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Abstract 

I prove that the solutions of the phase-field equations, on a subsequence, 
converge to a weak solution of the Mullins-Sekerka problem with kinetic under- 
cooling. The method is based on energy estimates, a monotonicity formula, and the 
equipartition of the energy at each time. I also show that for almost all t, the 
limiting interface is ( d -  1)-rectifiable with a square-integrable mean-curvature 
vector. 

1. Introduction 

Phase-field equations for solidification were introduced by CAGINALP [7, 8], 
COLLINS 8r LEVINE [15], FIX [19] and LANGER [24] to treat phenomena not covered 
by the classical Stefan problem. These equations, for the temperature (deviation) 
0 and the phase field ~o, consist of a heat equation 

cot + lq~t = kAO (1.1) 

and a Ginzburg-Landau equation 

fl~o, = 2Acp - vW'(~o) + lO (1.2) 

where c, I, k, fl, 2 and v are positive constants and W is a double-well potential 
whose wells, of equal depth, correspond to the solid and liquid phases. 

Recently thermodynamically consistent models have been developed in FRIED 
& GURTIN [20], PENROSE & FIFE [27], WANO et al. [33] and in references therein; in 
particular, [20], [27], and 1-33] allow the latent heat l to depend on the order 
parameter (0. 
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The main goal here is to rigorously study the global-time asymptotics of (1.1) 
and (1.2) in the limit e J, 0 for 

1 
c,k=l ,  f i = 2 = a ,  v = - ,  

and for specificity with 

l =  (1.3) 

w( o) = -  02) 2 ,  1 = 1 -  02, ( 1 . 4 )  

a choice that is essentially the same as Model II in [33]. My analysis can be 
modified to analyze any smooth function I vanishing at the minimizers of W; i.e., 
any l of the form 

l(q0) = (1 - (02)H(q0), 

where H > 0 is an arbitrary smooth function. A specific choice of H corresponds to 
Model I in [33], while the particular choice l = W would simplify some of the 
analysis (cf. Remark 4.1 below). Observe that, granted (1.4), the nonlinearity 
-vW'(~o)  + IO in (1.2) vanishes at _+1 for any value of 0. 

The formal analyses of [7, 9, 15, 19] at least indicate that solutions of the 
Ginzburg-Landau equation (1.2) form a sharp interface whose normal velocity 
depends linearly on the mean curvature and the temperature of the interface. To 
describe this result precisely, let (0% q~) be the solution of the phase-field equations 
with parameters consistent with (1.3) and assume that (0% q)~) converges to (0, (p). 
Since the two minima of W are _+1, it is easy to prove that ]q)[ = 1 almost 
everywhere. Let F(t) be the interface separating the two regions 

(2(t) = {x" ~0(t, x) = - 1} 

and {cp = 1}. Then, formally, (0, (2) is a solution of the heat equation 

O, A O = - ( h ( c p ) ) , =  h(~o) (p - : 3 (1.5) 

everywhere, coupled with the geometric equation 

: H - On (1.6) 

at the interface F(t), where Z~ is the indicator of the set f2, and where V, n and H are, 
respectively, the normal velocity vector, the outward unit vector, and the mean- 
curvature vector of the interface F(t). A derivation of these sharp interface equa- 
tions from thermodynamics as well as an exhaustive list of earlier references are 
given in GURTIN'S book [21, Chapter 3]. In 1964, MULLINS & SEKERKA [26] studied 
the linear stability of a related system of equations obtained by replacing (1.6) by 
the Gibbs-Thompson condition: 0 = - K. They showed that planar interfaces are 
unstable under some perturbations, thus explaining the dendritic growth observed 
in solidification. I refer to equations (1.5), (1.6) as the Mullins-Sekerka problem with 
kinetic undercooling. 

My chief result is that, in the limit, 0 and (2 constitute a weak solution of the 
Mullins-Sekerka problem with kinetic undercooling. This result is global in time; 
I do not assume the existence of a solution of (1.5), (1.6). Therefore I also provide an 
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existence result for this limit problem, extending a previous result of CI-IEN & 
RHTICH [12] for local-time existence. To the best of my knowledge, the only other 
global results are due to LUCKHAUS [25] and ALMGREN & WANG [31. They proved 
the global existence of weak solutions for the heat equation (1.5) coupled with the 
Gibbs-Thompson condition: 0 = - K. 

There are two essential difficulties in the analysis of (1.5), (1.6): a solution (0, ~2) 
of (1.5), (1.6) can start out smooth and yet, in finite time, the boundary of • may 
develop geometric singularities, and 0 may blow up pointwise (see the example in 
the Appendix). These difficulties also complicate the analysis of convergence. Since 
0 is unbounded, 0 ~ does not converge to 0 uniformly. For that reason I cannot use 
results of [4] concerning the convergence of (1.2) with a given continuous temper- 
ature field. The asymptotics of the Cahn-Allen equation, which is (1.2) with l = 0, is 
studied in [18] via sub- and supersolutions constructed from the weak solutions of 
the mean-curvature flow; unfortunately the approach of [18] is not directly 
applicable to the phase-field equations, as they do not have a maximum principle 
and there is no a priori weak theory for the limit equations. 

I overcome these difficulties by utilizing the energy estimates in w and 
a monotonicity result in w The latter is an extension of the monotonicity formula 
of CHEN & STRUWE [13], which originates from STRUWE'S formula for parabolic 
flow of harmonic maps [32], and a later result of ILMANEN [23] for the Cahn-Allen 
equation, which originates form HUISKEN'S formula for smooth mean-curvature 
flows [22]. My main observation is that the geometric equation (1.6) is not simply 
a perturbation of the mean-curvature flow, and therefore the monotonicity should 
involve the mathematical energy 

I Vq~l 2 + - w ( p  ~) + (o~) ~ dx 

~a 

related to the system (1.5) and (1.6). The main technical difficulty is then to show 
that the discrepancy measure 

~(t; A) = f 2 ]17cp~r2 - 1 W  (cp~) 
A 

(1.7) 

has non-positive limiting value. For the Cahn-Allen equation, ~ __< 0 follows easily 
from the maximum principle. For the phase-field equations, however, it follows 
from a series of estimates obtained in w In later sections, following ILMANEN [23], 
I prove that the weak* limit of ~ is indeed equal to zero. 

I close this introduction with a brief survey of related results. Equations (1.1), 
(1.2) with c = fl = 0, 1 = 1 form the Cahn-Hilliard equation. Recently the conver- 
gence of the Cahn-Hilliard equation to the Hele-Shaw problem was proved by 
ALIKAKOS, BATES • CHEN [2] using a spectral estimate of CHEN [11]. In contrast to 
this paper, they assume the existence of a smooth solution to the limiting problem. 
Briefly, their method is to construct approximate solutions for the "e problem" that 
are close to the smooth solution of the limit problem. They then use the spectral 
estimates to bound the error terms. Also, SrOTH [30] studied the asymptotic limit 
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of the phase-field equations with radial symmetry. Independently, a radially sym- 
metric problem in an annular domain with one interface was studied in [10]. 
Asymptotics of the Cahn-Allen equation, obtained by setting I to zero in (1.2), have 
been studied extensively. An exhaustive list of references related to the Cahn-Allen 
equation can be found in my paper [29]. 

This paper is organized as follows. In the next section I outline the background 
and state the main results. In w several elementary estimates are obtained. 
A gradient estimate is proved in w this estimate implies that ~ is non-positive in 
the limit. In w I derive a monotonicity result which I use in w 6 to prove 
a clearing-out lemma. I then establish the equipartition of energy in w In that 
section, I also show that the Hausdorff dimension of the interface is d -  1. 
I complete the proof in Section 8. In the appendix, for a simple radially symmetric 
example studied jointly with ILMANEN, I prove the pointwise blowup of the 
temperature. 

2. Preliminaries 

The following notation is used throughout the paper. C~(A -~ B) denotes the 
set of all compactly supported, smooth functions on A, with values in B. N'(A) 
denotes the set of all distributions defined on A. For  a measure space (A, #) and for 
p e [1, or], LP(A; d~t) denotes the set of all functions that are p-integrable with 
respect to the measure g. When # is the Lebesgue measure, we use the notation 
LP(A). For T < ~ and p ~ [1, oo], [[. lip, T denotes the norm in LP((0, T)  x ~d). For  
R > 0 a n d x ~  a, 

BR = { y e ~ a : l y ]  N R}, BR(X)= {yE~d: l y  --X[ NR}.  

For  two d x d matrices M and N, 

d 

M : N =  y, M, jN, j. 
i , j = l  

S d- 1 denotes the set of all unit vectors in Nd. For  p e Ne, p | p denotes the d x d 
matrix with entries pipj. 

For  a Radon measure p on Nn and a continuous bounded function ~, 

~(~,) := ~ ~,(x)cl~(x). 

24C k denotes the k-dimensional Hausdorff measure (cf. [28]). Finally 

Q =(0, oo)x~ a 

and for (z, 4) ~ Q, G(z, 4) is the heat kernel: 

exp(l 12  
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W(u) = �89 (u 2 - 1) 2, 

h ( u ) = u - l u 3 ,  g ( u ) = h ' ( u ) = ( 1 - u  2 ) - = ~ .  

The heat equation (1.1) and the order-parameter equation (1.2) - -  with these 
functions and with parameters as in (1.3), (1.4) take the form, 

1 
q~ - A r  + ~ W ' ( r  - 1~ g(r  ~ = 0 in (0, o0) x Ne ,  (OPE) 

0~ - A0 ~ + g(r = 0 in (0, oc) x Ne .  (HE) 

For e > 0, let ( r  0 ~) be the unique, smooth, bounded solution of the phase-field 
equations satisfying the initial data 

r = Co(X), O~(x,O) = O~)(x), x ~ Na. (IC) 

We assume that 

I~o~(x)l < 1 Vxs  ~a .  (A1) 

Then since W'( + 1) = g( __ 1) = 0, by the maximum principle, 

I r  < 1 V ( t , x ) ~ ( 0 ,  oo)x,.~ a. 

For a real number z, q(z) = tanh(z) satisfies 

q" = W'(q), q' = 2x/2W~) = g(q), 

and q is the standing wave associated with the reaction diffusion equation with 
nonlinearity W'. Since I r  < 1, we may define z ~ by 

Zt = ~ q -  l((p~).  

Then z ~ satisfies 

z~ - A z  ~ - 0 ~ + 2 r  (I Vz~l 2 - 1) = 0 (ZE) 

(observe that g ( r  = g(q(z~/e)) = q'(z~/e) and q" = 2 r 1 6 2  

2.2. Energy 

For a Borel subset A c Na, define 

#~(t; A) = J'~l I7r + + W ( r  
A 

~(t ;  A) = ~V(t; A) + ~ �89 (0~) 2 dx. 
A 
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In terms of z ~, 

~=(t; dx) = ~ q El Vz% x)l 2 + 1] dx, 

and the discrepancy measure ~ (cf. (1.7)) is given by 

~(t; dx) = ~ q' El 17z~( t, x)l 2 - 1] dx.  

By differentiation and integration by parts we obtain 

d 
d5/~e(t; ~ d )  = _ S 8(q)t)2 +lVOq zdx. 

~a 

We assume that the initial data satisfy 

fi~(0; ~a) __< CL 

Then 

(2.1) 

t 
/2~(t; ~ d) + ~ j" 8(~o~) 2 +lVO~lZdxdt ~ CL ~, t >= o. (2.2) 

0.@ a 

(Assumption (A2) can be relaxed as in [29]). We now localize this estimate. Let 
be any positive, smooth, compactly supported function. Then 

de. _ ~,@I((~ot " roe. 21 
~d 

f ~  (092 + 46(Vcp~'VO)2+---~ -Iv~12 
~d 

__< sup 20(x ) j 51V~oq 2 + 

{0>o} 

< IID2~,II~/2~(t; {4~ > 0}). 

Here we have used the fact that, for any positive C 2 function, 

[ VC'(x)12 < II D20 II ~. 
2~(x) = 

Hence there is a constant C(~), independent of 5, such that the map 

t ~ ~ O(x)fi~(t; dx) - C (~ ) t  (2.3) 

is non-increasing. 
We close this subsection by obtaining a similar local energy identity for the 

classical solutions of the limit equation. Suppose that (O(t, x), ~2(t)) is a classical 
solution of the Mullins-Sekerka problem (1.5), (1.6). Let V, H, and n be, respective- 
ly, the normal velocity vector, the mean-curvature vector and the outward normal 

e > 0. (A2) 
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of the interface F(t) = 80(0. Let #(t;.) be equal to ~ times the surface measure of 
80(t). Then (1.5) is equivalent to 

(0, - A0) dx = V" np(t; dx). 

For a smooth, compactly supported O(x), we have 

d ~i(t;)(O) = ~ + VOid(t; dx) + ~ O0,Odx [ - ~ . u 0  

= ~ IV" ( - - H  + On)~9 + V" VO]#(t; dx) + y�89 

Since V = H - On by (1.6), it follows that 

d/~(t; ')(O) = y + V6]t~(t;dx) + ~ �89 - ( 2 . 4 )  E-I~l~, I VOl~dx. 

Observe that this identity is very similar to that used by BRAKKE to develop a weak 
theory for mean-curvature flows (cf. [5], [23, w 

2.3. Subsequence 

The energy estimate (2.2) yields 

sup II0~(t,-)ll2 < oe. 
~ , t > 0  

Hence there are a subsequence, denoted by 5, and an L 2 function 0 such that 

0 ~ 0  in weak LZ((0, T) x ~d), 

for every T > 0. We will show that this convergence is, in fact, in the strong 
topology (see Proposition 3.4 below). Moreover, by the arguments of BRONSARD 
& KOX4N I-6], this sequence can be chosen so that 

h(cp~)~h(q))=~q0 inL~oc((O, oo)x~d), q~ ~q)  a.e., 

where qo is a function of bounded variation, and [ q~(t, x)[ = 1, for almost every (t, x). 
Since (h') 2 = 2W, (2.2) implies that, for 0 __< s < t and e > 0, 

t 

1[ h(q)~(t, ")) - h(q)~(s, "))Ha < ~ ~ [ h'(cP~( r, x))q)~(r, x)[ dxdr 
s 

<-_ ~ ~(~o~(r,x))2 dxdr #~(r; ~d)dr 

< C~' x/ t  - s. (2.5) 

in Ll~oc (~d), (2.6) 

Hence 

h(q)~(t; .)) - ,  h(~o(t;. )) 

uniformly in the variable t. 
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The energy estimate implies that, for each t > 0, the sequence {/2~(t,-)},>o is 
precompact in the weak* topology of Radon measures. By a diagonalization 
argument we construct a sequence, denoted by e again, such that as e $ 0,/~(t," ) is 
weak* convergent for all rational t > 0. Then, by the monotonicity estimate (2.3), 
we construct a further sequence so that {/~(t,')}~>o is convergent for all t > 0. 
Therefore there are a subsequence, denoted by e, and a family of Radon measures 
/~(t, .) that satisfy 

l im/~"( t , . )~ /~( t ,  .) Vt >0  
e$0 

in the weak* topology of Radon measures. See [23, w for further details of this 
argument. Now for a Borel subset B ~ [0, oo) x Nd, define 

/~(B) = ~ ~/~(t; dx)  dt, Ix(B) = ~ ( B )  - �89 ~ ~ 0 2 d x  dt .  
B B 

Then the strong convergence of 0 ~ to O (cf. Proposition 3.4 below) implies that 

Ix > 0 and 

# ~ ( t , ' ) ~ i x ( t , ' )  V t > 0 .  

Since the interface condition (1.6) involves not only the mean-curvature vector, 
which is independent of orientation, but also the normal vector, we introduce yet 
another measure, m ~, that keeps track of the normal direction. For  (t, x, n)E 
[0, oe) x ~a  x S d- 1, define 

[ Vq)~(t, x )  if ] Vtp~(t, x)l #: O, 
v~(t, x )  = I V~o~(t, x)l 

Vo if Vq~(t,  x )  = O, 

dm~(t, x ,  n) = dt#~(t; dx)cS{~(t,x)} (dn), 

where Vo ~ S d-  1 is arbitrary and @~} is the Dirac measure located at v ". Observe 
that m ~ is independent of the choice of Vo. 

Since S d-  1 is compact, there is a further sequence, denoted by e, such that dm ~ is 
weak* convergent. By a slicing argument (cf. [-16, Theorem 10, page 14]) we 
conclude that there exist probability measures N ( t , x , ' )  on S d-~  such that as 
e tends to zero, 

d m  ~ ~ d m  = dt#( t ;  d x ) N  (t, x; dn).  

Finally define n~ ~ by 

drfi ~ = _ z~dm ~. 

In w we show that there are a subsequence, denoted by e, and 

V E L2((0, T )  • ~ d  • s d - 1 ;  din) V T  > 0 

such that 
rh ~ ~ rh, drfi = v(t ,  x ,  n ) d m .  
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2.4. Initial data and assumptions 

In addition to (A1), (A2) we assume that 

II 17z~ 1[ o~ _-< 1, (13) 

sup ~ I[ D2z~)[1 ~ < oo, (A4) 
0 < ~ _ < 1  

~~ ~.(x)) 
sup sup R d-1 < o% (A5) 

O < e  < 1 x E ~  d 

R > 0  

where BR(X) is the sphere centered at x with radius R. We also assume that 

sup {1t 08 [11 + 1[ 081[ ~ + x/~ 11 V08 [[ ~} < oo, (16) 
0 < e <  1 

sup {~allD3~08[[oo + e2[lD20811~} < ~.  (17) 
0 < e <  1 

Since 

II e P e 1 0o[[p__< 1108111 [10o]]P~ - for 1 = < p < ~ ,  

observe that (A6) implies that 

sup [[ 08 l[p= K(p) < ~.  (2.7) 
0 < e <  1 

Finally we assume that there is 0o E L2(N a) such that 

08 ~ 00 in L2-strong. (A8) 

While (A 1)-(A8) may seem restrictive, in fact, they are merely technical assump- 
tions which are consistent with approximations to any smooth initial data. Indeed, 
if 08 -- 0o is a smooth, compactly supported function, then 0o satisfies (A6), (17) 
and (A8) trivially. Suppose that F0 is a bounded, smooth hypersurface in Na. Let 
d(x) be the signed distance of x to Fo and let 3 be an appropriate modification of 
d outside of a tubular neighborhood of Fo such that all derivaties of 3 up to order 
three are bounded and such that 2131 > Id[. Then z~ = s (A1)-(A7). 

Finally we note that the term x ~  appearing in (A6) is not essential. Indeed if 
(A6) holds with e v for some v > �89 then we can prove the same results with minor 
changes. 

2.5. Varifolds, rectifiable measures, etc. 

In this subsection, we recall several definitions and results from geometric 
measure theory ([281, [-23, w 

Following [23, w we call a Radon measure # on Na k-rectifiable, if there are 
a ~fk-measurable, locally k-rectifiable set X c Na and 

f ~  Lion(X; d ~ k ~ X )  (~k~X(A)  = ~k(Ac~X))  
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(. 
#(A) = | f ( x ) d ~ k ( x )  for any Borel set A. 

Ac~X 

When # is k-rectifiable, for/~-almost every x, the measure-theoretic tangent plane 

Tx# = lim #x,;,, (#~,a(A) = 2-k#(x  + 2A)) 
a;o 

exists and is a positive multiple of ~ k  restricted to a k-plane. With an abuse of 
notation, we use T~# to denote this k-plane. 

A general k-varifold is a Radon measure on Na x Gk(Nd), where Gk(N d) is the 
Grassman manifold of unoriented k-planes in Na. The mass measure II g I1 is 
defined by 

II v II (A) = V(A x Gk(~)). 

For  every k-rectifiable Randon measure #, there is a corresponding (rectifiable) 
k-varifold V, defined by 

dV.(x, S) = d#(x) dC~(Tx u)(S), 

where (~{Tx~} is the Dirac measure located at T~#. Note that H Vu II = #. We say that 
a k-rectifiable Radon measure # has a generalized mean-curvature vector 

H e L~o~(~ d --, Ne; d#) 

if for any smooth, compactly supported vector field Y(x), 

tr(VY(x)P(x)) d# = - ~ Y(x).  H(x) d#, (2.8) 

where P(x) is the projection on the tangent plane Tx#. In the terminology of 
geometric measure theory, the left-hand side of (2.8) is the first variation 6 Vu of the 
varifold Vu [1]. 

2. 6. Main results 

First we recall the convergence results stated in w 

Theorem 2.1 (Convergence). There are a sequence, denoted by e, functions 
0 e L12oc((0, oo) x Nd), v e L~oc((0, c~) x ~a x S d- 1; din), non-negative Radon measures 
{ #(t;" ), fi(t;" ) }t >= o and probability measures { N (t, x;" ) }(t,x)~(o, oo)• such that, as 
e tends to zero, 

O~(t, .) ~O( t , . )  strongly in L2oc(~ d) Vt >0 ,  

h(qo ~) ~ h(qo) strongly in L~od(0, oe) x ~e).  

Moreover, ]q~[ = 1, q~(t, x) ~ qo(t, x) for almost every (t, x) ~ (0, co) x ~a, and 

h(q)~(t," )) -+ h(cp(t," )) strongly in L~oc(~d), 
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uniformly for t >= O. In addition, the following convergence results in the weak* 
topology of Radon measures, are valid: 

#~( t , ' )~#( t , ' )  Vt  >=O, 

fi~(t," )~f i( t ,"  ) Vt  >=0 (fi(t;dx) = #(t;dx) + �89 dx), 

m ~ m ,  din(t, x, n) = #(t; dx)dt N(t, x; dn), 

rh'~rh, drfi ~ = - z~dm ~, drfi = v(t, x, n)dm. 

For every T > O, the functions 0 and v satisfy 

sup llO(t,')ll2 + I/ VOII2,T < ~ ,  (2.9) 
t>O 

II v [IL~<(o, T)x~dxSd-1; d~) < ~ "  

The strong convergence of 0 ~ is proved in Proposition 3.4, and the convergence 
of rh ~ and the integrability of v are proved in w The remaining assertions were 
established in w 

Set d#(t, x) = #(t; dx) dt. Let F be the support of # and Ft be the t cross section 
of F. In the terminology of w we have the following regularity result. 

Theorem 2.2 (Regularity). For almost every t >= O, # ( t , ' )  is (d - 1)-rectifiable and 
has a generalized mean-curvature vector H(t, x). Moreover for every T > 0, 

[HI ~ L2((0, T) x ~a; d#), 

sup ~ d - l ( / ' t )  < 00, 
t<=T 

0 e Llloc((O, oo) x Na; d#), 

and the support of the probability measure N(t, x;') is orthogonal to Tx#(t; ' )for 
#-almost every (t, x). In particular, 

~ ~ VY(t, x): (I - n | n)dm = - ~ ~ Y(t, x) 'H(t ,  x)d# 

for all Y ~ C~((O, oo)xN a ~Na) .  

The estimate of Hausdorff measure is proved in Proposition 7.2. The existence 
and the square-integrability of H, the integrability of 0 with respect to #, and the 
orthogonality of N are all proved in w The final assertion of the theorem follows 
from the orthogonaIity of N and the defining property of H. 

The next result states that the limit of (0 ~, q0 ~) weakly satisfies (1.5), (1.6). 
However the lack of regularity of the limit functions necessitates the use of 
measures # and m. 

Let 0, q~, #, fi, N, and v be as in Theorem 2.1. Recall that Q = (0, oo) x ~a. 
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Theorem 2.3 (Limit Equations). For any r e C~(Q --* ~ )  and Y ~ Cf (Q  --* ~d), 

YS - (G + AO)Odxdt = yyyvCdm (2.10) 

= IS Gh(~o) dx dt, (2.11) 

I S I  Y.n(O + ~)dm = - Y S f  v Y  :(i - n | n)dm 

= I I  Y 'Hdl t ,  (2.12) 

I i f  Y . n d m  = IS Y" V(h(~o))dxdt. 

For any 0 N s <-- t and r E C f ( Q  ~ [0, oo)), the following Brakke-type inequality 
holds: 

/ ~ ( ~ b ) ( t )  - -  ] ~ ( ( ~ ) ( s )  ~ i f I ( - 1)2(~ - vn" V~) dm 
s 

t 
1 2 + S ~(~0 A(a -]VOI2(~)dxdt. (2.13) 

8 

This theorem is proved in w 

The system (2.10)-(2.13) constitutes a weak formulation of the Mullins-Sekerka 
equations (1.5) and (1.6). Indeed, set 

V(t, x) = Iv(t, x, n)N(t, x; dn), V(t, x) = ~ nv(t, x, n)g(t, x; dn), 

Then (2.11) yields 

a ( t )  = {x :  ~o(t, x)  = - 1} .  

0, - A 0  + (h(ep)), = 0 in  ~ ' ( Q ) .  

Since (h(ep))t = - (4)(Za),, by (2.10) and (2.11), V is formally equal to ~ times the 
normal velocity of the interface 3f2. Suppose that N(t, x;.) is a Dirac measure 
located at n(t, x) e S a- 1. Then the orthogonality of N to the tangent plane implies 
that n(t, x) is orthogonal to 0~2, and (2.12) is equivalent to 

= V n =  H - O n  on0f2. 

The equation (2.12) is therefore a weak formulation of (1.6) provided that V is the 
normal velocity of#(t;-). Indeed, the inequality (2.I3) provides a weak formulation 
of this statement; compare (2.13) to (2.4). 

Remarks on regularity and uniqueness 

1. Suppose that F(t) is smooth. Then does the weak formulation proved in 
Theorem 2.3 imply that F(t) and 0 satisfy the Mullins-Sekerka problem classically? 
Alternatively, suppose that there is a smooth solution of the Mullins-Sekerka 
problem in (0, T ) x  ~e. Then does this classical solution agree with the limit 
functions constructed in this paper? 
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2. An attendant modification of [23, w together with the results of this 
paper imply that for any compactly supported smooth function q~(x) and for 
t >0 ,  if 

1; 
d := limsup ~ ~b(x)(/2(s; dx) - fi(t; dx)) > - oo, 

s ~ t  

then #(t, ') restricted to {q5 > O} is (d - 1)-rectifiable with a generalized mean- 
curvature vector I-I(t, .). Moreover, 

d < - S~ (~(x)]H(t, x) + O(t, x)n[2#(t; dx)N(t,  x; dn) 

-S  r vo(t, x)l 2 dx + �89 a~(x)02( t, x)dx 

--~ ~ D(~(x)'[H(t,  x) + nO(t, x)] #(t; dx)N(t ,  x; dn). 

It seems that this inequality together with some of the formulae proved in Theorem 
2.3 provide a Brakke-type weak-formulation of the Mullins-Sekerka problem. 
Further analysis of these equations may yield a generalization of a partial-regular- 
ity result of BRAKKE [5]. 
3. Simple examples indicate that N(t,  x; dn) may not be a Dirac measure at some 
points (t, x). This corresponds to interface "piling-up" at such points. An interesting 
question is to estimate the dimension of these points at which N(t,  x; dn) is not 
a Dirac measure. Since the heat equation (1.5) does not have any external forcing 
term, we expect this set to be of lower dimension. 
4. A related question is whether the equation 

[v(t, x, n) + O(t, x )]n  = H(t, x) (2.14) 

holds for dm almost every (t, x, n). The equation (2.12) implies (2.14) only after 
integration with respect to N(t,  x; dn). Radially symmetric examples indicate that 
(2.14) may be true. 

Suppose that (2.14) holds. Then, formally, if O(t, x) :# 0 and N(t,  x, .)  is not 
a Dirac measure, then v(t, x, n) is different for each n in the support of N(t,  x;.). 
Therefore formally N(s, x, .) would become a Dirac measure for s > t and s 
near t. 

3. Elementary Estimates 

In this section we obtain several elementary estimates by using the heat kernel 

I~I~, (~,~)~(0, ~)• G(v, 4) = (4nT) -e/2 exp - 4 T )  

Since h' = g, the heat equation (HE) and integration by parts yield 

O~(t, x) = A~(t, x) + B~(t, x), (3.1) 
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A~(t, x) = (G(t , - ) .  [0• + H~(0, ') - H~(t, ')])(x),  

t 

B~(t, x) = ~(G~(~, ")*(H~(t, ") - H'( t  - ~ , ' ) ) ) (x)&,  
0 

H~(t, x) = h(r  x)), 

and * denotes convolution in the x-variable. 
All the constants in this and later sections depend on T but we generally 

suppress this dependence in our notation. 
Constants independent of ~ are denoted by K; this constant may change from 

one line to the next. 

Lemma 3.1. There is a constant K such that 

~11 V r  IIo~,r < K, 

11 O~LIo~,r < K [ 1  + Ilnel]. 

Proof.  
1. Fix T > 0 and set 

Then 

m~(T)=e l t  Vr n~(T) = II0~It~,T, 

1 
f ~ _  1 W ' ( r  + - 0 ( r  

82 

1 
II f~ l l~ , r  ~ ~ I-2 + end(T) -] 

and the order-parameter equation (OPE) may be rewritten as 

q)~ - zxr  = f ~ .  

2. Fix (t, x) ~ [0, T ] x ~d. Then for any a ~ (0, t], (OPE) yields 

Vr x) = ( VG(a, .) * r  - a,-))(x) + i ( 17G('c, .) * f f ( t  - ~," ))(x) dr. 
0 

Observe that for any z > O, 

x/~ I[ VG(~,-)Itl - (~)-d/~ S lYl e -I'i2 dy = g .  

Therefore 

i [VG(~,')* ff(t - r,')](x)dt < 2K(2  + en~(T))xf~, 
~2 

I(VG(a,.)* r  - a,'))(x)] ~ - -  
K 

(3.2) 

(3.3) 
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Also, if o- = t, then 

I(VG(~r,')*r o-,-))(x)l = I(G(t,')*Vr < [I Vq~,l/~. 

3. Now use the foregoing inequalities with a = e a A t; the result is 

J K I-5 + 2en~(r)] if t ~_ 8 2, 

I vr  x ) l  = < e 

K1-el[Vr + 2(2 +en~(T)) ] if t<_e 2. 

By (A3), e]l V~o~ [I ~ < K; we therefore conclude that  

m~(T) < K[1 + an~(T)]. 

4. Let A ~, B ~ be as in (3.1). Then 

]A~(t,x)] < 110~11~o + 2. 

For  a e (0, t], 

[Gdr,')*(H~(t, ") - H~(t - r , - ) ) ] (x)dr  _-< 2 [ Iadr , ' ) l lx&.  

Observe that  

Hence 

II Gd'c, )[la < - -  
2 + 

lyl2)e-lr? dy <= K. 

Since AG = G~ and VH = g Vr integrating by parts we obtain 

o i [G~(r,-) * (H~(t, ") - Hr - ~,-))] (x) & 

= oi.~"f VG(z, x - y)" [VH(t, y) - VH(t - "c, y)] dydz 

=< i II VG(v,-)]la([I Vr ~,')11oo + II Vr 
0 

K 
<--m~(T)x / -a .  

e 

5. Estimates obtained in Step 4 and (3.1) yield 

[O'(t, x)[ < 1[ 0~ [4 ~o + 2 + K in + m~(T). 
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(3.4) 
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Choose a = 8 2 /k t; then 

n~(T) <= 110811o + 2 + K l n T  + K Iln~l + K m ' ( T ) ,  (3.5) 

and hence (3.4) and (A6) yield 

n~(T) < Ko(1 + [ln~l + sn" ( r ) ) .  

Hence (3.2) and (3.3) hold for all s > 0 satisfying 

2Koe__<l r s__<So=(�89 

For 1 > s > so, (3.2) and (3.3) can be proved easily. [] 

R e m a r k  3.1. The family 0 ~ is not necessarily uniformly bounded in e. Indeed 
consider the Mullins-Sekerka problem with radial symmetry and one interface. If 
the radius Ro of the initial interface is sufficiently small and the initial temperature 
0o is sufficiently large, then the radius R(t)  of the interface becomes zero in a finite 
time T. Since the phase-field equations with radial symmetry are known to 
approximate the Mullins-Sekerka problem 1-30], this example, which is discussed in 
the Appendix, shows that 0 ~ is not uniformly bounded in s. 

Next we use the techniques developed in this section to obtain uniform bounds 
for s2lD2q~ I and s[ goal. 

Lemma 3.2. 

sup {s2[HDN~YlI~o,T + Ile#~lloo,r] + sll V0~ll~o,r} < oo. (3.6) 
O < e <  1 

Proof. 
1. Differentiate the (OPE) to obtain 

q ~ , -  Acp~j = Fj~, 

1 W . . . . . .  1 -4--g(~o ) x,. Fj  - e2 t~o )qOxj + ~ g'(q~ e 1 ~ O~ 

Using (3.2) and (3.3)we conclude that 

I] Fj  11 oo,r <-_ K + - [1 VO ~ 1[ oo,r 
8 

for some constant K. Set 

r ~ ( Z )  = s2llDNqo~l[~o,T , rY(r) = 8tl V0~II~,> 

Then we use (A4) and (3.2) as in Step 2 of the proof of Lemma 3.1; the result is 

n~(T) __< K[1 + 8fi'(T)]; (3.7) 

hence (3.3), (3.7), and (OPE) yield 

s 2 II q~ Iloo,r < g [ 1  + srV(T)]. (3.8) 
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2. Let A ~ and B ~ be as in (3.1). Then, 

VA~(t, x) = (G(t, ") * V(O~o + H~(O, ") - H~(t,- )))(x),  

t 

lTB~(t, x) = S (VG~(z , ' )*  [H~(t," ) - H~(t - z , ' ) ] ) ( x ) d z .  
0 

Fix (t, x) ~ [0, T ]  • ~a. In view of (A6) and (3.2), 

K 
I VA~(t, x)] =< I[ VO~ll~ + 21[ Vqg~llo~,r < - - .  

Also for a ~ (0, t A 1], 

! [G~(z, ") * (H~(t, ") - H~(t  - z, "))3 (x) dz 

< 2 It V G d z , ' ) l l x d v  < ~K'r-3/2d'c <= 
a 

3. Integrating by parts in the z-variable, we obtain 

i [Gdz ,  ") * (H~(t, ") - H~(t - z, ")])(x) dz 
0 

<=I VG(a , ' ) * (H~( t ,  ") - HE(t -- o-,')])(x)l + [i  ( V G ( z , ' ) * ( H f ( t  - 

i 

%. ))(x)d~ 
I 0 

K 
< II H~(t, ") - U~( t - o-,') II~ + j 11VG(z,')]I111W;tl~,TdT. 
=. , f~  o 

< KV/~ Ilnf IIo~,T _--< K - ~  II ~07t1~,T- 

4. Combine Steps 2 and 3, and choose o- = e 2 A t; then 

I VO~(t,x)[ < ~ ( 1  + ~2 I[~o~[]~,T ). 

As in the last step of the previous lemma, this estimate together with (3.7) and (3.8) 
imply (3.6) for sufficiently small e < eo. But for ~ > eo, (3.6) holds trivially. []  

Assumption (A7) and  the arguments of Lemma 3.2 yield 

sup {~3 tl D3~P" l1 co, T + e2 II D20~ I[ co, T + g2 II 0~ ]l oo, T} < O~. (3.9) 
0 < ~ < 1  

Lemma 3.3. For  1 < p < oo and T >= O, 

sup [lO~(t,')l[L~(~) < oo. (3.10) 
0 < e <  1 , t < T  

Proofi  
1. Recall that, by (2.5), 

[[ H~(tl ,  ") -- H~(to,')[11 < C~' ~ - to. 
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Since IWI ~ 1, 

rl H~(tl ,  ") - g"( to ,"  )I1~ =< 2PC~ ~ -- to. 

2. Let  A ~ and B ~ be as in (3.1). Then, by (2.7) and the previous step, 

II A~IIv _-< IlO;llv + IFH~(t, ' ) - w(O,)l l~ = g ( 1  + tl/2P). 

3. By Step 1, 

t 

IIB~ I1~ ~ S IIG*(z, ' )*(H~( t," ) - H~( t - v,'))j[pd~ 
0 

t 

= ~ H G~(~,')jJa I lW(t , ' )  - H~(t - v, ' )]lpdv 
0 

t 

< K S z -1+1 /2~  dz .  
0 

[] 

We close this section by proving the strong convergence of the sequence 0 ~. 

Proposition 3.4. For every t > O, O"(t,.) converges to O(t,.) s trongly in L2loc(Na). In  
particular, 

~ ( t ; . ) ~ ( t ; . )  vt  >__o, 

in the weak* topology o f  Radon  measures. 

Proof.  
1. Let  O" = 0 ~ - 0 ~ with 0~ the unique solution of 

~ - A 0  ~ = 0  in(0, oo) x ~  

with initial data 0~(0, x) = O~(x). Then (A8).implies that  O~(t, ") converges to 

O(t, .) = G( t , .  ) , 0o 

strongly in L2(Na). 

2. By integration by parts, 0~ = O ~' 1 + O~, 2, where 

O~'l(t, .) = G(t, . )* [H~(0, �9 ) - H~ ( t , . ) ] ,  

t 

0~'2(t,;) = S G~(z, ' )*  [H~(t, �9 ) - H~(t  -- z , ' ) ]  dr, 
0 

and H(t ,  x ) =  h(~o(t, x)). Clearly (2.6) implies that for every t > 0, g~'l(t, ") con- 
verges to 

G~(t, .) = G ( t , ' ) *  [H(0 , ' )  - H( t , - ) ]  

strongly in L~oc(Nd). 
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3. For t, a > 0, set 8 = min{a, t}. Then 
t 

G~(% ") * [H~(t, ") - H~(t - ~, ")3 dz 
6 

converges to 
t 

G d q "  ) * [H(t ,  ") - H( t  - r," )] dr 

strongly in L2oo(~e). And by (2.5), 

i(G~(r,-)* [H~(t, .) - H~(t  - r,-)] dr 2 
0 

=< j' II Gd'c,-)/11 IlU~(t, �9 ) - -  H~(t  - r , ' ) l l= dr, 
0 

6 

<= K J" ~ - I I H % ' )  - H~(t - -  r , ' ) [ l l / z  &, 
0 

< K((5)~/4 < K~I/'~. 

A similar argument shows that 

i G ~ ( z , ' ) * [ H ( t , ' ) - H ( t - r , - ) ] d r  2 ~ K a l / 4 '  
0 

Therefore, for all a, t, R > 0, 

lim sup II 0 % . )  - O(t,.)IIL2(~,) <= Ka 1/4, 
e ~ 0  

where 
o(t, x) = 0(t, x) + 6 ( t , . ) .  [ H ( 0 , . )  - H(t, ' )q)(x)  

t 

+ ~ G d z , ' l * [ H ( t , ' )  - H ( t  - q ' ) ]  dr. 
0 

[] 

An elementary argument, very similar to the proof of Proposition 3.4, shows 
that the map 

t ~ I I0%')  112 

is uniformly H61der continuous in e e (0, 1], with exponent �88 This fact will not be 
used in our analysis. 

4. A Gradient Estimate 

The main result of this section is 

Theorem 4.1. For  T > O, there exists  a constant  K *  = K * ( T )  satisfying 

I Vz~(t, x ) [  2 ~ 1 + x/eK*(1 + Iz~(t, x)l), 

f o r  all (t, x) e [0, T]  x ~a, and 0 < e <= 1. 

(4.1) 
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This estimate is an essential ingredient of the monotonicity result that is proved 
in w In particular, (4.1) implies that the weak* limit of the discrepancy measure ff 
introduced earlier (cf. (1.7), (2.1)) is nonpositive. Later we show that this limit is zero 
(see Proposition 7.3.). 

The proof of this estimate, which is tangential to the main thrust of this paper, 
will be completed in several steps. Before I start the lengthy analysis, I briefly 
explain the main idea. Set , 

w ~ = I Vz~l 2. 

In view of the equation (ZE), 

w~ + LP~w ~ + R~(t ,  x ,  w ~) - 2 I70 ~. Vz  ~ < O, (4.2) 

where for r ~ C2(~a), 

4r x) 
~ O ( x )  : - A ~ ( x )  + - -  V z %  x ) .  VO(x ) ,  

g 

In [29, w I obtained pointwise estimates for a differential inequality obtained by 
setting the last term involving I70 ~ in (4.2) to zero. Here we start by using the 
technique developed in [29]. Using (3.6), we first obtain the crude estimate that 

12VO ~" Vz~l < 2/I 170~ll~,zw ~ <Kw~ 

for w ~ = 1. Then the proof of Proposition 8.1 in [29] yields that w ~ is uniformly 
bounded in e. 

Our next step is to obtain a uniform bound for elz21 (see (4.8)). Using these 
estimates, we shall obtain a bound for I VO ~1, which is slightly better than (3.6). 
Finally, we shall use this new estimate of l VO"[ in (4.2) together with an argument 
similar to the ones used in [29] to obtain (4.1). 

R e m a r k  4.1.  

made, we take 
In the phase-field equations if, in contrast to the choice we actually 

g = 2W =(q,)2, 

then w satisfies 

2 
w~ + 5 f ~ w  ~ + Re( t ,  x ,  w ~) - 2q '  170 ~. V z  ~ - - q"O~w ~ < O, 

and the proof of the estimate (4.1) simplifies greatly. Indeed an attendant modifica- 
tion of the proof of Proposition 4.1 below yields this estimate. 

As in w we fix T > 0 and denote by K all constants depending only on T. 
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Proposition 4.2. There is a K = K ( T )  satisfying 

I Vz=(t,  x)l 2 =< K(1 + Iz=(t, x)l), (t, x) e [0, T ]  x y~a. 

Proo~ 
1. Fix T > 0 and set 

Then  

K o = 2  sup ellV0~ll~,r,  
0 < 8 < 1  

S @  = ~ 0  - 211708(t, x)lr 

w~ + ~ w  = + R~(t, x, w 8) < O. 

In the next several steps we construct  a "supersolut ion" to (4.4). 

2. Let  Zo > 0 be the point  that  satisfies 

q , ( ~ )  = ~1/4 .Zo=~(q,)-l(ll/4). 

Then Zo behaves like e lln el as e tends to zero. Indeed, 

lira Zo _ 1 
8-,o ~lln~l 8" 
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(4.3) 

(4.4) 

Now define 

where 

hs(r) = ( ~ 1C~r2 + 1, 

( (Ko  + 1)[Ir l  - Zo] § hs(zo), 

Irl _-< Zo, 

Irl > Zo, 

K o + l  
C 8  - -  - -  

Z0 

so that  h8 is cont inuously  differentiable with Lipschitz derivatives. Finally we set 

W = 1 + hs(zS). 

3. By (ZE) and a direct calculation, we obtain 

I = Wt + 5~W + R~(t, x, W )  

> h;(zS)[z ~ _ Az  8 + ~o=w= ] _ h2(z~)w8 ___K~ W + h=(z=)W = ~ 7 7 
(z 8) Ko 

2 4 q' h s ( z s ) W  - - -  W - h 2 ( z S ) w  = + h'~(zs)O =. => - ~oSh;(zS)(w = + 1) + 7~ 7 
8 

Observe that  h8 > 1, jh;I < Ko + 1 and 

II h" II oo = c8, lim eC8 = 0. (4.5) 
e ~ 0  
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Hence  
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2 4 Ko 
I >=-~o~h'~(w ~ + 1) + ~ q ' W  - - -  W - C~w ~ - ( K o  + t)lL0~ll~,r. 

g g -  8 

4. Suppose tha t  

Iz~(t, x)[ < Zo. 

(The opposi te  case will be discussed in the next step). Then 

q, > q, = ~1/+. 

Since ~o"h'~ = 0, W => 1, by (3.3), we obta in  

4 Ko 
I > ~ q ' W  - --e W - C ~ w  ~ - ( K o  + 1)II 0 ~ tl + ,  T 

(4 o) 
> -e~74 - W - C ~ w  ~ - ( K o + l ) K ( l + l l n e l )  

>__ c + ( w  - w ~) 

for sufficiently small e > 0. 
5. Suppose  that  Iz~(t, x)[ > Zo. Then 

h;(Iz~(t, x)l) = Ko + 1, 

'q)~(x' t)' = q ( [ Z ~ ( ~ x ) ' )  > q ( ~ )  = 2  

for sufficiently small ~ > 0. Therefore  

O~(t, , ~ = , ~ = x)h~(z (t, x)) I~o~(t, x)lh+(Iz (t, x)l) > �89 + 1]. 

Since q ' ~ O ,  

I >  2(P~ h'(z~)(w ~ + 1) - K o W - C , w  ~ - (Ko + 1)I[0~tI~,T 

g g l 
and (3.3) and (4.5) imply that  I > 0 on {w ~ > W}. 
6. In Steps 3, 4 and 5, we proved  that  for every T > 0 there is an eo = eo(T) > 0 
that  satisfies 

Wt + ~ W  + R~(t, x,  W )  >= C~(W - w ~) 
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on (0, T ) x  ~ d ~ { w  = > W} for all 0 < e < eo(T). Also in Step 1, we showed that  

w~ + ~ w  ~ + R~(t, x, w =) < 0 in (0, T )  x Na. 

Since W >_ 1 > w~(0, x), by the m a x i m u m  principle we conclude that  W > w ~ on 
(0, T)  x N~. See the p roof  of  P ropos i t ion  4.2 in [29, w for an appl icat ion of the 
m a x i m u m  principle in a very similar situation. 
7. Since 

h=(z) < (Ko + 1)lzl + 1, 

we conclude that  

w = < = W = l + h = ( z  ~ ) = < l + ( K o + l ) ( [ z * l + l ) .  [ ]  

O u r  next step is a crude est imate of Iz~[. We obtain  a bet ter  es t imate in 
L e m m a  4.4. 

L e m m a  4.3. For 0 < e < 1, 

K 
Izg(t, x)l < ~ ,  

P r o o f .  

1. F o r  c~ > O, set 

By (3.6), 

(t, x) 6 [0, T ]  x ~d.  (4.6) 

1 2 = { ( t , x ) ~ [ O , T ) x Y & : ~  > @ .  

(z.))l 
IzWI : ~ q' = -  q ' -  �9 

Hence,  on the complemen t  of  12, 

K 
Iz~l = eq,(~). 

= ~ Differentiate (ZE) to obta in  2. Set v zt. 

vt - -  A v  + 
2q(Z ) 

4(~ Vz =. Vv + (I Vz"l 2 1)v = 0,. - j  -? - 

3. Fo r  K1 > 0, let 

8 

(4.7) 
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We show that  for appropria te ly  chosen K1 and e, the function V is a supersolution 
of (4.7) in g2. Indeed in f2, 

2 , / z~ \  
I =  V t - A N  +4q~ Vz~" VV + T q  </|71(I Vz~12 - 1 ) V  

> S2,Ze IKlze Iz~-Aze+4(PeIVzEI2 2Klq'(Ze][ IZel ~, = - -  - -  - 7 -  - - + 1  

>-- 7 21 ~o~1(1 + 117z+l 2) - e II 0 ~ II +, r -- 2 sup  q ' ( r ) ( r  + 1) r_>e 

> ~ -  2q(c% - s II 0 ~ II +,  z - -  2 s u p  q'(r)(r + 1) . P-->e 

Since q'(r) is exponential ly small for large values of r, (3.3) and (3.9) imply that  there 
are constants K1 and e such that  

I>__ II0~ll+,r in f2 

for all sufficiently small z. By redefining K1, if necessary, we may assume that  

i n f v = - - K l ( l + e ) >  K - s u p l z ~ [ .  
aa e sq'(c~) a+ 

4. We proved that  there is an So > 0 such that  for, 0 < s < So, V is a supersolution 
of (4.7) in ~. Moreover  V > v on ~?fL Therefore, by the maximum principle, 

V > v  in ~2, e < so. 

Hence, by Step 1, 

V~Zt= g 

for all 0 < ~ < ~o. For  e0 < ~ < 1 this last estimate is easier to prove. These 
arguments also yield the same bound  for - z [ .  

5. Set 

Then on [0, T ]  x ~2dc~,  

~ = {Iz+l __> 1}, ~ = ~ ( 1  + t ) .  

r/t - A V  + 4~~ Vz ~" V~" 2 q' (I Vzq 2 1)17 

> - > [I O, II +, r = e2 e4 q' = 

for sufficiently small g. Also, by Step 4, 1~ > Iv I on a~.  Hence (4.6) follows from the 
maximum principle. [ ]  
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Next we improve (4.6). 

Lemma 4.4. 

]zt(t, x)] + ]Daze(t, x)] _-< __K (1 + ]z~(t, x)[), 
g 

(t, x) e [0, T ] x ~a .  (4.8) 

Proof. Fix T > 0. All the constants in this proof depend in T. Set 

f e_lz~,xj(t,x)l .(t ,x) e [ o , r ] x ~ a , i , j = l ,  d} 
k ~ = sup (1 + ]z~(t, x)l . . . . .  

1. In view of (4.3), for any t __< T and x, y e OH, 

(Iz~( t, Y)I + 1) < eKIX-rl(Iz~(t, x)l + 1). 

Also (4.6) implies that  there is a K* such that  for all z e [0, t], 

(Iz~( t, Y)I + 1) 
/(,q 

( I z ~ ( t - z , y ) + l ) <  1 +  e2 } 

x)l + 1). 
K ' z )  

< 1 + - -~-}  eK*lx-rt(lz~(t, 

2. Fix (to, Xo) e [0, T]  x Ne. For  any h e (0, to A 1], (ZE) yields 

where 
a z 

b =  

Z~x,x~(to, Xo) = a + b + c, 

C z 

F ~ = 2qo~ (1 - I  V z~f2). 
e 

3. If h = to, by (A4), we obtain 

(Gx,(h, ") * z~j(to - h, ")(Xo), 
h 

�9 e j (C,A~, ) O~(to - ~, '))(Xo)d~, 
0 

h 

J (Gx,(z, ") * F~,(to -- ~, "))(Xo) dz, 
0 

K 
lal ~ IIG(h,')lllllDZz~lloo ~ - -  

g 

When h < to, (4.3) and (4.9) imply that 

lal < S KI Va(h, xo - y)l[1 + Iz~(to - h,y)l]l/Zdy 
~d 

K.h~l/2 
= e �89 ] VG(h, w)l dw 

< 5 (  1 K*h'~'/2 = + ~ g - )  (1 + [z~(to, Xo)[) 1/z. 

(4.9) 
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4. By (3.6), 

5. Differentiate F ~ to obtain 

( ~ )  4 ~  
2 q' 17z~( 1 - I $7z"12) -- q~ D2ze ~7z". VF ~ = ~  

The definition of U, (4.3) and (4.9) yield 

IF~j(to - v, Y)[ --< ~5 sup q'(r)(1 + er) 3/2 + (1 + ]z~(to - v, y)l)a/2u 

<~5 l + k  ~ l + ~ - - j  ( l+]z~(to,  Xo)[)3/2exp g I x o - y l  �9 

Therefore 

Ic[ _-< c*  - -  1 + k" 1 + --U-J (1 + Iz~(to, xo)l) 3/2 

for some C*, and without loss of generality we may assume that C* > 1. 
6. Choose 

h = min{to, ez[-4(1 + K*)3(1 + ]z~(to, Xo)])(C*)2]-1}. 

Since h </~2 (1 -]- K*h/~ 2) <= ( |  + K*) and therefore 

1 C* 
Icl = < ~ ( 1  + Iz~(to, Xo)l)k ~ + - - ,  

and, by Step 3, 

lal ~ K(1 + K*)2C*(1 + Iz~(to, xo)l). 
g 

Therefore 

tz~,xj(to, xo)l =< 1(1 + Iz~(to, xo)l)[K + �89 k~]. 
g 

The inequality (4.8) follows from this estimate and (ZE). [] 

We continue by improving the estimate for ] VOW[. 

Lemma 4.5. For every (t, x) 6 [0, T ] x ~a, 

I v0 ~(t, x) l 
K 

~/~1-~ + (Iz~(t, x)] A 1)-I 
(4.10) 

for some constant K = K ( T ) .  
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Proofi Fix (to, Xo) s [0, T]  x Ne and set 

Iz~(to, xo)l/x 1 

If p~ < 1, (4.10) at (to, Xo) follows from (3.6); so we may assume that p~ = 1. 
1. For e, 2 > 0, set 

O ~ , z = [ t o - & 2 p  ~ , to+e22p~lxB ~, B e = { I x - x o ]  <e2p~}. 

We assert that there exists 2 = 2(T) > 0 satisfying 

~p~ V ( t , x ) e G ~ .  Iz~(t, x)l => ~ 

Use (4.3) and (4.8) to construct a constant K = K ( T )  such that 

]z~(s'Y)l+ l <([z~( t ' x ) l+  l ) e x p K (  s + , x - y , )  

for all s, t < T. Now suppose that 

z~(to + &r, Xo + sy) = �89 for some (r, y) e N~+I. 

We use the previous estimate with (s, y) = (to, Xo) and (t, x) = (to + s2r, Xo + ey) to 
obtain 

Since sp ~ < 1, 

1 +ep~<= 1 + Iz~(to, Xo)l <= 1 +~p~  e ~/r 

~K(I~I § lYl)~ l n (  I -+-eP~ts 

+ ~ p J  

Hence, for 2 = 1/8K, 

>=ln l +-~p >__~ 

Iz~(t,x)l > �89 ~ V( t , x )  s G , ~ .  

2. Set 
r -- min{to, e2,~p~}. 

By integrating by parts and by (3.1), we obtain 

VOW(to, Xo) = a + b + c 
where 

a = (VG(to, ")* [0~ + H~(O, .) -- H~(to, ")])(Xo), 
to 

b = ~ (VG(~, ' )*  [H~(to,-t - H~(to - ~ , )3)(Xot&, 
G 

G 

c = S ( VG~(~, ") * [H~(to, ") - H~(to - r, ")])(Xo) d~. 
0 
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Since ep ~ < 1, (A6) yields 

K K 
< - - <  I( v a ( t o ,  .) �9 o~,)(xo)l = I(a(to, ") * VO~)(xo)l : x/e~- : e '--,,/P~ 

Also, when to > ~2~pt, 

K 
I(VG(to,')* [He(0, ) - H~(to, ) ] ) ( x o ) l  < ~ o o  < - -  

However, if to <= ~22p% then 

{0} x B ~ c 0~, 

so that by (3.2) and Step 1, 

K 

I VH~(O' y)I = Ig(r y)) Vr y)I < Kq'(~)e 

< -- Vye 
8 

Ibl < < e x / ~ .  

Hence, 

I(VG(to, ") * H~(O, '))(Xo)[ = I(G(to, ") * VH~(0," ))(Xo) I 

< 
- Y ) q ' \ 2 ]  e e 

B t N n - B  ~ 

= ~ L k ~ )  + w ) x { ~ o  dw 

Since to < e2)~p~ and p~ > 1, 

K 
I( VG(to, .) �9 He(O, '))(Xo)l =< e x/-p] 

Indeed, we can estimate this quantity b y  a function decaying faster than the square 
root, but this sharper estimate does not improve the final estimate. 

Next, we estimate I(VG(to,')* He(to,'))(Xo)l exactly the same way to obtain 

K 
lal  < 

4. Since II I7G~(~,. )lla <- K~- 3/2, 
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5. By integration by parts  in the variable t, 

Icl < ! ( V G ( z , ' ) . g ( r  - -c,.))~o~(to - z , ) ) ( X o ) &  

+ I(VG(o-,.),  [H~( to , )  -- H~(to  - a , . ) ] ) ( X o ) ) l .  

Since a < ~2).p~, 
[to - a, to] x B ~ c O~,4. 

Therefore,  for any y e B ~, ~ e [0, a], (3.6) yields 

I g ~ ( r  . 

As in Step 3, 

vG(~ , - ) .  ~ ( r  - ~,.))~o~(to - ~, .))(xo) d~ 

o" a 

< I V 6 ( ~ ,  Xo - Y)J 

0 B ~ 0 9 ~ d - - B  ~ 

__< q' + v c  1, ~ = - / i j = ~ .  , / 4 ~  , / p  ~ 

Also, if a = 822p ~, 

I (VG(a , ' )*  [H~(to, ") - H e ( t o  - a, ' )])(Xo)l  = Kll VG(o-,') Ill 

K 
I Va(z, Xo - y)l j & 

K K < m  

I f  a = to, then by step 3, 

](VG(a, ' )  * EH~(to,') - H~(to  - a, ')])(Xo)] 

= [(G(to, ' )*  [ V H ~ ( t o ,  ") - V H ~ ( O , ' ) ] ) ( X o ) l  <= - -  

6. Finally, we combine Steps 3, 4 and 5 to conclude that  

K 
I vo"(to, Xo)l =< ,- . , , /r  [ ]  

K 

We are now in a posit ion to prove Theorem 4.1. 

P roo f  of Theorem 4.1. This p roof  is very similar to the proof  of Proposi t ion  4.2. 
1. Let  Zo be as in Proposi t ion  4.3, i.e., 
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Ke = (Zo)- 3/2. 

Since q'(r) decays exponentially, 

lira Zo _ 1 
~ o  ellne[ 8' 

2. For a real number r, set 

{ �89 K~r 2 + 1, 

fe(r) = 2[x/~ -- ,~oo] + f~(zo), 

I r l -  1 +f~(1), 

lim (ellnel)3/2Ke < 00. 
e - - + 0  

Irl < Zo, 

Irl ~ I-zo, 1], 

Irl=> 1. 

(4.11) 

K Oe x/~K~we 4e_514W ] 170 e ~ [ I  Iloo,r - + -211 Iloo,r W. 

t 

i I e z = K~ z e =< zoK~ < - -  

for some constant K. Since f~ r > 0, 

I > K* I 

By (4.11), 

K 

= K fe z t - - A z ~ +  e w ~ -- K f ew  

+7: 

{ 1 4<0 ) } > , ~ K *  fs (w ~ + 1 ) + 0  e - f " w  e + ~  ~ W -21 I70 ~]W. 

4. We split the estimate of I into the three cases: 

(a) [zel<Zo, (b) [zele[zo, 1], (c) [z~[>l ,  

and start with case a. Since Zo = ~(q')-l(el/4), 

q, => q, = ea/4. 

Observe thatf~ is continuously differentiable with Lipschitz continuous derivatives. 
3. For K* > 1 define 

w = 1 + 

In the next three steps, we show that for K* large enough, W is a "supersolution" 
of (4.4). 

Let L~, R ~ and w e be as in Proposition 4.2. Then 

I = W~ + ~ W  + R~(t, x, W) 
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Using (3.3), (3.6), (4.11), and the fact that  W __> 1, we construct  ~o = eo(T) > 0 such 
that  

I > _ x / ~ K * K ~ ( W - w ~ ) ,  e < e o ,  t < 

for any K*  > 1. 
5. Suppose that  Izel > 1. Then  for sufficiently small e, 

f ; r  Ir _->�89 

Moreover ,  f~'(z e) = 0 and, by (4.10), 

s 
I v o %  x)l <= , f t .  

Since q' > 0, 

K* 2/s 
I > ~ e ( w  ~ + 1 ) -  ~,/~K*ll0~ll~,r ,~ w .  

So if K* > 2/s (3.3) implies that  I > 0 on {w ~ > W } for all sufficiently small e. 
6. Finally we consider the case ]z~l e [zo, 1]. Then, for sufficiently small e > 0, 

1 , e 1 
f~ ( ze ) r  = f ; ( l z e [ ) [ r  > -~f~(Iz I) - 2 I x / ~ "  

Moreover ,  by the construct ion offe,  

x~e f '  ~ = = f ~'w ~ ~(Izl) < 1 ,  f[ '(z ~) < 0 ~ - >0 .  

Since e < Zo _-< Izel ~ 1, by (4.10), 

I VOW(t, x ) l  < - -  

K* 2/s 
I > x / ~ . z ~ l  (w~ + l l -  K*llOell~'r ex/~l W" 

Hence, there exists a constant  eo > 0 such that, on {w~____ W}, I __> 0 for all 
K *  __> 2/s and e ~ (0, eo]. 
7. Steps 4, 5 and 6 yield 

I >__ , f ~ K * K X W  - w e) on {w e __> W} 

for K * >  2/r and e e (0, Co]. By (A3), W(0, x ) >  1 >lVz~ l  2 and therefore the 
max imum principle implies that  W > w e for e < eo (see [-29, w for the details of an 
applicat ion of the max imum principle in a similar situation). Since by construct ion 

L(r) < Irl - A ( 1 )  < Irl + 4, 

this proves (4.1) for all e < e0. Fo r  e > %, (4.1) follows from (4.3). [ ]  

The following lemma will be useful in the next section. 
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Lemma 4.6. Suppose that there is a bounded, open set 0 c (0, oo) x ~d  for which 

fl -- l iminf  inf [rp~(s,y)[ > 0. 
e ~ 0  (s,y)~O 

Then for every (s, y) ~ O, 

lira inf ]z~(s', y')l > i n f { l p -  yl:(s, p) d?O}. 
(s',y')--~(s,y)e-*O 

Proof .  
1. Since 0 is compact, there is an eo > 0 satisfying 

[q~(s,y)l>�89 V ( s , y ) e O ,  e < ~ o .  

Since qo ~ is continuous and h(q9 ~) is convergent in L1~or either 

~o~(s, y) > �89 V(s, y) ~ O, e < eo (4.12) 

o r  

. 

q)~(s, Y)I <= - �89 V(s, y) ~ O, e ~ eo. 

Multiply (ZE) (of Section 2.1) by e to get 

2~o~(1Vz~l 2 - 1) = e ( -z~  + Az ') + g0 ~. 

In view of (3.3), 

Set 
z*(t ,  x) = 

l im  a II 0~llo~,T = 0 .  
e ~ 0  

(4.13) 

(4.14) 

lim sup z~(s, y), z,(t ,  x) = l iminf  z~(s, y). 
~O,(s ,y)  ~(t,  x) ~ 0 , ( s , y )  ~(t,x) 

Then, as e approaches zero, (4.14) yields 

[ D z , [ -  1 > 0 in 0 if(4.12) holds, (4.15) 

[ D z * [ -  1 = 0  in 0 if(4.13) holds. 

These inequalities are to be understood in the viscosity sense [-14]; the details of this 
argument  are given in [-29, Lemma 4.13. 

For  (s, y) ~ 0 set 

d(s, y) = inf{]y' - y] :(s, y') ~ O} if (4.12) holds, 

d(s, y) = - inf{[y' - y[ :(s, y') E O} if (4.13) holds. 

Then d(s, y) satisfies (4.15) in the viscosity sense and the comparison theorems for 
the eikonal equation [-14] imply that  

z,(s,  y) > d(s, y) if (4.12) holds, 

z*(s,y) < d(s,y)  if (4.13) holds. [] 
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5. Monotonicity Formula 

In this section we obtain an extension of the monotonicity formula of CHEN 
& STRUWE [13], which originates from STRUWE'S formula for parabolic flow of 
harmonic maps [32], and a later result of ILMANEN [23] for the Cahn-Allen 
equation, which originates from HUISKEN'S formula for smooth mean-curvature 
flows [22]. 

For  X, Xo e Ne, 0_<_ t < to, let 

p(t, x; to, Xo) = (&r(to - t))l/2G(to - z, Xo - x) 

- Xo?'  
= (&Z(to - t)) -(e-l)/z exp 4-(~o -----~-J ' 

Then 

(X - -  X o)  I7xp-  
2(to - t) p'  

[ d-1 hx-_ ol l 
Pt = ~2-~o 2_- t) 4(to - t)zJ p' 

[ l ( X - X o ) |  
DZ~P = 2(to - t~ + ~ o - -  Og P' 

where I is the identity matrix and | is the tensor product. For  t > 0 and any Borel 
set A c Ne, let #~(t; A),/2~(t; A) and ~ be as in w and (1.7), and set 

c~(t; to, Xo) = ~ p(t, x; to, xo)fi~(t; dx). 

Theorem 5.1. There is a constant Ca, depending only on the dimension, such that 

d 1 
= p(t, x; to, Xo)~(t; dx) + - -  ~(t;  to, Xo) < 2(to - t) J. 

Ca 

~ 0 0  m t" 
(5.1) 

Proof. Fix (to, Xo). We suppress the dependence on (to, Xo) in our notation. 
1. By (OPE) and (HE), 

~7~(t)= ,~+ o ~vr162 

+ f [ ~ ( -  Ar +-~ W'(r162 
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Since 

it follows that  

. 

-el@:+ VP'-p-V~~ f lVO~12p + f Ap~(Oe)2. 

1 fie #e 1 
Pt + Ap - 2(to -- t) p '  = + 2 (0~)2' 

d ~ d e e ( t ) = - g f ( q ) ~ - q  VP-p-VcP~) 2 p 

f l  1 ] f  - -  p [170el2 q- 4(to-- ~ (Oe) 2 q- Vp.17~oeg((p~)O e. 

Let v -- v e be as in w i.e., 

v~o ~ V - -  
I Vq~el 

DZp : v | v] ~ ,  

for I Vq)~l 4: 0. Set 

( 1 
= e v | v - [ Vq~l 2 - - W(q)~)I. 

g 

Since ~ + #~ = el V~oelZdx, 

T d x  = (v | v)~ ~ - (I - v | v)# ~. 

Let k be the second term appearing in the expression at the end of Step 1: 

k = f [ p , ~  + Vp" V(p~(gAepe-~ W'(cpe)) + g(VP';(P~)2]. 
Integration by parts and the identity ~" + #~ = el Vcpel 2 dx yield 

f (Vp" v) ~ k =  p t # ~ - D 2 p : r d x +  (~e + ,ue) 
P 

= Pt q- P2P : (I -- v | v) -~ P -J # + 

Then 

(2  1 ) = ev~o~ |  vq~ ~ -  I v~o~l 2 + -  W((o ~) I,  

0 ~ , j  ~ ~a~o ~ - w ' ( ~ o " )  . 
i=1 UXi 8 
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where M" N = trace M N ,  for symmetric matrices M, N. Explicit formulae for the 
derivatives of p imply that, for any unit vector v, 

Hence 

Pt + D2p "(I -- v | v) + - -  
(Vp' v): --0, 

( Vp' v) 2 D2p : v @ v - p 
p 2(to -- t)" 

k = f ~ g~(t; 

3. Recall that  H ~ = h (q~) and VH" = Vqo~9(~o~). By an integration by parts, 

v p .  vq,~g(~o~)o ~ = - ~ [ a p m o  ~ + I-I~Vp �9 v o q .  

In view of Steps 1 and 2, 

d ~( t )  < 1 ~" 
dt = 2(to -- t) JP{~(t; dx) + I + J, 

where 

4. Since 

I =  - f. [pl VO~lZ + W yp.  voq ,  

(0~) 2 + ApH~O ~ . 

q)~l < 1, IH~I < 2 < 1. Hence 

I =  + 

< 41 f Ix - Xo[ 2 = ~(toTt~ p(t, x; to, ~o) dx 

1 
- 2 tox/TS~_t f (re) -(a- 1)/2lyI2 e -lyl2 dy. 

g,a 

5. To estimate J, we observe that  

[ a-1 2] 
IApWO~I < ~2(to ~2 t) + 4(to - t)zJ IWIl~ 

- [ I x - x ~  
P d -  1 4 IWll0q.  

2(to--- t) N i o  7t ) -J  

Since 

[ 'X0- X'2]-I [ [X0 ~-X[2~2(t0 -- )d  IHq2 2lWII0~l < d - 1 + ~ o Z ~ -  j (0~) 2 + d - 1 + t ' ' '  ' ' 
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we have 

where 

IApH~O~I < 4((tOs ~- C(t ,x)p,  

1 [ Ixo-x?] c(t,x)-4(to-t) d-1 + o--03 " 
Hence 

J <= ~ c(t, x)pdx 

1 
- 2 tox/7~_ t ~ (n)-'a-l'/Z(d - 1  

+ 2lyl2)e-lYl2dy. 

6. Combining the previous steps, we obtain (5.1) with 

Ca = �89 j" [ ly l  z + (d - 1 + 21y12)23 e-lyl2dy. [ ]  

Remark 5.1. Suppose that  in the heat equat ion (1.1), 2 = ce with some constant  
c > 0. Then (HE) in w takes the form 

o~ - c A O  ~ + g(~o~)~o~ = O. 

This change does not  affect the results of the preceeding sections. However,  for 
c + 1, the monotonic i ty  formula (5.1) has to be modified: For  any fl > 0, there is 
a constant  Cd.p such that  

d 1 ~ Cd,~ 
- -  o~ ~ < J d ~  + dt = 2(to - t) p (to - t) 1/2+~ " 

Since the new error  term E(t) = (to - t )-  1/2-p is integrable over (0, to), the main 
results of this paper  and their p roof  remain unchanged. 

The proof  of the modified monotonic i ty  result is very similar to that of (5.1). 
Indeed, in Step 1 we now have an addit ional  error  term 

1 - c f  L : =  2 pt(0~) 2dx.  

For  any p > 1, H61der's inequality and (3.10) yield 

ILl =< 11 - c[ 11 P, [[q 11 (O~(t,'))2 [Iv --< Kp.c(to - t)- 1/2-d/2p. 
C 

For  a given fi > 0, choose p = d/2fl. [] 

The monotonic i ty  formula and the gradient estimate (4.1) yield 

Corollary 5.2. For any T > O, there exists a constant K = K ( T )  such that, for any 
X o ~ e  and O <-t <-r < to < T, 

r 

~(r ;  to, Xo) ~ ~"(t; to, Xo) \to -- rJ + K 3 \ t ~ _ r j  X~o- -  z 
t 
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Moreover, as e tends to zero, 

eft; to, Xo) -<_ a(t; to; Xo) + C a [ ~ o  - t - x/to - r] .  

Proofi Since 1( (z))2 
~(t; dx) = ~ q' -ff (I Vz~[ 2 - 1), 

(4.1) and (5.1) yield 

d ( t )< 1 f p  1 ( ( z ~ ) )  2 Ca 
dt = 2 ( t o -  t) ~ q' -- 7 K*x/~(1 + Izq) § ~ o -  t 

Observe that 

1 ( (~))2 1 ( (~))2 
2ee q' dx < ~ q' [1 + I Vz"] 2] dx = #~(t; dx), 

q' Iz~[ 2 -<_ e 2 sup q'(r)r = 4e 2. 
\ r>O 

Hence 

l ( q , ( ~ ) ) 2  1 ( ( ~ ) ) 2 ( ~  1 ) 3 
( l + [ z ~ l ) d x N ~  q' +~[z~[ 2 d x < ~ # ( t ; d x ) + e d x  

and consequently 

d K,A f ca 
~ ( t ) < ( ~ o _ - t )  p (#~+edx)  4 x /~o-- t  

K ~  f ca < Knife o:~(t) + p d x  + 
= (to - t) to - t xFoo - t 

K < Kx/~e o ~ ( t ) + - - .  
= (to - t) ~ - t 

Now an application of Gronwall's inequality yields (5.2). [] 
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(5.3) 

6. Clearing-Out 
In this section we follow the proof of [29, Theorem 5.1] to prove an extension of 

the clearing-out lemma established in [23, 29]. 

Theorem 6.1. For every T > O, there are positive constants tl, t* > O, depending on 
T, such that i f  

p(t, x; to, Xo)/~(t; dx) <= t 1 (6.1) 
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for some t, to, Xo satisfying 
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( t o -  t*) = t < to _-__ T, 

then there exists a neighborhood 0 of(to, Xo) such that 

lira [z~(s ', y')[ > O, V(s, y) e O. 
(s ' ,y ' )~(s ,y)~ 0 

In particular, 

(6.2) 

(6.33 

Step 1 yields 

]. p(t, x; to, Xo)(O"(t, X)) 2 dx ~ -~(p)(to -- 01/2(1 -a/p) II (0%.))2 lie, 

Choose p = d + 1 and use (3.10) to obtain 

]. p(t, x; to, Xo)(O~(t, x))2 dx <= K*(to - t) ~, 0 < e <= 1, 

for some constants K* and ? > 0. 
2. The continuity of p, the convergence of p~ to # and (2.2) imply that  there are 
a constant  to > 0 and a ne ighborhood U of (to, Xo) such that  for all e =< Co and 
(s, y) e U, 

t + t o  
t + 8 2 < - - ~  < S, (6.5) 

j p(t, x; s, y)#~(t; dx) < 2rl. 

,~(t; s, y) = ]'to(t, x; s, y)E/~"(t; dx) + � 89  x))2dx] 

<- 2rl + �89 - t)', (s, y) ~ U, e <- Co. 

Note  that  Co may depend on t/, t and U. 

we have 

(to, Xo) ~ U {t} x sp tp ( t , ' ) .  (6.4) 
t__>O 

Proof.  Fix t, to, Xo. Suppose that (6.1), (6.2) hold with some t/, t* that  will be chosen 
later. 
1. H61der's inequality yields 

]. p(t, X; to, Xo)(O~(t, X)) 2 dx "( II p(t, "; to, XO)lie" It (0%') )2  lip 

= (4re(to -- t)) 1/2 II a(to - t, ")lie' II 0%' ) )2  lip 

1 1 
for any 1 < p < oo, where p' is the conjugate of p: P + ~ = 1. Since 

II a(z, ")Ire, < K(P) z-a/2e, 
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3. Since s - e2 > t, we may use (5.2) with (to, Xo) = (s, y) and r = s - e2 to obtain 

( s  -- t)K~c~,(t; S, y) + K ~(s - & ~, y) <= \ ~ / 

s - g  2 

f \--7-) ~/=_r 

s _~2 1 Is  -- t \  K~  F dz 

(s - t) Ir [cd(t; s, y) + 2 K ~ / s  - t ] .  < \ ~  J 

As e approaches  to zero, e - 2 K ~  converges to 1 and therefore, by (6.5), there is 
a constant  0 < ~o _-< go that  satisfies 

( s - q=~ 
- 7 ?  <2 ,  ~ < &, (s, y) ~ ts. 

Then, by Step 2, 

a"(s - e2; s, y) =< 41/+ K*(s - t) ~ + 4 K ~ / s  - t 

Therefore  

c~(s - e2, s, y) < 5~, (s, y) e O, ~ <= ~o. 

Recall that  this estimate is obtained under  the assumption that  (6.1) holds with 
t, to satisfying (6.2) with t* -- t*(t/) and that  we have not  chosen t /yet .  
4. Let  B=(y) be the sphere centered at y with radius e. For  any x e B~(y), 

p ( s _ e 2 ,  x;s ,y)=(4rce2)_(a_a)/2exp( ,x ~ 7 1 2 )  

> [(4rO-(a-i)/2e-i/4]e-(a-~) = ( / , g a - t ) - i  

for some constant  K , .  Therefore  

F T' /2=(s _ e2; B~(y)) <= min p(s - e 2, x; s, y) ~ ( s  - e2; s, y) 
L x e B = ( y )  

(6.6) 
_-<5K,t/e d - i  V(s,y) e U ,  e-<_go. 

for all (s, y) e U and e < go. Set 

0 = U c ~ ( t o -  t*, to + t * ) x ~  d, 

so that, for any (s, y) e 0 and t, to satisfying (6.2), (s - t) < 2t*, and consequently 
for an appropr ia te ly  chosen t* = t*(t/), 

K*(s - t)' + 4 K x / s  - < K*(2t*) '  + 4 K x / ~  __< t/. 
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fl = liminf inf^ Iq~(s, Y)I. 
~ 0  (s,y)eU 

In this step we show that for a carefully chosen t/, we have fl > 7. 
Suppose that fl < 7. Then there are ~, ~ 0 and (s,, y,) e U satisfying 

2 i~o,.(s _eZ,  y.)l < 7  ~ i z~ . ( s_e . , y . ) [  < e . q - l ( 7 ) .  

Using (4.1) we construct Ko and no, independent of q, such that 

2 Iz~"(s. - e., x)l < e .[q-l(7)  + Ko] Vxe  B~.(y.), n > no, 

and therefore 

2 W(q~"(s, - e,, x)) > W(q(q- ' (7)  + Ko)) V x e  B~.(y,), n >= no. 

Hence, for n > no, 

2. #~"(s. -- ~., B~.(y.)) >= f m 2 1 W(~o~.(e" _ ~., x))dx 
/3 n 

B~.(yn) 

> w a W ( q ( q - l ( 7 )  + go))(e,) a - l ,  

where we is the volume of the d-dimensional unit sphere. Now choose 

Wd 
= ~ ,  W(q(q- l (7)  + Ko)), (6.7) 

where K ,  is the constant appearing in (6.6). With this choice of ~, (6.7) contradicts 
(6.6). Hence fl _>_ 7. 

In the foregoing discussion we have established the following: If (6.1) and (6.2) 
hold for some t, to with t/ as in (6.7) and t* as in Step 3, then there exists 
a neighborhood 0 of (to, Xo) such that 

fl = liminf inf^ I~p~(s, y)l _->7. 
E~O (s,y)eU 

Now, by Lemma 4.6, (6.3) holds on any open set O satisfying 0 c 0 and 

Then (4.1) yields 

liminf inf_ Iz~(s, Y)I > 0. 
~ 0  (s,y)EO 

#~(0) = ~ ~ ~ (q'(~))2(I Vz~] 2 + 1)dxdt 
O 

=< ~ ~ ~ (q'(~))2(2 + Kx//~(1 + Iz~l))dxdt, 
O 

and therefore #~(0) converges to zero as e tends to zero, proving (6.4). [] 
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7. Dimension of F and Eqnipartition of Energy 

the support of #(t;') and F c (~ be the support of 

F c U {t} x A(t). 
t > O  

Suppose that (to, Xo)~ F. Then there is a neighborhood U of (to, Xo) such that 
U c~ F = 0. Therefore 

lim ~ p(t, x; to, x0)#(t; dx) = 0 
tTto 

and, by Theorem 6.1, (to, Xo) satisfy (6.4). Hence 

r = U {t} •  
t > O  

Let Ft be the t-section of f .  In this section we first estimate the Hausdorff 
dimension ofFt (cf. [17]). Then we show that the discrepancy measure ~", defined in 
(1.7), converges to zero, hence proving the equipartition of energy. Our arguments 
closely follow Sections 6, 7 and 8 in [23]. 

The next theorem follows from [34, Theorem 5.12.4.]. 

Theorem 7.1. Let  # be a positive Borel measure satisfying 

#(Bir 
M(#) = sup Ra_ ~ < oo. 

xe~a,R>O 

Then there is a constant Ka, depending only on the dimension d but not on #, such that 

q~(x)#(dx) < KaM(#) I  I V(Plll V(/Off Cc~176 

We continue with an estimate of the dimension of the interface. 

Proposition 7.2. For every T > 0 there is K ( T )  > 0 such that 

#"(r; BR(x)) < K ( T ) R  d- 1, (7.1) 

Ydd- l(Fr) =< K(T) ,  (7.2) 

for  all O < e < 1, R > O and O < r <_ T. 

Proof. 
1. Theorem 7.1, (A5) and (A6) imply that 

e~(0; to, Xo) = S p(O, x; to, Xo) [-#~(0; dx) + �89 

< KIll 17xp(0, "; to, Xo)tll + lip(0,'; to, xo)lld 

= < K ( ~ o  + 1) 

for some constant K, independent of e. 
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2. If R >= (Ct) 1/(d- 1) = Ro, then the energy estimate (2.2) yields 

#~(r; BR(x)) <=/~(r; R d) <= C~ < R a-1 

Hence (7.1) holds for all r => 0 and R => Ro with constant K(T)  = 1. 
3. F i x 0 _ < r _ < T , e < R _ _ < R o a n d x o ~ d .  Then for to > r, 

#~(r; BR(Xo )) _--< /2~(r; BR(Xo)) 

V 1' < inf p(r, x; to, Xo) ~(r; to, Xo) (7.3) 
[_xeBR(xo) 

= (4~(to -- r))(d-~)/2exp 4 ( ~ - - ~  c~(r; to, Xo). 

Choose to = r + R 2 so that to _-< T + R 2 -- T.  and, by Step 1 and (5.2), 

r 

to, Xo) < to, xo) + K  oo-- 
0 

(to  S( o + 1 ) < = K \ ~ ]  

Since R => e, there is a constant K = K(T)  satisfying 

~ ( r ; r + R 2 ,  xo)<=K, 0 < e = < l ,  r<__T. 

Then (7.3) implies that 

pC(r; BR(xo)) <--_ (470(d-1)/2 e TM K R  a-l, e < R <_ Ro; 

hence (7.1) holds for all R > e. 
4. In this step we study the case 0 < R < e. The inequality (3.2) yields 

#~(r;BR(Xo))= ~IVq~[z + - w ( ~ p ~ ) < K [ B R ( X O ) [ = K R a  

B~ (xo) 

for 0 < r < T. Since R < e, RQ -~ < R a-j ,  this completes the proof of(7.1) for all R. 
5. The inequality (7.2) follows from Theorem 6.1, (7.1) and an application of the 
Besicovitch covering theorem (see the proof of [23, w [] 

In the remainder of this section we prove that ~ converges to zero. Our proof is 
a direct modification of Sections 7 and 8 in [23]. 

Let t /be as in Theorem 6.1. Define 

t(t, x)E F c~[0, T]  x ~a .  sup ; p(t, x; s, y)#(s; dy) < tit. Z -  
k s,tt ) 

Then Section 7 in [233 implies that for any 6 > 0, 

~e-2+O(Z2)  = 0 for almost every t s [0, T] .  (7.4) 
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Let 4" be as in Section 5. For  a Borel set A c [0, T ]  x Na define 

~(A) = ~ ~(t; dx)at. 
A 

Since [~q < #~, by passing to a further subsequence we assume that ~ converges to 
a Borel measure ~ in the weak* topology of Radon measures. 

Proposit ion 7.3. ~ = 0. 

Proof.  
1. For  e > 0 and any Borel set A c (~, let 

v~( A)= ~ q' (llTz~l z - l )  +dxdt ,  

A 

f l (  ( ~ ) ) 2  2~( A ) =  ~ q' (ll;7z~[ 2-1)-dxdt 
A 

where for any real number b, (b) + = max{b, 0}, b-  = max{ - b ,  0}. Then 

~ = v ~ - 2  ~. 

2. Equation (4.1) and the proof of Corollary 5.2 imply that 

v~(A) < KV/~[#~(A) + elAI], 0 < e < 1 (7.5) 

for any A c [0, T ]  x Ne. Hence v ~ converges to zero and 2 ~ converges to - 4 .  
3. Fix (s, y) e [0, oo) x Na and 0 < a < s. Integrate (5.1) on [0, s - a]. Using (7.5) 
and the exponential decay of p, we let e go to zero to obtain 

8--r 

o~(s--a;s,y)--c~(O;s,y)<-- f f ~ p ( t , x ; s , y ,  d2(t,x)+2Cd(~-x/a). 
0 ~a 

This inequality and Step 1 of Proposition 7.2 yield 

f f l  p(t, x; s, y)d2(t, x) < K(~s + 1). 

0 N "a 
Fix T > 0 and integrate this inequality against #(s; dy)ds and then use (2.2); the 
result is 

T + I  s-a 
1 

0 ~a 0 .~,d 
T + I  

0 ~a  

for some constant C(T) depending on T. 



T + I  

f 
0 

Hence 
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4. Fubini 's  theorem and the mono tone  convergence theorem enable us to send ~r to 
zero to obtain 

T + I  

1 t 

~d  t N 'n 

t + l  i ' f  2(s - -  t) p(t, x; s, y)#(s; dy) ds < C(x,  t) < oo 
t ~d 

for 2 almost every (t, x) e E0, T ]  x Nd. 
5. Fix (t, x) such that  (7.6) holds. For  s e (t, t + 1] define 

fl = In (s - t), 

Then  (7.6) implies that  

We wish to prove that  

h(s) = f p(t, x; s, y)#(s; dy). 
Na 

(7.6) 

lim h(s) = O. 
s l t  

Clearly (7.7) implies that  h(t + e ~) converges to zero on a subsequence. We now use 
the monotonic i ty  of h to prove convergence on the whole sequence. 
6. Following [23], for 7 ~ (0, 1] we choose a decreasing sequence/?i ~ - oo such 
that  

] /~i+1-  fill __< 7, h( t+eP')<-_7.  

Then, for any f l e  [fli, fli-1), 

h(t + e p) = ~ p(t, x; t + e p, y)l~(t + e~; dy) 

= ~ p(t + e p, x; t + 2e ~, y)#(t  + e/J; dy) 

= c~(t + e~; t + 2e ~, x). 

Use (5.3) to obtain 

h(t + e p) < ~(t + e~'; t + 2e ~, x) + C a [ x / ~  - e p' - x / - ~ ]  

< e(t  + eP'; t + 2e p, x)  + C a x / / ~ ,  (7.8) 

and the preceding identity with fi = fli yields 

7 > h(t + e a') = e(t + ea'; t + 2e pi, x). (7.9) 

0 

h(t + eP)dfl < oo. (7.7) 
-oo 
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7. We assert that  for any 6 > 0 there is a 7(3, T)  > 0 satisfying 

a(to; to + R1, x) < (1 + 6)e(to; to + Ro, x) + 6 (7.10) 

for all 0 < to < T + 1, x ~ Nd and 0 < Ro < R,  < (7(3) + 1)Ro. This result follows 
from (7.1) and it is stated in [-23, Lemma 3.4(iv)]. We pos tpone  the elementary 
proof  of (7.10) to the next step and complete  the p roof  of the Proposi t ion.  

Set 

t o = t + e  ~, R~ = 2 e  ~ - e  ~', R o = e  ~' 

so that  

R___~I = x/2eP_~, - 1 <_ x/2[eP-B' - 13 + 1 < 1 + K7 
R o  - -  _ 

for some constant  K. So if K7 < 7(6), then (7.10) holds and, by (7.8) and (7.9), 

h(t + e ~) < c~(t + eP'; t + 2e p, x) + C d x / ~  

< (1 + 6)~(t + e~'; t + 2e p', x) + 6 + C d x / ~  

= ( l + 6 ) h ( t + e  ~) + 6 + C d x / ~  

< (1 + 3)7 + 6 + cd,f2  

for all 6 > 0 and 0 < 7 --< 70(3). N o w  pass to the limit i -~ 0% 7 ~ 0 and then 6 ~ 0, 
to obtain 

lira h(s) = 0 
s i t  

for every (t, x) satisfying (7.6). Recall that  (7.6) holds for 2-almost every (t, x). On the 
other  hand, (7.4) and (7.1) imply that  

lim sup h(s) >__ q > 0 
sSt 

for #-almost  every (t, x). Since 2 = - ~ is absolutely cont inuous with respect to #, 
we conclude that  2 = - ~ = 0. 
8. In this step we establish (7.10). Recall that  

~(to; to + ~, Xo) = . ] \ 4 ~ )  e-lX~ dy). 

Without  loss of generality we take Xo = 0. Set #(dy) = #(to; dy), 

f (v)  = J \4rcz) e-lYl2/4~u(dy)" 

Then, for any 0 < ~ < 1, 
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Furthermore, for 0 < 3 and ~ < �89 

where 

f "C 

< l | - - |  e -lyl/ (e(lYl)/ - ( 1 + 3 ) )  
= J \ 4 m ]  

( 1 ~ (d- 1,/2 
<= - [ \ - ~ ,  /I e-1'l~/4* #(dY)' 

lyl>=A 

A = ~ / ~  ln(1 + 6). 

Since by (7.1), #({lyl ~ R}) < KR a- 1, and since the integrand is radially symmet- 
ric, an integration by parts yields 

oo 

I (  1 "](a-13/2 Re- ,2 /4~KRa- ldR"  
I < .J \(-~)~)j 4--~ 

A 

By a change of variables, 

oo 

f ( , )  I < K  i~lae_l~12d~<Kex p l n ( l + 3  < K e x p  - < 6  
= = 2~ -- ---- 

A/2x/~ 

provided c~ is sufficiently small. [] 

8. Passage to the Limit 

In this section we complete the proofs of Theorems 2.1, 2.2, and 2.3. We start 
with the following lemma. 

Lemma 8.1. For any T > 0 and ~ > 0 there are constants K(T,  ~) and K(T)  such 
that, for any Borel set B c Na, 

T 
sup j j (l + lz~(t,x)l)~#~(t;dx)dt < K(T,  cO(l + lBI), (8.1) 

0<~<10B 
T 
f f ( Zt(t' X))2#e( t; dx)dt  ~ K(T) ( I  + x/~lBI). (8.2) 
0B 

Proof. Set 

= {(t, x) e [o, T ]  x B; Iz~(t, x)l _-< 1 }  
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Then the energy estimate (2.2) yields 

T 

~ (1 + ]z~(t, x)[)~p~(t; dx)dt 
O B  

< 2~S #~(t; dx)dt + ~ (1 + [z~l)~#~(t; dx)dt 
Q Qc 

=< (2 ~ + 1)C*T + ~ [(1 + [z~[) ~ -  1]#~(tzdx)dt, 
f~c 

where Qc denote the complement of ~2. For  any r > 1, 

(1 + r) ~ -  1 < ermax{1,(1 + r) ~-1} =< c~r(1 + r) ". 

Since Iz+l > 1 on f2 ~, this inequality and (4.3) imply that, on ~2 c, 

[(1 + [z~[) ~ - 1]#~(t; dx) = [(1 + [z~[) ~ - 1] ~ q' ([ Vz~[ 2 + 1) 

__<K~ sup s u p ~ ( l + r )  ~+1 q' 
0 < ~ < 1  r>- - i  

= K~ sup supf(1  + ~f)~+l(q,(f))z 
0 < ~ < 1  ~>~ 

= Ka  sup f(1 + f)~+l(q,(f))2 = C*(a) < oo. 
~ > 0  

This proves (8.1). To prove (8.2), first recall that, by (2.2), 

T T 

0 ,~a 0 ,~a 

where q' is evaluated at (z~/~). Hence, by (2.2) and (4.1), 

T t 

ff(z~)2#~(t;dx)dt=ffl(z~)2(q')2(l+lITz~12)dxdt 
O B  O B  

185 

< c* + I(~/~ -f(q~)~dxdt + (z;)~(q')~Iz~ldx,t 
0 , ~  d 0 B 
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By (4.6) and (2.2), 
T 

O B  

T 

= (Z~)2(q')2[1 + [z~lziz.l>=l]dxdt 
0 B  

T T 

f f  f f ~ 5  , 2  e e((/)7) 2 -+- (q) [z [Zlzol>ldxdt 

0 ~  a 0 B  

T 

<=C~+ I f K s u p r q ' ( ~ )  dxdt<=K[l+[B[T]" r>=l 

O B  

Proof  of Theorem 2.1. The only assertion left to prove is the convergence of rfi ~, 
where 

drh ~ = - z2 dmL 

The L 2 estimate (8.2) implies that 

sup [rfi~[([O,T]xBg• forR,  T > 0 .  
0<e=< 1 

Hence on a subsequence, denoted by z, rh ~ converges to a Radon measure n~. 
Moreover, (8.2) implies that rfi is absolutely continuous with respect to m; let 
v denote the corresponding Radon-Nikodym derivative, so that, by (8.2), 

vGL2((0, T)x~axSa-1;dm) .  [] 

Proof of Theorem 2.2. We first prove the existence of the mean-curvature vector H. 
Following [23, w let V~(t; �9 ) be the varifold (cf. [28]) 

V~(t; dx dS) = 6{(v~)• dx) 

so that (V~(t; .))(x) is supported at (v"(t, x)) • and 

I[ v~(t; ") II -- #~(t; . ) .  

1. In this step we show that 

T 

'sup ff I-Ar 1 12 o<~zl 7~ W'(rp~) dxdt < oo. (8.3) 

o 

Since g2 = 2W, (OPE) implies that 

g - -  Vq) ~ 7~ W ' ( ( P  ~) = g - -  (p; _-__ 2g((p;)  2 + - W(q~e)(0e)  2, 
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while Theorem 7.1 and (7.1) yield 

~ff W(r  <= ~(0~)2 d~, ~ =< KII V(0~)~ I1~ _-< K~(O~) ~ + I V0~I ~. 

Hence 
T 

1 2 f dxdt  

0 

T 

< f f [2e(cp~)/+ KIVO~] 2 + K(O~)Z]dxdt, 

o 

and (8.3) follows from (2.2). 
2. For any smooth vector field Y(x), the definition of V ~ and the definition of the 
first variation (cf. [28]) imply that 

6V~(t;. ) (Y)  = ~ VY : SV~(t; dx dS) = y VY :(I - v ~ | v~)#~(t; dx). 

Let T be as in Step 2 of Theorem 5.1. Recall that 

( I  - v ~ | v ~ ) #  ~ = (v  ~ | v~)~ ~ - :~dx ,  

d i v 2 ? = - e V r  - A r 1 6 2  . 

As in Theorem 5.1, 

~v~(t ; . )(Y) = f vY:  [(v ~ | r  ~ - ~ d x ]  

= f Y" div T dx + VY" (v ~ | r  d~ ~ 

f[ lf = -  e Y ' V r 1 6 2 1 6 2  d x +  V Y ' v " |  ~. 

Hence 

i~ v"(t;.)(Y)l =<(f~lrl21Vr162 ~1 w(r "2 

+ fl  Vyldl  l . 

3. In view of (8.3), Proposition 7.3 and (2.2), for every T > 0 there is a constant 
K ( T ) satisfying 

T 

lim sup ~ IbV~(t; ' ) (Y)ldt  <= K(T)II YI[~ 
e.~0 0 

for all Y ~ C ~ ( ~  a -~ ~d). Choose a further subsequence e, $ 0 such that the Radon 
measures dV~"(t;.)dt on ~ d • 2 1 5  c~) are convergent in the weak* 
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topology. By a slicing argument [16, Theorem 10, page 14], we conclude that there 
are varifolds 17(t;.) that satisfy 

dV~"(t; . ) dt~d~'(t; . ) dr. 

4. By definition, 

T 
1617(t;" )(Y)I dt = 

0 
so that Step 3 yields 

T 

sup dt, 
Ih(t)l < 1 

I,~9(t,-)(Y)ldt =< K(T)II YII~ r y e  c ~ ( ~  d ~ d ) .  
0 

Since Cff (~  d -o ~a) is separable, 

K(t) := sup [bV~(t,')(Y)[ < oo 
iYl_-<l 

for almost every t > 0. 
5. Let t > 0 be a point with K(t)< oo. Then (7.2) and ALLARD'S theorem of 
rectifiability [1, 5.5(2)] imply that [[ 17(t;.)II is d - 1 rectifiable. Moreover, by the 
definition of the varifolds V~(t;'), 

t[ V~(t; ') =/i~(t; ") ~ [I IF(t,')[[ = p(t;.). 

Since a (d - 1)-rectifiable varifold is uniquely determined by its mass measure, 

17(t;.) = V,~; ~. 

Hence dV~(t; ") dt converges on the entire original sequence e, and more impor- 
tantly, #(t;-) is (d - D-rectifiable. 

We have also proved that 

,3V~(t ; . ) (y) ,<=liminf([r  ]2 ) , / 2 ( f  o \ 3  -~ W'(cp ~) dx [Y[2#(t;dx)) a/2. 

Hence, for almost every t > 0, /i(t,.) has a generalized mean-curvature vector 
H(t, x) and 

f,  f [ 1 )J2 H(t,x)t2#(t;dx)<liminf ~ -A~0~+~sW'(cp ~ clx. 
g--+ O 

Step 1 implies that H e L2((0, T) x ~d; d/l) and in Step 2 we have established that, 
for any r e Cc~176 a --, ~a), 

~ f Y ' H ( t ' x ) d t l 4 t ; d x ) = - f 6 V ( t ; ' ) ( Y ) d t = - l i m [  cW~(t;')(Y)dt~-.o . (8.4) 

[ 1 ] 
e O d d  



The Phase-Field Equations 189 

6. In this step we show that  0 e L~oc(d#). In view of (2.9), there exists a sequence of 
smooth  functions Ok satisfying 

lira I]0k - 0H2,r = 0, sup H VOkII2,T < oV (8.5) 
k~oo  k 

for every T > 0. Fix 2 > 0 and T > 0. Then, by Theorem 7.1, (7.1) and (2.2), 
T T 

0 ~ a  0 .~d 

< K ,~ll0k - 0~l t2 , r l l  V(Ok - 0~) l I2 , r  + ~ -  , 

which converges to zero as k, l ~ o% since we can take 2 ~ oo. Hence 0 ~ L~oc(d#) 
and 

I I f  o(t, x)n. Y(t, x)dm(t, x, n) = lim ~ I  Okn" Ydm.  
k--+ oo 

7. For  n e S e - t ,  let Pn e Gd_l(r e) be the (d - 1)-dimensional, unoriented plane 
orthogonal  to n so that P: S d - 1 ~ Gd- t (Nd) is a surjective map. Then, by definition, 

dYe(t; " ) _ dm~ o p -  a. 
#*(t; dx) #~(t; dx) dt 

By the weak* convergence of these measures, 

dVu(t;.)(t;') _ dm ~p-1 = N(t, x ; ' )oP -1 
6r, u(t;.) #(t; dx) #(t; dx)dt 

Therefore  the support  of N(t ,x; . )  is o r thogonal  to T~#(t; .)  for d#-almost  all 
(t, x). [] 

Proof of Theorem 2.3. 
1. Let  ~(t, x) be a smooth  compact ly  supported function. Then  the action of the 
distribution O t -  AO on ~ is given by 

I(t)) = - ~ S (Ot + A 0) 0 dx dt = lim S ~ (0; - A 0 ~) 0 dx dr, 
~-~ 0 

so that, by (HE), 

1(0) = - ~olim ffg(~o~)q~tp dx dt 

= -  lim f f ~  ( q ' ( Z ~ ) )  ~ ~ o  T z:O dxdt  

= lim f f ~' dr~ + lim [ [ 4' z~ ~o j j 

-- f f f v( t, x, n)t~ ( t, x) dm + ~limo j jf [ O z~ d~ ~. 
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We assert that the second term in the last expression is equal to zero. Indeed, since 
I(~l < p~, the Cauchy-Schwarz inequality yields 

< I t  11/][2dl~e[ I I I  Ztl d# J . 
spt ~ / 

By Proposition 7.3 and (8.2), the right-hand side of the previous expression 
converges to zero as e tends to zero; hence (2.10) holds. Equation (2.11) follows after 
an integration by parts in the variable t. 
2. Let Y be a compactly supported, smooth vector field. The definitions of rh ~ and 
v(t, x, n) yield 

=--limff z2v''Y#*(t;dx) d t ~ - + o  

= - - l i m f f z ~ v ~ ' y l ( q ' ( ~ ) )  2 I f  dx dt - lim z~ v ~ . Y d{~ dt. 
e---tO ~ e--+O 

As in Step 1, the second term in the above expression is zero. Next we use the 
identities 

z~q' =~o~, v~r - ~ ,  g ( q , ~ ) = ~ = r  

together with (OPE) and (8.4) to obtain 

L ( Y ) =  - lim f f ~o~ v~o~. r 1~ ~o i Vz~ I dxdt 

f; = - ~-.olim q' V~o ~. [ Vz~] 

E , }1 + .~otim oali cY. Vq~ - A~~ + ~ W'(q~) i--~z.i dxdt 

= - - l im  i i ! ( q  'I/Z~'x'~2 t,T)) 
+ lim ~Y. v~r - A r  ~ W'(r  d~dt 

+lim ffeu dx dt 

: = l i m U + f f  H ' Y d t # ( t ; d x ) + l i m E * ' * ~ O  ~o (8.6) 
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3. In  this step we show that  E ~ converges to zero. By (8.3), 

(ffE ' IE~l<liYIl~o ~ - A r 1 6 2  ~1Vr IVz'l ,J) 
spt Y 

(s!t! ~ ( (~)t2 )1/2 < K(Y) q' (1 - -  I Vz~l) 2 , 

while (4.1) yields 

(1 - I V z ~ l )  2 = (1 - [Vz~l)2x(ivz~l~ a) + (1 - I Vz~l)2Z(ivz~l<l} 

__< K~(1 + Iz~l) 2 + I1 - I  Vz~12L. 

Hence 

E ~ < K ( Y  Ke (1  + Iz~t)2 d# ~ + die e , 

spt Y 
and by Proposi t ion 7.3 and (8.1), the limit of E ~ is zero. 
4. Let Ok be as in (8.5). In Step 6 of  the previous proof  we have shown that 0 e L~oc(dp) 

and 

I(0):= -S~I Y . n O d m =  - lim S~Okn"  Y d m .  
k~oo 

Then 

Since 

f f! I (0 )  - I e = (q')2Ve" Y(O ~ --  Ok )dx d t  

+ f f f (! (q')2r Y dx dt - n" Y dm~) Ok 

1 
- - ( q r ) 2 V e "  " Y dx  dt  - n" Y dm ~ = v ~" Y'-=Y ar 
8 

Proposi t ion 7.3 and the convergence of m ~ to m yields 

limsupi.-l(O)l~o ____li~s~P~o ff!(q')~v~. ~(O~-O~)d~d~ 

+ iIfo.. -o,  t. 



192 H.M. SONER 

Recall that 0 ~ converges to 0 strongly in L2oc (cf. Proposition 3.4). So as in Step 6 of 
the previous proof, 

lim sup f f 1 dt ~-~o e (q')2v~" Y(O~ -- Ok)dX 

ff _-< 11 Y I[ o~ lim sup [0 ~ - -  O k [  dt#~(t; dx) 
e ~ O  

s p t  Y 

1 
for any 2 > 0. Finally, let k and then 2 go to infinity to show that I ~ converges to I(O). 
5. Combining the previous steps we conclude that 

I I I  Y.n(v + O)dm = I f  H" Ydlz 

for any smooth vector field Y proving (2.12). 
6. The computations of w imply that, for any ~b ~ C~(~  d -~ [0, ~)), 

d 
d5 ~ ~b (x)/i ~(t; dx) = - S ~b [e (oPt)2 + [ 170~12-] dx + �89 ~ A q~ (0~) 2 dx 

- v4 " 

By Step 2, 
t t 

;ff f f  ' Y" nv dm = - lim eq~ F~o ~ . Y ~ dx dr. 

s s 

We now proceed as in Step 3 to obtain 

t t 

I I I Y 'nv  dm = - lim f I etp~Vq ~" Y dx dr. 
s $ 

Hence 
t 

fi(4~)(t) - fi(c~)(s) __< - lim inf ~ ~ ~b(~o~) 2 dx dr 
s 

' is  + SSI vn. Vd? dm + (�89 0EAch -IVO[2(o)dxdr. 
s s 

Since ~b is compactly supported, following the proof of the estimate (8.2) we find 
that 

t t 

lim i~,~ I r (~~ 2 dx dr = lim inf~ j" r (z~) 2 tt~(r; dx) dr. 
8 S 
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For any w e C2(Q x S d-1 -+ ~l), 

t 
0 < liminfI~ ~ (o(z~ + w)2dm ~ 

s 

t t 
= lira inf ~ 5 r (z;)2 p*(r; dx) dr + I I I r ( w2 - 2wv) dm; 

s s 

hence 
t t 

S ~ I r v2 d m  ~--- I I I r F(W - -  V)2 - -  (W2 - -  2WV)] dm 
$ S 

' }SI _<_ l iminf f l  (o(cp;)2dxdr + (o(w - v)2dm. 
s $ 

Since v ~ L2(dm), 

t t 

S S S r v2 dm <= lim inf 5 S ~b(q~) 2 dx dr, 
s s 

which proves (2.13). [] 

9. A p p e n d i x  

In this section we study a simple radially symmetric solution of the Mullins- 
Sekerka problem. We show that if the initial radius of the interface is sufficiently 
small, then the temperature is not a bounded function. 

The Mullins-Sekerka problem (1.5), (1.6) with radial symmetry and one interface, 
takes the form 

Ot AO 4 - = ~(Z{,x,  __< g(,)})'  

while the radius R(t) of the interface is a solution of 

1 
R'(t) - O(t, R(t)), t e (0, Text) , 

R(t) 

where the extinction (or melting) time Text is defined to be the first time at which 
R(Text) = 0, if there is such a time; otherwise Text = oo. Let (R(t), O(t, r)) be the 
solution of this problem with initial data 

0(0,.) - 0, R(0) = Ro. 

The following result was obtained in collaboration with T. ILMANEN. 

Theorem 9.1. For all sufficiently small Ro, the extinction time Text < oo and 

lim O(Text - (5, O) < O. 
a+o Iln(a)l 
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Proof. 
1. Let G be the heat kernel. Then 

] 
/{lYl=R(s)} 

and there is a constant  C(d) such that  for any z, p > 0 and x e Ne, 

3C(d) 
G('c, x - y ) d ~ e - l ( y )  < 

{rrl=p} 8x//~ " 

Set 

so that  

Hence 

2. Set 

O(t) := sup{10(s, x)[ :(s, x) e [0, t] x ~a} ,  

sup{  t 
t 

f 3C(d) ds 4 sup {IR'(s)l :s E [0, t]} 8x / t  _ s I O(t, x)l _-< 

0 

<= C(d)x~tt[-E(t ) + 0(t)]. 

O(t) <= c ( d ) , f  [g(t) + O(t)]. 

t* = inf{t e [0, Text] :R'( t)  = 0}, 

or t* = m if this set is empty. Since 0o - 0, it follows that  t* > 0 and 

1 
R'(t)  < 0, /((t)  = Vt e [0, t*] .  

R(t) 

Also, if t* < Text, then 

3. Set 

O(t*) >= - O(t*, R(t*))  - - -  
R( t*)  

to = mln Text, 

- / ( ( t * ) .  

so that, for s e [0, to], 

O(t) < 1 (K(t)  + O(t)) 
3 

1 -  1 
O(t) <= -~ K( t )  - 2R(t) " 

Therefore to < t* and 
1 

R ' ( s ) < = - - - -  V t e [ O ,  to].  
2R(s) 

(9.1) 
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Since R(to) > 0, the preceeding differential inequality yields 

R ( s ) > = ~ o - S  VsE[O, to]. 

Suppose that 

then 

1 
Ro < 3C(d~)' 

1 
, 5 ; 0  m _-< Ro < 3C(d)' 

and we conclude that Tex t = t o < O0. Also, since 0 < 0, we have 

hence 

4. Set 

1 
R ' > -  

= R(t) 

N ~ e x  t - -  S ~_~ R ( S )  ~ x / 2 ( Z e x t  - -  s )  '7 's  e [ 0 ,  T e x t ] .  

A(():= S G(1, y)dJfd-~(Y)  �9 
{lYl=g} 

For 6 > 0, by (9.1) and (9.3), 
T~xt - 6 

o {lyl=R(s)} 

Text- 6 

2 1 1 

G(Text - 6 - s, y) d~r ~ 1 (Y)I ds 

3 e ( s ) , / T o x , -  ~ - s  \ , / T e x t -  ~ - S as 
0 

T~xt - 6 

2 ! 1  ~R(Text ~ 6 -- "c)) 

=< 2 ~ + z ) < 2 x / ~ .  

For ~ > 6, 
1 < / 6  + "c < R(Toxt -- ~ -- "c) 

x/ 

Hence, for z > 6, 

A {-R(r~ - ~)) > ;~o > O, 
\ , 5  = 

where 2o is an appropriate constant. Therefore 
Text - 3  

22o (' 1 
0(Text--b, 0)_-< 3x/~ J x / T ~ , s d z  < - -  

T e x  t - 

6 

[] 

(9.2) 

(9.3) 
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