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A Measure Theoretic Approach to Higher
Codimension Mean Curvature Flows

LUIGI AMBROSIO - HALIL METE SONER*

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXV (1997), pp. 27-49

Abstract. We develop a generalization of the theory of varifolds and use it in the
asymptotic study of a sequence of Ginzburg-Landau systems. These equations
are reaction-diffusion type, nonlinear partial differential equations, and the main
object of our study is the renormalized energy related to these systems. Under
suitable density assumptions, we show convergence to a Brakke flow by mean
curvature. The proof is based on a suitable generalization of the theory of varifolds
and on the analysis of the gradient Young measures associated to the solutions of
the system.

1. - Introduction

In this paper we study the limit behaviour of solutions US of a Ginzburg-
Landau parabolic system

with d &#x3E; 2. The variational problem with d = 2 has been studied in [7] and
later in [26], [22], [33]. This system is the gradient flow of

with W(u) := (12013~M~)~/4. By asymptotic formal expansion, it has been proved
in [29] that, under suitable assumptions on Ueo, the renormalized energies
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converge 0 to where {rt} is a smooth codimension 2 flow

by mean curvature. These formal results have been confirmed in [23], where
convergence has been proved for all times before the appearence of singularities.
The d = 2 case is quite different and it was rigorously studied in [25], [24]. Also
the analysis in a bounded domain is quite harder, and it has been systematically
studied by Lin; see [25] and the references therein.

In this paper our goal is to describe the behaviour of even after the

appearence of singularities. For the mean curvature flow in codimension 1, it is
now well known (see [3], [10], [13], [15], [17], [20], [32]) that the limit of the
Allen-Cahn equation (corresponding to the gradient flow of the functionals I’
in (1.2), with u real valued) can be used to define weak solutions of mean
curvature flow, comparable with other ones. In particular, in [20] Ilmanen

proved convergence to a Brakke flow (cf. Section 4), a sort of measure theoretic
subsolution of the evolution problem.

We will extend Ilmanen’s result to codimension 2 under an a priori technical
assumption on the density of the limit measures f1t:

for some 17 &#x3E; 0. Our methods are mostly measure theoretic, and they are based
on a fine analysis of the second moments of the Young measures associated
to Vu’ and on a suitable extension of the theory of varifolds which seems
to be very promising in connection with these geometric evolution problems.
Indeed, the Young measure analysis (see, in this connection, [28]) is not only a
technical tool, but provides a good description of the oscillations of both Vu’
and ut near the support of the limit measures At.

Although we confine our discussion to codimension two problems, many
intermediate results also hold in any dimension and codimension (in this case
instead of (1.1), a slightly different equation should be considered [23]). For

this reason the first three sections of the paper are written in full generality.
Our analysis of (1.1) assumes a density estimate (1.4), and up to now, this

density estimate has been proved in [23], under suitable assumptions on 
only for smooth flows. Its extension "past singularities" seems to be a very
challenging mathematical problem.

We would like to conclude by saying that our choice to contribute with a
paper on this topic to this issue of "Annali" dedicated to Professor De Giorgi
is not casual. Starting from his pioneering papers on sets with finite perimeter
[ 11 ], [12] up to his very recent paper [14], both measure theory and geometric
evolution problems have been of central interest for him. In working on these
problems, we were guided by his paper [14], in which, showing one more his
great ingenuity, Professor De Giorgi has put forwarded many fundamental ideas,
such as the theory of barriers and the use of the squared distance function (these
suggestions were later developed in [2], [4]-[6]). We were enriched greatly by
his ideas and his personality, and we will miss him.
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2. - Notations and preliminary results

In this paper ,Cd and respectively denote the Lebesgue measure in Rd
and the Hausdorff m-dimensional measure. Given a real or vector Radon mea-
sure it in an open set Q c Rd and a Borel set E C Q, p L E stands for XE JL,
i.e., for any Borel set B C Q.

If it ? 0 is a Radon measure in Q and a is positive, the lower and upper
a-dimensional spherical densities of /t at x are given by

If f : 0 --* 0’ is a proper continuous map, by we will denote the image
of it through f, i.e., f#(~,c)(B) - for any Borel set B CC Q’.

Finally, the density of a (possibly vector) Radon measure v with respect to /1
will be denoted by 

2.1. - Fwnctionals defined on measures

Let Q C Rp be an open set and f : S2 x [0,00] be a lower
semicontinuous function such that f (x, 0) - 0 and z H f (x, z) is convex
im Rq for any X E Q. For any nonnegative Radon measure a in Q and any
Radon measure v in Q with q components we define

where f,,,,(x, z) := f (x, t.z)/t is the recession function of f and v =
is the Radon-Nikodym decomposition of v in absolutely continuous and

singular part with respect to a . Then, the following theorem holds (see [9]):

THEOREM 2.1. Under the above assumptions on f the v)
in (2.1 ) is lower semicontinuous with respect to weak* convergence of measures.

REMARK 2.2. In the particular case f (x, z) = with r &#x3E; 1 one obtains a

simple and useful criterion to estabilish absolute continuity in the limit (cf. [19]),
namely 

,

imply v and
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In fact, since = +00 for z 0 0, 4) (a, v)  oc only if VS = 0, and in
this case 

- I. ir

If f (x, -) is positively 1-homogeneous for any X E S2, 4$(a, v) does not
depend on a : it reduces to

whose semicontinuity and continuity properties have been studied by Reshetnyak
in [30].

2.2. - Disintegration of measures

Let OCRP and K C Rq compact. Any nonnegative Radon measure ti in
Q x K can be represented as follows: denoting by v = the projection
of p on Q, there exists a regular family of probability measures in K
such that 

,

for any Borel set B c 0 x K. Equivalently

for any bounded Borel function with compact support in x. Here "regular"
means that the mapping x H px ({z : (x, Z) E B}) has the Borel property for
any Borel set B c S2 x K. As a consequence, the integral in the right side
of (2.3) makes sense. We will call disintegration of ~c, often using
the compact notation p = 

2.3. - Rectifiable sets

A set E c Rd is said to be countably Hm -rectifiable if all of E
can be covered by a sequence of C 1 surfaces of dimension m. Given a density
function 0 : E 2013~ (0, (0), locally integrable with respect to we will

say that p = has approximate tangent space at x if there exists a

m-plane P c Rd such that

If E is H’ -rectifiable the approximate tangent space exists for tt-a.e. X E Q
and will be denoted by Generically depends on E but not on the
density function 9: it can be proved that

for any C 1 surface r c Rd of dimension m, where Tx r is the classical tangent
space. For a proof of these facts, see for instance [31 ] .
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3. - Varifolds and generalized varifolds

In this section we will recall the basic ingedients of the theory of varifolds,
and at the same time we will introduce our generalized ones. A general reference
for this theory is [31].

Let 1  d be an integer. We will identify, as usual, the Grassmann
manifold Gd,m of unoriented m-planes in Rd with a compact subset of the
space of symmetric d x d matrices: precisely, the symmetric matrices P such
that P~ = P and trace(P) = m (representing the orthogonal projection on the
corresponding m-plane). We will use the notations At for the transpose of a
matrix A and A :: B = for the inner product of A and B.

A m-varifold in Q is a Radon measure in the class of m-varifolds
will be denoted by The mass pv of V E Vm(Q) is simply 
where : Q x Gd,m -~ Q is the projection; V is said to be real rectifiable
if, representing V = Vxpv by disintegration, it v = for a suitable

countably 1-lm-rectifiable set E c SZ and a density function 0 : E 2013~ (0, oo) and
Vx = for ttv-a.e. x E S2. In other words

for any bounded Borel function cp with compact support in x. This class of
varifolds will be denoted. by RV m (Q).

DEFINITION 3.1 (first variation). The first variation, denoted by 8V, of
V E is a vector Radon measure in Q satisfying (with the summation
convention)

In general 8 V is only a distribution and not a measure, hence only some
varifolds have first variation, according to Definition 3.1. If V = is
the rectifiable m-varifold induced by a embedded C2 manifold M C Q without
boundary in Q, the divergence theorem shows that (3.1) holds with

H being the mean curvature vector of M. In fact, the right side of (3.1 ) is the
integral of the tangential divergence of Y.

REMARK 3.2. Any V E can be represented by for
suitable probability measures Vx in Gd,m, according to the results recalled in
Section 2.

A fundamental rectifiability criterion for varifolds is the following:
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THEOREM 3.3 (Allard). Let V E Vm(Q) with first variation, and assume that
x) &#x3E; 0 for flv-a.e. x E Q. Then V E RVm(Q).

To define our class of generalized varifolds we will simply replace Gd,m
by a larger set of symmetric matrices, namely the collection Ad,m of matrices
A satisfying

where I is the identity matrix. The lower bound on A will only be used to
have compactness of Ad,m and could be easily weakened; on the other hand,
the other two conditions on elements of Ad,m will be essential in the sequel.

DEFINITION 3.4 (generalized varifolds). A generalized m-varifold in Q C Rd
is a nonnegative Radon measure V in S2 x Ad,m. This class of varifolds will
be denoted by Vm ( S2 ) .

The mass J1v of V E is again where 1r : Q x Ad,m ~ Q is
the projection, the variation S V (if exists) is the unique vector Radon measure
in Q such that

DEFINITION 3.5 (varifold convergence). We say that a sequence ( Vh ) c
V* (0) weakly* converges to V E V (0) if ( Vh ) weakly* converges in 
in the sense of measures, to V.

REMARK 3.6. We notice that

because Ad,,n is compact. Moreover, if ( Vh ) converges to V in S2 and if

then, passing to the limit as h ~ oo in (3.2) and using the weak* compactness of
measures we obtain that V has first variation in S2 and (~V~) weakly* converges
to 8 V in Q.

For classical varifolds an analogous weak* convergence can be defined. For
real rectifiable varifolds we have also the following closure theorem, proved by
Allard in [ 1 ] .

THEOREM 3.7. Let ( Vh ) c RV m (Q), assume that (3.4) holds, that ( Vh ) weakly*
converges to V in Q and that

for some constant 1] &#x3E; 0 independent of h. Then 1
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The following theorem establishes an useful connection between varifolds
and generalized varifolds, showing that under a suitable density assumption any
generalized varifold V induces a classical one V with the same mass, whose
disintegration is made by a Dirac mass concentrated at the barycenter of
the disintegration of V.

THEOREM 3.8. Let V E vm (S2), assume that V has first variation in Q and that

for some a &#x3E; 0. A d Vx (A)
be the barycenter of Vx in Ad,,n. Then: 

"~

PROOF. Let A = JLv; for any xo E Rd we denote by Tan(JL, xo) all weak*
limits 0 of the measures

in the unit ball B of Rd. Notice that any measure v in this set satisfies v ( B )  1.
Assume now is bounded 0 and that xo

is a Lebesgue point for A (relative to g). Then, a simple rescaling argument
in (3.2) gives

We will prove that the properties in statements (a), (b) are satified for any xo
satisfying the additional assumption Oa xo) &#x3E; 0.

(a) We will first show that the density assumption on A implies the existence
of nontrivial measures v in the tangent space to it. Hence, we set s = m + 1
and choose fl E (a, s + 1). Then, for any t E (0, 1) we claim the existence of
a measure v E such that v(Bt) &#x3E; To prove the claim, it suffices
to show that

Indeed, if (3.7) holds we need only to choose a sequence Qh on which the lim sup
is attained and then extract a subsequence from The proof of (3.7) can
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be achieved by contradiction: were it false, we would have 
for oo, hence

In particular, xo) would be finite, in contrast with the assumptions fJ &#x3E; a

and 8~(~, xo) &#x3E; 0.

Choosin g t  such that &#x3E; I we may apply Lemma 3.9
below to obtain that at least (d - s) eigenvalues of A (xo) are 0. Denoting by
À 1, ... , hs the remaining ones, the relations

easily imply that ki &#x3E; 0 for any i, i.e., 0.

(b) The proof is analogous, setting this time s = m. By Lemma 3.9 we infer
that at least (d - s) eigenvalues of A (xo) are 0. Denoting by ~,1, ... , ks the
remaining ones, the relations

imply that Ài = 1 for any i, i.e., A (xo) is an orthogonal projection on a m-plane.
(c) Follows by statement (b) and Allard’s rectifiability theorem. D

LEMMA 3. 9. Let s be an (0, s -f- 1 ). Let v be a measure in the unit
ball B satisfying

Then, for any symmetric d x d matrix A, the condition

implies that at least (d - s) eigenvalues of A are 0.

PROOF. Up to a rotation, we can assume that A is diagonal and that the
kernel of A is spanned by the p vectors ed - p+ 1, ... , ed. We must prove that

(d - s). Condition (3.8) yields
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Let x = (y, z) with y E Rd-p and z E RP. We will first prove that any
measure v satisfying (3.9) has the form x 0)LB for a suitable Radon
measure 0 in the unit ball B’ of RP. Indeed, the functions fs = have zero

partial derivative with respect to y in B1-s, so that = gg (z) for suitable
functions g, defined in the ball B1 _~. Since gs are equibounded in we

can assume that (a subsequence) weakly* converges to some Radon measure 0
in B’. Passing to the limit as 6’ 0 in

(with 0 E Co (B), dist(supp 0, a B) &#x3E; E) we find that ,Cd-p x 0 coincides in B
with v.

Now, let Q = L x M be the open cube with side 2/B/d contained in B ; since
1 we infer (v’d /2)d-p. On the other hand, since 

and Bt is contained in [-t, t]d-p x M, we have 2P-dtf3-d+p. Hence,

contradicting our choice of t. Hence, p &#x3E; (d - s). 0

REMARK 3.10. The assumption on the existence of 8V in Theorem 3.8
can be weakened, but assuming that (3.5) holds for some a  m + 1. Namely,
let us assume the existence of a vector Radon measure 8 V and a function
r : Q x Ad,m --~ [0, 1] such that

for any Y E (notice that the formula reduces to (3.2) if r =E 0).
Then, the blow-up argument of Theorem 3.8 shows that T n 0, hence statement
(b) is still valid (and also (c), if a = m). In fact, setting

we have, by the same argument used in the proof of Theorem 3.8, that 
x at least (d - m ) eigenvalues of A (x ) are 0. Denoting by ~,1, ... , ~,m the other
ones, we have

with a := JAd,m r(x, A) d Vx (A). Hence a = 0 and since Ài do not exceed 1

we conclude that Ài = 1 for any i = 1,..., m.
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4. - Brakke flows

The starting point of Brakke’s definition is the identity

which holds for any smooth flow { rt } of m-surfaces by mean curvature and any
Cj (R). Brakke’s definition relaxes the equality to an inequality, requiring

(of course) 0 to be nonnegative. We will introduce Brakke’s definition later.
At this moment we will introduce our generalized one, in which surfaces are
replaced by generalized varifolds and one more integration in time is involved.
This formulation makes passages to the limit easier.

DEFINITION 4.1 (generalized Brakke flows). Let c We say
that is a generalized Brakke flow = Ht/LVt for .cl-a.e. t &#x3E; 0,

I

for any bounded set A C Rd, T &#x3E; 0 and

whenever 0 E [0, and 0  t  s  oo .

REMARK 4.2. Let 0 E [0, Using the estimate (see for in-
stance [21])

is the sup norm of matrices) it is not hard to see that t H IL Vt (Ø) is

semidecreasing, i.e., ILVt Ct is decreasing in [0, T] for a suitable constant
C &#x3E; 0, possibly depending on T, io. In this case

This is the reason why C2 and not C 1 functions in Definition 4.1 are involved.
We also notice that (4.1) and the semidecreasing property easily imply

where "D" denotes distributional derivative in time.



37

Let J1 be a Radon measure in Rd and ; ; we set

if JL = pv in fo &#x3E; 0} for some V E RV,,,(fq5 &#x3E; 0}), with

If at least one of these conditions is not satisfied, we define Ø) = - 00.
Now we can define Brakke flows according to Ilmanen [21], who adopted a
slight (and somewhat stronger) variant of Brakke’s original definition.

DEFINITION 4.3 (Brakke flows). Let be Radon measures in Rd. We
say that is a Brakke flow if

for any t &#x3E; 0 and [0, (0)).
As in Theorem 3.8 we can now see that any generalized Brakke flow

induces, under suitable density and perpendicularity assumptions, a Brakke flow.

THEOREM 4.4. Let { Vt C V* (Rd ) be a generalized Brakkeflow, and assume
that there exists q &#x3E; 0 such that

PROOF. Let t &#x3E; 0 and let us check Brakke’s condition (4.3) only for the
upper right derivative D+, the proof for upper left derivative (if t &#x3E; 0) being
similar. Let

and notice that L &#x3E; by (4.1). If L = -oo then Brakke’s inequal-
ity (4.3) trivially holds. Otherwise, assuming with no loss of generality that

&#x3E; -oo, let Si t t be a sequence on which the limsup is attained and
let tl E (t, si ) such that (a), (b), (c) hold with t = ri and

with Wi - 0. By assumption (b) and Allard’s compactness theorem, we can
assume that ~’i weakly* converges to some V in 10 &#x3E; 01 x Gd,m. Arguing as
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in [21, page 41], we find that the semidecreasing property (cf Remark 4.2)
and &#x3E; - oo imply that pp coincides with in 10 &#x3E; 0 } . Then,
Remark 2.2 and Theorem 2.1 imply that 8V in 10 &#x3E; 0} and

where we have set 8 V = Hpp. Therefore

We conclude this section by analyzing the relations between Brakke flows
and smooth flows. Essentially, any Brakke flow latl initially contained in a
compact smooth m-manifold 10 without boundary remanins inside the smooth
flow { T’t } starting from ro as long as the latter is defined. Under additional

perpendicularity assumptions we can also say that itt is a constant multiple of
Hm L rt, with the multiplicity constant nonincreasing in time.

PROPOSITION 4.5 (Brakke flows and smooth flows). Let be a

Brakke flow and let be a smooth mean curvature flow. Then

(a) = aHm L ro implies supp C rt for any t E [0, T);
(b) if, in = with Ht (x ) E 

t E (0, T), then there exists a nonincreasing function o : [0, T) - [0, ot] such
that

for any continuity point t e [0, T) of 0.
PROOF. (a) In [21] and [2] it has been proved that the Brakke flow remains

inside the level set flow for any time. It has also been proved that the level
set flow coincides with a smooth flow as long as the latter is defined.

(b) Let vt := Hm L It. By statement (a) and Lemma 4.6 we infer the existence
of a Cl-negligible set N such that

We know claim that 0, where D stands for distributional derivative in
time. Indeed, choosing any 0 E [0, (0) ), we have

because is a Brakke flow (cf. Remark 4.2) and
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because (vi ) is a smooth flow. Comparing the two expressions and using the fact
that we can choose 0 in such a way that vt (0) &#x3E; 0 for t E [0, T) (because ro
is compact) the inequality DO :5 0 follows.

Using the semidecreasing property of itt(o) and of with 0 E
C (R, [0, 1]), it is easy to see that the implication

holds for any sequence (th) converging to to. Now we fix a continuity point
to for f} and choose sequences t ) C (0, T ) B N converging to to from below
and from above. We have

Letting h ~ +00 we obtain Jtto (Rd) = using the implication
above with th = th we can extend, by approximation, the validity of At =
O(t)1lmLft to t = to. 0

LEMMA 4.6. Let r be a smooth, connected m-manifold without boundary in Rd
and let V E RVm (Rd), V :0 0, with 8 V = and H(x) E ILv-a.e.
x E Rd. Then, supp C r implies = ORm L_ r for some constant 0 &#x3E; 0. In

particular H coincides with the classical mean curvature vector of r.

PROOF. We know that itv = Ohm L r for some Borel function 0 &#x3E; 0 and
we have to show that 0 is (equivalent to a) constant. Let 0 : V C Rm -~ U C r
be a local chart for r, y = 8 0 q5. Since r is connected, we have to prove that
y is constant on V. Let X E [Co (V )]m and X’ = doo(X) = Notice that

coincides with the classical tangent space to r. Since X’ is a tangencial
vectorfield on U, the perpendicularity of the mean curvature and the invariance
of tangencial divergence imply

Since X is arbitrary the statement follows. C7

5. - Limits of Ginzburg-Landau systems

In this section we begin the analysis of the limit behaviour of solutions US
of ( 1.1 ), with 8 E (0, 1). It is not hard to prove, for instance by implicit
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time discretization, existence of a unique weak solution if  oo and
1. Moreover, 1 and if Au,, E the energy identity holds:

with defined as in (1.3). Parabolic regularity theory also implies that u-’ is
smooth in (0, oo) x Rd . This easily leads to a local version of (5 .1 ), i.e.

where ljJ e x and 0 s. We will assume that is

uniformly bounded in E and that there exists a constant D such that

As shown in [23], if ro is a compact orientable (d - 2)-manifold without
boundary we can find Uso such that the above conditions are satisfied and, in
addition, p§ weakly* converges in Rd to By (5.1 ) and
our assumption on we get

Given any linear map p : R d -* R2 with norm (in the Hilbert-Schmidt
sense) equal to 1, the d x d matrix I = 2pt p belongs to Ad,d-2, hence

are well defined measures in (0, oo) x Rd x Ad,d-2. By compactness, and using
the semidecreasing property of t H JL:, which can be proved arguing as in [20],
we can find an infinitesimal sequence (8k) C (0, 1) such that

(a) VSk weakly* converges to V in (0, oo) x Rd x Ad,d-2;
(b) weakly* converges to Itt in Rd for any t &#x3E; 0.

Since ll,k dt = weakly* converges to we obtain 

1-ttdt, hence we can represent V by for suitable probability measures
Vtx in Ad,d-2. · We set Vt = E so that itv, = Itt. One of the
main results of this paper is the following.

THEOREM 5. l. Let us assume that

for some a  d - 1. Then, { Vt } is a generalized Brakke flow satisfying

If (5.5) is replaced by the stronger condition ( 1.4), then fit, I is a Brakke flow.
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PROOF. Extracting if necessary another subsequence from (sk), we can also
assume that

(c) the measures G£k := weakly* converge
in (0, oo) x Rd X Ad,d-2 to some measure G;

(d) Vusk / In(1/8k)dxdt weakly* converges in (0, oo) x Rd to some mea-
sure a.

Clearly G  V, hence we can represent G as rV for some Borel function
t(t, x, A) such that 0  r s 1. By applying Remark 2.2 with ak = and

we obtain that cr = Hipidt for suitable functions Ht (x ) satisfying (by (5.1))

We notice that this argument does not allow to conclude (5.6), because of the
extra factor 2.

In order to prove that 3 Vt = Hi pi for 0 we fix Y E 
and y E Co ((0, oo) ) and, making an integration by parts in space, we calculate

Setting 8 = Ek and passing to the limit as k - oo gives

Since this holds for any y, a simple density argument proves that
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for .cl-a.e. t 2: 0. By Remark 3.10 and (5.5) we conclude that -r(t, .) = 0
Vt-a.e. for t &#x3E; 0, and this proves that

and 6 Vi = HttLt for 0. Moreover, Theorem 3.8 gives that

for 0. Using (5.8) in conjunction with (5.3) and (5.4) it can be

easily proved that

for any Borel set B cc (0, oo) x Rd. We will use both (5.9) and (5.10) later
on. Now, if we try to get Brakke’s inequality (4.1 ) passing to the limit as
k - oo in (5.2) we only get the weaker inequality

I

for the same reason why the extra factor 2 appears in (5.7). This extra factor
will be removed in the next section with a careful analysis, in which (5.9)
plays an essential role, of the probability measures Vtx. The heuristic idea is
to prove, by the analysis of the Young measures associated to gradients, that
the measures Vtx are sufficiently far from a concentrated mass. In this way
an improved Jensen’s inequality can be established, see Proposition 6.7. As
a byproduct, we will also obtain the perpendicularity of Ht to At,, which is

necessary in order to get, under condition (1.4), a Brakke flow.

6. - Young measures and perpendicularity of H

In this section we introduce the following new notations:

(i) M stands for unit d x 2 matrices (2 rows, d columns) and (p : M 2013~ Ad,d-2
is given by = I - 2 pr p.

(ii) Wl := and we assume without loss of generality that W ~k
weakly* converges as k - oo to some W = Wtx(p)JLtdt in (0, oo) x Rd x M.
The relation VI = implies V = and Vrx = In particular,
by (5.9), the first moments of Vrx and the second moments of Wtx are

related by
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(iii) For any p E M we denote by E ( p) the (at most) two dimensional vector
space of Rd spanned by the rows of p.
To study the mean curvature H, we will look at the measures

and we will assume that Olk weakly* converges to fl as k ~ oo in (0, oo) x
Rd x M. By Remark 2.2 we infer that IfJl I « W. Moreover, the relation

implies

Since I p I is absolutely continuous with respect to W, we can find functions
Ytx (p) such that ~8 = Moreover, (6.2) implies

We will first prove the following
LEMMA 6.1. For JLtdt-a.e. (t, x ) E (0, oo) x Rd the measure Wtx is sup-

ported on

PROOF. Assume, to fix the ideas, that Atx is the orthogonal projection on
the vector space spanned by e3,..., ed and that (6.1 ) holds. Since Wtx is a

probability measure, for i = 3, ... , d we have

hence = 0. This means that for Wtx -a.e. p, p(ei) = 0 for
i = 3,..., d. As a consequence, for Wtx-a.e. p, E(p) is contained in the

space spanned by which is exactly the normal space to Ãtx. 0

Now we can prove the perpendicularity of Ht to At,. Using (6.3) and
Lemma 6.1 we have only to show that generically E E(p).

PROPOSITION 6.2. (t, x ), ytx ( p) E E(p) for Wxt -a. e. p E M. In
particular Ht (x ) is perpendicular to Atx for JLtdt-a.e. (t, x).
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PROOF. Setting f (p, w) := dist(w, E(p)), it is easy to check that f is
continuous in (p, w), convex and positively 1-homogeneous in w. Since

(because ul t V US belongs to and letting k -~ o0
by Theorem 2.1 we infer

In particular, f (p, = 0 for W-a.e. (t, x, p) and the proof is achieved. D

Now we will prove that the measures Wtx are supported on rank one
matrices for JLtdt-a.e. (t, x). This property is reasonable to expect, because
the target manifold has dimension 1. The following lemma will be useful to
estimate the determinant of 2 x 2 minors of Vu.

LEMMA 6.3. For any 3 &#x3E; 0 there exists a constant Cs satisfying

for any 2 x 2 matrix q and any vector u E R2, where qi are the columns of q.
The proof of Lemma 6.3 can be achieved by a simple contradiction argu-

ment, and therefore will be omitted. We have already proved (see (5.8)) that
the W term gives no contribution to pi in the limit. Now we will prove that
the same is true for the radial part of derivative.

PRPOSITION 6.4. := Then

for any set Borel set B c c (0, oo) x R .

PROOF. The function satisfies

Hence, choosing r¡ E C~((0, (0) x R~) and using as test function we

get

Using (5.10) and (5.8) it is easy to see that all terms on the right are 
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THEOREM 6.5. The measures Wtx are supported on rank one matrices for
(t, x).

PROOF. Let us fix i, j E { 1, ... , d } and 0 (t, x ) &#x3E; 0 continuous, with

compact support in (0, oo) x W. We need only to show that

because, by (5.8), these integrals converge to

Using Lemma 6.3, for any 3 &#x3E; 0 we have

The first two terms give a contribution by Proposition 6.4. The last
one can be proved to be using the inequality (for
2 x 2 matrices q), and (5.10). Letting first k - oo and then 8 , 0 the proof is
achieved. 0

LEMMA 6.6. Let v be a positive measure in [0, n ) and assume that

Then, for any function Z E we have

PROOF. Since -V2 cos () and -V2 sin () are orthogonal and unitary in L2 (v),
the statement is a particular case of Parseval’s inequality. 0

PROPOSITION 6.7. Let Q C Rd be a 2-plane and let W be a probability mea-
sure in M supported in rank one matrices p whose rows belongs to Q, such that
2 fM pt p d W ( p) = Q. Then, for any function y E L2(M, Q, v) we have
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PROOF. We assume with no loss of generality that Q is spanned by the
vectors el, e2. Denoting by pi the rows of p e M, for any matrix p in the
support of W we have

for some unique angles 0 E [0, Jr), l/J E [o, 2~c ) . Hence, we identify p with a
pair (8 , ~) ; accordingly, W will be a probability measure in x [0, 
and, denoting by v its projection on the first factor, we set W (0, = 

for suitable probability measures Wg in [0, 27r)o.
Since is a matrix with the first 2 x 2 minor equal to

and all the other entries equal to 0, by our assumption we obtain that v satisfies
the hypothesis of Lemma 6.6. We know that 41) belongs to the vectorspace
spanned by pi , p2, i.e., the line spanned by cos 8el + sin Oe2. Hence, we may
write y (0, oo) + sinOe2] for a suitable a. We also set

Using the first time Jensen’s inequality and the second time Lemma 6.6 we get

By (6. ~ ~, Lemma C .1, Proposition 6.2 and Theorem 6.5 we know that
W = Wix and y = yix satisfy the assumptions of Proposition 6.7 for J1tdt-a.e.
(t, x) with Q = Recalling (6.3) we get

Now we can complete the proof of Theorem 5. ~, proving ~4. ~ ). Starting
from the identity (5.2) and passing to the limit as k - oo, (4. ~ ) will be proved if
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To prove this we will use the inequality

with W~k := weakly* converging by (5.8) to

Wtxtttdt. Now we apply Theorem 2.1 and (6.4) to get

This proves is a generalized Brakke flow. If we assume that condi-
tion (1.4) holds with pi then Theorem 3.8(c) and the perpendicularity
of to Atx, proved in Proposition 6.2, imply at once that all conditions

(a), (b), (c) are satisfied for .cl-a.e. t 2: 0. Hence, Theorem 4.4 implies that
(pi ) is a Brakke flow. D
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