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Ginzburg-Landau Equation and Motion by Mean 
Curvature, II: Development of the Initial Interface 

By Halil Mete Soner 

ABSTRACT. In this paper, we study the short time behavior of the solutions of a se- 
quence of Ginzburg-Landau equations indexed by E. We prove that under appropriate 
assumptions on the initial data, solutions converge to -t-I in short time and behave like 
the one-dimensional traveling wave across the interface. In particular, energy remains 
uniformly bounded in ~. 

1. I n t r o d u c t i o n  

In an earlier paper [ 12], I have studied the asymptotic behavior of the Ginzburg-Landau equation, 

I 
u~ - / ~ u  ~ + ~ f ( u  ~) = O, (0, ~ )  • ~J, (I . l )  

ur = uo(x), x ~ ~J. 

The nonlinearity f is the derivative of  a bi-stable potential W: 

I W(u) = ~ ( u  2 - 1) 2, f(u) = W ' ( t t )  = 2 t t ( u  2 - l) .  

(1.2) 

(1.3) 

In [ 12], I proved that there are two open, disjoint subsets "P, A/'of (0, oo)  • 7~ d and a subsequence 

r satisfying 

(a) u ~'' ~ 1, uniformly on bounded subsets of  P ,  

(b) u ~'' ~ - 1, uniformly on bounded subsets of  IV', 
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(c) F = complement of ( P  UA/') has Hausdorff dimension d and it moves by mean curvature 

in the sense defined in [12], [1]. 

This convergence result generalizes the previous results of Rubinstein, Steinberg, and Keller [ 10], 
DeMottoni and Schatzman [8], Chen [2], Evans, Soner, and Souganidis [4], Barles, Soner, and 

Souganidis [ I ], and limanen [7]. For more information on the Ginzburg-Landau equation, the weak 
theories for the mean curvature flow and other related topics we refer the reader to the introduction 

of the companion paper [ 12] and the references therein. 

The above result was proved under the assumption (cf. (2.6) in [12]) that for every 3 > 0 there 

are positive constants K~ and 1/such that for every continuous function qg, 

(A) suplfl~o(x)l~t'(dx;t) 
< K8 sup{l~o(x)leOlXl: x �9 7U} 

where 

lz~ (dx; t) = [ 2 lDu~ (t, x)12 q- 1 W(u~( t, x))] dx.  (1.4) 
E 

The main purpose of this paper is to verify (A) under some reasonable conditions on the initial 
data u~. This analysis requires a detailed description of u ~ (t, x )  near the initial interface. Such an 

analysis have already been carried out by DeMottoni and Schatzman [9] and by Chen [2]. However, 

the condition (A) cannot be directly obtained from the results of [2], [9]. 

There are two key estimates in the proof of (A). The first is a detailed description of u ' (t, x)  near 
the initial interface, Theorem 4. I below. This result is a sharper version of a result of DeMottoni and 
Schatzman [9] and its proof is similar to Lemma 4. I in [5]. The description obtained in Theorem 4.1 
is of  independent interest. The second key step in the proof of (A) is a gradient estimate, Theorem 5.1 
below. 

The paper is organized as follows. In the next section the main result of  this paper is described. 
In Section 3, a result of  DeMottoni and Schatzman is recalled and an easy gradient bound is proved. 
The behavior of u'(t ,  x) near the initial interface is analyzed in Section 4 and a second gradient 

estimate is obtained in Section 5. A proof of  the main theorem is given in the last section. 

2. Main Result 

Multiply (I.  !) by euT, integrate and use integration by parts to obtain 

E~(tl) -- E~(t2) = - r  (u~)2dxdt ,  tl > t2, 
d 

(2.1) 



where 
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Hence (A) holds with r/ = 0 provided that E ~(0) is bounded in ~. In particular, an elementary 

computation shows that E ~ (0) is bounded in E, if there are a function Z~, a constant X > I, and a 

bounded open set ~ of finite perimeter (cf. [3], [6]) satisfying 

u ~ o ( x ) : q ( ~ ) ,  q(r): tanh(r) ,  

1 
E IDz'o[ <_ Z, - fd(x)  < Zo(X) < Xd(x),  

where d(x) is the signed distance between x and the boundary of  f2. 

When u~) is independent of ~, we generally do not expect E '  (0) to be bounded in E. Indeed, 

let u~ - - /3  for some constant 13 :/: 4-1. Then u'(t, x) = w'(t)and E ' (t) = + e ~  for every t > 0 

and ~ > 0 .  However, condition (A) holds with any r/ > 0. 

In the remainder of this paper, we assume that 

u~l is independent of e, i.e., u~) = u0, 

u0 E C3(~' /) ,  lu0(x)l < 1, 

I'o = {x C Ted: Uo(X) : 0} is bounded, 

(2.2a) 

(2.2b) 

(2.2c) 

infv,, IDuol > 0, (2.2d) 

l imsupu+o inflq>_R lUo(X)l > 0, (2.2e) 

where C/~(TT/) is the set of all bounded functions that are thrice continuously differentiable with 

bounded derivatives. Observe that (2.2b,c,d) imply that F'0 is a C 2 manifold. The main goal of this 

paper is to prove (A) under the above hypotheses; see Theorem 6. I below. 

3. Preliminaries 

Let do(x) be the signed distance between x and Fo. Choose Z > 0 such that 

do ~ C2(~'~.), ~'~. = {X C ~,1: Id0(x)l < 2Z}. (3.1) 



480 Halil Mete Soner 

We now recall a result of DeMottoni and Schatzman [9, Theorem 5]. 

Theorem 3.1. 

we have 

For eve~. 3, m > 0 there are Ci, C2 > 0 such that for eve~' 

t e l ,  :=  [ C , E 2 I n ( I ) ,  C2ff-~ 1 , (3.2) 

u ' ( t , x ) - - q ( ~ )  _<3, if ldo(x)l  _<X, (3.3) 

lu' (t, x) - signlu0(x)ll < e'", if [d0(x)l >_ X. (3.4) 

Recall that q(r)  = tanh(r). In the remainder of this paper Ci,  C2 denote the constants con- 
structed in Theorem 3.1 with m = 2 and 3 = I/8.  Also set 

C3 = q - '  (7/8). (3.5) 

Fix t E If. Then whenever d (x )  E [eC3, L], (3.3) yields 

u' ( t ,  x)  > q - i  - 3 > - .  
- - 4 

Also if d(x )  > X, (3.4) implies the above inequality, provided that E 2 < 1/4. Hence 

u ' ( t , x )  > 3/4, ~'e < 1/2, t E I,, d (x )  > eC3. (3.6) 

Similarly, 

u ' ( t , x )  < --3/4,  Ve < 1/2, t E I~, d (x)  < -~C3.  (3.7) 

We close this section with a simple gradient estimate. 

L e m m a  3.1. There is a constant K, independent of r satis~, ing 

K 
IDu*(t, x)l ~ - - .  (3.8) 

E 

Proof. Since iuol _< 1, lu ~ (t, x)l  < 1 for all (t, x).  Set 

I 
g(t ,  x)  = - ~ f ( u ' ( t ,  x)) .  

E~ 
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Then for all 0 < r < t, 

u ' ( t , x )  = [G( t  - r ,  .) * u ' ( r ,  . )](x) (3.9) /' 
+ [G( t  - s - r ,  .) * g ( s ,  . ) l (x)  ds ,  

where * denotes the convolution and G is the heat kernel, i.e., 

G ( r ,  y)  = (4J r r ) -~  exp \ - - ~ - r  ] " 

Now, differentiate (9) with respect xj and use the properties of the convolution and the heat kernel 

to obtain 

lu~,(t,x)l < [IDjG(t-  r ,  ")ILL, 

C C 
- -  + ~ / t  - r 

< ~ / t - r  

f 
t 

I l u ' ( r ,  ")IIL-~ + I IDj ( t  - s - r ,  ")ILL, IlgllL~ dx, 

where C is an appropriate constant. Choose r : t - -  6 2 tO obtain (3.8). [ ]  

4. Behavior near the interface 

In this section we prove a sharper version of (3.3), (3.4). Our approach is very similar to [5, 
Lemma 4. I ]. Let 3. be as in (3. l) and set 

t , =  C, E2 In ( ~ ) .  (4.1) 

Theorem 4.1. There are lz, K > 0 such that f o r  sufficiently small e > 0, 

u ~ ( t , x )  > W ( t  - t l , d o ( x ) ) ,  Y t  ~ l ~ , d o ( x )  ~ 1r 3-], 

where 

(4.2) 

u ' ( t ,  x )  < - W ( t  - t j ,  Id0(x) l ) ,  Vt~  L ,  do(x)  E [-3- ,  - e C 3 l ,  (4.3) 

W ( t , d ) = m a x  q ~ ~exp  - ' S  " 

P roo f ,  We will prove only (4.2). The proof of (4.3) is similar. 
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(1) In view of(3.  l) there is d E Ch2(~ a) satisfying 

d(x) = & ( x ) ,  i f l & ( x ) t  < X, (4.4) 

Id(x)l  >__ X, if Ido(x)l ~ ~., (4.5) 

IDd(x)l <_ l, Vx. (4.6) 

For ~e (t) ,  p(t) >_ 0 (to be determined later) define 

( d ( x ) - ~ C 3 - ~ ( ~ ) )  _ 
v(t, x) : q 

where C3 is as in (3.5). 

We will show that for appropriately chosen se(.), p ( . ) ,  and a sufficiently small ~ > 0, v is a 

subsolution of (1.1) on {v > 0}. Indeed, a direct computation shows that 

1 
I :=  v, -- Av 4- ~ f ( v ) ,  

I 
4- ~ 7 [ f ( v )  - q " ( . . . ) l D d l 2 l ,  

where ( . . . )  denotes [d(x)  - eC3 - se(~)l/6. 

(2) Since q ( - . - )  = v 4- p and p > 0, 
{v > 0} , q"( .  - .) < 0 and (6) yields 

q( .  - .) > 0 whenever v(t, x) > O. Therefore on 

q " ( . . . ) ] D d ]  2 > q " ( . . . )  = f ( q ( . . . ) ) .  

So o n { v  > 0 } w e h a v e  

' 
I < ~sq  ( ' " ) s  e '  - 

where fl :=  Ilq'll~ll A d i l l .  

(3)  Set 

+ ~--~[f(v) - f (q( . . . ) )1  4- fl , (4.7) 

I = rain (u): u > > O, (4.8) 
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and 

p ( r )  = - - +  ~fi (~  
/_t 

We will choose ~ > 0 in step 5 satisfying 

7 )  e x p ( - - ~ - ~ )  ' r > O "  (4.9) 

~' > 0 .  (4.10) 

(4) Suppose that 

q ( - - . )  c [~ ,  1]. (4.11) 

7 1 The case q(---)  < g will be analyzed in the next step. Since I p ( r ) l  < ~, (4.11) implies that 

v(t, x)  = q( . .  .) -- p > -~. 

Since v = q( . - - )  -- p < q( . - . ) ,  (4.8) yields 

f ( v ( t , x ) ) - - f ( q ( . . . ) )  < _ # p ( t ) .  

Use (4.9), (4.10) and the above inequality in (4.7) to obtain 

- -  ~ ~ ~ 2  ' 

on {v R 01. 

(5) Suppose that (4. l I ) does not hold, i,e., 

Then on {v >0} ,  

Set 

7 q ( . . - )  < - .  
8 

q ( . . . )  (5 [0, 71 and 

q ' ( . . . ) = ( 1 - q ( . . . ) 2 ) >  1 -  : : y .  

oe := max{If ' (u)l :  u c [0, 11}. 

(4.12) 
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Since v < I ,on  {v > 0} we have 

f ( v )  -- f ( q ( . . . ) )  

Halil Mete Soner 

<_ o t l v ( t , x ) - q ( . . . ) L = o t p ( ~ ) .  

Use the above inequality and (4.12) in (4.7) to obtain 

- -  ( - 2  (. (. 

We now choose ~(.) satisfying ~e(0) = 0 and 

1 
se'(r) = --{/~(. + oep(r)  - ( .p ' (r)} -- 

g 

Using (4.9) we integrate the above equation: 

~ ( r )  = - 1 +  r +  
Y 

Observe that this choice of ~ satisfies (4. I 0). 

(6) By the previous two steps, 

3 
uE(t, x )  > - 

4 

Also by (3.6) 

I 3 
v(0, x ) = q ( ' " ) - -  < -  

4 - 4  

In particular, 

and since p,  ,~ > 0, 

v( t  - t~ ,x )  <_ q(O) = 0 < u r  

o e + / z  
- - p ( r ) ,  r > 0 .  

Y 

I < on {v > 0}. 

71(, 711] 

u E I~ , do(x)  > ~C3. 

E _< u (h ,  x ) ,  Yd0(x) > (.C3, 

Yt c l r  V d 0 ( x ) = ( . C 3 .  

Since ur x )  > 0 for all t E 1r and d0(x) > (.C3, the maximum principle yields 

u ~ ( t , x )  > v( t  - t l , x ) ,  Vt E I~, do(x)  > eC3. 

Now (4.2) follows from (4.13), (4), (3.6), and the definitions of p and e. [ ]  

(4.13) 
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5. A gradient estimate 

In this section we obtain an upper bound for ]Du'] away from the interface. Let tj be as in 

(4.1), d E C~(T~ d) be an extension of  d0 satisfying (4), (5), (6), and C3 be as in (3.5). 

T h e o r e m  5.1. There are constants K, 6, ot > 0 satisfying 

,Du~(t,x),  2 < ~-K2 [exp ( - ~ ( t  - t , ) )  + e x p [ - ~ ( l d ( x ) ,  - ~CO]] , 

for all sufficiently small ~ > 0 and t E l(, Ido(x)l >_ ~C3. 

(5.1) 

Proof .  Set 

f2 = {(t, x):  t E I , ,  Ido(x)l > ~ C3}, 

~o(t, x) = IDu((t, x)] 2. 

( 1 ) Differentiate ( I. 1 )and then multiply by 2Du ~ to obtain 

By (3.6) and (3.7), 

Set 

Then 

2 
~o, -- Aq9 + --zf'(u')go = -21102u'l12 < O. 

3 
lu ' ( t ,x) l  ~ -7, u  ~ ~ .  

4 

3 = 2 f '  = min ' (u) :  ]u] > ~ > 0. 

6 
- -  < O o n  f2. (/9 t -- Aft9 + ff2(/9 -- (5.2) 

(2) Set 

6 
tl))  + g K2 lexp(__~(t - (Id(x)l-~C~)], q, ( t, x) = - ~  

where K > 0 is as in (3.8) and g( . )  is the unique, bounded solution of 

- grr(r) + II/~ dll~gr(r) + 6g(r) = 0, r > 0, (5.3) 
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satisfying g(0)  = I. Then 

g ( r )  = - a r  e , 

Halil Mete Soner 

1 ~/11 A dll 2 + 46}. oz = ~{-II  A d[Ioo + 

(3) We claim that qJ is a supersolution of (5.2) on f2. Indeed, 

, d j 
* ,  --  A qJ -4- -~d2 = - - ~  --grr(" " ")[Dd[ z - E ~ -  I A d gr( .  . ") -I- 6g( .  . .) , 

where ( - . . )  = ( I d ( x ) l  - eC3)/e. Since gr <-- 0 < grr and IDdl _< 1 (cf. (6)), (5.3) implies that 

f o r e <  1, 

6 
qJ, - A ~  + -=qJ >_ O, on f2. 

e L 

(4) By (3.8), 

g 2 

qJ ( t l , x )  > e2 > ~O(tl,X), V Ido(x)l ~ eC3, 

and since g(0)  = 1, 

g 2 
qJ(t, x)  > - -  > ~o(t, x) ,  u [do(x) [  = e C  3. 

e 2 

(5) Now an application of  the maximum principle yields od > ~0 on f2. [ ]  

6. Conclusion 

T h e o r e m  6.1. Assume  (2.2). Then (A) holds. 

Proo f .  Let A be a Borel subset of  7~ a with a finite Lebesgue measure. Set 

~21 = {x ~ ~d: Ido(x)l _< eC3}, 

s22 = {x ~ ~a:  Ido(x)l ~ [EC3, ~.]}, 

Ai = A O ~ i ,  i = 1 ,2 ,3 ,  
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li(t) = fa, 2 [Du`(t'x)I2dx' 

Ji(t) = fA l w ( u ' ( t ' x ) ) d x '  

i = i , 2 , 3 ,  t > 0 ,  

i = 1 ,2 ,3 ,  t > 0 ,  

where ~., C3 are as in (3.1) and (3.5), respectively. In the following steps we will estimate li and Ji's 
separately. 

(1) By Lemma 3.1, 

' 
I 1 (t) + Ji ( t)  < - - - -  + -- = + 1 

- -  f2~?  2 ~ E 

Since 1~0 is smooth and bounded, for sufficiently small ~ > 0, I~Jl _< E(7 for an appropriate 

constant C'. Hence 

(2) Set 

C4 = C I --}- ~ ,  t4 = C4 62 In , 

where 8 > 0 is the constant appearing in (5.1) and Ci is as in Theorem 3.1. Then for all t E 

I~ A [t4, oo),  by (5.1) we have 

K2 [E +exp( - -~  (Id(x)' --EC3))] IDu'(t, x) l  2 _< -77 

Therefore, 

12(t) <_ ~--IA2t + ~-E J~2 

By (4), do = d on A2. In the above integral we use local orthogonal coordinates w, with w i = do (x).  
Since do is smooth in f22, there is a constant C, depending on the (d - 1)-dimensional measure of 

Fo, such that 

K 2 K 2 c f Z  _ - -  e -ziu''-~C`) dWl 12(t) < -~-IA2I + 
2~ JEC~ 

K 2 
< - - ( I A 2 t  q- C'), Yt E /~ A [t4, (x)), 
- 2 

where ~7 is an appropriate constant, possibly different than the constant appearing in the first step. 
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(3) For t C /~ fq [t4, co)  and [do(x) >_ ~-, (5.1) and (5) yield 

K 2 
IDu ' ( t ,  x)l  2 < ~ - [ r  + e-~{x-'c')]. 

Therefore for sufficiently small r > 0, 

K 2 
13(0 ~ --~--(IA3I 4- C) ,  'v't �9 I ,  N [t4, co ) ,  

for an appropriate constant C,  again possibly different than the constant appearing in the previous 

steps. 

(4) Recall that we have chosen Cj ,  Cz satisfying (3.4) with m ----- 2. Hence for all Id0(x)l >__ X, 
and t E I3, 

! 
W ( u ' )  = ~( l  - u')2( l  + u')  2 

< 2(u ~ -- sign(uo)) 2 < 2r 4. 

Therefore, 

J3(t)  _< 2r Vt ~ I , .  

(5) Set 

C5 = C~ + -- ,  t5 = C5r 2In , 
/z 

where/z  is the constant appearing in Theorem 4.1 and Ci is as in Theorem 3.1. Then (4.2) and (4.3) 

imply that for all t E I,  (q [ts, co) ,  Ido(x)l �9 [r Xl 

I( ) [d0(x)l - K t  K Kr r , 
l u ' ( t , x ) l  > q r - - 

where (a )  + = max{a,  0}. Since IW'(u) [  < I for lu] < I, for sufficiently small r > 0 we have 

Jz( t )  < - W  q K - r  K +  d x  
, r  r 

< 

< ~r q ~ d x +  K +  IA21, 
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for all t E I~ N [ts, e]. Now using the same change of variables used in step 2 we obtain 

C f  z ( [  ( w ' - 2 K ) ]  +)  ( 
J2(t) < -- W q dw, + K 

6 C~ 6 

< -- W(O) d w l +  K +  [A21 
EC3 

C fo ~'/r + W(q(r)) dr. 

Since 

W(q(r)) - 
(q'(r))  2 8e 4r 

2 (e > -'[- I) 4, 

489 

J2( t )  _< ~'(IA21-k- 1). 

(6) Combining the previous steps we conclude that 

3 
t d (A ;  t) = y~.(l ;( t)  + J;(t)) 

i=1 

< C'(IAr + I), 

(6.1) 

for all t > 0 satisfying 

t c /~, t >_ t4, t > ts, t < ~, (6.2) 

and sufficiently small E > 0. 

(7) Let qJ be a smooth positive function decaying exponentially as Ix[ ~ oo. Then using 1. I 
we obtain 

d f 
I qJ(x)lt~(dx; t) 

dt J 
f (  ,)2 = - e  q~ - A u  ~ + - ~ f ( u  ~) dx 

f ( _' ) + e  DqJ .Dtd  - A u  ~ +7-~f(u ~) dx 

f ( __1 DqP'Du~']2-2~- ,1 < -~  kt' - A u  ~ + ~ f ( u  ~) 

10.12 
+ t: [ [DuEl 2 

- -  dx 
J 4~ 

_ <  flDu'l lD4 l  dx. 
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Let 

Then IDOl 5_ + and 

Therefore for any t > to > 0, 
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~ ( x )  = exp ( - ~ ) .  

ddt f +(x).'(dx; ,) <- ~ I Du`12~ dx 

'f < - + ( x ) # ' ( d x ; t ) .  
- 2 

f f t-,o ~P(x)Iz'(dx; t) < ~P(x)#'(dx; to) e --v- (6.3) 

(8) Let to be a point satisfying (6.2). Then (1) yields 

f ~P(x)lz'(dx; to) < Y~e-ilz'({Ixl ~ [i - !, i)}; to) 
t=l 

O0 

< C w a y ~ e - i ( l  + (it d -  ( i -  1) a) 
i=1 

<__C, 

where Wd is the volume of the unit space in T~ e and C is an appropriate constant. Then by (6.3) 

f - '  ~(X)lZ'(dx; t) < Ce:, 

for every sufficiently small E and 

t >  max{C~, C4, C5}~2 in ( ~ ) .  (6.4) 

(9) Now let ~b be any continuous function satisfying 

A := sup{14,(x)le~ll+lxl~: x ~ ~d} < ~ .  

Then I~(x)l 5 A~(x), and 

/ Iq~(x)ltz'(dx; t) <_ C A e' ,  (6.5) 
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for all t satisfying (6.4), and sufficiently small E > O. Since for every e > O, by (9) 

# ' ( d x ;  t )  < - + 1 d x .  

Hence for every t > 0, 

f l 4 ~ ( x ) l l z ' ( d x ;  t )  <_ - -  - - -  + 1 6 2 ( x ) d x .  
6. 

Now (A) follows from (6.5) and (6.6) with q = ,r [ ]  

(6.6) 
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