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Ginzburg-Landau Equation and Motion by Mean
Curvature, II: Development of the Initial Interface

By Halil Mete Soner

ABSTRACT. In this paper, we study the short time behavior of the solutions of a se-
quence of Ginzburg—Landau equations indexed by €. We prove that under appropriate
assumptions on the initial data, solutions converge to £1 in short time and behave like
the one-dimensional traveling wave across the interface. In particular, energy remains
uniformly bounded in €.

1. Introduction

In anearlier paper [ 12], I have studied the asymptotic behavior of the Ginzburg—Landau equation,

]
u;—Au*+§f(u‘):o, (0, 00) x RY, (1.1)

u (0, x) = uy(x), x e RY. (1.2)

The nonlinearity f is the derivative of a bi-stable potential W:

W) = %(u2 — 1) f) = W) =2u@®—1). (1.3)

In[12],1proved that there are two open, disjoint subsets 7, A of (0, 00) x R and a subsequence
€, satisfying

(a) u® — I, uniformly on bounded subsets of P,

(b) u* — —1, uniformly on bounded subsets of N,
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(¢) ' = complementof (P UN') has Hausdorff dimension d and it moves by mean curvature
in the sense defined in [12], [1].

This convergence result generalizes the previous results of Rubinstein, Steinberg, and Kelier [10],
DeMottoni and Schatzman [8], Chen [2], Evans, Soner, and Souganidis [4], Barles, Soner, and
Souganidis [1], and limanen [7]. For more information on the Ginzburg—Landau equation, the weak
theories for the mean curvature flow and other related topics we refer the reader to the introduction
of the companion paper [12] and the references therein.

The above result was proved under the assumption (cf. (2.6) in [12]) that for every § > 0 there
are positive constants K5 and 1 such that for every continuous function ¢,

1
(A) sup {/ lo(xX)|pudx;t) : ee€(0,1),1t€ [8, E]} ,
< K;sup{lo(x)|e™!: x € R}

where

ui(dx; 1) = Ewuf(t, )*+ éW(ue(t, x))] dx. (1.4)

The main purpose of this paper is to verify (A) under some reasonable conditions on the initial
data ug. This analysis requires a detailed description of u(f, x) near the initial interface. Such an
analysis have already been carried out by DeMottoni and Schatzman [9] and by Chen [2]. However,
the condition (A) cannot be directly obtained from the results of [2], [9].

There are two key estimates in the proof of (A). The first is a detailed description of u® (¢, x) near
the initial interface, Theorem 4.1 below. This result is a sharper version of a result of DeMottoni and
Schatzman [9] and its proof is similar to Lemma 4.1 in [5]. The description obtained in Theorem 4.1
is of independent interest. The second key step in the proof of (A) is a gradient estimate, Theorem 5.1
below.

The paper is organized as follows. In the next section the main result of this paper is described.
In Section 3, a result of DeMottoni and Schatzman is recalled and an easy gradient bound is proved.
The behavior of u*(f, x) near the initial interface is analyzed in Section 4 and a second gradient
estimate is obtained in Section 5. A proof of the main theorem is given in the last section.

2. Main Result
Multiply (1.1) by €u;, integrate and use integration by parts to obtain

5l

Ee(tl)—Ee(tz)—_——G/ (uf)2d)(dt, t > 1y, (21)
R

f
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where

€ € d € € 2 I €
E<(t) = u*(R% 1) =/ [ElDu (t. )"+ EW(M (t,x))] dx.

R(I
Hence (A) holds with n = 0 provided that E£€(0) is bounded in €. In particular, an elementary

computation shows that E€(0) is bounded in €, if there are a function z{, a constant A > I, and a
bounded open set 2 of finite perimeter (cf. [3], {6]) satisfying

zg(x)

upg(x) =gq (—6—) , q(r) = tanh(r),

I
[Dzgl < A, xd(x) < z5(x) < Ad(x),

where d(x) is the signed distance between x and the boundary of €2.
When ug is independent of €, we generally do not expect £°(0) to be bounded in €. Indeed,
let ug = B for some constant 8 # =+ 1. Then u‘ (¢, x) = w(t) and E“(¢) = +oc foreveryt > 0

and € > 0. However, condition (A) holds with any n > 0.

In the remainder of this paper, we assume that

uy is independent of €, i.e., uf, = uy, (2.2a)
uy € CHRY), lug(x)| < 1, (2.2b)

Iy = {x € R uy(x) = 0} is bounded, (2.2¢)
infr, | Dug| > 0, (2.2d)
limsupg_ infzz lue(x)| > 0, (2.2¢)

where C ; (R?) is the set of all bounded functions that are thrice continuously differentiable with
bounded derivatives. Observe that (2.2b,c,d) imply that [y is a C 2 manifold. The main goal of this
paper is to prove (A) under the above hypotheses; see Theorem 6.1 below.

3. Preliminaries
Let dy(x) be the signed distance between x and I'y. Choose A > 0 such that

dy € C*(S2,), Q= {x € R |dp(x)] < 2A). (3.1)
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We now recall a result of DeMottoni and Schatzman [9, Theorem 5].

Theorem 3.1. Forevery 8§, m > Othere are C|, Cy > 0 such that for every

] 3
tel, = [C,ezln (—) R C265:| .
€

we have
u%uﬂ—q(“?ﬁ}s& if |do(x)| < A,
lu€ (t, x) — sign[ug(x)]] < €”, if |do(x)| > A.

(3.2)

(3.3)

(3.4)

Recall that g(r) = tanh(r). In the remainder of this paper C,, C, denote the constants con-

structed in Theorem 3.1 withm = 2 and § = 1/8. Also set
Cy=q7'(1/8).
Fix t € I.. Then whenever d(x) € {eC;, A}, (3.3) yields

u%uan”(ﬂﬂ)-azf
€ 4

Also if d(x) > A, (3.4) implies the above inequality, provided that €* < 1 /4. Hence

u(t,x) > 3/4, Ve

[A

1/2, tel, d(x)>eCs.

Similarly,

u(t,x) < =3/4, Ve<1/2, tel., dx)=<—eCs.
We close this section with a simple gradient estimate.

Lemma 3.1. There is a constant K, independent of €, satisfving

K
|Du(t, x)| < —.
€

Proof. Since jup] < 1, ju(, x)| < 1forall (¢, x). Set

1
g(t,x) = — fu(t, x)).
€

(3.5)

(3.6)

(3.7

(3.8)
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Thenforall0 <t <,

u(t,x) =[Gt —1,)*u(t,)](x) (3.9)
+ / (Gt —s—1,-)xg(s, )(x)ds,

where * denotes the convolution and G is the heat kernel, i.e.,
_d
G(t,y)=(@Art) Zexp (———) .

Now, differentiate (9) with respect x; and use the properties of the convolution and the heat kernel
to obtain

1
lut (.01 < DG — 7, )l Nu(x, -)HLx+/ I1D;(t —s — 7, )l liglle~ dx,

C C
5 + —/t—T )
r—t €
where C is an appropriate constant. Choose T = t — €? to obtain (3.8). OJ

4. Behavior near the interface

In this section we prove a sharper version of (3.3), (3.4). Our approach is very similar to [5,
Lemma 4.1]. Let A be as in (3.1) and set

3 ]
Hh=Ce ln(—). “.1)
€

Theorem 4.1. There are ;1, K > 0 such that for sufficiently small € > 0,

u(t, x) > W —ty, dy(x)), Vt e l.,dy(x) € [eCs, A, 4.2)

u(t,x) < =W — 1, [do(x))), vVt € I, dy(x) € [—A, —€C3], (4.3)

where

d— Kt 1 ut 3
W{(t,d) = max q( . —K)—Ke—zexp(——é-> ik

Proof. We will prove only (4.2). The proof of (4.3) is similar.
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(1) In view of (3.1) there is d € CZ(R") satisfying

d(x) = do(x), if[do(x)| <A, (4.4)
ldx)| > A, if|dy(x)| = A, 4.5)
|IDd(x)| < 1, Vx. (4.6)

For £(1), p(t) > 0 (to be determined later) define

dx) —eCy — &(2) t
v(t,x) =gq . —p(;>,

where Cs is as in (3.5).

We will show that for appropriately chosen £(-), p(-), and a sufficiently small € > 0, v is a
subsolution of (1.1) on {v > 0}. Indeed, a direct computation shows that

I = v,—Av+L2f(U),
€
1 1 i
= g ¢ ]2 (5) - adw ] - 2 (1),
€ € € € €
1
£ 51/ ) — g"C- D),
€

where (- - -) denotes [d(x) — €eC; — S(f)]/e.

(2) Since g(---) = v+ pand p > 0, g(---) > 0 whenever v(f, x) > 0. Therefore on
{v>0}, q"(--+) < 0and (6) yields

q" (- -)|Dd|2 >q"(--) = f(g(--9).
So on {v > 0} we have

1 1
Ps—sqeor (2) =10 () s - raecm+ B a)
€ € € € €

€

where B := [|¢'l| |l A dl .

(3) Set

,u=f’(§)=min[f’(u):u2§l>0, (4.8)



Ginzburg-Landau Equation and Motion by Mean Curvature, 11: Development of the Initial Interface 483

and
€ 1 € T
p(r) = —ﬁ + (— — —é) exp (_,u_) T > 0. (4.9)
1 4 n €
We will choose & > 0 in step 5 satisfying
£ >0. (4.10)
(4) Suppose that
7
q(~--)€[g, 1] (4.11)

The case (- --) < £ will be analyzed in the next step. Since | p(1)| < 1, (4.11) implies that

t 5
v(t, x) =q(-)—p (—) z .
€ 8
Sincev =¢q(---)— p < q(---), (4.8) yields
t
fu@, x) — flg(-)) <—up <;) -
Use (4.9), (4.10) and the above inequality in (4.7) to obtain
c-erld)-ar(d)
<= —— - pl-)=
= e e’ \e €2 \e 0.

on {v > 0}.

(5) Suppose that (4.11) does not hold, i.e.,

g(---) <

oo | -

Thenon {v > 0}, ¢g(---) € [0, ] and

7 2
g'C¢-)=0-q¢-)= (1 - (g) ) =y. (4.12)

Set

a = max{|f'(u)|: u € [0, 1]}.
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Since v < 1, on {v > 0} we have

FW) = f@-) < alv(t,x)—q( )] = ap (5) .

€

Use the above inequality and (4.12) in (4.7) to obtain
t 1, [t a [t
< 2e()- o () 20(2) 2
€ € € € € € €

We now choose £(-) satisfying £(0) = 0 and

’ 1 ’ 04 + 22

§(t) = —{Be +ap(t) —ep' (1)} = ——p(1). T 20
14 14

Using (4.9) we integrate the above equation:

=5 2) e (- 2) - 2]

Observe that this choice of & satisfies (4.10).

(6) By the previous two steps,

Also by (3.6)

us(t, x) >

Vvt € 16 , d()()C) > EC}.

In particular,

=

S ug(thx)’ Vd()(x) Z€C3v

5l —-
| W

v(0,x) =¢q(--) —
and since p,§ > 0,
vt —t,x) <q0)=0<u(t,x), Vtel, Vdy(x)=eCs.
Since u(z, x) > Oforall t € I, and dy(x) > €C;, the maximum principle yields
us(t,x) > vt — 4, x), Vi el, dyx) > €Cs. (4.13)

Now (4.2) follows from (4.13), (4), (3.6), and the definitions of p and &§. O
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5. A gradient estimate

In this section we obtain an upper bound for | Du®| away from the interface. Let ; be as in
4.1),d € C,E(Rd) be an extension of d satisfying (4), (5), (6), and C; be as in (3.5).

Theorem 5.1. There are constants K, §, « > 0 satisfying

2

. ) K ) o
Duc(t, )| 5-;;[mp(—;;ﬂ—wo)4—wp[—;(MCﬂ|—eCﬁ}], 5.1)

Sor all sufficiently small € > Oandt € I, |dy(x)| > €Cs.

Proof. Set
Q={x)tel, |dy(x)| > e Cs},

@(t, x) = |Duc(t, x)|%.

(1) Differentiate (1.1)and then multiply by 2Du* to obtain

2 14 € €
o= Dp+ oSy = 2| D?*ue|? < 0.

By (3.6) and (3.7),
3
luc(r, x)| > 7 Y(t, x) € Q.
Set
s=2f(3) =m {f% ) lul > 3} 0
= - | = n U —¢ >\,
f 2 mi u =~
Then
k)
(p,—A(p+—2(p§O on Q. (5.2)
€
(2) Set

K’ 8 |d(x)| — €C;
b= o) oo (A1)

where K > (s as in (3.8) and g(-) is the unique, bounded solution of

— g, (N + | Adllg (r)+68g(r) =0, r>0, (5.3)
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satisfying g(0) = 1. Then

1
gy =™ a= = Adle+ Il AdIE +48).

(3) We claim that W is a supersolution of (5.2) on £2. Indeed,

5 K? . d
W, 00+ S = g, (IDAR — G ad g (o) + 3800,

where (- - ) = (ld(x)| — €C3) /€. Since g, < 0 < g,, and | Dd| < 1 (cf. (6)), (5.3) implies that
fore <1,

8
\I/,—A\P+—§\I/20, on Q.
€

(4) By (3.3),
2
W, x) > = > @(t, x), V ldy(x)] > €Cs,
and since g(0) = 1,

KZ
v, x) = =2 @(t, x), V |do(x)| = €Cs.

(5) Now an application of the maximum principle yields ¥ > ¢ on 2. O

6. Conclusion

Theorem 6.1. Assume (2.2). Then (A) holds.

Proof. Let A be a Borel subset of R with a finite Lebesgue measure. Set
Q) = (x € RY: |do(x)] < €G3},
2 = {x € R”: |do(x)| € [€Cy, AL},
Q= {x € R |do(x)| 2 A},

A,‘ = AﬂQ,,i=1,2,3,
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L(t) = / %lDu‘(t,x)lzdx, i=1,2,3 >0,

A,

1
Ji (1) =/ W, x)dx, i =1,2,3, >0,
A, €

where A, C; are as in (3.1) and (3.5), respectively. In the following steps we will estimate /; and J;’s
separately.

(1) By Lemma 3.1,

ek? 1 (K? 2]
no+aos [ S5 = () 2

A 2 € €

Since I'y is smooth and bounded, for sufficiently small € > 0, |€2,] < ¢C for an appropriate
constant C. Hence

~ K2
11([)+J](I)SC(1+7) , vVt > 0.

(2) Set

1 1
C4:C|+—, t4=C4€2h'1 (‘—),
8 €

where § > 0 is the constant appearing in (5.1) and C, is as in Theorem 3.1. Then for all r €
I, N t4, 00), by (5.1) we have

2

IDuE(t,x)l2 < —I:—z [6 + exp (—% (ld(x)| — EC3))] .

Therefore,
2

o< Xia+ X 2 ad cy)d
) < | zHEfﬂzexp(—;(l )] — € 3>) x.

By (4),d, = d on A,. In the above integral we use local orthogonal coordinates w, with w; = dj(x).
Since d is smooth in §2,, there is a constant C, depending on the (d — 1)-dimensional measure of
g, such that

K? K2 )
L) < — A+ —C e—:(u'l-ECz)dwl
2 2e ey
2

K ~
= T(lAZi + C)s vt € 16 N [t4’ 00)7

where C is an appropriate constant, possibly different than the constant appearing in the first step.
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(3)Fort € I, N[y, 00) and |dy(x) > A, (5.1) and (5) yield

Kz o
IDue(t,X)lz < 67[6 +e—;(l—6Cz)].

Therefore for sufficiently small € > 0,
2

K o
L) < ‘2—(|A3|+C), Vi e I N[ty, 0),

for an appropriate constant C , again possibly different than the constant appearing in the previous
steps.

(4) Recall that we have chosen C, C; satisfying (3.4) with m = 2. Hence for all |dy(x)| > A,
and ¢ € I3,

W) = %(1 —u) (1 4 u)y?

2(u¢ — sign(ug))? < 2€*.

IA

Therefore,

J3(t) < 2€%|As), vt e ..

(5) Set

1 1
C5=C]+—, fS'—'Cszln(“),
j2a €

where  is the constant appearing in Theorem 4.1 and C, is as in Theorem 3.1. Then (4.2) and (4.3)
imply that forall t € I, N [t5, 0), |do(x)| € [€C3, A]

_ +
(1. 2)] = [q (M ~K) - Ke- le] ,
€ 4

where (a)™ = max{a, 0}. Since |W'(u)| < | for |u| < 1, for sufficiently small € > 0 we have

o< (s (2 ) o))
< Aéw([q (M_K>T) dx+(K+:—1>|Azi
< /Q éw ([q (ﬁﬂ(ﬂe__z’{_f)Y) dx + (K + i) |Aa,
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forall t € I, N [ts, €]. Now using the same change of variables used in step 2 we obtain

0= & w ([ (] Yoo 5+ v

C 2e K 1
< — W) dw, + (K + 4—1) |As|

€ EC}

re=2K
+ Cfo Wig(r))dr.

Since

(q'(r))? _ 8e¥

Wigr) =" =

L(t) < C(|Ay] +1).

(6) Combining the previous steps we conclude that

us(A:t)

3
PCAGEAG)
i=l

CAl+ 1),

IA

for all > O satisfying

tel, t>t, t>t5, t<e,

and sufficiently small € > 0.

489

6.1)

(6.2)

(7) Let ¥ be a smooth positive function decaying exponentially as ]x| — oo. Then using 1.1

we obtain

d € € l € 2
E/\Il(x),u dx;t) = —efW(—Au +;f(u )) dx

|
—i—e/-D\I/-Du6 (—Au‘+—3f(u‘)) dx
€

DV - Du‘)z
20

IA

—6/‘P<—Au‘+6i2f(u‘)——

.o |IDY]?
+ e/lDu [ v dx

DW|?
eleu‘Izudx.
4

IA
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Let
U (x) = exp (—\/ 1+ |x|2) .

Then |D\il| < W and

A

d/\if() “(dx: 1) I/GD‘lz\in
g ] Yowdxn = o | SlDutwdx
1 “
< Efw(x);f(abc;z).

Therefore forany t > 1, > 0,

/ B (o udx; 1) < f G (npudx: ) e (6.3)

(8) Let 1y be a point satisfying (6.2). Then (1) yields

A

[ @nn = Y e wixieti =10k
1=1

IA

éwdie‘i(l + @) =G -1
< C, h
where wy, is the volume of the unit space in R and Cisan appropriate constant. Then by (6.3)
[ Foouaxin < éet,
for every sufficiently small € and

1
t > max{Cy, Cs4, Cs}€*In (-) : (6.4)
€

(9) Now let ¢ be any continuous function satisfying
A = sup{|p(x)]eV D x € R} < 0.

Then |¢(x)| < AW (x), and

/ ()| (dx; 1) < C A et 65)
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for all ¢ satisfying (6.4), and sufficiently small € > 0. Since for every € > 0, by (9)

1 (K?
weldxt)y < —|— +1} dx.
€ 2

Hence for every 1 > 0,

A [K? “
/|¢<x)m‘(dx;r)s; 4 /\wx)dx. 6.6)

Now (A) follows from (6.5) and (6.6) with 1 = /2. O

(1]
(21

31
[4]

15]
[6]
171
(81

9]
[10]

{11
[12]
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