence ofχ andR follows from
the explicit construction ofC given in Appendix A.

Define
wε,δ(y,p, t) := w(p, t) + εC̃(r ε,δ(y,p, t); A0 ).

2. Set 2η = min(T − t0,p0) so that 0< η ≤ T. Consider the functionzε − wε,δ

in
Qη := R1 × [p0 − η,p0 + η] × [t0 − η, t0 + η] .
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SinceC̃ is bounded, Lemma 2.2 implies that the differencezε −wε,δ has a local
minimizer inQη. Then, by the arguments of Barles and Perthame [2], there exists
a sequenceεn ↓ 0 and local minimizers (yn,pn, tn) ∈ Qη of zεn −wεn,δ satisfying
(pn, tn) → (p0, t0), zεn (yn,pn, tn) → z∗(p0, t0). Recall that, in the definition ofz∗,
there are no restrictions on they variable and, therefore, we only have weak
information on|yn|, asn tends to infinity. Indeed, a careful analysis reveals that√
εn|yn| or equivalentlyεnr εn,δ remain bounded uniformly inn. However, this

estimate will not be used in the subsequent analysis.

3. By calculus, at (yn,pn, tn),

|zεn
y | = a

√
εn pn(1 − δ)|C̃r (r εn,δ; A0)|.

Since|C̃r (r ; A0)| ≤ 1 for any r ∈ R1,

|zεn
y | ≤ a

√
εn pn(1 − δ) <

√
εn apn = µpn.

Hence, by Proposition 2.1,

0 ≤ −zεn
t − 1

2
σ2p2

nzεn
pp − 1

2εn
σ2p2

n(zεn
p − yn)2 − α(zεn

p − yn)

at (yn,pn, tn).

4. We proceed as in Step 4 of Lemma 4.1. The result is this:

−wt − σ2

2
p2

nwpp(B.8)

≥ σ2

2(1− δ)2a2

[
A2C̃rr (· · ·) +

(
r εn,δ + AC̃r (· · ·) + F2

)2
]

+ F1. ,

whereF1 andF2 are as in Step 4 of Lemma 4.1 with (1 +δ) replaced by (1− δ)
and without the terms related to (y − wp)4.

Sinceχ(t) is constant fort > 0 large, there exists̃R> 0 such that, if|r | ≥ R̃,
then

C̃r (r ,A0) = C̃rr (r ,A0) = 0.

By increasingR̃, if necessary, we may assume that

R̃2 ≥ A0S(A0) .(B.9)

Suppose that|r εn,δ| ≤ R̃ + 1 on a subsequence. We estimate the error terms
exactly as in the previous lemma and obtain (B.7), by using the properties ofC̃ .

Now suppose that|r εn,δ| > R̃+ 1. Then, by definition of̃R, C̃r = C̃rr = 0, and
the error termsF1 andF2 converge to zero. Hence, the right-hand side of (B.8)
is equal to

σ2

2(1− δ)2a2

(
r εn,δ + o(1)

)2
+ o(1) .

Since|r εn,δ| > R̃ + 1, |r εn,δ + o(1)| ≥ R̃ for all sufficiently largen and therefore,
by (B.9),
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(
r εn,δ + o(1)

)2 ≥ R̃2 ≥ A0S(A0) .

We complete the proof of Lemma 4.1 as in Step 6 of the previous proof.ut
The final step in the proof of Theorem 3.1 is to show thatz∗ ≤ z∗ on

[0,∞) × [0,T]. We need a comparison result to achieve this.

Proof of Theorem 3.1.We first rewrite the nonlinear Black-Scholes equation (1.2)
in the following way

Ψt + F (p2Ψpp) = 0 ,

in (0,∞) × (0,T) where

F (M ) =
1
2
σ2M

[
1 + S(a2M )

]
,

for M ∈ R1. Since S has a linear growth at infinity (see the properties of
S we provide after the statement of Theorem 3.1),F has a quadratic growth
at infinity. In particular,F is not a uniformly continuous function inR1 and
therefore we can not immediately use a standard comparison theorem from the
theory of viscosity solutions, even if the equation were set in a bounded domain.
But, the equation (1.2) is also set in an unbounded domain with unbounded
solutions and this is a second difficulty.

We first overcome this second difficulty by using the condition (3.1). For
η > 0, we set

zη(p, t) = z∗(p, t) − η(p + 1) ,

in [0,∞) × [0,T]. Then, zη is still a subsolution of (1.2)-(1.3) and, in view of
(3.1),

lim
p→∞ (zη(p, t) − z∗(p, t)) = −∞ ,

uniformly for t ∈ [0,T]. Moreover, by (B.1),zη(0, t) = z∗(0, t) − η for any
t ∈ [0,T]. Now, suppose that

max{ z∗(p, t) − z∗(p, t) : (p, t) ∈ [0,∞) × [0,T] } ≥ 0.

Then, there is a maximizer (p0, t0) ∈ (0,∞) × [0,T] of the differencezη − z∗.
Note thatp0 > 0.

To overcome the difficulty coming from the nonlinearityF , we introduce the
change of variablesp = ex , i.e., for x ∈ R1 and t ∈ [0,T], let

uη(x, t) := zη(ex , t), u∗(x, t) := z∗(ex , t),

so that,uη andu∗ are, respectively, a supersolution and a subsolution of

−ut − F (uxx − ux) = 0,

in R1 × (0,T). Moreover,x0 := ln p0 and t0 is a maximizer of the difference
uη −u∗. Now a standard a comparison theorem applies to the preceding equation
because the nonlinearity is now independent ofx (see Crandall et al. [10]) and
implies that
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uη(x0, t0) − u∗(x0, t0) ≤ 0.

Thereforezη ≤ z∗ and, by lettingη to zero, we arrive atz∗ ≤ z∗ on [0,∞)×[0,T].
Since, by construction,z∗ ≤ z∗, we conclude thatz∗ = z∗ and sincez∗ is an
upper-semicontinuous subsolution of (1.2)-(1.3) andz∗ is lower-semicontinuous
semicontinuous supersolution of (1.2)-(1.3), the functionΨ defined byΨ :=
z∗ = z∗ on [0,∞) × [0,T], is a continuous solution of (1.2)-(1.3). Moreover,
by classical arguments, the equalityz∗ = z∗ in [0,∞) × [0,T] implies the local
uniform convergence ofzε to Ψ . ut

We close this section by proving Lemma 2.2.

Proof of Lemma 2.2.Fix η > 0 and letg : R1 → R1 be a smooth, nonde-
creasing function satisfying:g(t) ≡ 0 if t ≤ 0 andg(t) ≡ 1 if t ≥ η. Set

ψ(y,p, t) = g(T − t)µp|y| − K ε(T − t) ,

whereK is a positive constant to be chosen later.
We compute:

−ψt − 1
2
σ2p2ψpp − 1

2ε
σ2p2(ψp − y)2 − αp(ψp − y)

= −εK + g′(T − t)µp|y| − 1
2ε
σ2p2(g(T − t)µ|y| − y)2

−αp(g(T − t)µ|y| − y)

≤ −εK + g′(T − t)µp|y| − 1
2ε
σ2p2(1 − µ)2|y|2 + αp|y|.

Since

g′(T − t)µp|y| ≤ ε

[
g′(T − t)µ
σ(1 − µ)

]2

+
1
4ε
σ2p2(1 − µ)2|y|2 ,

and

αp|y| ≤ ε
α2

σ2(1 − µ)2
+

1
4ε
σ2p2(1 − µ)2|y|2,

there exists a constantK , depending only onη, so that

−ψt − 1
2
σ2p2ψpp − 1

2ε
σ2p2(ψp − y)2 − αp(ψp − y) ≤ 0 .

Moreover,
|ψy(y,p, t)| ≤ µp for y /= 0 .

If necessary, by increasingK , we may assume thatK ≥ α2/2σ2 and, by Propo-
sition 2.1,

ψ(y,p, t) ≤ zε(y,p, t) if y = 0 or t = T.

We now follow the proof of Proposition 2.1 to prove thatψ ≤ zε in R1 ×
[0,∞) × [0,T]. Then, the stated lower bound follows from the properties of
g. ut
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