Finance Stochast. 2, 369-397 (1998)

Finance and
Stochastics

© Springer-Verlag 1998

Option pricing with transaction costs
and a nonlinear Black-Scholes equation

Guy Barlest, Halil Mete Soner?3*

1 Faculé des Sciences et Techniques, Univérsie Tours, Parc de Grandmont, F-37200 Tours,
France

2 Department of Mathematics, Carnegie Mellon University, Pittsburgh, PA 15213, USA

3 Department of Mathematics, Bogazici University, Istanbul 80815, Turkey

Abstract. In a market with transaction costs, generally, there is no nontrivial
portfolio that dominates a contingent claim. Therefore, in such a market, prefer-
ences have to be introduced in order to evaluate the prices of options. The main
goal of this article is to quantify this dependence on preferences in the specific
example of a European call option. This is achieved by using the utility function
approach of Hodges and Neuberger together with an asymptotic analysis of par-
tial differential equations. We are led to a nonlinear Black-Scholes equation with
an adjusted volatility which is a function of the second derivative of the price it-
self. In this model, our attitude towards risk is summarized in one free parameter
a which appears in the nonlinear Black-Scholes equation : we provide an upper
bound for the probability of missing the hedge in termsacind the magnitude

of the proportional transaction cost which shows the connections between this
parameter and the risk.
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1 Introduction

In a complete financial market without transaction costs, the celebrated Black-
Scholes no-arbitrage argument [5] provides not only a rational option pricing for-
mula but also a hedging portfolio that replicates the contingent claim. However,
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the Black-Scholes hedging portfolio requires continuous trading and therefore, in
a market with proportional transaction costs, it is prohibitively expensive. In fact,
in such a market, there is no portfolio that replicates the European call option
and we are forced to relax the hedging condition, requiring the portfolio only to
dominate rather than replicate the value of the option. With this relaxation there
is always the trivial dominating hedging portfolio of holding one share of the
stock on which the call is written. A straightforward arbitrage argument indicates
that any viable option price should not be larger than the smallest initial capital
that can support a dominating portfolio. Although this approach to option pricing
has provided interesting results in markets without transaction costs but with con-
straints (see CvitabiKaratzas [12], Karatzas-Kuo [18], Broadie-Cvit&8oner
[7]), in the presence of transaction costs, Soner-Shreve-C¥ifag] proved that
the minimal hedging portfolio that dominates a European call option is the trivial
one; thus showing the necessity of an alternate relaxation of perfect hedging in
markets with transaction costs.

Several such relaxations have already been proposed. Leland [20] considers
a model that allows transactions only at discrete times. By a fofateddging
argument, he derives an option price that is equal to a Black-Scholes price but
with an adjusted volatility

1

A _ 2 u :

c=0 (1 + \/; O‘\/Kt) ,
whereo is the original volatility, . is the proportional transaction cost and
is the transaction frequency. In this formula, betlrand At are assumed to be
small while keeping the ratig./\/At order one. For typical market numbers,
this is indeed the case. For instance : witlk 0.2, x = 0.01 and one transaction
a week, the Leland volatilityg,”is equal too times 113.

One crucial step in Leland’s very interesting argument is the implicit use of
the approximation

W(t + At) — W(t) ~ \/E VAL,

whereW(:) is the standard one-dimensional Brownian motion. Clearlyd@a$ O,
W(t + At) — W(t) converges to zero like/ At, but a convincing argument for
the following approximation

W(t + At) — W(t) =~ c* VAL,

with an arbitrary constart*, can also be made. Then the resulting option price
has the adjusted volatility

oV At

The “optimal” choice ofc* is an interesting question related to the risk inherent
in markets with transaction costs (see also Kusuoka [19]).

(1.1) &(C*):J<1+ c M >2.
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Leland’s derivation assumes the convexity of the resulting option price. Re-
cently, an extension of this approach to general prices is obtained by Avellaneda
and Paras [1].

In a second approach [6], Boyle and Vorst study the option pricing problem
in discrete time with a binomial tree model for the value of the stock. Using a
central limit theorem, they show that, as the time st&pand the transaction
costy tend to zero, the price of the discrete option converges to a Black-Scholes
price with adjusted volatilitys(1). However, one should note that, hef¢ is
equal to the mean time length for a change in the value of the stock, not the
transaction frequency. In a related paper [4], Bensaid-LesnesPagheinkman
investigate the discrete time, dominating policies.

A completely different approach to option pricing is to introduce preferences.
In [17], Hodges and Neuberger consider the difference between the maximum
utility from final wealth when there is no option liability and when there is such
a liability. Then, they postulate that the price of the option should be equal to
the unigue cash increment which offsets this difference. Remarkably, in the ab-
sence of market frictions, the option price obtained from utility maximization is
equal to the Black-Scholes price. Hence, the utility maximization approach pro-
vides an extension of the Black-Scholes option pricing theory. In the presence of
transaction costs, this theory is further developed by Davis-Panas-Zariphopoulou
[14].

Clearly the price defined this way depends on the particular utility function,
on the initial wealth and the portfolio of the investor, and on the mean return
rate of the stock. Constantinides and Zariphopoulou [9] modified the original
definition and obtained universal bounds independent of the utility function.

In this paper, we will use the utility maximization definition and asymptotic
analysis to derive an option pricing formula. We will also provide an upper
estimate on the probability of missing the hedge by a given amount. This latter
result, might be used to choose the utility function necessary in the approach of
Hodges and Neuberger.

In our analysis, we use the exponential utility function

U@ =1-ep),  ceat

with a parametee > 0, where Ye is equal to the product of the risk-aversion
factor and the number of options to be sold (a brief discussion of this is given
in Sect. 2.1 below). We let be the proportional transaction coptpe the stock
price at timet, andw<#(p,t) be the option price with utility functiotJ ¢ and,
then, study the behavior @< as

elO, w0, —= =&,

where a is any constant. In Theorem 3.1, we show that the limiting price
¥(p,t : a) solves a nonlinear Black-Scholes equation
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1
(1.2) Ty +1pY, + éaz P2y [1+S (€T Va2p? Py, )] =19,
with the usual terminal condition

(1.3) ¥(p,T:a)=(p—a),

where S(+) is a nonlinear function defined in Sect.13,is the constant interest
rate, o is the constant volatility, and, respectively, and q are the maturity
and the strike price of the European call option. So formallyis equal to a
Black-Scholes price with variable volatility

Nl

op,t) =0 [1+S (€T Va?p?Yy(p,t :a))]?.

In contrast to (1.1), this volatility adjustment depends on the second derivative
of the price. Since as in the Black-Scholes theory, the optimal hedge is nearly
equal to¥,, we expect to transact more in regions with higly and therefore,
this dependence of the volatility adjustment By, is natural.

In the foregoing discussion the paramegeis given by,

a=-=u /AN,

Ve
where~ is the risk aversion factof\ is the number of options to be sold, and
u is the proportional transaction cost (see Sect. 2.1). Therefore, the choéce of
depends on how much risk we are willing to take. In our second main result,
Theorem 3.2, we quantify this statement. Lgt) andP(-) be, respectively, the
wealth and stock price processes. We show thatt forT andk > 0,

minP (w(T) < —k | w(t)=%(p,t:a),P(t)=p)
a2 12
ol % oot}

where O(r) denotes any function of one variable satisfyigfr) — 0 , as

r | 0, and the minimum is taken over all portfolios. (A precise statement and the
definition of the wealth process are given in Secw8T) is the wealth after the
option liability is paid off).

In a recent paper [23], Whalley and Wilmott study the limitigf*, asy | O,
while keepinge fixed. Using formal, matched asymptotics, they obtain detailed
information about the dependence bf* and the optimal hedging strategy on
the parametey. Their results are formal and are quite different from ours.

The paper is organized as follows. The model is described in the next section
and the main results are summarized in Sect. 3. A formal derivation of (1.2) and
a discussion of fixeqs is also given in that section. Section 4 is devoted to the
proof of the convergence result and we close the paper with a discussion of a
formal hedging policy and applications to other contingent claims.

IN
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2 The model

We consider a financial market which consists of one money market and one
stock, the price of which evolves according to

(2.1) dP(s) = P(s) [ads + ocdW(s)], se[t,T],

with initial dataP(t) = p. Here W(:) is a standard one-dimensional Brownian
motion, « is the constant mean return rate ands the constant volatility. For
simplicity we set the interest rate, to zero and discuss the non-zero interest
rate case in Sect. 3.1 below.

Following Constantinides [8], we le(-) andY (-), respectively, be the pro-
cesses of dollar holdings in the money market and the shares of stocks owned.
A trading strategyis a pair ((-), M (:)) of adapted, left continuous, nondecreas-
ing processes witl.(t) = M (t) = 0, which are interpreted as, respectively, the
cumulative transfers, measured in shares of the stock, from money market to
stock and vice versa. Given a proportional transaction post (0, 1) and ini-
tial valuesx, y, the corresponding portfoliX(s) = X(s;t,x,y,L(-),M(:)) and
Y(s)=Y(s;t,x,y,L(-),M(-)) evolves according to

X(s) = x / P(r) (L +p)dL(r)
(2.2) + /t P()(1— wdM(r), s € [t T,
(2.3) Y(s) = y+L(s) — M(s), set,T].

The utility maximization approach of Hodges and Neuberger to pricing a
European call option with maturity and strike pricey is the following. LetU
be a utility function, i.e., a concave nondecreasing function on the real line. First
consider the optimization problem of maximizing the expected utility from final
wealth when there are no option liabilities. The resulting value function is given
by,
(2.4) Vix,y,p,t):= sup E{U (X(T)+Y(T)P(T)) }.

L()M()

In the second problem, we suppose that we have Noluropean call options.
Then our final wealth will be

X(T)+Y(T)P(T) = N(P(T) — )",
and the value function is given by,
V(x,y,p,t) = L(?llﬂ/le-) E{U (X(T)+Y(T)P(T) = N(P(T)—q)*) }.
(2.5)

Hodges and Neuberger postulate that the price of each option is equal to the
maximal solutionA of the algebraic equation (in fact, the unigue solution in
most cases)
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V(x+NAy,p,t) =V (x,y,p,t).

Clearly A depends on the initial datx.(y,p,t), and also orN and the utility
function U (-).

In the foregoing formulation, we neglect the transaction cost of settling the
option in cash. However, this difference is not important as the resulting error is
proportional to the option price times the transaction gosA brief discussion
of this point is given in Sect.5.2.

Optimal control problems of the above type have been studied extensively: we
refer the reader, in particular, to Davis-Norman [13], Davis-Panas-Zariphopoulou
[14], Fleming-Soner [16], Shreve-Soner [21], Zariphopoulou [24], [25].

2.1 Exponential utility and scaling

Following Hodges-Neuberger [17] and Davis-Panas-Zariphopoulou [14], we re-
strict our attention to exponential utility functions

U,()=1-e %, ce.z

where the parametey > O is the risk-aversion factor. Then the option pride
is a function of the initial datax(y, p,t) and~, N. By the linearity of the state
equations (2.2) and (2.3),

A(Nx, Ny, p,t;7,N) = A(X,y,p,t;yN, 1).

Hence sellingN options with risk-aversion factor of yields the same price
as selling only one option with risk-aversion factor pN. (We will show, in
Proposition 2.1 below, that is independent ok ).

2.2 Asymptotic analysis

The foregoing scaling argument leads us to consider the asymptotic analysis as
~ N tends to infinity. So we set

- L
€ - ~ N y
Ue)=1—e &/<.
Then the two optimization problems of Hodges and Neuberger take the form:
. 1
v'(x,y,p,t)=1— inf E exp(— [X(T) +Y(T)P(T)])
L(HM() €

1
€

ve(X,y,p,t)=1— inf E exp( [X(T)+Y(T)P(T)—(P(T)—q)*}) )

L()M()

The superscript in v©f indicates that the first optimization problemfise from
the option liability. To simplify the analysis, we defizé andz<' by,
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v (x,y,p,t) = 1— exp(—l[x+yp—zs’f(x,y,p,t)]) :
€

1
US(X,y, pvt) 1- eXp(—e[X+yp—Z€(X7y, pvt)]> .

It is clear that

(26) 267f (Xa Y, P, T) = 07 ZE(vav P, T) = (p - Q)+ 9

and the option pricel is given by,

1
A(X7 yv p7 tv Ev 1) = ZE(X7 ya p7 t) - ZE?f (X7 ya p7 t)
We gather several properties of andz¢" into the following proposition.

Proposition 2.1. For any e > 0, z¢ and ' are independent of x and they are
continuous viscosity solutions of

1 1
max{—z — Eazpzzpp - Zozpz(zp —y)? —ap(z—Y); |z —pup } =0,
2.7)

in .22 x (0,00) x (0, T). Moreover,
2
€
N 20'2 (T - t) S Z€7f (y7 pvt) S Ze(yv pvt) )

M (y,p,t) < pplyl,  z°(y,p.t) < p+puply — 1],

and
€ X

2
(p(p7t) - ﬁ (T - t) S ZE(yv pvt) )
g

wherep is the Black-Scholes price.

Proof. 1.Let v¢ andv' be the value functions defined above. Then, by the theory
of stochastic optimal controly¢ and v are the unique continuous viscosity
solutions of the dynamic programming equation

. 1
min{ —v; — éazpzvpp —apup ; —vy +p(L+ v ;
(2.8) vy~ PA— p)x } = 0.

See, for instance Fleming and Soner [16], for a proof of these facts. We now
derive (2.7), by using the definitions f andzf and calculus. By uniqueness,
z¢ and z¢" defined fromv¢ and v<f, are uniquely characterized as the unique
continuous viscosity solutions of (2.7).

Note that the coefficients of (2.7) and the terminal data (2.6) are independent
of the x variable. Hence there is a unique continuous viscosity solution of (2.7)
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and the terminal data (2.6) which is independenk o&nd therefore, by unique-
nessz¢ andz®f are independent of as well. A more intuitive proof of this fact

is given in [14].
2
2. Setz(y,p,t) :=— % (T —t). We directly calculate that

1 1
—4 — éO’szpr - Zgzpz(zp - Y)z - O[p(zp - y)

ea? 1 , 5,5 o? e\ 2
= —_— = — = - - < 0.
307~ 50 PV rapy= -5 (py-3) <0

This calculation shows that

V(x,y,p,t) ==U (X +yp—z(y,p,t))

is a smooth supersolution of the dynamic programming equation (2.8) and, by a
classical verification theorem (see, for instance [16]), < V. This inequality
yields z¢ > z.

3. Suppose thay = 1. Choosel = M = 0. Then K(s),Y(s)) = (x, 1) solves
(2.2), (2.3) and, therefore,

v(X,1,p,t)

1- exp(—i[x +p— ZE(LDJ)])

supE {U“(X(T) +Y(T)P(T) — (P(T) — a)")}

Y

E {UX(T)+Y(T)P(T) — (P(T) — )" )}

E {U(x+P(T)— (P(T)—q)")} > U (x)=1— exp(—f).

Hencez<(1,p,t) < p.

Now suppose that > 1. Choosd. = 0 andM (s) =y —1 for all s > t so that
the solution of (2.2), (2.3) is given byX(s), Y (s)) = (x + p(1 — x)(y — 1), 1) for
all s > t. Then, a similar argument shows tf&y, p,t) < p+pu(y —1). When
y < 1, we chooséM = 0 andi(s) = 1—y and argue as before to complete the
proof of the upper bound faz¢. The upper bound foe¢' is proved similarly,
after observing thazf(0,p,t) < 0.
4. Set

€ Oéz
Z(ya pat) = @(pat) - ? (T - t)

We proceed as in Step 2 using the fact thasatisfies the linear Black-Scholes
equation. This calculation shows that

V(X,y,p,t) =U(x+yp—z(y,p,t)) < v(X,y,p,1),

and thereforez® > z. a
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We close this section by a technical lower boundz6nThis estimate will
be used in the proof of Lemma 4.2, and its proof is given in Appendix B.

Lemma 2.2. Foranyu < 1/2and0 < n < T, there exists a constant(K) such
that

z°(y, p,t) = pply| — K(n)Te,,
forany0<t <T —n, p e (0,00) andy e .72

3 The main theorem

In this section, we state the main convergence result. Its proof is given in Ap-
pendix B.

Theorem 3.1. Suppose that = a/e for some constant & 0. Ase | 0,
¢t 50, o,

where? is the unique solution of the nonlinear Black-Scholes equgtia?) with
the terminal data1.3) which satisfies

(3.1) im 29 _

p—+oo p

1,

uniformly for s [0, T].
The nonlinear volatility correction @) is the unique solution of

32) o sw= 2O

avasm -A A0

with S(0) = 0,

In what follows, when the dependence anis important, we will use the
notation¥(p, s : a), in all other cases, we will employ the notatig{p, s).

In the Appendix, it is shown that the functiolh — A(1 + S(A)) is non-
decreasing inZ2!. This implies that the nonlinear Black-Scholes equation (1.2)
is a degenerate parabolic equation and the theory of viscosity solutions applies
to this nonlinear equation.

In Theorem 3.1, the convergencezsf to zero is an immediate consequence
of Proposition 2.1. The behavior &', ase — 0 with a fixed p, is also
interesting and partially studied in [22].

A straightforward analysis of the ordinary differential equation (3.2) implies

that S(A)
im — =1
AI—>moo A
Since none of the above properties will be used in our analysis, we omit their
proofs.

, lim S(A) = —1.
A——o0

RemarkThe nonlinear extension of the Leland’s equation obtained by Avellaneda
and Paras [1] has the same from as (1.2) with a nonlinear function
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~ 2 [T
S(A) =4/ — —
® T oVAt A
where, as in the Introductiont is transaction frequency.

An immediate corollary of Theorem 3.1 is an upper bound for the probability
of missing the hedge by a given constant

Theorem 3.2. For given constants & > 0, and initial data Xt) = x, Y(t) =,
P(t) =p,

NP (XM +Y(DP(T) ~ (P(T) — )" < —k)

a2 2
33) <o~ % fkexryp-vptay ol ).
L a

where (r) denotes any function of one variable satisfyinfY0— 0, asr | 0.

Proof. This is a simple consequence of Chebyshev’s inequality. Set

2
= ZM=XM+YMPT) - PT) —a), FO=e "
Then

inf  P(Z(T) < —k)= inf
,PEM <K= inf

. F(2)
E(Liyme 1) < inf E[——2L
LOM( o B Qeme) < inf (F(—k)>

1
= (1 - v (x,y,p,t) e/ = exp(—g[k +X+yp—2z(y,p,t)])

a2 112
=exp( E [k+x+yp@(p,t : a)+O(a2)} > .

In the last step, we used the asymptotic behavioe‘ofis described in Theo-
rem 3.1. O

Note that, if there exists an optimal policy*(-), M *(-)), then the above
theorem can be applied to this policy to obtain an estimate without the infimum
in (3.3).

3.1 Non-zero interest rate
In this case, the state equation (2.2) has the form:
%X(S) =rX(s) = P(s) (1 +p)dL(s) + P(s) (1 — p)dM(s),  se[t,T].

Set
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X(s) =€eT9X(s),  Y(s):=Y(s), P(s):=€T9P(s),

so that the tripletX(s), Y (s), P(s)) solves the equations (2.1), (2.2), (2.3) with
mean return rater = o« — r and initial data

X(t), Y(),P@t) = &, ¥,p) = (€T x,y, e T Vp).

Define

7M(%,¥,p,t) :=1— inf Eexp(

1 - Y
s [X(T)+Y(T)P(T)]),

€

(%, ¥,p,t) :=1— inf E exp(

1 v D s +
LOMO) [X(T)+Y(T)P(T) = N(P(T) — q) ]> .

€

Since &(T), Y(T), B(T)) = (X(T), Y(T), P(T)), it is clear that

v, y,p,t) = 5T %y, e T p,1),

v (x,y,p,t) = 7T (T %,y e (TVp, 1).
We definez® and 7% as in Sect. 2, so that, by Theorem 3.1,

T(p,t:a):= lim (20,8, 1) — 2°7(9,B,1))
solves the nonlinear Black-Scholes equation (1.2) withO.

Recall that the option pricd<(y, p,t) is defined to be the unique solution of
the algebraic equation:

V(X + A Y,P,Y) =07 (XY, P, ).
Hence,
Ay, p,t) =e "9 250y, &' T p,t) — 2 (y, &' TV, 1)]
and
U(p,t:a) = Ieiirg AS(Y, p,t)

— efr(Tft) ||?C1) [ze(y, er(Tft)p, t) o ze,f (y’ er(Tft)p’ t)]
€

= e "T-0gEp.t: a).

Since¥ solves (1.2) withr = 0, it is straightforward to show that satisfies
(1.2) with the non-zero interest rate
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3.2 Formal derivation of (1.2)

In this subsection, we give a formal derivation of the nonlinear Black-Scholes
equation (1.2). A rigorous proof of convergence will be given in the Appendix.
We start our formal derivation by assuming tlzathas the form

(3.4) z°(y, p,t) = ¥(p,t) +eC(re, A),
where¥ andC are two functions to be determined, and

(P, 1) —
re(y,p,t) = app(pfz Y

r€

A

A“(p, t) := a?p?Tpp(p, 1).

We will use (2.7) to derive the equations satisfiedébbyandC. So we start
by obtaining approximate expressions for the derivativexs pby differentiating
(3.4). In the following computations, we assume thafs order one and keep
only the terms that are order one. But, since the coefficient aftiierm in (2.7)
is e~1, we keep the terms of ordgfe in the expansion ofs. After recalling that
1 = a./e, the resulting expressions are:

zf = W% z; ~ upG
. e~ _ re apy A
zs ~ wp+erpcr—zlfp+e<p+ \/Ep")cr ~ Ll'/p+ﬁ<ap)cr
A 2
Zoy ~ Upp+e(rs)’Cr & Upp+ <ap) Cr .

Then, the gradient constraings| < up, in (2.7) is equivalent to

<1
Set 1 1

1= =7 = S0’z — 50"z — )" — ap(z; —Y)
so that

I €

Q

1 A?
— — éazpz (pr + azpofr>

1 A _\?
—5.0°p? <% —y+ ﬁapcr) — ap(@ —Y)

= - Lo, - T e, - T e AGY a
——t—éap PP 502 rr—@(r"' C) —CV\/EE

0_2

122

|A2Cy +(r +AGY .
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Then, (2.7) is equivalent to

1 o?
max{—wt - éazpzsppp = A’Cy +(r€ +Ac,)2} ;|G| — 1} =0,

for all p,t andre¢. Since this equation holds for all and therefore for alt, we
conclude that there is a functid# of A, so that

(.1~ 30D Tip(P, 1) = H (AP, ).

and ,
maX{H (A — ;le [Azcrr +(r +ACr)2] VG| — 1} =0.
Set ,
2a
S(A) = MH A,

and recall the definition oA(p,t). This implies that? is a solution of (1.2).
Without any additional conditions, the equation

(3.5) max{—A’Cy (r; A) — (r +AC(r; A))* + AS(A) ;

Ci(r;A|—1} =0,

has more than one solution. For instan8é4) = 0 with C(r; A) =r or C(r; A) =

—r are two solutions different than the solution constructed in the Appendix.
To characterize the latter as the unique solution, we observe that, in view of
Proposition 2.1 and Lemma 2.25 behaves likeup|y| for sufficiently largely|.
Therefore, in order to match this behavi@(r; A) should satisfy

C:A _,

Irl—oo 1|

(3.6)

In Appendix A, we show that, for anA # 0, there exists a unique pair
(C(r;A), S(A)) such thatC(r;A) is a smooth solution of (3.5) which satisfies
(3.6) andC(0;A) = C.(0,A) = 0, and we explicitly construct this solution. We
need to impose these last conditions to have a unique solution for the variational
inequality (3.5) (notice in particular thaZ is defined only up to a constant).
Our choice is motivated by the fact that, @t 0, z¢, z; and¥ vanish. Finally,
the caseA = 0 is a degenerate case but it will not be used in the proof of
Theorem 3.1.

4 Concluding remarks
4.1 Optimal hedge

The theory of singular optimal control [16, Sect. VIII], provides us with a general
strategy of constructing optimal controls (also, see [21]). In this particular prob-
lem, the optimal state process*(-), Y *(:), P(-)) has to stay within the so-called
continuation region
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) ={(xy.p) €2 x. 2 x[0,00) : [z(y,p,t) <pp}.

Since
20,9, ~ (ot )+ Clap 2 L a2 p,0),
Z;(yv pat) ~ _/J/pcf ( : ) )
by (A.4),
Y, : —
www{mmm:C@pmfgoym%%wxam<u-
={awm:%mtm—w<ﬁﬂw&%mm}

In summary, the optimay* is approximately equal t@,(p,t : a) and the
optimal strategy is to keejg*(s) in the interval

[Yp(P(s),s: @) — I'(P(s), 8), %p(P(s),s : @) + I'(P(s), 9)],
for all s € [t, T]. Here

Hn0=j;m¥&%4nm,

whereg is as in (A.4)

4.2 Higher order correction

In view of the formal argument given in Section 3.3, partially justified by the
perturbed test function argument introduced in the proof of Theorem 3.1, we
expect that

@y(p,t) —
'“;2Wa%%@mn»

Sincep = ay/e andC(r;A) = |r| for large|r|, we simplify the above approxi-
mation as follows:

z°(y,p,t) = ¥(p,t : @) +C(ap

(4.1) z°(y,p,t) = ¥(p,t : @) + pup|P(p,t) — y| .

Although in practiceu is small, this additional correction term might be signifi-
cant, as indicated in the following example:

Example.Consider a European call option of one year maturity with strike price
g = $40 and market parameters

0=02 =001, r=0.
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Then, for most > 0, ¥,(40,t) is greater than a half and, pt= 40,y = 0, the
correction term is at least $0while the Black-Scholes price at= 1 is

©(40,1) = $317,

and
¥(40,1 : 0.02) = $386, ¥(40,1:0.03) = $413

We computed? by using a simple, explicit, finite difference scheme. Since the
diffusion coefficient is very large whemis near the strike price artdis close to
the maturity, we used a very small time step near the maturity. Foa thedue,
we just simply used several integer multiples;of

Since the optimal hedgg* is approximately equal t@,, the correction
up|¥, —y| is simply equal to the initial cost of moving our stock holdings from
the initial valuey to its optimal valuey* = .

4.3 Other contingent claims

In this paper, we have developed a pricing technique which depends on asymp-
totic analysis and utility maximization. This methodology equally applies to other
call or put options. One specific example is the cash-settled European call option.
In that example, our final wealth is given by,

w(T) = X(T) +Y(T)P(T) — p|Y(T)P(T)| — (P(T) —q)" .
Let v&" andz® be as in Sect. 2 and define

o(x,y,p,t) = sup E U (w(T))
LOME)

1 5€
1- exp(—e[x +yp — 2‘(x,y,p,t)]) :

SetA° be the corresponding option price. Then,
AAe = 3¢ _Ze,f > 7€ Ze,f = A€

and a minor modification of our proof shows that,eas 0, A€ converges tar
as well.

4.4 Numerical experiments

In this subsection, we summarize the results of few numerical experiments we
have done with the nonlinear Black-Scholes equation (1.2). For comparison, we
have also computed the call prices with the Leland correction. As in Leland’s
paper [20], we used

o =02, r =10% T =1year
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Table 1. Leland correction with weekly transactions

u=0.0 u = 0.0025 ©=0.01 u=0.04
Strike Call Price Call Price Call Price | Call Price
80 27.97 28.00 28.10 28.58
90 19.93 20.01 20.22 21.12
100 13.27 13.35 13.64 14.92
110 8.09 8.22 8.62 10.10
120 4.67 4.78 5.14 6.58
Adjusted volatility & 0.2 0.2034 0.2134 0.2492

Table 2. Leland correction with monthly transactions

p=0.0 p=00025 | p=001 p=0.04
Strike Call Price Call Price Call Price | Call Price
80 27.97 28.05 28.25 29.42
90 19.93 20.12 20.53 22.42
100 13.27 13.49 14.09 16.60
110 8.09 8.43 9.16 11.98
120 4.67 4.95 5.66 8.48
Adjusted volatility & 0.2 0.2070 0.2265 0.2918

in all our computations. We have computed the call price when the current price
is $ 100 and varied the strike from $80 to $ 120.

Table 1 summarizes the call prices with Leland correction when the transac-
tion frequency is once a week. Results with monthly transactions are tabulated
in Table 2. Call prices computed by the nonlinear equation (1.2) are summarized
in Table 3. The only additional parameter needed for (1.2) isathalue. In
particular, the transaction cost valpedoes not appear explicitly in these com-
putations. However, the value @f is clearly very important for the the upper

bound of the “missed-hedge” probability (3.3). To indicate this dependence, in
the last two rows of Table 3, we tabulate the quantity
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Table 3. Nonlinear Black-Scholes

a=0.0 a = 0.005 a=0.01 a=0.015 a=0.02

Strike Call Price | Call Price Call Price Call Price Call Price
80 27.96 28.17 28.33 28.48 28.64
90 19.92 20.44 20.79 21.11 21.40
100 13.23 14.03 14.56 15.02 15.44
110 8.08 9.13 9.76 10.30 10.79
120 4.62 5.64 6.28 6.82 7.31

B1, 1 = 0.0025 0.0 0.0018 107 24x10716 |16 x 1028
B1, p=0.01 0.0 0.78 0.37 0.11 0.018

a2
=~ 1)
"

with k = 1. These numbers are the asymptotics upper bounds for the “missed-
hedge” probability

P [X(T)+Y(T)P(T) — (P(T) — )" < —k|w(t) = Z(p,t:a)],

wherew(t) = X(t) + Y(t)P(t) is the initial wealth.

Numerical methods we use to compute the call prices with linear volatility
and the nonlinear volatility are slightly different. This accounts for the small
discrepancy observed for the call values with= 0.0 in Tables 1 and 2, and
the call values in Table 3 with a=0.0. In both computations, we have used an
explicit finite difference scheme. However, since the nonlinear volatility is very
large near the maturity and the strike price, we used a smaller time step near the
maturity and then increased the time step for larger time values. For the lateral
boundary conditions, we used a Dirichlet dateSat 250 : we impose the Call
Price at $ 250 and at timieto be (250— Strike)x e~"(T-Y,

Appendix A

In this section, we solve the variational inequality
(Al)max { —A’Cq (r) — (r +AC)*+AS(A) ; |G| -1} =0,Vr €.22%,

with the conditions

(A2) im CA

[Fl—oo 1|

=1 and C(0;A)=C;(0;A) =0,
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whereA is a given parameter and the unknowns are the scalar funCtigr)
and the constars(A).

Note that the parameterin this section, is not the interest rate but rather an
independent variable.

We first construct a solution. Fi& € .22, A# 0 and set

W(r) =Ci(r;A)
so thatW solves
max { —APW,(r) — (r +AW)>+AS(A) ; W| -1} =0, Vre. 2.

We expectW to be an nondecreasing, odd function. Therefore, we look for
constantsS(A) > 0, ¢ > 0 and a continuously differentiable function

W : [0, 00) — [0, o0)

satisfying
(A.3) AZW, (r) + (r + AW(r))? = AS(A), r €(0,9),
W(r) =1, r €lg,o0),
W(r) <1, A2W, (r) + (r + AW(r))? > AS(A), r € (0, ),

with boundary dat&V(0) = 0. The smoothness & implies thatW; (¢) = 0 and,

VASA) =g+ A
We analyze three cases separately.

Case I: A> 0. Set .
A= (ASA) +A)z,

so that (A.3) yields
1 Ar
W(r) = A [Atanh(A> —r } , r €[0,q].

Then, we solve fo5(A) by using the identityV (g) = 1. This yields the following
algebraic equation fo8(A) > 0:

_ S S(A)
0 =F(S(A), A) := tanh 1( ) )—\/1+S(A) (\/S(A) —\/K).

By differentiating the identityF (S(A), A) = 0 with respect toA, we derive the
following differential equation foiS(A) :

FAG(A),A) _  1+S(A)

SO FsmA T 2/swA - A
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Case ll: A< 0. Set .
A=(—ASA) — A)z.

Then, by (A.3),

W(r) =% [Atanh(— )X) —r } , r €[0,q].

and the identityW(g) = 1 yields the following algebraic equation f&A) < 0:

0 =F(S(A),A) := tanh ! <,/1_+SS >—\/ﬁ( -S +M).

In this case, the differential equation f8(A) is:
_ Fa(S(A).,A) _  1+S(A)
Fs(S(A),A) 2/SAA — A

Case lll: A= 0. This is a degenerate case. A lengthy omputation shows that
S(A) — 0 whenA — 0 and we sef(0) =¢(0) =0,W = 1.
For anyA, set

S(A) =

Ir
C(r;A) ::/o W(¢) d¢ | re. %t

Then,C solves (A.1), even in the cage= 0. We also note that, by the construc-
tion of C,

(A.4) C(rA<1 = Ir| < g(A),
(A.5) rCi(r;A) >0,
for anyr andA and that, for everya > 0,

. i (A) — > — o0.
(A6) nf {CEA -} > o

Finally, for A # 0, we compute

2\/AS(A)

. . .
aa AL+ ST = (1 +SA) 5 rars =2

but an easy analysis shows that
1+S(A)>0 and 2/AS(A)—A>0 foranyA#0,

and therefore d

— > i .

dA[A(1 +SA)] >0 ifA%£0
This implies thatA(1+S(A)) is a nondecreasing function Afsince it is continuous
atA=0.

We conclude this Appendix by showing the uniqueness of the pair

(C(r;A),S(A). To this end, we consider two solution€(f;A),S(A)) and
(C'(r; A),S'(A) of (A.1)-(A.2). Foru < 1, close to 1, we introduce the function
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r— puC(r;A) —C'(r; A) .

Because of (A.2), this function achieves its maximum.##t at some point .~
SinceC andC’ are smooth,

HC(F:A) = C/(TA) and uCq(FiA) < Cr(F:A).

But, since|C,(r;A)| < 1 andp < 1, this implies that/C/(r;A)| < 1 and,
therefore,

—A2C (I A) — (T +AC/(F A)? +AS'(A) = 0.
Multiply the equation by and then subtract it from the preceding equality. The
result is:

(F+ AC/(F A))? — il + AG (F; A)? + uAS(A) — AS'(A) < 0.
An algebraic computation, using < 1, |C;(r; A)| < 1, yields

HAS(A) = AS'(A) < (1 — 1)F% + (1 — w)AC (P A

<
< pl— AP,

Letting 1« to 1, we first obtain thaS(A) = S'(A) and then the fact thaE (r; A) =
C/(r; A) follows from an ODE argument.

Appendix B

In this section, we give a proof of our convergence result. The chief tool of
our analysis is the theory of viscosity solutions of Crandall and Lions [11]. In
particular, we will use the weak viscosity limits of Barles and Perthame [3] and
the perturbed test function method of Evans [15]. For information on the theory
of viscosity solutions, we refer the reader to the “User's Guide” of Crandall et
al. [10], and to Fleming and Soner [16] for its applications to optimal stochastic
control.
Following Barles and Perthame [2], foy,(p,t) € .22% x [0, 00) x [0, T], we
define
z*(y,p,t) :=limsup limsup Z*(y, p,t; ¢, p),
pd0 €l0
where

Z+(y,p7t;€7p) = Sup[ Ze(yaﬁvf) : |y_9‘+|p_ﬁ|+|t_f|§p}a

and
z.(y,p,t) = liminf liminf Z ,P,t; €, p),
(y ) 10 €10 (y € )

where

Z7(y,p.tie, p) = inf{ z°(9,p,0) : ye. 2 p-p|+[t—F<p}
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In view of Proposition 2.1z, andz* are well-defined, and, by its definition,
z. is independent of. Moreover, sincez;| < up,

Ze(y]n P1, tl) - Ze(YZ: p17tl) S ,U/pl|yl - y2| )

for any yi,y» € .2, p1 € [0,00] and t; € [0,T] and, thereforez* is also
independent of.
By Proposition 2.1 and the definitions »f andz,,

(B.1) z*(0,t) =z.(0,t) =0 vt € [0, T],
and
(B.2) o(p,t) < z(p,t) < z°(p,t) <p,

for anyp € [0, 00) andt € [0, T]. Therefore, since the property (3.1) is satisfied
by the Black and Scholes prigg it is also satisfied by* andz,.

Our method of proof, which is standard in the theory of viscosity solutions,
is this: we will first show thatz* andz, are, respectively, a subsolution and a
supersolution of (1.2)-(1.3). We will then use a comparison theorem to conclude
thatz* andz, are both equal to the unique continuous solutioaf the nonlinear
Black-Scholes equation (1.2)-(1.3) satisfying the growth condition (3.1). In the
theory of viscosity solutions, it is often the case that the proofs of the subsolution
and the supersolution properties are very similar to each other. Interestingly, this
is not the case here, partly because the definitiors o, and the estimates on
Z¢ are not symmetric.

We start our analysis by proving that is a viscosity subsolution of (1.2)-
(1.3). Here we claim that the terminal condition (1.3) is achieved only in the
viscosity sense. For a discussion of generalized boundary conditions, see [16,
Sect. I1.13]. The definition of this generalized viscosity property is also given in
the proof of the following lemma.

Lemma B.1. z* is a viscosity subsolution ¢f.2)-(1.3)with r = 0.

Proof. Let w(p,t) be a smooth test function and assume tipgttg) € (0, c0) x
[0, T] is a strict local maximizer of the difference* —w on [0, c0) x [0, T]. By
adding a small quadratic term, if necessary, we may assume that

(B.3) wpp(Po, to) 7 O.

In order to verify thatz* is a viscosity subsolution, we need to prove the fol-
lowing: if to < T, then

1
at (po, to), and ifto = T, then we have to show that either (B.4) holds @, {p)
or z*(po, to) < (Po — a)".

1. Now suppose thaty = T. If z*(po, T) < (po — q)*, then there is nothing to
prove. So we assume that eitltgr< T or, to =T andz*(po, T) > (po — q)*.
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2. Recall thaty =a/e . Fore and 0< § < 1, set

A=A (p,t) = a? p? (1 +6)? wpp(p; t),

and
€,0 — (wp(p, t) B y)
re°ty,p,t) == (1+d)ap —
w(y,p,t) = w(p,t) +eC(r°(p,t); A°(po, to) ),

whereC(-; A) is a smooth solution of
max { —A%Cr(r) — (r +AC )2 +AS(A) ; |G| —11}=0, Vre.z2.

This solution is constructed in Appendix A.
To simplify the notation, sef\y := A’(po, to). Note that, sincgyp > 0 and
wpp(Po, to) # 0, Ao 7 0.

3. Fix §. We claim that there is a sequeneg | 0 and local maximizers
(Yn, Pn, th) € .22 x (0, 00) x [0, T) of the function
(v, P, 1) = 27(y, p, 1) — w™’(y, p,t) — |y — wp(p, t)|*
satisfying
(B-5) (Pn,tn) = (Po,to), 2 (¥n, Pnta) — 2" (Po, to) andyn — wp(po, to)-

Indeed, {up(Po, to), Po, to) is a strict local maximizer of the function

(v, p,t) = z*(p,t) — w(p,t) — |y — wp(po, to)|*,

and
z*(p,t) =limsup limsup Z*(y, p, t; ¢, p)
pd0 el0

for anyy € .22, p € [0,00) andt € [0, T]. Moreover,w*? converges locally
uniformly to w in .22 x [0, 00) x [0, T]. Then, the existence of such sequences
en and f/n, pn, tn) is proved in the Appendix of Barles and Perthame [2].

We claim thatt, < T for all sufficiently largen. Indeed, ifty < T, then this
claim follows from the convergence &f to top. So we may assume thgt=T
andz*(po, T) > (po — q)*. Suppose that, = T. Then,

(Po — )" < 2*(po, T) = liM z* (¥, pn, T) = lim(pn — @) = (Po — Q)" .
Hence,t, < T for all sufficiently largen.

4. By calculus, atYp, pn, tn),
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W =wp+ =V AG(-)+Ey,

BT a(l+o)pn

A 2
ZSB S ;?3,5 = wpp + (a(l +5)pn> Crr ( ' ) + E2

z& = w™ =w +Es,

where () = (r*(yn, P, ta); Ao),

ren,é
€n Tcr () +4wp — Yn)swpp

=]

n
(r en,6)2

n

Ex = Cu(--)en—— +2\/en a(1 +5)I'6”’ Wppl
+a(1 +6)y/en Cr (- - )[2wpp + Pnwpppl

+4(wp — Yn) wppp + 12@wp — Yn)*(wpp)?

Es = a(l+0)pnven wptCr (- --) + 4(wp — Yn)swpt~

By Proposition 2.1, aty, pn, th),

l
0> —z"—>0° r%ZgB - pﬁ(ZS” —Yn)® — apn(Zy" — Yn)
_ e o227 n aen]? | aen
= 4" = 50 Padp — TU {pn(zp —Yn)+ ?} 252

Yoo A
= t 20' pn pp a2(1 +5)2p%

2 12 2
b [wp—yn NERTEEVYS )+F2)} ,

\

Crr ( : ):| +Fp

2¢n a(l+9)pn
where
1 2
Fi= —50 *piEz — 202
a(l+9) Qen
F, = E; +
2 ﬁ ( pPnE1 )

= a(l+0) Ve (™ICi(- )+ ).

We rewrite this inequality as follows:
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52
(B.6) 0> —w — ?pﬁwpp

o2

s eayar KCr )+ (170 +AG L) 4R +Fy

5. Let o(1) be any sequence converging to 0ras— oo. By (B.5), rnd =
0(1)/+/€n, and consequenthyg; = ,/€,0(1), E> = o(1), Es = 0o(1), and

lim |Fy|+]|F2| =0.
n—oo

A similar argument shows thaf, — Ay = o(1).
Moreover, by Proposition 2.1,

[1Pn =ay/€n Pn > |Z;n| = |a\/ en Pn(1+9)C; (rema;AO) +4(wp - yn)3|

In Appendix A, it is shown thatC,(r,A) > 0 for anyr € .22! and A #
0. Therefore,C; (r<+%; Ag) and 4, — Yn)® have the same sign and the above
inequality implies that

|G (rm%; Ag)| < 1.

Hence, by (A.4),
|ren,6

< 9(Ao).
This inequality implies that“° remains bounded, independentlyrofinds.
6. Since|C, (r%; Ag)| < 1, by (A.1),

AZCir (1% Ag) + (10 + AgCe (rm?; Ag)) = AgS(Ad).

Therefore, by the estimates of Step 5,

A2Cy () + (1 + AG () + F2)” < AoS(Ao) +0(1).

Here we have strongly used the fact that® is bounded independently afand
J.
We use this in (B.6). The result is:

—wy — ?pgwpp - 7p§wpp(povto)3 (a®(1 +5)pGwpp(Po, to))
o
~ 2(1+6)%a?

We complete the proof of the lemma, after letting— oo and thens | 0. O

0(1) +F;.

We continue by proving the supersolution propertg.toAs remarked earlier,
parts of the following proof is substantially different than the proof of Lemma
4.1.

Lemma B.2. z, is a viscosity supersolution ¢1.2)-(1.3)with r = 0.
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Proof. Sincez¢ is larger than the Black-Scholes prigeminus ea?/202,

z.(p,T) > ¢(P,T)=(p—q)°

and, thereforez, is a supersolution of (1.3).

To prove the viscosity property, we have to show the followinguléd, t) be
a smooth test function ang, to) € (0, c0) x [0, T) be astrict global minimizer
of the differencez* — w on [0, c0) x [0, T], then we need to show that

(B.7) - Wt — %‘72 pzwpp [1 +S (az pzwpp)] >0,

at (po, to).
1. Fore and 0< § <« 1, set

A=A (p,t) = a% p? (1 — 6)? wpp(p, 1),

Ao = A (po, to),

and
(wp(p, 1) —Y)

Ve oo
As in the proof of Lemma 4.1, we may assume tlgs(po, to) # 0 and therefore
Ao 7 0.

Chief difference between this proof and the proof of Lemma 4.1 is this: in

Step 3 of that proof, we used the perturbatiprw(p, t)|* to construct a sequence
of approximate maximizers. For technical reasons that will become clear in Step
3 below, we can not employ such a perturbation technique in this proof. We
overcome this difficulty by using Lemma 2.2 and by appropriately truncating
For this purpose, 1e€(r; A) be as in Appendix A and ley : .22 — .22 be a
smooth concave increasing function satisfying:

reo(y,p,t) := (1 - &)ap

x®)=t ift<R, %X(t):o if t > 2R,
whereR > C(g(Ao); Ao) is chosen so that := x(C) satisfies

—AC — (r +AC (1, Ag))? < —AoS(AY) ,

for all r. The cut-off functiony truncatesC only in the region wheréC;| = 1
while keeping the main properties 6f. The existence of andR follows from
the explicit construction o€ given in Appendix A.

Define

wd(y, p,t) == w(p,t) +eCr(y, p,t); Ao ).

2. Set 2y = min(T — t, po) SO that 0< n < T. Consider the functioz® — w*°
in

Q, =2 x [po—n,po+1] X [to—n,to+1] .
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SinceC€ is bounded, Lemma 2.2 implies that the differemée- v’ has a local
minimizer inQ,,. Then, by the arguments of Barles and Perthame [2], there exists
a sequence, | 0 and local minimizersyq, pn, tn) € Q, of z* — w9 satisfying

(Pn, th) — (Po,to), 2 (Yn, Pn, th) — Z.(Po, to). Recall that, in the definition df,,

there are no restrictions on thevariable and, therefore, we only have weak

Venlyn| or equivalentlye,r<® remain bounded uniformly im. However, this
estimate will not be used in the subsequent analysis.

3. By calculus, atYn, pn,th),
17| = ay/en Pa(L— 8)ICr(r 7 Ag)|.
Since|C, (r; Ao)| < 1 for anyr € .21,
1Zg"| < ay/en Pa(1—0) < \/en @pn = ppn.
Hence, by Proposition 2.1,

2,2 €n

1
0< —z" — o PAZsp — —ozpﬁ(zg“ —Yn)? — a(Z5" — Yn)

at (yna pna tn)
4. We proceed as in Step 4 of Lemma 4.1. The result is this:

B.8 o* 2
(B.8) —wt—jpnwpp

.
— 2(1- 6)%a?

whereF; andF; are as in Step 4 of Lemma 4.1 with (B}replaced by (- 9)
and without the terms related tg ¢ wp)*. 3 N

Sincex(t) is constant fot > 0 large, there exist® > 0 such that, ifr| > R,
then

{Azérr ( ! ) + (rém(S + Aér ( : ) + F2)2:| + Fl. R

ér(r7A0) = érr(raAO) =0.
By increasingR, if necessary, we may assume that

(B.9) R? > AoS(Ao) -

Suppose thafr <] < R+ 1 on a subsequence. We estimate the error terms
exactly as in the previous lemma and obtain (B.7), by using the properti@s of
Now suppose that 9| > R+1. Then, by definition oR, €, = €, =0, and
the error termg-; andF, converge to zero. Hence, the right-hand side of (B.8)
is equal to

02

2(1— 6)2a2

Since|rem?| > R+1, [r*»? +0(1)| > R for all sufficiently largen and therefore,
by (B.9),

(red +0(1))* +0(1) .
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(rd+0(1))" > R2 > AsS(Ao) .
We complete the proof of Lemma 4.1 as in Step 6 of the previous proofQ

The final step in the proof of Theorem 3.1 is to show that< z, on
[0, ) x [0, T]. We need a comparison result to achieve this.

Proof of Theorem 3.1e first rewrite the nonlinear Black-Scholes equation (1.2)
in the following way
Uy + F(pzwpp) =0,

in (0, 0) x (0, T) where
F(M) = %O’ZM [1+S(@M)] ,

for M € .22 SinceS has a linear growth at infinity (see the properties of
S we provide after the statement of Theorem 3H)has a quadratic growth
at infinity. In particular,F is not a uniformly continuous function iw2! and
therefore we can not immediately use a standard comparison theorem from the
theory of viscosity solutions, even if the equation were set in a bounded domain.
But, the equation (1.2) is also set in an unbounded domain with unbounded
solutions and this is a second difficulty.

We first overcome this second difficulty by using the condition (3.1). For
n > 0, we set

Z‘n(p7 t) = Z*(pv t) - 77(p + 1) 9
in [0,00) x [0, T]. Then, z, is still a subsolution of (1.2)-(1.3) and, in view of
(3.1),
Jim_(2(p.t) ~ 2.(p. 1) = —o0 .

uniformly for t € [0, T]. Moreover, by (B.1),z,(0,t) = z.(0,t) — n for any
t € [0, T]. Now, suppose that

max{ z*(p,t) — z.(p,t) : (p,t) €[0,0) x [0,T] } > 0.

Then, there is a maximizepd; to) € (0, 00) x [0, T] of the differencez, — z..
Note thatpy > 0.

To overcome the difficulty coming from the nonlinearfy we introduce the
change of variablep = €, i.e., forx €.22! andt € [0, T], let

u,(x, t) := z,(€",1), (X, 1) == Z.(e5, 1),
so that,u, andu, are, respectively, a supersolution and a subsolution of
—U — F(Uy — ) =0,

in .22 x (0,T). Moreover,X, := Inpy andty is a maximizer of the difference

u, — u,. Now a standard a comparison theorem applies to the preceding equation
because the nonlinearity is now independenk ¢see Crandall et al. [10]) and
implies that
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Uy, (X0, to) — U« (X0, to) < 0.

Thereforez, < z, and, by letting, to zero, we arrive a* < z, on [0, c0)x[0, T].
Since, by constructiorgz, < z*, we conclude that* = z, and sincez* is an
upper-semicontinuous subsolution of (1.2)-(1.3) apds lower-semicontinuous
semicontinuous supersolution of (1.2)-(1.3), the functibrdefined byv¥ =
z, = z* on [0,00) x [0, T], is a continuous solution of (1.2)-(1.3). Moreover,
by classical arguments, the equality= z* in [0, c0) x [0, T] implies the local
uniform convergence atc to V. O

We close this section by proving Lemma 2.2.

Proof of Lemma 2.2Fix > 0 and letg : .22' — .22! be a smooth, nonde-
creasing function satisfyingj(t) = 0if t <0 andg(t) =1 if t > n. Set

Py, p,t) = g(T — uply| — Ke(T - 1),

whereK is a positive constant to be chosen later.
We compute:

1 1
i — éazpzwpp -~ Zazpz(wp —y)* —ap(p —Y)
— / 1 2-2 2
= —eK +g'(T —t)uply| — 2.0P (g(T = tuly| —y)
—ap(g(T — uly| —y)

1
< —eK +g/(T = )uply| - ;ozpz(l — w?lyl* +aplyl.

€
Since
g (T —tp

2
1
T < 20201 N2\(2
g(T t)uPIYI_e[U(l_M)] * a0 P A=yl

and
2

o 155 21,12
<€E— + — —
aplyl Szt al P (1= wlyl5,
there exists a constakt, depending only om, so that

1,

1
= 50°PPUp — 50 (W —Y)° — ap(up —Y) < 0.

Moreover,

[Yy(y,p,t)[ < pp fory#0.
If necessary, by increasirlg, we may assume th#t > o?/202 and, by Propo-
sition 2.1,
vy, p,t) < z¢y,p,t) ify=0ort=T.
We now follow the proof of Proposition 2.1 to prove that< z¢ in .22 x
[0,) x [0, T]. Then, the stated lower bound follows from the properties of
g. O
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