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ABSTRACT. In this paper we study the asymptotic behavior (~ ~ 0) of the Ginzburg-Landau equation: 

I 
u7 - Au" + ~ . f  (u ~ ) = O. 

where the unknown u ' is a real-valued function of 10. oo)• and the given nonlinear function .f(u) = 
2u(u 2 - I ) is the derivative of a potential W(u) = (u 2 - l )2/2 with two minima of equal depth. We prove 

that there are a subsequence % and two disjoint, open subsets 79, N of (0, oo) xT~ d satisfying 

u'" ~ I v  - 1 x ,  as n ~ ~ ,  

uniformly in 79 and .IV" (here 1A is the indicator of the set A ). Furthermore, the Hausdorff dimension of 

the interface 

F = complement of (7:' U N )  C (0, oo) xT~ '/ 

is equal to d and it is a weak solution of the mean curvature flow as defined in [ 13,921. If this weak solution 

is unique, or equivalently if the level-set solution of the mean curvature flow is "thin," then the convergence 

is on the whole sequence. We also show that u ~', has an expansion of the form 

d( t , x )  + 0 ( % ) )  
t#"( t .x)  = q  k ~,---~ . 

where q(r) = tanh(r) is the traveling wave associated to the cubic nonlinearity f ,  O(~) ~ 0 as ~ ~ 0, 

and d(t. x) is the signed distance of x to the t-section of F. We prove these results under fairly general 

assumptions on the initial data, u0. In particular we do not assume that u '  (0, x) = q(d(O, x)/E), nor that 
we assume that the initial energy, E ' (u ~ (0, .)), is uniformly bounded in ~. Main tools of our analysis are 

viscosity solutions of parabolic equations, weak viscosity limit of Barles and Perthame, weak solutions 
of mean curvature flow and their properties obtained in 1131 and Ilmanen's generalization of Huisken's 
monotonicity formula. 
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1. I n t r o d u c t i o n  

The equation 

1 
u~ - Au" + ~ f ( u ' )  = O, in (0, o c ) x R f l ,  ( ! . ! )  

with 

f(u) = 2 u ( u  2 - 1) = W ' ( u ) ,  W ( u ) = ( u  2 -  1)2/2 

is the gradient flow of the energy functional 

s  d IDu'( t ,x)12 + - W ( u ' ( t , x ) )  dx ,  
E 

since 

f f0' g ' ( u ' ( t ,  .)) = s  .)) - ~ a [uT(s' x)]2 ds dx .  

The term W/E forces the solution u ' to take the values -I-1. Indeed, Bronsard and Kohn [19] proved 
that if g~ (u ~ (0, .)) is uniformly bounded in e, then u ' converges to a function u in L l and [u t = I Io(" 

(also see Section 5 in [43]). Thus the asymptotic behavior of u '  is determined by the interface F 

that separates the two regions 79 and ./V" on which u" converges + 1 and - 1, respectively. In the limit 

the interface 1-' moves by mean curvature. The precise formulation and the proof of this statement 
was the content of  several papers [13, 27, 43, 62, 68, 76, 86], and in this paper we will prove a 
convergence result that is global in time, for general initial data with no assumption on the limiting 

geometric flow. 

We continue with a description of earlier work on this problem. In 1979, Allen and Cahn 
proposed equation ( 1.1 ) as a model for the motion of a curved antiphase boundary [ 1 ]. In their paper 
Allen and Cahn also gave a short, formal argument indicating that in the limit, the interfacial velocity 

V, is proportional to its mean curvature, K:  

V = K .  

This geometric equation was proposed earlier by Mullins to model an idealized grain boundary 

movement  [78]. For a detailed account of  these models, we refer the reader to the recent articles of  

Gurtin [57, 58] and the monographs of Fife [44] and Gurtin [59]. 

First justification of the convergence to the mean curvature flow was apparently given by 
Rubinstein, Sternberg and Keller in 1988 [86]. By an asymptotic expansion Rubinstein, Sternberg 

and Keller formally justified this convergence result not only for (I.  1 ) but also for systems of equations 

in any space dimension. Independently, Caginalp and Fife [25] obtained the same expansion for a 

two dimensional phase field model which is very similar to (1.1). Since then the formal expansion 
techniques have been extended to several other problems, including systems of equations for which 
the limit is a harmonic map [87], problems with boundary conditions and nonlocal terms [88, 87, 83]. 
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Later deMottoni and Schatzman [76] used the asymptotic expansion technique together with 

hard error estimates to prove the following result: 

Suppose that the initial data u~) is positive inside a smooth d -  1 dimensional hypersurface 

1-'0 and negative outside of F0. Further assume that there is a classical solution Ft of the 
mean curvature flow on t < T. Then u ' converges to + 1 inside Ft and to - 1 outside 

of F r o n t  < T. 

The precise result requires additional technical assumptions on the regularity and the behavior of 
the initial data around the initial interface F0. Independently, Chen proved the same result [27]. 
Chen's method was to cleverly use appropriate sub and supersolutions of (I .I) .  In addition to the 

convergence result, deMottoni and Schatzman [27] and Chen [77] also analyzed the formation of the 

initial interface. Since in two space dimensions (d = 2), there is a unique classical solution of the 

mean curvature flow [7, 8, 51, 55], the results of deMottoni and Schatzman and Chen completely 
describe the asymptotics ofu ' . However when d > 2, the mean curvature flow developes singularities 

even if the initial surface F0 is smooth [56]. Hence ford > 2, the results ofdeMottoni and Schatzman 

and of Chen describe only the short time behavior of u ' .  

It is clear that the global-in-time, asymptotic analysis of u ' requires a weak notion of mean 
curvature flow. The first weak formulation of the mean curvature flow was given by Brakke using the 

theory of geometric measure theory [ 17]. Then DeGiorgi [37] and Bronsard and Kohn [ 19] proposed 

to use the Ginzburg-Landau equation to define a weak solution of the mean curvature flow. By using 
energy estimates, Bronsard and Kohn also proved a convergence result for radially symmetric u ' .  

Their approach was influenced by the F-convergence results of Modica and Mortolla [75], Modica 

[741, Fonseca and Tartar [48], and Sternberg [95]. 

More recently an alternate weak formulation was proposed independently by Evans and Spruck 
[39] and in more generality by Chen, Giga, and Goto [30]. Their formulation which is based on an idea 

of Otha, Jasnow, and Kawasaki [82], Sethian [90], and Osher and Sethian [81 ], is to view the surface 
moving by mean curvature as the level set of a function defined on the whole ambient space and to 
derive a differential equation for this function. This level set equation is degenerate parabolic; and 
Evans and Spruck and Chen et al. overcame this difficulty by using the theory of viscosity solutions 
of nonlinear second-order partial differential equations [34, 32, 33, 67]. The level-set approach was 
used earlier by Barles [9] to study a first-order problem arising in flame propagation and was further 

developed by Evans and Spruck [40, 41,42], Chen, Giga, and Goto [31], Giga and Goto [52], Giga 
et al. [53], Soner [921, Barles, Soner, and Souganidis [13], Ishii and Souganidis [66] and Ilmanen 
[63, 64]. In particular, an intrinsic definition that will be used in this paper was obtained in [92]. 
The regularity and the other properties of the solutions and the connection between the level-set 
solutions and Brakke's solutions were discussed in [63, 40, 41, 42]. Motions in bounded domains 
were studied by Sternberg and Ziemer [96], Katsoulakis, Kossioris, and Reitich [68], and Giga and 

Sato [54]. Katsoulakis, Kossioris, and Reitich also obtained a convergence result for of solutions of 

( 1.1 ) in a bounded domain with Neumann boundary condition. 

Very recently, an interesting computational algorithm for tracking the fronts moving by gen- 

eralized mean curvature was proposed by Bence, Merriman, and Osher [14] and the convergence 

of this algorithm was proved independently by Barles and Georgelin [ I 1 ] and by Evans [38]. Also 
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Gurtin, Soner, and Souganidis [60] and Ohnuma and Sato [80] used the level-set approach to study 
a class of singular anisotropic equations. Anisotropic motions with crystalline energies introduce 

further difficulties. We refer the reader to the excellent survey of Taylor, Cahn, and Handwerker [ 103] 
and recent articles Almgren, Taylor, and Wang [5], Almgren and Taylor [4] for more information on 

anisotropic motions and the use of varifolds in studying them. 

Equipped with the level-set formulation for the mean curvature equation, Evans, Soner, and 
Souganidis [43] proved the first global in time, multidimensional convergence result for (!.  !). Hence 

the level-set solution of the mean curvature flow and the solution proposed by DeGiorgi [37] and 

Bronsard and Kohn are the same. The convergence result of  [43] was extended by Barles, Soner, and 

Souganidis [13] to include a class of equations that are more general than (1.1). Barles, Soner, and 
Souganidis also extended the previous work of G~irtner [50] and Barles, Bronsard, and Souganidis 

[10] related to a different scaling in (I.1). Recently Katsoulakis and Souganidis [69] used these 
results to characterize the generalized mean curvature flow as the hydrodynamic limit of an infinite 

particle system, generalizing a previous result of Bonaventura [16]. For more information on the 
derivation of the mean curvature flow from certain other spin systems, we refer the reader to a recent 

article of  DeMasi et al. [73] and the references therein. 

More precisely, Evans, Soner, and Souganidis proved the following. Let u ' be the unique solution 

of (1.1) with initial data u ' ( 0 ,  x )  = tanh(d(x ,  F0 ) / e ) ) ,  where F0 is the boundary of a bounded 

region and d ( x ,  F0) is the signed distance of x to F0. Let go(t, x)  be the solution of the level-set 

equation with initial data go(0, x )  = d ( x ,  F0). (Recall that the zero level set {x: go(t, x )  = 0} is 

defined by Evans and Spruck and Chen et al. as the level set solution of the mean curvature flow.) 
Then u ' converges to +1 on {go > 0} and to - 1  on {go < 0}. Hence the interface is included in 
the zero level set of go or equivalently in the level set solution of the mean curvature flow. Moreover 
the interface is equal to the zero level set when it is "thin." However, when the set {go = 0} is not 

"thin," the above result does not yield more information about the interface F or the limit of  u ' in 

the region {go = 0} (see Section 5 in [43]). 

Using mainly geometric measure theory, Ilmanen [62] obtained a different convergence result 
for u ' that does not require the level-set to be "thin." Ilmanen proved that there are a subsequence 
e,, and a closed bounded set F C (0, cx:~) xT~ d satisfying, (a) u ' converges to +1  or - 1  locally 
uniformly on the complement of F, (b) F is a Brakke solution of the mean curvature equation. 
Moreover F has Hausdorff dimension d. Ilmanen's elegant proof is quite different than those given 
in [ 13, 43], an important tool being his extension of the monotonicity formula of Huisken: Huisken 
[61] proved his formula for smooth solutions of the mean curvature flow and Iimanen extended 
Huisken's formula to solutions of (1.1). A statement of Ilmanen's monotonicity formula for the 

solutions of  ( I. 1 ) is given in Section 5, below. To further understand the asymptotic behavior of the 
solutions in the region {go = 0}, Dang, Fife, and Peletier [36] studied the stability properties of (1.1) 

in the plane. They considered solutions with initial interface close to the union of two axis. Since the 
level set solution of the mean curvature flow starting from this initial interface is "fat," the evolution 

of the interface is expected to be very sensitive to perturbations of the initial data. Schatzman [89] 

and Dang, Fife and Peletier [36] proved this instability. 

Ilmanen proved his result under the assumption that u ' ( 0 ,  x)  = q ( z ' ( 0 ,  x ) / e )  for some 

function Z ' satisfying I Dz  ~ (0, x) l  < 1. In particular this assumption implies that the initial energy 
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is uniformly bounded in ~. In this paper we remove both of these assumptions. Moreover, we do not 

assume that the initial energy is uniformly bounded in ~. Our proof combines llmanen's monotonicity 
formula with weak viscosity limits of Barles and Perthame [ 12]. In addition to the convergence result, 
this combination also allows us to obtain an asymptotic expansion of u ' of the form 

d(t, x) + 0(~) ) 
u'(t, x) = q E ' 

on a subsequence of ~. Here d(t, x) is the signed distance o f x  to the t-section of the interface I ' .  

The analysis of a model very similar to (1.1) was carried out by Chen and Elliot [29], Blowey 
and Elliot [ 15], and Nochetto, Paolini, and Verdi [79]. The bi-stable potential W that they considered 

is equal to infinity outside the interval [ - 1 ,  1] and it is concave, quadratic inside this interval: the 

Euler equation related to this energy functional is the "double obstacle problem." Solutions of this 

problem take on the values -k-I on two different regions and in the interface they solve a linear 

equation. Sharp error estimates for this model and numerical approximations of the mean curvature 
flow were obtained in [15, 29, 79]. Also Caginalp and Socolovsky [26] used (1.1) to numerically 
approximate the mean curvature flow. 

In this paper, we will not survey the literature on systems of equations generalizing (1. I). A 
brief discussion of the connection between these equations and the harmonic maps is given in [62]. 
For information on problems with more than two phases and "triple junctions," we refer the reader to 

Taylor [101,102], Bronsard and Reitich [20], Sternberg and Ziemer [97], and the references therein. 
Reader interested in "slow motion" or in the Cahn-Hilliard equation should consult Alikakos, Bates, 

and Fusco [3], Bronsard and Kohn [18], and Pego [84]. 

We complete our historical remarks with a very brief survey of convergence results for the 

phase field model for solid-liquid phase transitions in a pure material. This model was proposed by 
Langer [70], Fix [46], Caginalp [21, 22], and Collins and Levine [35] and more recently modified 

versions of the phase field equations have been derived by Penrose and Fife [85] and Fried and 
Gurtin [49]. Mathematically, the phase field model consists of two equations. One of these equations 

is very similar to (1.1) and the other is a heat equation with a source term. A rigorous asymptotic 
analysis of the phase field model has proved to be difficult. Formal expansions were obtained by 
Caginalp and Fife [25] and Caginalp [23]. More recently Stoth [98, 99] carried out an analysis of 
the one-dimensional and the radially symmetric problems and Caginalp and Chert [24] studied a 
version of the phase field model in an annular domain, with radial symmetry and special boundary 
conditions. For a generalized Stefan model of solidification with melting temperature proportional to 
curvature, Luckhaus [72] and Almgren and Wang [6] proved the convergence of a "time-step energy 
mininmization" method. Also, computational studies of the limiting equations were carried out by 
Strain [ 100] and Sethian and Strain [91 ]. However the convergence analysis of the multidimensional 

phase field model still remains open and further understanding of the Ginzburg-Landau equation 

(1.1) may prove to be useful in this direction. 

After the completion of this work, Soner [93] proved the convergence of the phase field model 

to the mean curvature equation coupled with a heat equation, without assuming the existence of a 
smooth solution. For the Hele-Shaw model, a similar result was proved by Alikakos, Bates, and Chen 
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[2] by using a recent spectral estimate of  Chen [28]. They assume the existence of a smooth solution 

of  the Hele-Shaw problem. 

O u t l i n e  of  our proof.  We always assume that lu ' (0 ,  x)l  < 1. Then lug(t, x)l  < 1 for 
every (t, x)  C (0, ~ ) x N .  't. Let q ---- tanh. We now introduce a new function Z' by 

u ' ( t , x )  = q  ~ . 

Using ( 1. I ) we obtain 

2/,/~ 
z7 - A z '  - I - - - l l D z ' l  2 - 11 = 0. (1.2) 

Formally the above equation suggests that in the limit I D z  ~ I = 1. However the only statement one 

can prove is the following. Let 

z* ( t ,  x) = lim sup z '  (s, y) ,  
~--~[). (,~, v ) - ~ ( / . . r )  

Z.(I,x) ---- l im in f  Z~(S. y)  
~ 0 ,  [~. v ) - ->( t ,  r )  

79. = { ( t , x ) :  liminfu~(t,x) > 0 } ,  

JV]. = { ( l , x ) :  limsupu~(t,x) < 0 } ,  

and 

T~.,., = inf{T E [0, cx:~]: ]z*(t, x)[ ,  ]z,(t ,  x)] < oo, V(t, x)  c (0, T)  x 7~J}. 

Then z*, z.  are Lipschitz continuous in the x-variable with a Lipschitz constant one and satisfy the 

following in the viscosity sense (see Lemma 4.1, below): 

- I D z * I  + I _< 0, in M, n (0, T~.,.,) x ~ ' ; ,  (1.3) 

IDz. I  - I >_ 0, in 7~,, n (0, T~.,.,) x 7~';, (1.4) 

In general z* and Z. are not continuous in the t-variable and therefore we do not expect them to 

be equal to each other. However, if Z* and z.  are upper and lower semicontinuous envelopes of the 

same function z, respectively, then by (3), (4) and the fact that z*, z.  are Lipschitz continuous with 

Lipschitz constant one, we can show that z is equal to the signed distance function to the interface. So 

it is clear that to establish this connection between z* and z.  is an important step in the convergence 

analysis of u ' .  But since we have not made any assumption on the initial data, the behavior of u ' on 
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different subsequences may be quite different and consequently z* and Z, may not be related in any 
way. To establish a connection between z* and z,,  we introduce the measure 

/ t ~ ( A ; t ) :  IOu~( t ,x )[  + - W ( u ~ ( t , x ) )  dx .  

Then following llmanen [62], we construct a subsequence ~:,, and a measure / t  such that /~"( . ;  t) 

converges to/x( . :  t) for each t. This construction assumes (6). The precise statement of  this result 

and a sketch of its proof are given in Section 2, below. 

Now let F be the support of  # and redefine z,  and z* by using the subsequence 6,, instead of 

the whole sequence e. Then the monotonicity formula of llmanen and a gradient estimate (Proposi- 

tion 4.1, below) imply that on the complement of F, u * converges to -I- I or - 1 locally uniformly. It 

turns out that this result and (3), (4) are enough to make the connection between z,  and z*. Indeed 

in Section 6 we show that z* is equal to the upper semicontinuous envelope of d and z.  is equal to 

the lower semicontinuous envelope of  d ,  where as before d(t ,  x)  is the signed distance of  x to the 

t-section of F. Once this result is established, then it is easy to show that ~ , ,  .A/~, and F are disjoint 

subsets of (0, oo) • 7~ ' /and their union is the whole space. Moreover u ~'' converges to + 1 uniformly 

on compact subsets of  7:', and to --1 uniformly on compact subsets of Af,,. 

The above convergence result enables us to prove two important properties of  the interface F. 

First we observe that the monotonicity result yields the "clearing-out" lemma (Theorem 5.1, below) 

and the "clearing-out" lemma implies that the Hausdorff dimension of  the interface F is d. Recall 

that F' is a subset of (0, oo) •  ' /and therefore the interface F is a "sharp." Moreover F' is a weak 

solution of the mean curvature flow. This fact follows from (1.2) and the techniques developed by 

Barles, Souganidis and the author in [ 13]. To give the basic idea let us assume that ]Dff (0, x)l < I. 

Then by maximum principle and (1.2), ]Dz' (t, x)[ < I, for every (t, x)  in (0, oo) x 7T I. We let ~,, 

go to zero in (1.2) to obtain 

d, - A d  >_ 0 on 7~,,, 

d, - A d  < 0 on A/I,,, 

of course in the viscosity sense. Since d is a distance function the above inequalities immediately 
imply that F is a weak solution of the mean curvature in the sense defined in [92]. The general initial 

condition case requires more analysis. In particular, we use the gradient estimate (Proposition 4. I, 

below) and the techniques developed in [I 3]. 

Organization of the paper is as follows. In section 2, we recall several known results about ( 1.1 ). 

The main results of  this paper are stated in Section 3. In Section 4, we define and study the functions 

z* and z.. In particular we state a gradient estimate for z ~. The proof of  this gradient estimate is 

given in the Appendix. Section 5 recalls the monotonicity result of llmanen and a corollary to this 

monotonicity result is also proved in this section. Finally proofs of the main results are completed 

in Section 6. In the Appendix 1, we state a result of deMottoni and Schatzman and of Chen and 

then prove a corollary that is used in the earlier sections. The gradient estimate for Z ~ is proved in 

Appendix 2. 

I would like to acknowledge several very helpful discussions with Guy Barles. Tom lhnanen and Takis Souganidis and 
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2. Pre l iminar i e s  

f (u)  = 2u(u  2 -  I) = W'(u), 

Consider the scalar Ginzburg-Landau equation, 

I 
u~(t,x) -- Au~(t,x) + -~f(u~(t,x)) = O, 

with initial data 

W(u) = (u 2 - 1)2/2. (2.1) 

(t,x) ~ (O, (x))xT~ d, (2.2) 

U' (0, X) = U~o(X), X E 7~ e. (2.3) 

We will always assume that u~ < 1 and continuous on 7~ e. Then the standard parabolic theory 

implies that there is a unique, bounded, real-valued 

u '  E C ~ ( ( o ,  c~)  xR.  d) n C([o ,  c~)  xTe d) 

satisfying (2.2) and (2.3). 

Equation (2.2) is the gradient flow of  the energy functional 

g ' ( o ) =  f~a [zlDO(x)12 + !W(O(x))]  dx. (2.4) 

Indeed by simple integration by parts and approximation arguments we can show that 

f f0' g~(u~(t,.)) = g~(u ; )  - e  e [u~(s'x)12dsdx" 

Since the above identity will not be used in this paper, we leave its derivation to the reader. For t > 0 

define a measure on Borel subsets of ~ e  by 

# ~ ( A ;  t)  = Du~(t,x)12+-W(u~(t,x)) dx. (2.5) 

In view of the energy identity, if g~(U~o) is uniformly bounded in ~, then ~ ( ~ e ;  t)  is uniformly 

bounded in ~ and t. Then we can use well known compactness of Radon measures to extract a weak* 

convergent subsequence. In this paper however, we do not assume that initial energy is uniformly 

bounded. Instead we assume that for every ~ > 0 there are positive constants K~ and q satisfying 

supl f lO(x) l ,~(dx; t )  �9 e E (0, l ) , t  E [6, 1/3]] 

< K~ sup{lgt(x)le'71xl: x c 7~e}, (2.6) 

I wish to thank Tom Ilmanen for sending me a preliminary copy of his manuscript [62] which influenced this work greatly. 
I also thank Mort Gurtin for bringing several references to my attention. 
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for every continuous function ~ .  The above condition is satisfied if g '  (u~) is uniformly bounded in 
E, but also holds under more general hypotheses. For example, (6) is satisfied under the hypotheses 

of [27, 77], i.e., if the initial condition is three times continuously differentiable, has nonzero gradient 
on its zero set and its zero level set is bounded, then (6) holds. A proof of this fact and other sufficient 
conditions for (6) is the subject of the sequel of  this paper [94]. 

Let ~ (x) be a compactly supported, smooth, nonnegative real-valued function. Then following 

Ilmanen [62] we obtain 

d f ,(x).o(dx: t) 

f ( , )2 = -~ O(x) - / x  u~(t, x) + -~f(u~(t, x)) dx 

f ( , ) + E D~(x) �9 Du~(t,x) - / h  u~(t,x) + ~f (u~( t ,x ) )  dx 

f ( I ~ Dlp(x)_;Du~(t,x)~ 2 2~//(x) ] < - E  ~p(x) - A u ' ( x , t ) + - ~ f ( u  ( t , x ) ) -  

+ IDA(t,x)l 2ID~p(x)te dx 
4 O ( x )  

< C , ( g r ) # ' ( l ~ p  > 0]; t) ,  

dx 

(2.7) 

for some constant C~ ( ~ )  depending only on ~ .  Since ~ is compactly supported, (6) implies that 
for t > 3 / z ' ( { ~  > 0}; t) is bounded by some constant C2.~(~) depending on gr but not on e. 

Therefore the map 

, f ~(X)lZ'(dx; t) - C l ( l P ) C 2 . ~ ( l p ) t  

is nondecreasing on t > 3. 

Now using the weak* compactness of Radon measures, (6) and the above monotonicity property 
in a diagonal argument we construct a subsequence G --+ 0 and a Radon measure/z  satisfying 

,lira fTca ~(x)tx*"(dx; t) = fT~a ~(x)lt(dx; t), (2.8) 

for every t > 0 and a compactly supported smooth function ~p. The above argument originates in 
Brakke [ 17] and for the details of this argument we refer to Section 5.4 in llmanen [62]. The density 
arguments together with (6) show that (2.8) actually holds for all continuous ~ (x)  that decay faster 
than e 'lxl as ]x l tends to infinity (here the constant r/is as in (6)). Finally, let 

F = support /z. (2.9) 

We will show in addition to several other properties of  F that it has Hausdorff dimension d and that 

it is the "sharp interface" separating the two regions on which u r converge - l and l, see Section 3 

below. 
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Using (6) together with (7) and the techniques of  Bronsard and Kohn [ 19], we show that there 

are a further subsequence, denoted by ~,, again, and a function u satisfying, luJ = 1 and 

u '' ' --> u, n ---> oc,  (2.10) 

locally in L I ((0, oo)xT~J) .  Under the assumption that the initial energy is uniformly bounded in 
e, the above argument is given in detail in [19] (also see section 5 in [43]). Since in this paper we 

assume only (6), we need to localize the argument of Bronsard and Kohn by using (7). Details of 
this routine localization argument is left to the reader. In the remainder of  this paper, we only study 
the properties of the sequence u ~''. So we introduce the notation 

u" : u'", #'~ : I d`'. 

Another important object in our analysis is the travelling wave associated to the cubic nonlin- 

earity f .  Using the explicit form of f ,  we can easily show that 

q(r)  = tanh(r) ,  r e 7~ 

is the unique solution of the equation 

q"(r) = f ( q ( r ) ) ,  'v'r E 7~, (2.11) 

with boundary conditions q ( - t - a )  = 4-1 and q (0) = 0. Clearly the map 

q: ~---> ( - i ,  1) 

is one-to-one and onto. Therefore if Ju"(t, x)l  < 1, then we can define a real-valued function z" 
satisfying 

(Z" ( t , x )  ~ (2.12) u"(t, x) = q ~,-- / .  

3. Main results 

Let u ~ be a smooth, bounded solution of(2. I ), (2.2), the sequence E,, be as in Section 2 satisfying 
(2.8), (2.10) and u" = u ~". In addition to (6), we will always assume that 

I%(x)l _< l, Vx ~ ~ ,  (3.1) 

then by maximum principle lu" (t, x)l  < I for every (t, x )  E (0, c x ~ ) x ~  a and therefore Z" (t, x )  is 
defined everywhere. Let us recall that sufficient conditions for (6) are obtained in [94]. In particular 
(6) holds if C' (u~) is uniformly bounded in E. 
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Now we are ready to state the main results of this paper. Proofs of these results will be given in 
the subsequent sections. 

T h e o r e m  3.1. Assume (6) and (3.1). Let F be as in (2.9). Then there are open disjoint subsets 

79 and .IV" of (0, oo) • Rd satis~ing, 

r U 79 UAf  = (0, o o ) x / U ,  F r q P  = F r i A r =  0. (3.2) 

Moreover, 

u" --+ + 1 uniformly in 7 9, (3.3) 

u" --+ -- 1 uniformly in A/'. (3.4) 

Let 1-', be the t-section of F and d(t ,  x )  be the signed-distance between x and l-'t, i.e., 

d(t ,  x)  = 

dist(x, F,) ,  (t, x)  E 79 

- d i s t ( x ,  F,) ,  (t, x )  E .A/" 

0, (t, x )  E F, 

if F, is empty, we define dist(x, F,) = oo for all x. Set 

te~, = inf{t E [0, 00]: F C [0, t] x Ra}. 

(3.5) 

Let ~ ( t ,  x )  be a real-valued function. Then the upper semicontinuous envelope of ff is the 
smallest upper semi continuous function that is greater than or equal to ff and it is denoted by 
~p*(t, x) .  Similarly the lower semi continuous envelope of ~r is the largest lower semi continuous 
function that is less than or equal to ~ and it is denoted by ~ . ( t ,  x) .  

T h e o r e m  3.2. Assume (6) and (3.1). Then the Hausdo.rff dimension of F is equal to d. 

Moreover in (0, rex,) • 7~ a, F is a weak solution of  the mean curvature equation in the sense 

defined in [92], i.e., 

a 
tO - [ d  A O] -- F*(DId  A 01, D2[d A 01) < O, (3.6) 

0 
7--[d v O] - F , ( D I d  v Ol, D2[d v 0]) > O, 
0 t  

(3.7) 
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where the above inequalities are understood in the viscosi~, sense in (0, text) • 7 "~d, and d A 0 = 

rain{d, 0}, d w 0 -- max{d, 0} and for  a symmetric matrix H and a nonzero vector p E TZ a, 

F ( p ,  H )  ---- trace [ I  P--~Q P ]  H. 
I p ]  2 J 

Our final result is a refinement of (3) and (4). 

Theorem 3.3. Assume (6) and(3.1). Then. &r  ever 3' (t, x) E (0, t~ x, ) x ~,t we have 

lira sup z"(s ,  y )  = d*(t ,  x ) ,  (3.8) 
n--~"~,(,~, v)-~(t,x) 

lim inf z"(s ,  y )  = d , ( t ,  x ) ,  (3.9) 
n---~ .'x:. (s, y)---~ (t, x ) 

where z" is as in (2.12), d* is the upper semicontinuous envelope of  d, and d.  is the lower semi- 

continuous envelope of  d. On (te~t, c~) • 7"4 a we have either one o f  the following: 

(t~,,  ~ )  x 7r 't C 79, z* = z.  = +cx~, 

o r  

(te~,, ~ )  x 7-4 '/ C AF, z* = Z. = -cx~. 

In general, the distance function d is not continuous in the t-variable. However, when d is 
continuous at a point (to, x0), then (3.8) and (3.9) imply that Z" converges to d uniformly in a 
bounded neighborhood of (to, xo). In this neighborhood we have the following expansion: 

d(t ,  x) + O(e , , ) )  
u"(t ,  x )  = q ~,, . 

4. Weak viscosity limits 

Recall that since lug) I < i, lu'(t,x)l < 1 for all ( t ,x )  and therefore z ' ( t , x )  is defined 
everywhere and solves the following parabolic equation in (0, ~ ) x  7-4d: 

2 b / '  
z~ - / X z "  + - - [ I D z ' l  2 - 1] = 0. (4.1) 

E 

Set 

w" = I D z ' ( t , x ) l  2, w" = w'" = I D z " ( t , x ) l  2, 
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where G, is the sequence chosen in Section 2 and D denote the differentiation with respect to the 

spatial variable x alone. By differentiating (4.1) we obtain 

w~ + s  ~ + R ' ( t ,  x ,  w")  = - 2 I I D 2 z ' I I  2 in (0, ec )  xTU,  (4.2) 

where for a real number r, (t, x)  ~ [0, ~c) xT~ a and a smooth function q) C C2(7~a), 

4u ' ( t ,  
s = - A qO(X) + X) D z ' ( t , x ) . O q o ( x ) ,  

6 

4 ( Z ~ ( ~ , X ) )  
R ' ( t , x , r )  = - ~ q '  - r ( r -  1), 

where as before q = tanh. Observe that if I D z  ~ (0, x)l  < 1 for every x, then by maximum principle 

I D z  ~ (t, x)[ < 1 for every (t, x).  This fact was used in an essential way in [62] (see Section 4.1 in 

[62]). In this paper we make no such assumption on the initial data. Instead we have the following 

gradient estimate. 

P r o p o s i t i o n  4.1. Assume (3.1). Then there exists O < 60 < 1 such that for  e v e ~  e < 6o we 

have, 

2 (z ' ( t ,x))  2 +  1 
w ' ( t , x )  = I D z ' ( t , x ) l  2 < 1 +  - -  , (4.3) 

I n ( l / e )  t 

for  eve~' (t, x)  ~ (0, ~:~) x 7"4 d. 

We prove (3.5) by maximum principle and appropriate of  supersolutions. Since this proof is 

somehow tangential to the main trust of  this paper, we postpone it to Appendix 2. We should also 

note that a "scale-invariant" version of (4.3) is also discussed in Appendix 2, Remark 8.1. 

Although the proof of (4.3) is not important in the subsequent sections, (4.3) itself is an essential 

tool in our analysis. Note that after letting 6 go to zero in (4.3), we see that the right hand side of 

tends to one provided that t is positive and z ' is uniformly bounded in 6. Hence at least formally, in 

the limit as 6 tends to zero we recover the estimate " I D z ' I  _< 1." 

By a simple application of the Gronwall's inequality, we obtain the following corollary: 

C o r o l l a r y 4 . 1 .  Assume(3.1).  Let 6o be as in Proposition 4.1. Then for  eve~. positive t, there 

exists a constant K ~ ( t ) such that 

[ l +_s (4.4) I z ' ( t , x )  - z ' ( t ,  y) l  < leK'~'~P~-'l - ll m i n { I z ' ( t , x ) l ,  l z ' ( t ,  y)l} + K*( t )  J ' 

where 

K ' ( t )  = x/2lt ln(1/6) l  -j/2 



450 Halil Mete Soner 

Now following Barles and Perthame [ 12] (also see Chapter 7 in [47]), we define two possibly 
extended-valued functions z* and z, by 

~_. "7 I! Z*(t, x) lim sup ,~ (s, y),  
, ~ c .  ( s .y ) - -*  ( t . x )  

Z. (t, x) = lim inf Z" (s, y). 
n ~  ~x~. (s.y)---~ ( / . x )  

(4.5) 

We also define 

9 

N =  

79, = 

J~,, = 

{( t ,x)  E (0, ec)xTr z . ( t , x )  > 0}, 

{(t, x) E (0, Oc)xTr z . ( t , x )  > 0}, 

{ ( t ,x )  E (0, ~ ) x T ~ a :  Z*(t ,x)  < 0}, 

{(t, x)  E (0, ~x))x~'t:  z*(t, x)  < 0}, 

{ ( t ,x )  E (0, OC)xT~'t: l im in fu" ( t , x )  > 0}, 

{(t, x) E (0, ~ ) x ~ a :  l i ms u p u ' ( t , x )  < 0}, (4.6) 

and 

Tex, : inf{T E [0, ~ ] :  Iz*(t, x)[, Iz.(t, x)l < ~ ,  V(t, x)  E (0, T) x 7~d}. 

Clearly u" satisfies (3) and (4), and in particular 7 9 C 79,, N" C .Af,,,. One of the main objects of the 
rest of this paper is to show that the complement of 79 U N" is equal to F. We will prove this fact by 
carefully analyzing the properties of z* and z.. First observe that, by passing to the limit E, --+ 0 in 
(4.4) we obtain 

I z * ( t , x ) - z * ( t , y ) [  < I x - y [ ,  t E (0 ,  T~xt),x, y E R a ,  

Iz.(t, x)  -- Z.(t, Y)I < Ix -- Yl, t E (0, T~.~.,), x, y E 7~ J. (4.7) 

However Z* and Z. may fail to be continuous in the t-variable. But z* is upper semi continuous and 
Z. is lower semi continuous. Next we multiply (4.1) by E and then pass to the limit in the viscosity 
sense to obtain the following result. 

L e m m a  4 .1 .  

the viscosi~ sense, 
Assume (3.1). Then Z. and z* satis.~ the following differential inequalities in 

- I D z * l  + I < 0, in A;,,,, (4.8) 

I D z . I -  I >_ 0, in79,. (4.9) 
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P roo f .  Let ~ be a smooth function and (t, x)  r .N~, be a strict local maximizer of the 
difference z* - ~ on (0, ~ ) )  • ~ J .  Since (t, x )  c A/~,, , z*(t, x)  < 0 and since z* -- r has a 
local maximum at (t, x), z*(t, x)  > ~ .  Hence z*(t,  x)  is finite and there are a subsequence nk 
and local maximizers (tk, & )  of the difference z'" -- ~t converging to (t, x)  as k tends to ~ .  By 
calculus at (tk, xk) we have 

D e  = Dz I", ~, : (Z"~),, D 2 ~  < D2Z ''*. 

We use the above in (4.1) to obtain the following at (tk, xk), 

2u'" 
r - / x r  + [ I D r  2 - 11 < 0. 

Now if (t, x)  C Af,,, then u ''~ (tk, xk) < 0 for sufficiently large k. Then the above inequality implies 
that at (tk, xk), 

- I D r  2 + 1 < [~, - A~b]. 
- 2u'"  

Let k go to infinity in the above inequality to obtain 

- ID~p( t , x ) l  2 + 1 < 0. 

This completes the proof of (8). The other inequality (9) is proved exactly the same way. [ ]  

Recall that 7 9 C 79,, N" C Af,,. Also the distance function is a unique viscosity solution of 
the Eikonal equation I Dd[ = 1. These observations and comparison results for viscosity sub and 
supersolutions of the Eikonial equation [65], yield the following result. 

P r o p o s i t i o n  4.2. Assume (3.1). Then 

~ ,  = Af, P,,=79. (4.10) 

Moreover, 

z*(t, x)  ~ --dist(x,  JV~[), (t, x )  ~ A/', 

z*(t, x)  = --dist(x,  ./V~[), (t, x )  ~ A/" f3 (0, T~,)  x 7E '/, 

z*(t, x)  < dist(x, .3~t), (t, x)  G .Af' f3 (0, Te,,) x 72,. '/, (4.1 I) 

and 

z . ( t ,  x)  > dist(x, 79~), 

Z.(t, x)  = dist(x, 79~ ), 

Z.(t, x)  > - d i s t ( x ,  73r), 

( t ,x )  e P ,  

(t, x) e 79 n (0, Te~,) x / U ,  

(t, x) E 79' C~ (0, L~,) x / U ,  (4.12) 

where A' denote the complement of A and At C ~,t denote the t-section of A C [0, oo)xTE '/. 
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P r o o f .  The only subtle point in the proof of  (11) and (12) is the fact that (8) and (9) hold only 
in open subsets of (0, ~ )  • d but not necessarily at every t. Set 

d ( t ,  x)  = dist(x, (79.)'/). 

Let (to, Xo) be in 79. with to < Tex,. 

Case a: tt(to, Xo) < ~ .  Then tt( t ,  x )  > 0 in a neighborhood of (to, xo) and for every 6 > 0, 

there is r (6 )  > 0 satisfying 

Q~ = {(t, x) :  [x - xol < d(to, xo) - 8, It - tol < r(6)} c 79.. 

For F > O, set 

v( t ,  x)  = al(to, xo) - 6 - Ix - Xol - F i r ( 6 )  - It - toll 2 

Then by (9) 

(t, x) c Q~. 

IDz, I >__ 1, and [Dvl  = 1 in Q~. 

Recall that D denote the differentiation with respect to x-variable only and the above inequalities 

hold in the viscosity sense. We also have Z, > v on the boundary of Q~ and v is continuous in Q~. 
Hence by a comparison result for viscosity sub and supersolutions (see for example [12, 65, 33]) 

we have z,  > v in Q~ for every positive 6 and y .  Let 6 and F go to zero to conclude that 
^ 

Z,(to, Xo) > d(to,  Xo). 

Set 

Case b: d(to, Xo) = c~. Then for every N,  there is r N > 0 such that 

QN : {(t, x) :  Ix - Xol < N,  It - tol < rN} C 79.. 

1)N(t, X)  = N - Ix - xol - y [ rN - -  It - toll -2, (t, x )  ~ Q N .  

Now proceed as in the previous case to show that z , ( to ,  xo) > VN(tO, XO) = N for every N.  Hence 

z,(tll,  xo) = el(to, xo) = ~ .  

Hence we have proved that 

Z,( t ,  x)  _> d ( t ,  x)  ---- dist(x, (79,)'/), V(t, x )  E 79,. 

Now suppose that (t, x)  E 79,,. Then d ( t ,  x )  > 0. Therefore z , ( t ,  x)  > 0, and (t, x )  E 7 9. Since 
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by construction 7 9 is a subset of 79,, we conclude that they are equal to each other. In summary, we 

have proved that 

79 = 79,, z . ( t ,  x )  > dist(x, 79~), 'v'(t, x)  c 79. 

Moreover on (0, Te~,) x 7~ d, by (7) we have 

z , ( t ,  x)  < dist(x, 79~), V(t, x)  ~ 7 9 N (0, T~xt) • 7~ J, 

z , ( t ,  x )  > --dis t (x ,  73t), V(t,  x)  E 7 9` A (0, T~,t) x 7~ d. 

Combining above inequalities to obtain (12). The second part of (4.10) and ( 11 ) are proved similarly. 
[] 

Remark 4.1. Suppose that there are a subsequence nk and an open subset Q of (0, cx~) • TZ a 

such that as k tends to infinity, u ''~ ~ + 1 uniformly on compact subsets of Q. Then by restricting 
the arguments of Lemma 4.1 and Proposition 4.2 to the subsequence nk, we can show that 

l iminf  z"~(s, y) > dist(x, Q,),  
/~---~ v,~, (s, v)--~-(t.x) 

for all (s, x )  E Q. Clearly a similar result holds if u ''~ ~ -- I uniformly on compact subsets of an 

open set Q. 

5. Monotonic i ty  Formula  

In this section we recall a remarkable monotonicity formula derived by llmanen [62]. Ilmanen's 
formula is an extension of the Huisken's monotonicity formula for smooth manifolds moving by 
their mean curvature [61]. In our analysis the monotonicity formula is essential in connecting the 

subsequences on which z,  (t, x )  and Z* (t, x )  are achived. Following the notation and the terminology 
of Section 3 in [62], we fix a 'blow-up'  point (y, s) and set 

1 ( Ix- yl2  
p ( t ,  x; y ,  s)  = (47r(s -- t ) )  ~d-I)/2 exp ~ s ~ - ~  ] , x E 7~ J, t < s. (5.1) 

For t < s, Ilmanen proved the following (see Section 3.3 in [62]). 

' f  P ( t ' x :  y ' s ) l z ~ ( d x : t )  <- 2 ( s -  t) P ( X ' t :  y ' s ) g ~ ( d x : t ) "  (5.2) 
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where 

Halil Mete Sorter 

~'(A; t) = fA [21Du'(t,x)12 -- -6l w(u ' ( t , x ) ) ]  dx' 

-- fA [~-~ (q'(Z~(~X))) 2 I] dx. _ 1 [ I D z  ~ ( t ,  x)l  2 - (5.3) 

In the above derivation we used the identity (q,)2 = 2W(q). Set 

s y, = f p(t, x; y, s)ll '(dx; t). ot'(t; 

Observe that if I D z  ~ (t, x)12 _< 1, then ~ is negative and therefore or' (t; s, y) is nonincreasing in t. 
In general the gradient estimate (4.3) yields the following analogue of this monotonicity result. Let 
60 be as in Proposition 4.2. 

C o r o l l a r y  5.1. 
t < r  <s,  wehave, 

where 

Assume(3.1). Then fi~r all (s, y) E (0, CX~)xT~ 'l, 0 < ~ < ~0 andO < & 

< o ? ( t ; s , y ) ( S - t ~  ~l''~l 
\ s  - -  r /  

q_4 ,v / -~K(c : , , )~  ( s - r ~  K''''' dr 
\ s - r /  ~/s - r '  

o?(r;  s, y) 

K(6 ,  &) = I8 l n ( l / 6 ) l  -I .  

In particular, for eve~ 0 < t < r < s, we have 

f p(r,x;  y , s ) # ( d x ; r )  < f p( t ,x;  y , s ) l t (dx; t ) ,  

where # is the limit qf lt" (see (2.8)). 

(5.4) 

Proof.  Ilmanen's monotonicity formula (5.2), (3) and the gradient estimate (4.3) imply that, 

-~od( t ; s ,y )  < 2(s t) P ( t ' x ; s ' y ) l  q' z'(t,x)E 2 

< [In(l/6)t(s - t) l  -I 

f '( (Z~: (~' X))) 2 x p(t,x;s,y)~--~6 q' - [ (z ' ( t ,x))2+ l ldx.  
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Observe that 

and 

q, t ,  dx  < Ix~ (t, dx) ,  

Iq'(r)rl < 4 Vr =:~ q' (z~) 2 < 4~ :2. 

Hence we have 

- r -od( t ;  s, 5') < [ l n ( l / e ) t ( s  - t)] J p(t ,  x; s, y)[ix~(dx, t) + 2sdxl .  
at  

Since f p ( t ,  x; s, y )dx  = ~/4rr(s - t) and t > 6, 

d 
~ - o d ( t ;  s, y)  < [ l n ( l / e )6 ( s  - t ) l - f [od ( t ;  s, y)  + 4 ~ - ~  - t)]. 

Finally an application of Gronwald's inequality yields (4). [ ]  

We are ready to prove a slight extension of the "clearing-out" lemma proved by Ilmanen [62]. 
Our proof follows very closely Section 6.1 in [62]. 

Theorem 5.1 ( I lmanen ) .  Assume (3.1) and (6). Let tx be the limit of IX" (ef. (2.8)). Then 
forever.  6 > 0 there exists tl(6 ) > 0 such that if 

f p( t ,  x; So, yo)ix(dx; t) < q(6),  (5.5) 

.fi)r some (So, Yo) and t satis.~, ing 6 < t < so < t + I < 1/8, then there is a neighborhood 0 of 
(So, Yo) such that 

Z,(s, y) > 0, 'v ' (s ,y)  E O,  or Z*(s, y) <0 ,  V(s, y) E O, (5.6) 

and u" --> -}- 1 uniformly in this neighborhood. In particular, if(5.5) holds then 

(so, Yo) E P (3 A/', 

and 

(so, Yo) ~' {(t, x):  x E support # ( . ;  t)}. 

P roo f .  Assume t E [8, l /g].  All the constants in this proof depend on 6, but we suppress 
this dependence. 
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1. Suppose that 

at(t; So, Yo) = f p( t ,  x; So, Yo)lz(dx; t) < 17, 

for some r/ that will be chosen later in this proof. Set or" = ot ~''. Then by the continuity of p,  
assumption (6) and the convergence of /z"  (.; t)  for every t (cf. (2.8)), there are an integer no and a 

neighborhood U of (So, Yo) satisfying 

o F ( t ; s , y )  < 2 r / ,  ( s , y )  E U , n  > no. 

Here U and no may depend on r/and t, so, Y0. 

2 2. Use (4) with r = s - ~,, to construct a constant kl (independent of r/and n) and n(o)  > no 
satisfying 

2. o t " ( s - ~ , , , s ,  y)  < kjo,  V ( s , y )  E U ,  n > n O D .  

Let B,,, (y) be the sphere centered at y with radius e,,. Then, we have 

# " ( B , , , ( y ) ; s  - ~,2) _< [ rain {p(s - Eg, x ; s ,  let"(s - ~ , , , s ,  
x E Bo~ (y) 

< k20~,, a-j ,  V(s, y)  E U, n > n(r/).  (5.7) 

Observe that the constant k2 is independent of I/. 

Now define 

2 fl ---- l iminf  inf [u"(s - e,,, y)] 
n--~oo (s .y)cU 

Let c be any number sufficiently close to one, say (7/8). In the next step we will show that for a 

carefully chosen value of I"/, ,8 ~_ c ---- (7/8) .  

3. Suppose that ,B < (7/8) .  Then there are a subsequence nk and (sk, Yk) E U satisfying 

2 lu'"(s~ - %,,  YDI < (7/8)  

2 (7/8) ,  =r [Z"'(sk -- ~,,,, Yk)[ < ~,, ,q-I 

for every k. Using (4.4) we conclude that there is ko, independent of r/, such that for k > ko we have 

2 ]Z"'(sk - ~,,,, x)]  < ~,, ,1q-1(7/8) + 21, Vx E B,,,, (Yk). 
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2 x ) )  > W ( q l q - J ( 7 / 8 )  + 2]) ,and Consequently W (u ''~ (& - ~,,, , 
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n~ 2 
# (B% (Yk); s - G,~) > 

> 

fB 2 X)) W (u ''~ (sk - G,, , d x  

COd W ( q I q - '  (7/8)  + 2])(G, , )d-I ,  (5.8) 

where Wd is the volume of the d dimensional unit sphere. Now choose 

O = c o d W ( q I q  ' ( 7 / 8 )  + 21)/k2, 

where k2 is as in Step 2. With this choice of q, (8) contradicts (7) for sufficiently large k. Hence 

/3 > (7/8) .  

4. Since fl > (7/8)  and u" is continuous, for a sufficiently large n we have either u"(s  - 
2 2 r  > (3/4)  for all ( s , y )  E U or u" (s - E,, , y)  < - ( 3 / 4 )  for all ( s , y )  E U. Wea l so  

know that the sequence u" is convergent (cf. (2.10)). Hence we conclude that, we have either 
2 y)  > (3/4)  for all sufficiently large n and (s, y)  E U or u" (s  2 u" ( s  - G,, - G ,  Y)  < - ( 3 / 4 )  

for all sufficiently large n and (s, y)  E U. Without loss of generality suppose that we have the first 

case. Then by a result of deMottoni and Schaztman [77] or Chen [27] (see Corollary 7.1, below), we 

conclude that u" converges to one uniformly on U. Hence 

U C73,  = 7  ~ , 

and by ( 11 ), 

Z , ( s , y )  > 0 ,  u  E U. 

The other conclusions of the theorem easily follows from (5.6). [ ]  

6. Conclusion 

In this section we complete the proofs of  Theorems 3. l, 3.2 and 3.3. 

Proof of Theorem 3.1. Let 7:' and N" be as in (6). Then clearly they are disjoint. 

1. Suppose that (so, Yo) ~ F and So > 0. Since p ( t ,  x ;  so, Yo) decays exponentially as Ixl 
tends toinfinity, (2.8)holds with ~ ( x )  = p ( t ,  x ;  so, Yo) for  every t < so. Moreover p (t, x; so, Y0) 
tends to zero exponentially fast as t tends to So, for all x :~ Y0. Using these facts and (6), it is easy 
to show that (5.5) is satisfied at every t sufficiently close to so. Hence by Theorem 5.1, (5.6) holds 

and consequently 

(so, Yo) E 79 U N' .  
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2. Suppose that (So, Yo) E P and so > 0. Then there are 6 > 0, ot > 0 and no > 0 satisfying 

z"(s, y) >or ,  VtS - sol, l y -  yol < 8 ,  n > n o .  (6.1) 

Definition of /x"  and the gradient estimate (4.3) imply that for sufficiently large n and Is -- Sol 
_<8, 

" B = [IDz"( t ,x) l  2 + I]dx /z ( ~(Yo); s) q '  
,o. ~ 2~,, \ e,, 

< ,i, 12e,, q' \ <, [ I z" ( t ' x )12+3ldx"  

Let ot be as in (6. !). Then for sufficiently small e, the function 

2 

Z---~ ( q ' ( Z ) ) [ Z 2 + 3 ,  

is decreasing on z > or. Therefore, for Is - sol < 8, 

lira tz"(Ba(yo); s) < [a z + 3]dx O. 
n - - ~ z  - -  n ~ d B s ( y  } 2~,, q' = 

Hence (So, Yo) ~ F. 

3. Suppose that (so, Yo) E P and so > 0. Then the same argument as in the previous step yields 

that (so, Yo) ~ F. [ ]  

We need the following result in the proof of Theorem 3.3. Recall that Ba (x) is the d dimensional 
sphere centered at x with radius 8. 

L e m m a  6.1. Assume (3.1) and(6). 

a) Suppose that Z*(t, x )  > 0 at some ( t, x)  E (0, cx~ ) • T~ d. Then there is a positive constant 
8 satis.~.ing 

z.(s,  y) > & V ( s , y ) ~ ( t , t + 6 1 x  B~(x). 

b) Suppose that Z,(t ,  x )  < 0 at some (t, x)  E (0, cx~) xT~ d. Then there is a positive constant 
8 satis.~ing 

z * ( s , y )  5 - 6 ,  V ( s , y )  6 ( t , t + 6 ] x  B~(x). 



Proof .  

1. Since Z*(t ,x)  = F 
(tk, xk) ~ (s, x )  satisfying 
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We will prove only part a. Proof of part b is similar. 

> 0, the definition Z* implies that there are a subsequence nk and 

Z"' (tk, xk) > y /2 .  

Since xk --+ x, in view of (4.4) there is a neighborhood U of x such that for sufficiently large k, 

z" '( tk,  y)_> y / 4  Vy �9 U. 

Hence for sufficiently large k, 

u"'(tk, y) > q ( y / 4 ~ )  Yv �9 U. 

2. By a result of deMottoni and Schatzman [77] and Chen [27] (see Corollary 7. I, below), there 

is 6 > 0 such that u ' ' '  ~ + I uniformly on every compact subset of (t, t + 6] x B3s(x). Since this 

convergence is only on a subsequence, we can not yet use (12). But by Remark 4.1 we have, 

lim inf z"' (s ' ,  y ' )  > 6, 
k ~  ~x~, (s',y')--~ (s.y) 

for all (s, y)  �9 (t, t + 61 x B2a(x). 

3. Arguing as in Step 2 of the previous proof, for s E (t, t + 6] we obtain 

lim #"~(Bza(X); s)  < lira q '  [6 2 + 3]dx = O. 

Recall tha t /z  is the limit o f / z "  (cf. (2.8)). Hence /z (B2a(x) ;  s) = 0 for all s E (t, t + 6] or 
equivalently 

Then by Theorem 3.1, 

( t , t + 6 ] x  B2a(x) A F = g k  

( t , t  + 6 ]  x B2~(x) C 79 U.A[. 

Since u" is convergent in L j (cf. (2.10)) and u ''~ converges to one uniformly in (t, t + 6] x B2a (x),  
we conclude that 

( t , t + 6 l x  B2a(x) C79  . 

Wecompletetheproofofpartabyusing(12) i n ( t , t  +6] x B~(x). [] 
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We continue with the proof of  Theorem 3.3. The above lemma essentially shows that the 
boundaries of the sets 79 ----- {z, > 0} and .N" ----- {z* < 0} in (0, oo ) •  d are equal. This 

observation and Proposition 4.2 will be used to complete the proof of  Theorem 3.3. 

Proof of Theorem 3.3. 

1. Suppose that z .( t ,  x)  > 0 and t < Te~t. Then by Proposition 4.2, (12), 

z . ( t ,  x)  ---- dist(x~ 79~). 

Moreover by (3.2) we have 79~ = l-'t to Aft. Hence dist(x, 79~) < d(t ,  x) .  Let y E 79~ be such that, 

dist(x, 79~ ) ---- ]x -- y[. Since z.  is Lipschitz continuous in the x-variable, z ,( t ,  y) ---- O. Recall that 

y E 79; = Ft t3 Aft and z*(t, x) > z . ( t ,  x)  = 0. Therefore y E F, and consequently, 

d(t ,  x)  < Ix - y[ = dist(x, 79~) z d( t ,  x)  

=~ z .( t ,  x)  =- d(t ,  x) .  

Also (t, x)  c 7) and therefore in a neighborhood of (t, x)  we have d ---- g, where g(t,  x)  is the 
distance between x and the t-section of the closed set I" t3 A/'. Then it is elementary to show that g 
is lower semi continuous and since d ----- g in a neigborhood of (t, x )  we have, 

d.(t ,  x)  = g . ( t , x )  = g ( t , x )  = d(t ,  x) .  

Hence we have proved (3.9) when z . ( t ,  x)  > 0 and t < T~x~. Similarly we can show that 

d*( t , x )  = d(t ,  x)  = z * ( t , x ) ,  

provided that z*(t,  x)  < 0 and t < Te~t. 

2. Suppose that z . ( t ,  x)  ---- 0 and t < T~xt. Since 0 ---- z . ( t ,  x )  < z*(t,  x) ,  (t, x)  is not in 
7 9 tON. Therefore by (3.2) x C l 't and d(t ,  x)  ---- 0. We now claim that d(t ,  x)  ---- d . ( t ,  x) .  Indeed 
if there is a sequence (tk, xk) -+  (t, x )  satisfying 

lim infd(t~,  xk) < 0. 
k---~ zx2 

Then by the previous step and (l 1), z*(tk, xk) = d(tk, xk) for all k. Hence 

Z.(t, x)  < lim infz*(tk, xk) ---- lim infd(tk,  xk) < 0. 

But this contradicts with the hypothesses of this step; z .( t ,  x)  -~ O. Therefore d(t ,  x)  ~ d. (t, x )  --- 
0, whenever z , ( t ,  x)  ----- 0. Combining with the first step we conclude that 

Z.( t ,  x) ~ d(t ,  x)  = d . ( t ,  x ) ,  'v'(t, x )  satisfying z . ( t ,  x)  > O. (6.2) 
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3. We proceed as in the previous step to obtain 

Z*(t, x)  = d(t ,  x)  = d*(t, x), 'v'(t, x )  satisfying z*(t,  x)  < 0. 
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(6.3) 

4. Suppose that Z.(t ,  x)  < 0 and t < Te~t. Set 

d ( t ,  x )  = lim inf d(s, y) ,  y = dist(x, 73t), 
( s .v  -*( t , x ) .  s>t  

where 73 is as in (6). For 
construct 6 > 0 satisfying 

> O, we use Lemma 6.1b together with a compactness argument to 

(t, t + 81 • By_, (x)  C A/'. (6.4) 

Hence, 

lim inf dist(y, 1-',.) > y,  
(s, y)--~(t, v). s>t  

and therefore 

dist(x, 73,) = y 5 lira inf dist(y, F~) = - d ( t ,  x) .  
(s. y)--~It,x), s > t  

Since by (12) z . ( t ,  x )  >__ - F ,  

Z,(t, x)  > el(t, x). (6.5) 

We also have 

z.(t ,  x) < (z*).(t, x) < lim inf z*(s, y). 
(s, v)--~(t. ~ ). s>t  

Step 3 and (6.4) imply that for every s sufficiently close to t and s > t we have, z* (s, x )  = d(s, x). 
We use this in the above inequality and then recall (6.5) to obtain 

z,( t ,  x)  = el(t, x),  V(t, x)  satisfying Z,(t, x) < O. 

5. In this step we will show that d ( t ,  x )  defined in the previous stepis equal to d . ( t ,  x )  whenever 
z . ( t ,  x)  < 0. Indeed by construction d >_ d., We already know that d(t,  x)  = z,( t ,  x)  < 0. Set 
0 = d.(t ,  x). Then 0 < 0. By the definition of d.  and the Lipschitz continuity of d, there is a 

sequence tk ~ t satisfying, d(tk, x)  --+ O. Sinced(tk,  x)  < 0 for sufficiently large k, (tk, x)  E N" 

and step 3 implies that z*(tk, x) = d(tk, x). In summary, 

z,(t ,  x)  = d(t ,  x) > d,(t ,  x)  = lim d( tk ,x )  

= lim z*(t~,x) >__ (z*) . ( t ,x )  > z.(t ,  x). 
k----~ "xz 
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Hence d ( t ,  x )  = d.( t ,  x )  and this step together with steps 2 and 4 complete the proof of (3.9) on 

t < T~,,. 

6. Suppose that z*(t,  x )  > 0 and t < T~t. We proceed as in step 4 and then step 5 to prove 

that 

Z*(t,x) = limsup d( t ,x )  = d * ( t , x ) .  
(s,y)---~(t,x), s > t  

This identity and step 3 complete the proof of (3.8) on t < T~xt. 

7. An application of Lemma 6.1 and (4.4) yield that on (T~x,, ~ )  x 7~ d we have either z.  = 

z* = - - ~  or z.  = Z* = + ~ .  Therefore 

(Te~,, cr  x g d  N F = 0. (6.6) 

Suppose that 79, is empty for some t. Then (3.8) implies that i f t  < Te., then z*(t, x)  = +~x~ for 

every x. Therefore t > T~,t. A similar argument shows that if Aft is empty, then t ~ T~t. Hence 
both 79, and .Mr are nonempty for all t < Tex,. So by (3.2) Ft is nonempty for all t < T~t. This and 

(6.6) imply that T~,t = t~,, (recall that t~xt is defined in Section 3). 

Combinning all the steps we conclude that (3.8) and (3.9) hold with text = Te.,.,. [ ]  

We are now ready to prove Theorem 3.2. 

Proof of Theorem 3.2. The ~ ---> 0 limit of  (4), assumption (6), the "clearing-out," Theorem 

5.1, and llmanen's argument in Section 6.3 in [62] yields a local upper bound on the d-dimensional 
Hausdorff measure of  F fq U for any compact subset U of (0, cx~) • 7~ J. The second assertion of the 

theorem is a consequence of Theorem 3.3, equation (4.1), gradient estimate(4.3) and Section 10.2 
in [ 13]. Since the notation and the assumptions used in [ 13] are quite different than the ones used in 
this paper, we will now briefly sketch this argument. 

1. In this step we will show that 

z . , - A z .  >_0, 

on 79 N (0, Te~t) • 7~ d. In fact when IDz'l <_ 1, this inequality follows immediately from (4.1). 

In general we will prove the above inequality by using a transformation, the gradient estimate (4.3) 

and (3.9). 

For a small positive constant/3, let r /be  a smooth, increasing function satisfying, q(0) = 0, 

0 < r/" < fl, 0' > I in (0, cx~), q' < I in ( - - ~ ,  0), and q > --ft .  Following [13], we define 

2 ' ( t , x )  = in f (q ( z ' ( t ,  y ) )  + Ix - Yl). 
T~ d 

(6.7) 

This transformation is very similar to the inf-convolution used extensively in the theory of viscosity 
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solutions [67],[71]. We refer the reader to [33] and Chapter 5 in [47] , for the properties of the 
inf-convolution. Since r/is bounded from below by/3,  the above minimum is achieved, say at y(x) 
(y(x) also depends on t and r but we suppress this dependence in our notation.) By calculus, (see 

[ 13] for details), we obtain 

q(z~(t, y(x))/E)[1 -- ]Dz'(t, y(x))12l >__ O, on {~:' > 0}. 

Now by using equation (4.1) and the properties of viscosity solutions and the inf-convolution we 

obtain 

x)  - A ~ ' ( t ,  x )  + q"(Z'(t, y(x))) lDz'( t ,  y (x ) ) l  2 
, . . . .  

y ( x ) ) ) I z ,  (t, y(x)) - / ~  (t, y (x ) ) ]  

2 
-O'(z'(t,  y(x)))q(z '( t ,  y(x)) /e)[l  - }Dz'(t, y(x))12], 

in the viscosity sense. Since rf'  < /3, we have 

~ (t, x) - A2'(t ,  x) +/31Dz'(t, y (x ) ) l  2 > 0, on {2 ' > 0}. (6.8) 

Let 

z .  (t, x)  ---- lim inf Z'" (s, y) .  
Is, v)---~(t, r), n ~  

Then the properties of  r/, (6.7) and (3.9) imply that ~:. : z .  on 79 N (0, T~t).  Also by carefully 

letting ~ go to zero in (6.8) we obtain 

Z.,( t ,x)  - A z . ( t , x )  +/31Dz.(t ,x)l  2 > 0, 

on 79 f-) (0, Te~t) x R / .  Now let/3 go to zero and use the gradient estimate (4.3) to conclude that on 

79 n (0, Te.,) x 7~ d, 

z , , ( t , x )  - A z , ( t , x )  > O. (6.9) 

2. Lemma 2 in [131 and (6.9) imply (3.7). The intuitive idea behind this is simple. First we 

observe that since Z. is a distance function, IDz, I 2 = 1 in the viscosity sense. We then formally 
differentiate this identity to obtain D2z.Dz. = 0. Hence formally A z .  = F(Dz. ,  D2z.), where 
F is as in the statement of Theorem 3.2. This identity and (6.9) imply 

z . , ( t ,  x) -- F(Dz. ( t ,  x), D2z.(t, x)) > 0, 

on P n (o, L, , )  • 7~'l. See [131 for the details of this  argument. [ ]  

R e m a r k  6.1. Following the ideas of  llmanen, il may be possible to prove that F is a solution 

of the mean curvature flow in the sense of Brakke [17]. Since Brakke's solutions satisfy the distance 
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function property of [13, 92], this would be a stronger result than Theorem 3.2. Indeed this result 

was proved by llmanen under the additional assumption that u0 = q ( z o / 6 )  and IDz01 _< 1 [62]. 
[]  

7. Appendix: A result of  Chen and deMottoni and Schatzman 

In this section we state a result ofdeMottoni and Schatzman and Chen. Then we prove a corollary 

which was used in earlier sections, 

The following is a special case of a result proved by deMottoni and Schatzman [77] and Chen 

[27]. The particular result stated below follows immediately from Theorem 3 in [27], 

Theorem 7.1 (Chen and deMottoni-Schatzman). Let u ~ be a solution o f  (2.2) and 

(2.3). Suppose that there are to > 0 and a one parameter family o f  bounded closed subsets ff2t o f  

7-~ a satisfying 

(a) boundary, o . f~t  is a classical solution o f  the mean curvature f low on (0, to), 

(b) signed distance function d ( t ,  x )  is three times continuously dilferentiable on [0, to] • ~d,  

(where d ( t ,  x )  is the signed distance bem'een x and the bounda~' off2~), 

(c) u~) > 0 in the interior q f  ~o  and u(~ < 0 in the complement o.f ~o, and there are positive 

constants C,  h, independent o f  e, such that 

lu~(x)l ~ CId(O,x)l, IDu~(x)l ~ C, Vld(0, x)l < h. 

Then u ~ converges to +1 unifi~rmly on compact subsets o f  { ( t , x):  t E (0, to), x ~ i n t ( f2, ) }, and 

u ~ converges to --1 uniformly on compact subsets o f { ( t ,  x):  t E (0, to), x r ~2,}. 

Corollary 7.1. 
0 qfTr d satis~ing 

Suppose that there are subsequences E,, ~ 0 and t,, ~ to and an open set 

l iminf inf = ~ > 0, u'" (t,,, x)  
n~" )O . ~ 0  

o r  

lim sup sup u ' '  (t,,, x)  = -o r  < 0. 

Then f o r  eve~. x E 0 there is ~ > 0 such that u ~" converges to q- 1 or -- 1, un~fi~rmly on eve~. 

compact subset of ( t ,  t -I- 81 x B~(x) .  
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Without loss of  generality we may assume that u'"(t,, ,  x)  > 0 on O. Then we have 

u ' " ( t , , , x )  =oe/2  > O, Vx E O, (7.1) 

and sufficently large n. Fix x0 E O and let v ' be the solution of (2.2) with initial data 

oe Ix - xo12 [ l  + 2 ] , 
v~ (O ,x )  --  2 5o 

& = l i n f { l y -  xol: y r O}l e. 

where 

V x r  

Vx  E Tr 't, (7.2) 

Then for every x ~ O, Ix -- x01 > ~o, and 

v ' (O,x)_<}--  I +  _<- l ,  

(Y 

Also for every x, v '  (0, x)  < ~. Therefore by (7.1), 

v'"(0, x) < u'"(t , , ,x),  

and by maximum principle 

v '" ( t ,x )  < u'"(t,, + t . x ) ,  V(t,x) E [0, oc) x'RY. 

Observe that the zero level set of  tr (0, .) is the boundary of a ball centered at x0 with radius 

=r 0/~0 ]1/2 
r0 L 2-~-da J " 

Hence the previous theorem holds with 

f2, = {x E Tr Ix -- xol < ~/(ro) 2 -- 2(d - I)t}. 

Now the conclusion of the corollary follows from (7.2) and Theorem 7.1. [ ]  

8. Appendix: A gradient estimate. 

In this section we prove the gradient estimate (4.3). As in Section 4, we define 

w ~ = [ D z ' ( t ,  x)[ 2. 

Recall that 

w ~ + s  ~ + R ' ( t , x , w " )  < 0 ,  in(0,  o c ) x ~  '/, (8.1) 
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where for a real number r, (t, x) E [0, cx~) x R  a and a smooth function q9 E C2(TTt), 

oTto(x) 

R ~ (t, x ,  r)  

= - A ~ o ( x )  + - -  
4u ~ (t, x )  

D f f  (t,  x ) .Dqg(x) ,  

= ~ q '  - r ( r - l ) ,  

and as before q ( r )  = tanh(r). Set 

W ( t ,  x )  = I + - -  
2 ( i f ( t ,  x) )  2 + I 

In(l /e)  t 

Recall that the gradient estimate (4.3) states that for sufficiently small E, 
w ' < W. We will first show that W is a supersolution of an equation very similar to (8.1). Then we 
complete the proof of (4.3) by an application of the maximum principle. 

Lemma 8.1. There are a constant Eo and a function ~.~ ( t ) such that for eve~. E < Eo, 

Wt + s  + R ' ( t , x ,  W )  >__ X ' ( t ) [ w  - w'] in (0, cc)xTT t. 
t 

(8.2) 

Moreover ~E (t) is un(formly bounded in e, i.e., 

Xo = sup{IZ'(t)l: t >_, E 5 e0} < ~ .  (8.3) 

Proof.  Set 

= ( z ' )  2 + 1 ,  K ( E ) = 2 I l n ( I / E ) ]  i. 

1. We directly calculate that 

W t + E ~ W -  K(E)~h K(E) [4~ ' ] t ~  + z ~(w ~ + l ) - 2 w  ~ , 
t 

and 

Wt d- C~ W q- R ~ (t, x ,  W )  = I Jr J, (8.4) 
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where 

J 

1 
K(r + (w ' + 1) + R'(t,x, W), 

t t 

K(e)t 2u'Z'(w" I ) -  2w'] + ~R'(t,x, W). 

In the following steps we will estimate I and J separately. 

2. We split the estimate of I into two cases and start with the case 

g ( ~ ) l z ' l  ~ ~. 

(The other case will be analyzed in the next step.) The above inequality yields 

( & ) , , ,  
= - - -  > 2 '  

lu'l  q > q 1 + 

provided that ~ < 1/3. Since u'z ~ = lu~llz ~ I, 

2u'z'K(6)/~ = 2Iu'IIz 'IK(E)/E ~ 1. 

Using the above estimate and the positivity of R ' (t, x ,  W) we obtain 

1 [ K ( ~ ) ~  ] 1 
I > - + (to' + 1) > - - [ W  - w~]. 

t t t 

(8.5) 

3. Suppose that (8.5) does not hold, i.e., 

K(~)lz~l < r  ::::> q '  ( ~ - ) > q ' ( K - - - ~ ) "  

Since q'(r) = 4 e 2 r ( e 2 r q  - 1) -2, 

q (~)>q'(K--T~)  
' = 46(6 + l) -2 > ~, 

provided that ~ < I. We use this inequality in the definition of R ' to obtain 

R r (t, x ,  W) 4 1,W 
r q 

> ~ 4 K ( r  ' t  

4 ( K ( ~ ) ) 2 ~  
2> 
- -  ~ t 2 
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In the third inequality we used the fact that ~ > 1. Since 2K(6.) > 6. for all 6. < I and the product 
u ' z  ~ is always positive, the above inequality yields 

m 1 I > K(6.)~p + _ R , ( t ,  x, W), 
- t 2 2 

> K(6 . )~  - 1 +  > 0 .  
- -  t 2 6 .  - -  

4. Combining the two previous steps we conclude that for all 6. < 1/3, 

1 
1 > - - - I A [ W  --  tot] ,  

t 

where 1 a is the characteristic function of the set A and 

A = { ( t ,x ) :  K(6 . ) l z ' ( t , x ) l  >_ 6.}. 

5. We continue with an estimate of J .  First suppose that 

Iz~l ~ 26.. 

(The other case will be analyzed in the next step.) Then we have 

2 
- u ' z  ~ = 2q > 4q(2) > 2. 
6. 6. 

Hence, 

K ( 6 . )  
J >  

t 
[2(w ' + 1) - 2w~l > 0. 

6. Now suppose that (8.6) does not hold, i.e., ]z~l < 26.. Then, 

( ~, ) 4 ,  [ ~ _ ]  
R ' ( t , x , W ) = - ~ q '  z ' ( _ x )  ( W - 1 ) W _ >  ~ q ( 2 )  W. 

Recall that u ' z  ~ > O. Therefore for 6. < ~/q '(2),  

2K(6. )w '  1 
J > q- - R ' ( t ,  x,  W),  

t 2 

> - -w ~ -t- q ' (2)  
- -  t 6 . 2  ' 

2K(6.) 
> - - [ W  - w ' ] .  

t 

In the second inequality, we used the fact that ~ > I. 

(8.6) 
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7. Combining the two previous steps we conclude that for every ~ < ~/q ' (2) ,  

2K(~)  
J > - - I ~ [ W  -- tOE], 

where 

B = { ( t ,x ) :  I z ' ( t , x ) l  5 2~:}. 

Now (8.2) follows from this step, Step 4 and (8.4) with e0 = ~/q ' (2)  and 

k ' ( t ,  x)  = - 1  A + 2K(E)IB.  

Finally, we prove (8.3) after observing that K(~)  ~ 0 as 6 ~ 0. [ ]  

Proof o f  P r o p o s i t i o n  4.1. Fix e < e0 and T > 0. We first assume that there exists a 

constant C(e )  > 1 satisfying 

WE(0, x)  < C(~) ,  Vx E ~,t. (8.7) 

We will remove this restriction in Step 6, below. Since C(e )  > l, w = C(~)  is a supersolution of  

(8.1). Therefore by (8.7) and the maximum principle we have 

w E ( t , x )  < C ( e ) ,  V(t, x)  c [0, oc )xT~ J. (8.8) 

To prove (4.3) we first assume that 

inf 
[O.Tlx'JTJ 

and then obtain a contradiction in the next five steps. 

1. Set 

4 , 
0 = ~ l l q  I1.~ + - -  

[W - w E] < O, 

koC(~)  
+ 1 ,  

K(~)  

where k0 and K (~) are as in the previous lemma. This technical choice of  0 will be clear in the next 

several steps. Then we have 

i n f { e - ~  - wE( t , x ) l :  ( t , x )  c [0, TI x ~d} = - 2 b  < 0. 

For 3 E (0, b], choose (t~, x~) c 10, TI x ~ J  such that 

e - ~  - wE)(t~, & )  < - 2 b  + 3. 
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2. Let I/be a smooth function satisfying 

0_< r 1_< 1, 1"/(0) = I, rl(x) = O ,  Vlx I >_ I. 

Consider the auxiliary function, 

�9 (t, x)  = e-~ x) - w ' ( t ,  x) l  - 6r/(x - x~). 

Then q5 achieves its maximum over [0, T] x 7r d, say at (t, .~). Moreover, 

�9 (t,)c) < ~(t~,x~) = e - ~  w~)(ts, xs) < - 2 b  + 6. 

Since W(t ,  x) > K ( e ) / t ,  (8.8)implies that for all 6 < rain{b, I}, 

0 > b + CP(t, ~) > e - d ( W  - w~)(t, 2c) > e -~ 

Therefore, 

> K(~) /C(E) .  

- -  - C ( E ) ) .  

(8.9) 

(8. i 0) 

3. Set 

(v ( t , x )  = e -~  ~V(t ,x)  = e - ~  

Then 

c~, - c~cv + k ( t ,  x ,  rv) <_ o, 

fv, - c~g /  + k ( t , x ,  g / )  >_ - - Icy  - g/l, 
t 

where for r > 0, (t, x )  c [0, oc)  x R  d, 

R(t ,  x ,  r )  = or + e-~ R~(t, x,  e~ 

Using the definitions of R ~ and 0, we directly estimate that 

gr(t ,  x,  r) = 0 + R~ (t, x,  eQtr), 

4 
> 0  -~q' - 9 

~.oC(e) 
> 1 + - -  
- K ( ~ )  

(8.1 l )  

(8.12) 

(8.13) 
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4. Let 

~o= W - ~ .  

Subtract (l I) from (12) to obtain 

g), - s  > R ( t ,  x ,  ~ )  - R ( t ,  x ,  I ~ )  - - - q ) .  
t 

Since ~o(t', 3:) < 0, (13) and (8.10) yield 

R(L 3:, ~ )  - k ( L  ~, g,') - ~0 _> -~o. 

Hence at (7, .~) we have 

~p, -- ~ o  > --~o. (8.14) 

5. Recall that the auxiliary function �9 -= q) -- 6r/ defined in step 2 attains its maximum at 
(t, 3:) E (0, T] x 7U. Therefore at (7, 3:), 

~ ,  - z;~ �9 < 0.  

Now we use (8.14) and (8.9) to obtain 

2b - 311 + r/(3: - x~)] < - q ) ( t ,  3:) < r - s  = qbt -- / ;~qb -- 6s < 6L(~) ,  

where L(~)  is a constant depending on the function r /and the operator s  Since this constant is 
independent of 3, we obtain a contradiction by letting 6 go to zero in the above string of inequalities. 

Hence W > w ~ on [0, T] x 7T / for every T > 0. So we have completed the proof of (4.3) under 

the additional assumption (8.7). 

6. In this step we remove the restriction (8.7). First observe that 

2 
]u~(t,x)--Au'(t,x)l < - -  lu ' (0 ,  x )  < 1 

- -  ~ 2 '  - -  " 

By well known properties of the heat kernel, we have 

+ , 

where C j  is an appropriate constant, depending only on the dimension d. Fix ~, and for a positive 

integer k, let u k be the solution of (2.2) with initial data, 

uk(0, x ) = m i n { m a x { u ~ ( k - l , x ) , l - k  i } , _ l + k - i } .  
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Define z k by 

H a l i l  M e t e  Sor ter  

Clearly as k tends to infinity, u k converges to u ' in C~I',, ((0, oo) x R  d) for any m. Moreover, 

, 

m 
,_k,)], 

Therefore by the previous steps, [Dz ~ ]2 ~ W .  Now we let k to go to infinity to complete the proof 

of  (4.3). [ ]  

The following remark was pointed out to us by Ilmanen. 

R e m a r k  8 . 1 .  Observe that if u ~ (t, x)  is a solution ( 1.1 ), then for any ~ > 0, 

vz ( t ,  x )  = u~(~.2t, )~x), 

is again a solution of (1. I) with ~ replaced with 6/X. Then by the gradient estimate (4.3), 

~ : z ( t , x )  = ~ - i ,  z ~ q  ~v ( t , x ) )  --  
z. ~ ()v2t, ~.x) 

satisfies 

IDZ~(t ,  x)] 2 ~ 1 + - -  
] (~.~(1,  X ) )  2 -"[- 1 

21n(~/~) t 

The above estimate holds for all X satisfying, ~/,k < ~o, where 60 is as in the statement of Propsi- 

tion 4.1. Since 

the above estimate yields that, 

I D z ' ( t ,  x ) l  2 5_ I + - -  
1 (z ~ (t,  x ) )  2 + 2,2 

2In(Z/() t 

Now by minimizing the right-hand side over ~. > ~/~o, we obtain a scale-invariant version of the 

estimate (4.3). [ ]  
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