Ginzburg-Landau Equation and Motion by Mean Curvature, II: Development of the Initial Interface

By Halil Mete Soner

Abstract

In this paper, we study the short time behavior of the solutions of a sequence of Ginzburg-Landau equations indexed by ϵ. We prove that under appropriate assumptions on the initial data, solutions converge to ± 1 in short time and behave like the one-dimensional traveling wave across the interface. In particular, energy remains uniformly bounded in ϵ.

1. Introduction

In an earlier paper [12], I have studied the asymptotic behavior of the Ginzburg-Landau equation,

$$
\begin{gather*}
u_{t}^{\epsilon}-\Delta u^{\epsilon}+\frac{1}{\epsilon^{2}} f\left(u^{\epsilon}\right)=0, \quad(0, \infty) \times \mathcal{R}^{d}, \tag{1.1}\\
u^{\epsilon}(0, x)=u_{0}^{\epsilon}(x), \quad x \in \mathcal{R}^{d} . \tag{1.2}
\end{gather*}
$$

The nonlinearity f is the derivative of a bi-stable potential W :

$$
\begin{equation*}
W(u)=\frac{1}{2}\left(u^{2}-1\right)^{2}, \quad f(u)=W^{\prime}(u)=2 u\left(u^{2}-1\right) \tag{1.3}
\end{equation*}
$$

In [12], I proved that there are two open, disjoint subsets \mathcal{P}, \mathcal{N} of $(0, \infty) \times \mathcal{R}^{d}$ and a subsequence ϵ_{n} satisfying
(a) $u^{\epsilon_{n}} \rightarrow 1$, uniformly on bounded subsets of \mathcal{P},
(b) $u^{\epsilon_{n}} \rightarrow-1$, uniformly on bounded subsets of \mathcal{N},

Math Subject Classification 35A05. 35K57.
Key Words and Phrases Ginzburg-Landau equation, traveling waves, maximum principle.
Partially supported by the NSF Grant DMS-9200801 and by the Army Research Office through the Center for Nonlinear Analysis.
(c) $\Gamma=$ complement of $(P \cup \mathcal{N})$ has Hausdorff dimension d and it moves by mean curvature in the sense defined in [12], [1].

This convergence result generalizes the previous results of Rubinstein, Steinberg, and Keller [10], DeMottoni and Schatzman [8], Chen [2], Evans, Soner, and Souganidis [4], Barles, Soner, and Souganidis [1], and IImanen [7]. For more information on the Ginzburg-Landau equation, the weak theories for the mean curvature flow and other related topics we refer the reader to the introduction of the companion paper [12] and the references therein.

The above result was proved under the assumption (cf. (2.6) in [12]) that for every $\delta>0$ there are positive constants K_{δ} and η such that for every continuous function φ,
(A)

$$
\begin{aligned}
\sup \left\{\int|\varphi(x)| \mu^{\epsilon}(d x ; t)\right. & \left.: \epsilon \in(0,1), t \in\left[\delta, \frac{1}{\delta}\right]\right\} \\
\leq & K_{\delta} \sup \left\{|\varphi(x)| e^{\eta|x|}: x \in \mathcal{R}^{d}\right\}
\end{aligned}
$$

where

$$
\begin{equation*}
\mu^{\epsilon}(d x ; t)=\left[\frac{\epsilon}{2}\left|D u^{\epsilon}(t, x)\right|^{2}+\frac{1}{\epsilon} W\left(u^{\epsilon}(t, x)\right)\right] d x . \tag{1.4}
\end{equation*}
$$

The main purpose of this paper is to verify (A) under some reasonable conditions on the initial data u_{0}^{ϵ}. This analysis requires a detailed description of $u^{\epsilon}(t, x)$ near the initial interface. Such an analysis have already been carried out by DeMottoni and Schatzman [9] and by Chen [2]. However, the condition (A) cannot be directly obtained from the results of [2], [9].

There are two key estimates in the proof of (A). The first is a detailed description of $u^{\epsilon}(t, x)$ near the initial interface, Theorem 4.1 below. This result is a sharper version of a result of DeMottoni and Schatzman [9] and its proof is similar to Lemma 4.1 in [5]. The description obtained in Theorem 4.1 is of independent interest. The second key step in the proof of (A) is a gradient estimate, Theorem 5.1 below.

The paper is organized as follows. In the next section the main result of this paper is described. In Section 3, a result of DeMottoni and Schatzman is recalled and an easy gradient bound is proved. The behavior of $u^{\epsilon}(t, x)$ near the initial interface is analyzed in Section 4 and a second gradient estimate is obtained in Section 5. A proof of the main theorem is given in the last section.

2. Main Result

Multiply (1.1) by $\epsilon u_{t}^{\epsilon}$, integrate and use integration by parts to obtain

$$
\begin{equation*}
E^{\epsilon}\left(t_{1}\right)-E^{\epsilon}\left(t_{2}\right)=-\epsilon \int_{t_{1}}^{t_{2}} \int_{\mathcal{R}^{d}}\left(u_{t}^{\epsilon}\right)^{2} d x d t, \quad t_{1}>t_{2} \tag{2.1}
\end{equation*}
$$

where

$$
E^{\epsilon}(t)=\mu^{\epsilon}\left(\mathcal{R}^{d} ; t\right)=\int_{\mathcal{R}^{\prime}}\left[\frac{\epsilon}{2}\left|D u^{\epsilon}(t, x)\right|^{2}+\frac{1}{\epsilon} W\left(u^{\epsilon}(t, x)\right)\right] d x
$$

Hence (A) holds with $\eta=0$ provided that $E^{\epsilon}(0)$ is bounded in ϵ. In particular, an elementary computation shows that $E^{\epsilon}(0)$ is bounded in ϵ, if there are a function z_{0}^{ϵ}, a constant $\lambda \geq 1$, and a bounded open set Ω of finite perimeter (cf. [3], [6]) satisfying

$$
\begin{aligned}
& u_{0}^{\epsilon}(x)=q\left(\frac{z_{0}^{\epsilon}(x)}{\epsilon}\right), \quad q(r)=\tanh (r), \\
& \left|D z_{0}^{\epsilon}\right| \leq \lambda, \quad \frac{1}{\lambda} d(x) \leq z_{0}^{\epsilon}(x) \leq \lambda d(x),
\end{aligned}
$$

where $d(x)$ is the signed distance between x and the boundary of Ω.
When u_{0}^{ϵ} is independent of ϵ, we generally do not expect $E^{\epsilon}(0)$ to be bounded in ϵ. Indeed, let $u_{0}^{\epsilon} \equiv \beta$ for some constant $\beta \neq \pm 1$. Then $u^{\epsilon}(t, x)=w^{\epsilon}(t)$ and $E^{\epsilon}(t)=+\infty$ for every $t \geq 0$ and $\epsilon>0$. However, condition (A) holds with any $\eta>0$.

In the remainder of this paper, we assume that

$$
\begin{align*}
& u_{0}^{\epsilon} \text { is independent of } \epsilon \text {, i.e., } u_{0}^{\epsilon}=u_{0} \text {, } \tag{2.2a}\\
& u_{0} \in C_{b}^{3}\left(\mathcal{R}^{d}\right),\left|u_{0}(x)\right|<1, \tag{2.2b}\\
& \Gamma_{0}=\left\{x \in \mathcal{R}^{d}: u_{0}(x)=0\right\} \text { is bounded, } \tag{2.2c}\\
& \inf _{\Gamma_{0}}\left|D u_{0}\right|>0, \tag{2.2d}\\
& \lim \sup _{R \rightarrow 0} \inf _{|,:| \geq R}\left|u_{0}(x)\right|>0, \tag{2.2e}
\end{align*}
$$

where $C_{b}^{3}\left(\mathcal{R}^{d}\right)$ is the set of all bounded functions that are thrice continuously differentiable with bounded derivatives. Observe that ($2.2 \mathrm{~b}, \mathrm{c}, \mathrm{d}$) imply that Γ_{0} is a C^{2} manifold. The main goal of this paper is to prove (A) under the above hypotheses; see Theorem 6.1 below.

3. Preliminaries

Let $d_{0}(x)$ be the signed distance between x and Γ_{0}. Choose $\lambda>0$ such that

$$
\begin{equation*}
d_{0} \in C^{2}\left(\Omega_{\lambda}\right), \quad \Omega_{\lambda}=\left\{x \in \mathcal{R}^{\prime}:\left|d_{0}(x)\right|<2 \lambda\right\} . \tag{3.1}
\end{equation*}
$$

We now recall a result of DeMottoni and Schatzman [9, Theorem 5].

Theorem 3.1. For every $\delta, m>0$ there are $C_{1}, C_{2}>0$ such that for every

$$
\begin{equation*}
t \in I_{\epsilon}:=\left[C_{1} \epsilon^{2} \ln \left(\frac{1}{\epsilon}\right), C_{2} \epsilon^{\frac{3}{2}}\right] \tag{3.2}
\end{equation*}
$$

we have

$$
\begin{array}{ll}
\left|u^{\epsilon}(t, x)-q\left(\frac{d_{0}(x)}{\epsilon}\right)\right| \leq \delta, & \text { if }\left|d_{0}(x)\right| \leq \lambda, \\
\left|u^{\epsilon}(t, x)-\operatorname{sign}\left[u_{0}(x)\right]\right| \leq \epsilon^{m \prime}, & \text { if }\left|d_{0}(x)\right| \geq \lambda . \tag{3.4}
\end{array}
$$

Recall that $q(r)=\tanh (r)$. In the remainder of this paper C_{1}, C_{2} denote the constants constructed in Theorem 3.1 with $m=2$ and $\delta=1 / 8$. Also set

$$
\begin{equation*}
C_{3}=q^{-1}(7 / 8) \tag{3.5}
\end{equation*}
$$

Fix $t \in I_{\epsilon}$. Then whenever $d(x) \in\left[\epsilon C_{3}, \lambda\right]$, (3.3) yields

$$
u^{\epsilon}(t, x) \geq q^{-1}\left(\frac{d(x)}{\epsilon}\right)-\delta \geq \frac{3}{4}
$$

Also if $d(x) \geq \lambda$, (3.4) implies the above inequality, provided that $\epsilon^{2}<1 / 4$. Hence

$$
\begin{equation*}
u^{\epsilon}(t, x) \geq 3 / 4, \quad \forall \epsilon \leq 1 / 2, \quad t \in I_{\epsilon}, \quad d(x) \geq \epsilon C_{3} . \tag{3.6}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
u^{\epsilon}(t, x) \leq-3 / 4, \quad \forall \epsilon \leq 1 / 2, \quad t \in I_{\epsilon}, \quad d(x) \leq-\epsilon C_{3} . \tag{3.7}
\end{equation*}
$$

We close this section with a simple gradient estimate.

Lemma 3.1. There is a constant K, independent of ϵ, satisfying

$$
\begin{equation*}
\left|D u^{\epsilon}(t, x)\right| \leq \frac{K}{\epsilon} \tag{3.8}
\end{equation*}
$$

Proof. Since $\left|u_{0}\right| \leq 1,\left|u^{\epsilon}(t, x)\right| \leq 1$ for all (t, x). Set

$$
g(t, x)=\frac{1}{\epsilon^{2}} f\left(u^{\epsilon}(t, x)\right)
$$

Then for all $0 \leq \tau \leq t$,

$$
\begin{align*}
u^{\epsilon}(t, x)= & {\left[G(t-\tau, \cdot) * u^{\epsilon}(\tau, \cdot)\right](x) } \tag{3.9}\\
& +\int_{\tau}^{t}[G(t-s-\tau, \cdot) * g(s, \cdot)](x) d s
\end{align*}
$$

where $*$ denotes the convolution and G is the heat kernel, i.e.,

$$
G(\tau, y)=(4 \pi \tau)^{-\frac{d}{2}} \exp \left(-\frac{|y|^{2}}{4 \tau}\right)
$$

Now, differentiate (9) with respect x_{j} and use the properties of the convolution and the heat kernel to obtain

$$
\begin{aligned}
\left|u_{x_{j}}^{\epsilon}(t, x)\right| & \leq\left\|D_{j} G(t-\tau, \cdot)\right\|_{L^{\prime}} \quad\left\|u^{\epsilon}(\tau, \cdot)\right\|_{L^{x}}+\int_{r}^{t}\left\|D_{j}(t-s-\tau, \cdot)\right\|_{L^{\prime}}\left\|_{g}\right\|_{L^{x}} d x \\
& \leq \frac{C}{\sqrt{t-\tau}}+\frac{C}{\epsilon^{2}} \sqrt{t-\tau}
\end{aligned}
$$

where C is an appropriate constant. Choose $\tau=t-\epsilon^{2}$ to obtain (3.8).

4. Behavior near the interface

In this section we prove a sharper version of (3.3), (3.4). Our approach is very similar to [5, Lemma 4.1]. Let λ be as in (3.1) and set

$$
\begin{equation*}
t_{1}=C_{1} \epsilon^{2} \ln \left(\frac{1}{\epsilon}\right) \tag{4.1}
\end{equation*}
$$

Theorem 4.1. There are $\mu, K>0$ such that for sufficiently small $\epsilon>0$,

$$
\begin{gather*}
u^{\epsilon}(t, x) \geq W\left(t-t_{1}, d_{0}(x)\right), \quad \forall t \in I_{\epsilon}, d_{0}(x) \in\left[\epsilon C_{3}, \lambda\right], \tag{4.2}\\
u^{\epsilon}(t, x) \leq-W\left(t-t_{1},\left|d_{0}(x)\right|\right), \quad \forall t \in I_{\epsilon}, d_{0}(x) \in\left[-\lambda,-\epsilon C_{3}\right], \tag{4.3}
\end{gather*}
$$

where

$$
W(t, d)=\max \left\{q\left(\frac{d-K t}{\epsilon}-K\right)-K \epsilon-\frac{1}{4} \exp \left(-\frac{\mu t}{\epsilon}\right), \frac{3}{4}\right\}
$$

Proof. We will prove only (4.2). The proof of (4.3) is similar.
(1) In view of (3.1) there is $d \in C_{b}^{2}\left(\mathcal{R}^{d}\right)$ satisfying

$$
\begin{align*}
& d(x)=d_{0}(x), \quad \text { if }\left|d_{0}(x)\right| \leq \lambda \tag{4.4}\\
&|d(x)| \geq \lambda, \quad \text { if }\left|d_{0}(x)\right| \geq \lambda \tag{4.5}\\
&|D d(x)| \leq 1, \quad \forall x \tag{4.6}
\end{align*}
$$

For $\xi(t), p(t) \geq 0$ (to be determined later) define

$$
v(t, x)=q\left(\frac{d(x)-\epsilon C_{3}-\xi\left(\frac{1}{\epsilon}\right)}{\epsilon}\right)-p\left(\frac{t}{\epsilon}\right)
$$

where C_{3} is as in (3.5).
We will show that for appropriately chosen $\xi(\cdot), p(\cdot)$, and a sufficiently small $\epsilon>0, v$ is a subsolution of (1.1) on $\{v \geq 0\}$. Indeed, a direct computation shows that

$$
\begin{aligned}
I:= & v_{t}-\Delta v+\frac{1}{\epsilon^{2}} f(v) \\
= & \frac{1}{\epsilon} q^{\prime}(\cdots)\left[-\frac{1}{\epsilon} \xi^{\prime}\left(\frac{t}{\epsilon}\right)-\Delta d(x)\right]-\frac{1}{\epsilon} p^{\prime}\left(\frac{t}{\epsilon}\right), \\
& +\frac{1}{\epsilon^{2}}\left[f(v)-q^{\prime \prime}(\cdots)|D d|^{2}\right]
\end{aligned}
$$

where (\cdots) denotes $\left[d(x)-\epsilon C_{3}-\xi\left(\frac{t}{\epsilon}\right)\right] / \epsilon$.
(2) Since $q(\cdots)=v+p$ and $p \geq 0, q(\cdots) \geq 0$ whenever $v(t, x) \geq 0$. Therefore on $\{v \geq 0\}, q^{\prime \prime}(\cdots) \leq 0$ and (6) yields

$$
q^{\prime \prime}(\cdots)|D d|^{2} \geq q^{\prime \prime}(\cdots)=f(q(\cdots))
$$

So on $\{v \geq 0\}$ we have

$$
\begin{equation*}
I \leq-\frac{1}{\epsilon^{2}} q^{\prime}(\cdots) \xi^{\prime}\left(\frac{t}{\epsilon}\right)-\frac{1}{\epsilon} p^{\prime}\left(\frac{t}{\epsilon}\right)+\frac{1}{\epsilon^{2}}[f(v)-f(q(\cdots))]+\frac{\beta}{\epsilon} \tag{4.7}
\end{equation*}
$$

where $\beta:=\left\|q^{\prime}\right\|_{\infty}\|\Delta d\|_{\infty}$.
(3) Set

$$
\begin{equation*}
\mu=f^{\prime}\left(\frac{5}{8}\right)=\min \left\{f^{\prime}(u): u \geq \frac{5}{8}\right\}>0 \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
p(\tau)=\frac{\epsilon \beta}{\mu}+\left(\frac{1}{4}-\frac{\epsilon \beta}{\mu}\right) \exp \left(-\frac{\mu \tau}{\epsilon}\right), \tau \geq 0 \tag{4.9}
\end{equation*}
$$

We will choose $\xi \geq 0$ in step 5 satisfying

$$
\begin{equation*}
\xi^{\prime} \geq 0 \tag{4.10}
\end{equation*}
$$

(4) Suppose that

$$
\begin{equation*}
q(\cdots) \in\left[\frac{7}{8}, 1\right] \tag{4.11}
\end{equation*}
$$

The case $q(\cdots) \leq \frac{7}{8}$ will be analyzed in the next step. Since $|p(\tau)| \leq \frac{1}{4},(4.11)$ implies that

$$
v(t, x)=q(\cdots)-p\left(\frac{t}{\epsilon}\right) \geq \frac{5}{8}
$$

Since $v=q(\cdots)-p \leq q(\cdots),(4.8)$ yields

$$
f(v(t, x))-f(q(\cdots)) \leq-\mu_{p}\left(\frac{t}{\epsilon}\right)
$$

Use (4.9), (4.10) and the above inequality in (4.7) to obtain

$$
I \leq \frac{\beta}{\epsilon}-\frac{1}{\epsilon} p^{\prime}\left(\frac{t}{\epsilon}\right)-\frac{\mu}{\epsilon^{2}} p\left(\frac{t}{\epsilon}\right)=0
$$

on $\{v \geq 0\}$.
(5) Suppose that (4.11) does not hold, i.e.,

$$
q(\cdots) \leq \frac{7}{8}
$$

Then on $\{v \geq 0\}, q(\cdots) \in\left[0, \frac{7}{8}\right]$ and

$$
\begin{equation*}
q^{\prime}(\cdots)=\left(1-q(\cdots)^{2}\right) \geq\left(1-\left(\frac{7}{8}\right)^{2}\right):=\gamma \tag{4.12}
\end{equation*}
$$

Set

$$
\alpha:=\max \left\{\left|f^{\prime}(u)\right|: u \in[0,1]\right\}
$$

Since $v \leq 1$, on $\{v \geq 0\}$ we have

$$
f(v)-f(q(\cdots)) \leq \alpha|v(t, x)-q(\cdots)|=\alpha p\left(\frac{t}{\epsilon}\right)
$$

Use the above inequality and (4.12) in (4.7) to obtain

$$
I \leq-\frac{\gamma}{\epsilon^{2}} \xi^{\prime}\left(\frac{t}{\epsilon}\right)-\frac{1}{\epsilon} p^{\prime}\left(\frac{t}{\epsilon}\right)+\frac{\alpha}{\epsilon^{2}} p\left(\frac{t}{\epsilon}\right)+\frac{\beta}{\epsilon}
$$

We now choose $\xi(\cdot)$ satisfying $\xi(0)=0$ and

$$
\xi^{\prime}(\tau)=\frac{1}{\gamma}\left\{\beta \epsilon+\alpha p(\tau)-\epsilon p^{\prime}(\tau)\right\}=\frac{\alpha+\mu}{\gamma} p(\tau), \quad \tau \geq 0
$$

Using (4.9) we integrate the above equation:

$$
\xi(\tau)=\frac{\epsilon}{\gamma}\left(1+\frac{\alpha}{\mu}\right)\left[\beta \tau+\left(\frac{1}{4}-\frac{\epsilon \beta}{\mu}\right)\left(1-\exp \left(-\frac{\mu \tau}{\epsilon}\right)\right)\right]
$$

Observe that this choice of ξ satisfies (4.10).
(6) By the previous two steps,

$$
I \leq \quad \text { on }\{v \geq 0\}
$$

Also by (3.6)

$$
u^{\epsilon}(t, x) \geq \frac{3}{4} \quad \forall t \in I_{\epsilon}, \quad d_{0}(x) \geq \epsilon C_{3}
$$

In particular,

$$
v(0, x)=q(\cdots)-\frac{1}{4} \leq \frac{3}{4} \leq u^{\epsilon}\left(t_{1}, x\right), \quad \forall d_{0}(x) \geq \epsilon C_{3}
$$

and since $p, \xi>0$,

$$
v\left(t-t_{1}, x\right) \leq q(0)=0 \leq u^{\epsilon}(t, x), \quad \forall t \in I_{\epsilon}, \quad \forall d_{0}(x)=\epsilon C_{3}
$$

Since $u^{\epsilon}(t, x) \geq 0$ for all $t \in I_{\epsilon}$ and $d_{0}(x) \geq \epsilon C_{3}$, the maximum principle yields

$$
\begin{equation*}
u^{\epsilon}(t, x) \geq v\left(t-t_{1}, x\right), \quad \forall t \in I_{\epsilon}, d_{0}(x) \geq \epsilon C_{3} \tag{4.13}
\end{equation*}
$$

Now (4.2) follows from (4.13), (4), (3.6), and the definitions of p and ξ.

5. A gradient estimate

In this section we obtain an upper bound for $\left|D u^{\epsilon}\right|$ away from the interface. Let t_{1} be as in (4.1), $d \in C_{b}^{2}\left(\mathcal{R}^{d}\right)$ be an extension of d_{0} satisfying (4), (5), (6), and C_{3} be as in (3.5).

Theorem 5.1. There are constants $K, \delta, \alpha>0$ satisfying

$$
\begin{equation*}
\left|D u^{\epsilon}(t, x)\right|^{2} \leq \frac{K^{2}}{\epsilon^{2}}\left[\exp \left(-\frac{\delta}{\epsilon^{2}}\left(t-t_{1}\right)\right)+\exp \left[-\frac{\alpha}{\epsilon}\left(|d(x)|-\epsilon C_{3}\right)\right]\right], \tag{5.1}
\end{equation*}
$$

for all sufficiently small $\epsilon>0$ and $t \in I_{\epsilon},\left|d_{0}(x)\right| \geq \epsilon C_{3}$.

Proof. Set

$$
\begin{aligned}
& \Omega=\left\{(t, x): t \in I_{\epsilon}, \quad\left|d_{0}(x)\right|>\epsilon C_{3}\right\} \\
& \varphi(t, x)=\left|D u^{\epsilon}(t, x)\right|^{2}
\end{aligned}
$$

(1) Differentiate (1.1) and then multiply by $2 D u^{\epsilon}$ to obtain

$$
\varphi_{I}-\Delta \varphi+\frac{2}{\epsilon^{2}} f^{\prime}\left(u^{\epsilon}\right) \varphi=-2\left\|D^{2} u^{\epsilon}\right\|^{2} \leq 0
$$

By (3.6) and (3.7),

$$
\left|u^{\epsilon}(t, x)\right| \geq \frac{3}{4}, \quad \forall(t, x) \in \Omega
$$

Set

$$
\delta=2 f^{\prime}\left(\frac{3}{4}\right)=\min \left\{f^{\prime}(u):|u| \geq \frac{3}{4}\right\}>0
$$

Then

$$
\begin{equation*}
\varphi_{t}-\Delta \varphi+\frac{\delta}{\epsilon^{2}} \varphi \leq 0 \text { on } \Omega . \tag{5.2}
\end{equation*}
$$

(2) Set

$$
\Psi(t, x)=\frac{K^{2}}{\epsilon^{2}}\left\{\exp \left(-\frac{\delta}{\epsilon^{2}}\left(t-t_{1}\right)\right)+g\left(\frac{|d(x)|-\epsilon C_{3}}{\epsilon}\right)\right\}
$$

where $K>0$ is as in (3.8) and $g(\cdot)$ is the unique, bounded solution of

$$
\begin{equation*}
-g_{r r}(r)+\|\Delta d\|_{\infty} g_{r}(r)+\delta g(r)=0, \quad r>0 \tag{5.3}
\end{equation*}
$$

satisfying $g(0)=1$. Then

$$
g(r)=e^{-\alpha r}, \quad \alpha=\frac{1}{2}\left\{-\|\Delta d\|_{\infty}+\sqrt{\|\Delta d\|_{\infty}^{2}+4 \delta}\right\}
$$

(3) We claim that Ψ is a supersolution of (5.2) on Ω. Indeed,

$$
\Psi_{t}-\Delta \Psi+\frac{\delta}{\epsilon^{2}} \Psi=\frac{K^{2}}{\epsilon^{4}}\left\{-g_{r r}(\cdots)|D d|^{2}-\epsilon \frac{d}{|d|} \Delta d g_{r}(\cdots)+\delta g(\cdots)\right\}
$$

where $(\cdots)=\left(|d(x)|-\epsilon C_{3}\right) / \epsilon$. Since $g_{r} \leq 0 \leq g_{r r}$ and $|D d| \leq 1$ (cf. (6)), (5.3) implies that for $\epsilon \leq 1$,

$$
\Psi_{t}-\Delta \Psi+\frac{\delta}{\epsilon^{2}} \Psi \geq 0, \quad \text { on } \Omega
$$

(4) By (3.8),

$$
\Psi\left(t_{1}, x\right) \geq \frac{K^{2}}{\epsilon^{2}} \geq \varphi\left(t_{1}, x\right), \quad \forall\left|d_{0}(x)\right| \geq \epsilon C_{3}
$$

and since $g(0)=1$,

$$
\Psi(t, x) \geq \frac{K^{2}}{\epsilon^{2}} \geq \varphi(t, x), \quad \forall\left|d_{0}(x)\right|=\epsilon C_{3}
$$

(5) Now an application of the maximum principle yields $\Psi \geq \varphi$ on Ω.

6. Conclusion

Theorem 6.1. Assume (2.2). Then (A) holds.

Proof. Let A be a Borel subset of \mathcal{R}^{d} with a finite Lebesgue measure. Set

$$
\begin{aligned}
& \Omega_{1}=\left\{x \in \mathcal{R}^{d}:\left|d_{0}(x)\right| \leq \epsilon C_{3}\right\} \\
& \Omega_{2}=\left\{x \in \mathcal{R}^{d}:\left|d_{0}(x)\right| \in\left[\epsilon C_{3}, \lambda\right]\right\}, \\
& \Omega_{3}=\left\{x \in \mathcal{R}^{d}:\left|d_{0}(x)\right| \geq \lambda\right\} \\
& A_{i}=A \cap \Omega_{i}, i=1,2,3
\end{aligned}
$$

$$
\begin{aligned}
& I_{i}(t)=\int_{A,} \frac{\epsilon}{2}\left|D u^{\epsilon}(t, x)\right|^{2} d x, \quad i=1,2,3, \quad t \geq 0 \\
& J_{i}(t)=\int_{A,} \frac{1}{\epsilon} W\left(u^{\epsilon}(t, x)\right) d x, \quad i=1,2,3, \quad t \geq 0
\end{aligned}
$$

where λ, C_{3} are as in (3.1) and (3.5), respectively. In the following steps we will estimate I_{i} and J_{i} 's separately.
(1) By Lemma 3.1,

$$
I_{1}(t)+J_{1}(t) \leq \int_{A_{1}} \frac{\epsilon}{2} \frac{K^{2}}{\epsilon^{2}}+\frac{1}{\epsilon}=\left(\frac{K^{2}}{2}+1\right) \frac{\left|\Omega_{1}\right|}{\epsilon} .
$$

Since Γ_{0} is smooth and bounded, for sufficiently small $\epsilon>0,\left|\Omega_{\|}\right| \leq \epsilon \hat{C}$ for an appropriate constant \hat{C}. Hence

$$
I_{1}(t)+J_{1}(t) \leq \hat{C}\left(1+\frac{K^{2}}{2}\right), \quad \forall t \geq 0 .
$$

(2) Set

$$
C_{4}=C_{1}+\frac{1}{\delta}, \quad t_{4}=C_{4} \epsilon^{2} \ln \left(\frac{1}{\epsilon}\right)
$$

where $\delta>0$ is the constant appearing in (5.1) and C_{1} is as in Theorem 3.1. Then for all $t \in$ $I_{\epsilon} \cap\left[t_{4}, \infty\right)$, by (5.1) we have

$$
\left|D u^{\epsilon}(t, x)\right|^{2} \leq \frac{K^{2}}{\epsilon^{2}}\left[\epsilon+\exp \left(-\frac{\alpha}{\epsilon}\left(|d(x)|-\epsilon C_{3}\right)\right)\right]
$$

Therefore,

$$
I_{2}(t) \leq \frac{K^{2}}{2}\left|A_{2}\right|+\frac{K^{2}}{2 \epsilon} \int_{\Omega_{2}} \exp \left(-\frac{\alpha}{\epsilon}\left(|d(x)|-\epsilon C_{3}\right)\right) d x
$$

By (4), $d_{0}=d$ on A_{2}. In the above integral we use local orthogonal coordinates w, with $w_{1}=d_{0}(x)$. Since d_{0} is smooth in Ω_{2}, there is a constant C, depending on the $(d-1)$-dimensional measure of Γ_{0}, such that

$$
\begin{aligned}
I_{2}(t) & \leq \frac{K^{2}}{2}\left|A_{2}\right|+\frac{K^{2}}{2 \epsilon} C \int_{\epsilon C_{3}}^{\lambda} e^{-\frac{\alpha}{\epsilon}\left(u_{1}-\epsilon C_{3}\right)} d w_{1} \\
& \leq \frac{K^{2}}{2}\left(\left|A_{2}\right|+\hat{C}\right), \quad \forall t \in I_{\epsilon} \cap\left[t_{4}, \infty\right)
\end{aligned}
$$

where \hat{C} is an appropriate constant, possibly different than the constant appearing in the first step.
(3) For $t \in I_{\epsilon} \cap\left[t_{4}, \infty\right)$ and $\mid d_{0}(x) \geq \lambda$, (5.1) and (5) yield

$$
\left|D u^{\epsilon}(t, x)\right|^{2} \leq \frac{K^{2}}{\epsilon^{2}}\left[\epsilon+e^{-\frac{\otimes}{\epsilon}\left(\lambda-\epsilon C_{\imath}\right)}\right]
$$

Therefore for sufficiently small $\epsilon \geq 0$,

$$
I_{3}(t) \leq \frac{K^{2}}{2}\left(\left|A_{3}\right|+\hat{C}\right), \quad \forall t \in I_{\epsilon} \cap\left[t_{4}, \infty\right)
$$

for an appropriate constant \hat{C}, again possibly different than the constant appearing in the previous steps.
(4) Recall that we have chosen C_{1}, C_{2} satisfying (3.4) with $m=2$. Hence for all $\left|d_{0}(x)\right| \geq \lambda$, and $t \in I_{3}$,

$$
\begin{aligned}
W\left(u^{\epsilon}\right) & =\frac{1}{2}\left(1-u^{\epsilon}\right)^{2}\left(1+u^{\epsilon}\right)^{2} \\
& \leq 2\left(u^{\epsilon}-\operatorname{sign}\left(u_{0}\right)\right)^{2} \leq 2 \epsilon^{4}
\end{aligned}
$$

Therefore,

$$
J_{3}(t) \leq 2 \epsilon^{3}\left|A_{3}\right|, \quad \forall t \in I_{\epsilon}
$$

(5) Set

$$
C_{5}=C_{1}+\frac{1}{\mu}, \quad t_{5}=C_{5} \epsilon^{2} \ln \left(\frac{1}{\epsilon}\right)
$$

where μ is the constant appearing in Theorem 4.1 and C_{1} is as in Theorem 3.1. Then (4.2) and (4.3) imply that for all $t \in I_{\epsilon} \cap\left[t_{5}, \infty\right),\left|d_{0}(x)\right| \in\left[\epsilon C_{3}, \lambda\right]$

$$
\left|u^{\epsilon}(t, x)\right| \geq\left[q\left(\frac{\left|d_{0}(x)\right|-K t}{\epsilon}-K\right)-K \epsilon-\frac{1}{4} \epsilon\right]^{+}
$$

where $(a)^{+}=\max \{a, 0\}$. Since $\left|W^{\prime}(u)\right| \leq 1$ for $|u| \leq 1$, for sufficiently small $\epsilon>0$ we have

$$
\begin{aligned}
J_{2}(t) & \leq \int_{A_{2}} \frac{1}{\epsilon} W\left(\left[q\left(\frac{\left|d_{0}(x)\right|-K t}{\epsilon}-K\right)-\epsilon\left(K+\frac{1}{4}\right)\right]^{+}\right) d x \\
& \leq \int_{A_{2}} \frac{1}{\epsilon} W\left(\left[q\left(\frac{\left|d_{0}(x)\right|-K t}{\epsilon}-K\right)\right]^{+}\right) d x+\left(K+\frac{1}{4}\right)\left|A_{2}\right| \\
& \leq \int_{\Omega_{2}} \frac{1}{\epsilon} W\left(\left[q\left(\frac{\left|d_{0}(x)\right|-2 K \epsilon}{\epsilon}\right)\right]^{+}\right) d x+\left(K+\frac{1}{4}\right)\left|A_{2}\right|
\end{aligned}
$$

for all $t \in I_{\epsilon} \cap\left[t_{5}, \epsilon\right]$. Now using the same change of variables used in step 2 we obtain

$$
\begin{aligned}
J_{2}(t) \leq & \frac{C}{\epsilon} \int_{\epsilon C_{3}}^{\lambda} W\left(\left[q\left(\frac{w_{1}-2 K}{\epsilon}\right)\right]^{+}\right) d w_{1}+\left(K+\frac{1}{4}\right)\left|A_{2}\right| \\
\leq & \frac{C}{\epsilon} \int_{\epsilon C_{3}}^{2 \epsilon K} W(0) d w_{1}+\left(K+\frac{1}{4}\right)\left|A_{2}\right| \\
& +C \int_{0}^{\lambda / \epsilon-2 K} W(q(r)) d r .
\end{aligned}
$$

Since

$$
\begin{gathered}
W(q(r))=\frac{\left(q^{\prime}(r)\right)^{2}}{2}=\frac{8 e^{4 r}}{\left(e^{2 r}+1\right)^{4}} \\
J_{2}(t) \leq \hat{C}\left(\left|A_{2}\right|+1\right)
\end{gathered}
$$

(6) Combining the previous steps we conclude that

$$
\begin{align*}
\mu^{\epsilon}(A ; t) & =\sum_{i=1}^{3}\left(I_{i}(t)+J_{i}(t)\right) \tag{6.1}\\
& \leq \hat{C}(|A|+1)
\end{align*}
$$

for all $t \geq 0$ satisfying

$$
\begin{equation*}
t \in I_{\epsilon}, \quad t \geq t_{4}, \quad t \geq t_{5}, \quad t \leq \epsilon \tag{6.2}
\end{equation*}
$$

and sufficiently small $\epsilon \geq 0$.
(7) Let Ψ be a smooth positive function decaying exponentially as $|x| \rightarrow \infty$. Then using 1.1 we obtain

$$
\begin{aligned}
\frac{d}{d t} \int \Psi(x) \mu^{\epsilon}(d x ; t)= & -\epsilon \int \Psi\left(-\Delta u^{\epsilon}+\frac{1}{\epsilon^{2}} f\left(u^{\epsilon}\right)\right)^{2} d x \\
& +\epsilon \int D \Psi \cdot D u^{\epsilon}\left(-\Delta u^{\epsilon}+\frac{1}{\epsilon^{2}} f\left(u^{\epsilon}\right)\right) d x \\
\leq & -\epsilon \int \Psi\left(-\Delta u^{\epsilon}+\frac{1}{\epsilon^{2}} f\left(u^{\epsilon}\right)-\frac{D \Psi \cdot D u^{\epsilon}}{2 \Psi}\right)^{2} \\
+ & \epsilon \int\left|D u^{\epsilon}\right|^{2} \frac{|D \Psi|^{2}}{4 \Psi} d x \\
\leq & \epsilon \int\left|D u^{\epsilon}\right|^{2} \frac{|D \Psi|^{2}}{4 \Psi} d x
\end{aligned}
$$

Let

$$
\hat{\Psi}(x)=\exp \left(-\sqrt{1+|x|^{2}}\right)
$$

Then $|D \hat{\Psi}| \leq \hat{\Psi}$ and

$$
\begin{aligned}
\frac{d}{d t} \int \hat{\Psi}(x) \mu^{\epsilon}(d x ; t) & \leq \frac{1}{2} \int \frac{\epsilon}{2}\left|D u^{\epsilon}\right|^{2} \hat{\Psi} d x \\
& \leq \frac{1}{2} \int \hat{\Psi}(x) \mu^{\epsilon}(d x ; t)
\end{aligned}
$$

Therefore for any $t \geq t_{0} \geq 0$,

$$
\begin{equation*}
\int \hat{\Psi}(x) \mu^{\epsilon}(d x ; t) \leq \int \hat{\Psi}(x) \mu^{\epsilon}\left(d x ; t_{0}\right) e^{\frac{i-t_{0}}{2}} \tag{6.3}
\end{equation*}
$$

(8) Let t_{0} be a point satisfying (6.2). Then (1) yields

$$
\begin{aligned}
\int \hat{\Psi}(x) \mu^{\epsilon}\left(d x ; t_{0}\right) & \leq \sum_{i=1}^{\infty} e^{-i} \mu^{\epsilon}\left(\{|x| \in[i-1, i)\} ; t_{0}\right) \\
& \leq \hat{C} w_{d} \sum_{i=1}^{\infty} e^{-i}\left(1+(i)^{d}-(i-1)^{d}\right) \\
& \leq \tilde{C}
\end{aligned}
$$

where w_{d} is the volume of the unit space in \mathcal{R}^{d} and \tilde{C} is an appropriate constant. Then by (6.3)

$$
\int \hat{\Psi}(x) \mu^{\epsilon}(d x ; t) \leq \tilde{C} e^{\frac{1}{2}}
$$

for every sufficiently small ϵ and

$$
\begin{equation*}
t \geq \max \left\{C_{1}, C_{4}, C_{5}\right\} \epsilon^{2} \ln \left(\frac{1}{\epsilon}\right) \tag{6.4}
\end{equation*}
$$

(9) Now let ϕ be any continuous function satisfying

$$
\Lambda:=\sup \left\{|\phi(x)| e^{\sqrt{2}(1+|x|)}: x \in \mathcal{R}^{d}\right\}<\infty
$$

Then $|\phi(x)| \leq \Lambda \hat{\Psi}(x)$, and

$$
\begin{equation*}
\int|\phi(x)| \mu^{\epsilon}(d x ; t) \leq \tilde{C} \Lambda e^{\frac{1}{2}} \tag{6.5}
\end{equation*}
$$

for all t satisfying (6.4), and sufficiently small $\epsilon>0$. Since for every $\epsilon>0$, by (9)

$$
\mu^{\epsilon}(d x ; t) \leq \frac{1}{\epsilon}\left(\frac{K^{2}}{2}+1\right) d x
$$

Hence for every $t \geq 0$,

$$
\begin{equation*}
\int|\phi(x)| \mu^{\epsilon}(d x ; t) \leq \frac{\Lambda}{\epsilon}\left(\frac{K^{2}}{2}+1\right) \int \hat{\Psi}(x) d x \tag{6.6}
\end{equation*}
$$

Now (A) follows from (6.5) and (6.6) with $\eta=\sqrt{2}$.

References

[1] Barles, G., Soner, H. M., and Souganidis, P. E. Front propagation and phase field theory. SIAM. J. Cont. Opt. 31, 439-469 (1993).
[2] Chen, X. Generation and propagation of the interface for reaction-diffusion equations. J. Differential Eq. 96, 116-141 (1992).
[3] Evans, L. C., and Gariepy, R. F. Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton, 1992.
[4] Evans, L. C., Soner, H. M., and Souganidis, P. E. Phase transitions and generalized motion by mean curvature. Comm. Pure Appl. Math. 45, 1097-1123 (1992).
$[5]$ Fife, P. C., and McLeod, B. The approach of solutions of nonlinear diffusion equation to travelling front solutions. Arc. Ratl. Mech. An. 65, 335-361 (1977).
[6] Guisti, E. Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston, 1984.
[7] Ilmanen, T. Convergence of the Allen-Cahn equation to the Brakke's motion by mean curvature. Preprint (1991).
[8] deMottoni, P., and Schatzman, M. Geometrical evolution of developed interfaces. Trans. AMS to appear. (Announcement: Evolution géométric d'interfaces. C.R. Acad. Sci. Sér. I. Math. 309, 453-458 (1989).)
[9] deMottoni, P., and Schatzman, M. Development of surfaces in \mathcal{R}^{d}. Proc. Royal Edinburgh Sect. A 116, 207-220 (1990).
[10] Rubinstein, J., Sternberg, P., and Keller, J. B. Fast reaction, slow diffusion and curve shortening. SIAM J. Appl. Math. 49, 116-133 (1989).
[1I] Soner, H. M. Motion of a set by the curvature of its boundary. J. Differential Equations 101/2, 313-372 (1993).
[12] Soner, H. M. Ginzburg-Landau equation and motion by mean curvature, I: Convergence. Preprint.

