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Abstract

I prove that the solutions of the phase-field equations, on a subsequence,
converge to a weak solution of the Mullins-Sekerka problem with kinetic under-
cooling. The method is based on energy estimates, a monotonicity formula, and the
equipartition of the energy at each time. I also show that for almost all ¢, the
limiting interface is (d — 1)-rectifiable with a square-integrable mean-curvature
vector.

1. Introduction

Phase-field equations for solidification were introduced by CaciNaLp [7, 8],
CoLLins & LeviNg [15], Fix [19] and LANGER [24] to treat phenomena not covered
by the classical Stefan problem. These equations, for the temperature (deviation)
0 and the phase field ¢, consist of a heat equation

cl, + lop, = kAB (1.1)
and a Ginzburg-Landau equation
P, = Ao — vW' () + 10 (1.2)

where ¢, [, k, 8, 4 and v are positive constants and W is a double-well potential
whose wells, of equal depth, correspond to the solid and liquid phases.

Recently thermodynamically consistent models have been developed in FrieD
& Gurtmn [20], PeNrOSE & FIrE [27], WANG et al. [33] and in references therein; in
particular, [20], [27], and [33] allow the latent heat ! to depend on the order
parameter .
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The main goal here is to rigorously study the global-time asymptotics of (1.1)
and (1.2) in the limit ¢ | 0 for

k=1 p=l=¢ v=—, l=I(p), (1.3)

and for specificity with
Wip)=3(1—- ¢, 1=1-¢7, (1.4)

a choice that is essentially the same as Model II in [33]. My analysis can be
modified to analyze any smooth function [ vanishing at the minimizers of W i.c.,
any | of the form

(o) = (1 — ¢*)H(o),

where H > 0 1is an arbitrary smooth function. A specific choice of H corresponds to
Model I in [33], while the particular choice | = W would simplify some of the
analysis (cf. Remark 4.1 below). Observe that, granted (1.4), the nonlinearity
—vW'(p) + 10 in (1.2) vanishes at +1 for any value of 6.

The formal analyses of [7,9, 15, 19] at least indicate that solutions of the
Ginzburg-Landau equation (1.2) form a sharp interface whose normal velocity
depends linearly on the mean curvature and the temperature of the interface. To
describe this result precisely, let (6%, ¢®) be the solution of the phase-field equations
with parameters consistent with (1.3) and assume that (6%, %) converges to (6, ).
Since the two minima of W are +1, it is easy to prove that || =1 almost
everywhere. Let I'(¢) be the interface separating the two regions

Q)= {x:0tx)=—1}
and {¢ = 1}. Then, formally, (0, Q) is a solution of the heat equation

0, — A0 = — (h(9)), = %(XQ(t))ta h{p) = — %(/73 (1.5)
everywhere, coupled with the geometric equation
V=H—0n (1.6)

at the interface I'(¢), where y, is the indicator of the set , and where V,nand H are,
respectively, the normal velocity vector, the outward unit vector, and the mean-
curvature vector of the interface I'(¢). A derivation of these sharp interface equa-
tions from thermodynamics as well as an exhaustive list of earlier references are
given in GURTINs book [21, Chapter 3]. In 1964, MuLLINS & SEKERKA [26] studied
the linear stability of a related system of equations obtained by replacing (1.6) by
the Gibbs-Thompson condition: § = — K. They showed that planar interfaces are
unstable under some perturbations, thus explaining the dendritic growth observed
in solidification. I refer to equations (1.5), (1.6} as the Mullins-Sekerka problem with
kinetic undercooling.

My chief result is that, in the limit, @ and Q constitute a weak solution of the
Mullins-Sekerka problem with kinetic undercooling. This result is global in time;
1 do not assume the existence of a solution of (1.5), (1.6). Therefore I also provide an
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existence result for this limit problem, extending a previous result of CHEN &
RerticH [12] for local-time existence. To the best of my knowledge, the only other
global results are due to LuckHAUS [25] and ALMGREN & WANG [3]. They proved
the global existence of weak solutions for the heat equation (1.5) coupled with the
Gibbs-Thompson condition: § = — K.

There are two essential difficulties in the analysis of (1.5), (1.6): a solution (6, Q)
of (1.5), (1.6) can start out smooth and yet, in finite time, the boundary of 2 may
develop geometric singularities, and 8 may blow up pointwise (see the example in
the Appendix). These difficulties also complicate the analysis of convergence. Since
0 is unbounded, 8% does not converge to § uniformly. For that reason I cannot use
results of [4] concerning the convergence of (1.2) with a given continuous temper-
ature field. The asymptotics of the Cahn-Allen equation, which is (1.2) with [ = 0, is
studied in [18] via sub- and supersolutions constructed from the weak solutions of
the mean-curvature flow; unfortunately the approach of [18] is not directly
applicable to the phase-field equations, as they do not have a maximum principle
and there is no a priori weak theory for the limit equations.

I overcome these difficultics by utilizing the energy estimates in §2.2, and
a monotonicity result in §5. The latter is an extension of the monotonicity formula
of CHEN & STRUWE [13], which originates from StrRuwE’s formula for parabolic
flow of harmonic maps [32], and a later result of ILmanen [23] for the Cahn-Allen
equation, which originates form HuiskeN’s formula for smooth mean-curvature
flows [22]. My main observation is that the geometric equation (1.6) is not simply
a perturbation of the mean-curvature flow, and therefore the monotonicity should
involve the mathematical energy

1 1
fEIWﬂ2+—W«¢)+—ww%m
2 £ 2
29

related to the system (1.5) and (1.6). The main technical difficulty is then to show
that the discrepancy measure

£ A) = |51V — L (o) d (17
A

has non-positive limiting value. For the Cahn-Allen equation, £° < 0 follows easily
from the maximum principle. For the phase-field equations, however, it follows
from a series of estimates obtained in §4. In later sections, following ILMANEN [23],
I prove that the weak* limit of &° is indeed equal to zero.

I close this introduction with a brief survey of related results. Equations (1.1),
(1.2) with ¢ = f = 0, I = 1 form the Cahn-Hilliard equation. Recently the conver-
gence of the Cahn-Hilliard equation to the Hele-Shaw problem was proved by
ALIKAKOS, BATES & CHEN [2] using a spectral estimate of CHEN [11]. In contrast to
this paper, they assume the existence of a smooth solution to the limiting problem.
Briefly, their method is to construct approximate solutions for the “g problem” that
are close to the smooth solution of the limit problem. They then use the spectral
estimates to bound the error terms. Also, Stotr [30] studied the asymptotic limit
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of the phase-field equations with radial symmetry. Independently, a radially sym-
metric problem in an annular domain with one interface was studied in [10].
Asymptotics of the Cahn-Allen equation, obtained by setting [ to zero in {1.2), have
been studied extensively. An exhaustive list of references related to the Cahn-Allen
equation can be found in my paper [29].

This paper is organized as follows, In the next section I outline the background
and state the main results. In §3, several elementary estimates are obtained.
A gradient estimate is proved in §4; this estimate implies that &° is non-positive in
the limit. In §5, I derive a monotonicity result which I use in § 6 to prove
a clearing-out lemma. I then establish the equipartition of energy in §7. In that
section, I also show that the Hausdorff dimension of the interface is d — 1.
I complete the proof in Section 8. In the appendix, for a simple radially symmetric
example studied jointly with ILmangN, I prove the pointwise blowup of the
temperature.

2. Preliminaries

The following notation is used throughout the paper. C;°(4 — B) denotes the
set of all compactly supported, smooth functions on A, with values in B. Z'(A)
denotes the set of all distributions defined on 4. For a measure space (4, p) and for
pe[l, o], L?(A4; dp) denotes the set of all functions that are p-integrable with
respect to the measure p. When p is the Lebesgue measure, we use the notation
LP(A). For T < oo and p € [, o0], || - || ,,r denotes the norm in L?((0, T) x #°). For
R >0and xe %,

Br={yeR":|y| <R}, Br(x)={yeR’:|y—x|=R}.
For two d x d matrices M and N,
d
i,j=1

$4-1 denotes the set of all unit vectors in #°. For p € #%, p ® p denotes the d xd
matrix with entries p;p;.
For a Radon measure y on #¢ and a continuous bounded function v,

R = [ Ao,

H#* denotes the k-dimensional Hausdorff measure (cf. [28]). Finally
Q = (0, o) x #*
and for (z, &) € Q, G(1, &) is the heat kernel:

G(t, &) = (dnt)"“*exp <%>
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2.1. Eguations

For a scalar u, set
W) =4~ 17,
hw) =u—4id, glw) = W(w) = (1 —v?) = /2W (W)
The heat equation (1.1) and the order-parameter equation (1.2) — with these
functions and with parameters as in (1.3), (1.4) — take the form,

1 1 .
¢i = Ag" + 5 W(e*) ——g(@*)0" =0 in (0, 00) R, (OPE)

0: — AO® + g(@®) @i =0 in (0, oo) x #°. (HE)

For ¢ > 0, let (9%, 6°) be the unique, smooth, bounded solution of the phase-field
equations satisfying the initial data

P*(x,0) = @p(x), 0°(x,0) = 05(x), xe R’ {10
We assume that
lpo()I =1 Vxe 2. (Al)
Then since W'( +1) = g( £+ 1) = 0, by the maximum principle,
lo°(t,x)| < 1 V(t, x) e (0, oo)x #°.
For a real number 7, g(t) = tanh(z) satisfies

" =W, 4 =2W(g) =9,

and g is the standing wave associated with the reaction diffusion equation with
nonlinearity W’. Since |¢p®| < 1, we may define z° by

Z%(t, x)

@1, x) =q< ) <« 2 =eq 0.

Then z* satisfies
2 £
zf~Az£—08+T(p(|VzE|2— 1)=0 (ZE)

(observe that g(¢°) = g(g(z°/¢)) = q'(z°/¢) and ¢" = 2¢°q").

2.2. Energy

For a Borel subset A = %%, define
pi(t; A) = [ 5| Vo'l + ¢ W (9% dx,

A

At A) = (6 A) + [ 369 dx.
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In terms of z°
1 & 2
G ) = 5 <q' (%C—))) [ V2, 912 + 1] dx,

and the discrepancy measure &° (cf. (1.7)) is given by

1 £t 2
Ex(t; dx) = — <q' (Z ( ,x))) [ Vz8(¢, x)|* — 1] dx. (2.1)
2e £
By differentiation and integration by parts we obtain
d
— 056 RY) = — | e(gf)? + | VO*|*dx.
dt 24

We assume that the initial data satisfy
@50, 2%) < CT, &>0. (A2)
Then

t
Pt R + [ | el@f)® + | V0P dxdt S CF, 6t=0. (2.2)
o z?

{Assumption (A2) can be relaxed as in [29]). We now localize this estimate. Let
Y be any positive, smooth, compactly supported function. Then
]

d £, 2 3
S = [a] (o4 20 4 s O

2 2
¢ £, 2 (08)2 2
v [ o v+ G
O] [ 8 s L g
s|owlsier | | sirreso

{>0}
< |1D* o 258 {4 > O}).
Here we have used the fact that, for any positive C* function,
WP
2(x) ~

Hence there is a constant C(y), independent of ¢, such that the map

t > () (e dx) — C) 23)

1D o -

is non-increasing.

We close this subsection by obtaining a similar local energy identity for the
classical solutions of the limit equation. Suppose that (8(t, x), 2(¢)) is a classical
solution of the Mullins-Sekerka problem (1.5), (1.6). Let V, H, and n be, respective-
ly, the normal velocity vector, the mean-curvature vector and the outward normal
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of the interface I'(f) = dQ(1). Let u(t;-) be equal to § times the surface measure of
0Q(1). Then (1.5) is equivalent to

6, — AO)dx = V - nu(t; dx).

For a smooth, compactly supported y(x), we have
d . - —
7 W) = JL—=V-Hy+ V- Wt dx) + | 660,y dx

=[[V: (—H+ 0y + V- Wlu(t; dx) + [ 10*Ay — | Vip > dx.
Since V = H — 6n by (1.6), it follows that

d - -
7 AE)W) = SV + V- Wu(t dx) + [30°A¢y — [VO*ydx.  (24)

Observe that this identity is very similar to that used by BRAKKE to develop a weak
theory for mean-curvature flows (cf. [5], [23, §1]).

2.3. Subsequence

The energy estimate (2.2) yields

sup |[0°(t,")[|2 < co.

£,1t>0
Hence there are a subsequence, denoted by ¢, and an L? function 6 such that
0*—0 in weak L2((0, T)x %),

for every T > 0. We will show that this convergence is, in fact, in the strong
topology (see Proposition 3.4 below). Moreover, by the arguments of BRONSARD
& Konn [6], this sequence can be chosen so that

he*) > h(@) =3¢ in Li(0, ) x#%), ¢°>¢ ae,
where ¢ is a function of bounded variation, and | ¢(t, x)| = 1, for almost every (¢, x).

Since (W')* = 2W, (2.2) implies that, for 0 < s <t and ¢ > 0,

A9 (t,7) — (@5, Dl = [ [ 1K (@0 ) i(r, x)] dx dr
t vz /e 1/2
= <§ j 3 (@i (r, x))* dx dr> (j LE(r; 98 dr>
< CfJt—s. (2.5)

Hence
h(@*(;+)) = h(o(t;)) in Lioo(%%), (2.6)

uniformly in the variable ¢.
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The energy estimate implies that, for each ¢ = 0, the sequence {2°(t,")}.> 0 is
precompact in the weak* topology of Radon measures. By a diagonalization
argument we construct a sequence, denoted by ¢ again, such that as ¢ | 0, 4°(¢,-) is
weak™* convergent for all rational ¢ = 0. Then, by the monotonicity estimate (2.3),
we construct a further sequence so that {{°(s,*)}.>0 is convergent for all ¢ = 0.
Therefore there are a subsequence, denoted by ¢, and a family of Radon measures
fi(t,-) that satisfy

lim g%(t,")— [2(t,-) V=0

el 0
in the weak* topology of Radon measures. See [23, §5.4] for further details of this
argument. Now for a Borel subset B < [0, o0) x %4, define

AB) = [ | A dodr, u(B) = A(B) — % § [ 6> dxdt.
B B
Then the strong convergence of 6° to 8 (cf. Proposition 3.4 below) implies that
# =0 and
pi(t)— pls, ) Ve 20.

Since the interface condition (1.6) involves not only the mean-curvature vector,
which is independent of orientation, but also the normal vector, we introduce yet
another measure, m‘, that keeps track of the normal direction. For (¢, x, n) €
[0, 00) x #? x 971, define

Voi(t, ]
VoD gy, %)) 40,
vs(l” x) = I V(P (ta x)|
Vo if Voi(t, x) =0,

dma(ta X, I’l) = dtﬂs(t; dx)é{vz(t,x)} (dn)a

where vy € S9! is arbitrary and 4y, is the Dirac measure located at v*. Observe
that m® is independent of the choice of v,.

Since $¢~ ! is compact, there is a further sequence, denoted by ¢, such that dm®is
weak* convergent. By a slicing argument (cf. [16, Theorem 10, page 14]) we
conclude that there exist probability measures N(z, x,-) on S?~! such that as
¢ tends to zero,

dm® — dm = dtu(t; dx)N(t, x; dn).
Finally define m® by
dm® = — zidm®.
In §8 we show that there are a subsequence, denoted by &, and
ve L2((0, T)x #* xS~ 4;dm) VT >0

such that
mt—m, dm = uv(t, x,nydm.
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2.4. Initial data and assumptions

In addition to (A1), (A2) we assume that

IVzille =1, (A3)
sup & D?z8 . < o0, (Ad)
0<e=1
*(0; B
sup sup u(’di_Rl(x)) < o, (A%)
O0<e<1 xe®? R
R>0
where Bg(x) is the sphere centered at x with radius R. We also assume that
sup {1050+ 1050 + /21 VO51l.0} < o0, (A6)
sup {&*D%p5 )l + e* |1 D*05 1|0} < 0. (A7)
O<eg=s1
Since
16515 < 1651111165 1% " for 1 < p <o,
observe that (A6) implies that
Sup 106l = K(p) <oo. 27
Finally we assume that there is 0, € L?(%) such that
& — 0, in L*-strong. (A8)

While (A 1)-(A8) may seem restrictive, in fact, they are merely technical assump-
tions which are consistent with approximations to any smooth initial data. Indeed,
if 8% = 0, is a smooth, compactly supported function, then 6, satisfies (A6), (A7)
and (A8) trivially. Suppose that I, is a bounded, smooth hypersurface in %“. Let
d(x) be the signed distance of x to I'y and let d be an appropriate modification of
d outside of a tubular neighborhood of I'y such that all derivaties of d up to order
three are bounded and such that 2|d| > |d|. Then zj = d satisfies (A1)—(A7).

Finally we note that the term \/(;, appearing in (A6) is not essential. Indeed if
(A6) holds with &’ for some v = 4, then we can prove the same results with minor
changes.

2.5. Varifolds, rectifiable measures, etc.

In this subsection, we recall several definitions and results from geometric
measure theory ([28], [23,§1]).

Following [23, §1.7], we call a Radon measure u on #¢ k-rectifiable, if there are
a #*-measurable, locally k-rectifiable set X < % and

f€ Lioe(X; dA* X) (£ X(4) = #HANX))
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such that

u(d) = J f(x)d#*(x) for any Borel set A.
AnX

When u is k-rectifiable, for y-almost every x, the measure-theoretic tangent plane

T.u= 1;{21 te 2 (px,2(A) = A7 *u(x + 14))

exists and is a positive multiple of #* restricted to a k-plane. With an abuse of
notation, we use T,u to denote this k-plane.

A general k-varifold is a Radon measure on #* x G,(%"), where G,(#*) is the
Grassman manifold of unoriented k-planes in %% The mass measure |V | is
defined by

[V 1I(4) = V(4 x GU&Y).

For every k-rectifiable Randon measure g, there is a corresponding (rectifiable)
k-varifold V, defined by

dV,(x, §) = du(x)dd;r, . (S),

where d;r, , is the Dirac measure located at T, p. Note that ||V, || = u. We say that
a k-rectifiable Radon measure p has a generalized mean-curvature vector

H € Ligo(#* — R*; dp)
if for any smooth, compactly supported vector field Y (x),
Jt(VY(x)P(x))dp = — [ Y(x)- Hx)dp, (2.8)

where P(x) is the projection on the tangent plane T,p. In the terminology of
geometric measure theory, the left-hand side of (2.8) is the first variation 6V, of the
varifold ¥V, [1].

2.6. Main results
First we recall the convergence results stated in §2.3.

Theorem 2.1 (Convergence). There are a sequence, denoted by e, functions
0 e L2 (0, 00) x #%), v € L ((0, o0) x ¢ x §¢1; dm), non-negative Radon measures
{n@5), 4(t;*)}i = 0 and probability measures {N(t, X;" )} xe(, w)xa¢ SUch that, as
¢ tends to zero,

0%(t,) — 0(t,) strongly in L, (#%) V¥t =0,
h(¢®) — h{p) strongly in Li.((0, o) x %#9).
Moreover, |@| = 1, ¢*(t, x) — @(t, x) for almost every (t, x) € (0, c0) x &9, and
h(@*(t,")) = h(@(t."))  strongly in Lie(27),
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uniformly for t > 0. In addition, the following convergence results in the weak*
topology of Radon measures, are valid:

pi(t, )= ult,r) Ve 20,
fE(t, )= A, ) Y20 (At dx) = u(t; dx) + 3607 dx),
mi—m, dmlt, x, n) = u(t; dx)dt N(t, x; dn),
mt—m, dm®= —zidm®, dm = v(t,x,n)dm.
For every T > 0, the functions 0 and v satisfy

sup {0, )2 + [ VOll2,r < o0, (2.9)

t20

21 120, Ty 29 x 571 amy < 0.

The strong convergence of 67 is proved in Proposition 3.4, and the convergence
of m*® and the integrability of v are proved in §8. The remaining assertions were
established in §2.3.

Set du(t, x) = u(t; dx)de. Let I' be the support of x and I, be the ¢ cross section
of I'. In the terminology of §2.5, we have the following regularity result.

Theorem 2.2 (Regularity). For almost every t =0, u(t,") is (d — 1)-rectifiable and
has a generalized mean-curvature vector H(t, x). Moreover for every T > 0,

|H|e L*((0,T) x 2°; dp),

sup #4”HI,) < oo,

t<T
0 € Liye((0, 00) x 2% dy),

and the support of the probability measure N(t, x;*) is orthogonal to T.u(t;-) for
u-almost every (t, x). In particular,

[[fvY(,x):(I—n®@ndm=—[[Y(,x) H(t x)du
for all Y € C2((0, o0) x #? — R°).

The estimate of Hausdorff measure is proved in Proposition 7.2. The existence
and the square-integrability of H, the integrability of & with respect to y, and the
orthogonality of N are all proved in §8. The final assertion of the theorem follows
from the orthogonality of N and the defining property of H.

The next result states that the limit of (6%, ¢°) weakly satisfies (1.5), (1.6).
However the lack of regularity of the limit functions necessitates the use of
measures y and m.

Let 6, @, u, i, N, and v be as in Theorem 2.1. Recall that Q = (0, o0) x Z%
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Theorem 2.3 (Limit Equations). For any ¢y € CX(Q — %) and Y € C2(Q — %#7),

T§ =@+ A0 dxde = {§ foy dm (2.10)
= [ [ yh(e)dx dt, 2.11)

(51Y 00+ v)ydm= —[[fVY:(I —n®n)dm
=({Y-Hdy, 2.12)

[§§Y-ndm={[Y-V(h(e))dxdr.

For any 0 <s =<t and ¢ € C2(Q — [0, «0)), the following Brakke-type inequality
holds:

AD)) — AP = [ [ (—v*¢ —vn- V) dm

t
+ [ [GO*°Ap — | VO|*p)dx dt. (2.13)
This theorem is proved in §8.

The system (2.10)—(2.13) constitutes a weak formulation of the Mullins-Sekerka
equations (1.5) and (1.6). Indeed, set

V(t,x) = [v(t,x, )N(t, x; dn), V(t,x) = | no(t, x, )N, x; dn),
Q@) = {x:0lt,x)= —1}.
Then (2.11) yields
0, — A0 + (h(9)), =0 in 2'(Q).

Since (h(@)): = — (3)(xo), by (2.10) and (2.11), V is formally equal to % times the
normal velocity of the interface 9Q. Suppose that N(t, x;-) is a Dirac measure
located at n(t, x) € S~ . Then the orthogonality of N to the tangent plane implies
that n(z, x) is orthogonal to 6@, and (2.12) is equivalent to

V=Vn=H-—60n ondQ.

The equation (2.12) is therefore a weak formulation of (1.6) provided that V is the
normal velocity of u(t;-). Indeed, the inequality (2.13) provides a weak formulation
of this statement; compare (2.13) to (2.4).

Remarks on regularity and uniqueness

1. Suppose that I'(f) is smooth. Then does the weak formulation proved in
Theorem 2.3 imply that I'(f) and 6 satisfy the Mullins-Sekerka problem classically?
Alternatively, suppose that there is a smooth solution of the Mullins-Sekerka
problem in (0, T) x Z%. Then does this classical solution agree with the limit
functions constructed in this paper?
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2. An attendant modification of [23,§9] together with the results of this
paper imply that for any compactly supported smooth function ¢(x) and for
t>0,if

1

d = limsup p— Jd)(x)(ﬁ(s; dx) — fi(t; dx)) > — o0,
st -

then pu(t,-) restricted to {¢ >0} is (d — 1)-rectifiable with a generalized mean-

curvature vector H(t,-). Moreover,

d < — [[ @) H(t, x) + 0, x)n|? u(t; dx)N(t, x; dn)
—[ PIVO(t, x)|> dx + 3 [ Ap(x)0*(t, x) dx
—{{ Dop(x)-[H(t, x) + nf(t, x)] u(t; dX)N(t, x; dn).

It seems that this inequality together with some of the formulae proved in Theorem
2.3 provide a Brakke-type weak-formulation of the Mullins-Sekerka problem.
Further analysis of these equations may yield a generalization of a partial-regular-
ity result of BrakxE [5].

3. Simple examples indicate that N(z, x; dn) may not be a Dirac measure at some
points (¢, x). This corresponds to interface “piling-up” at such points. An interesting
question is to estimate the dimension of these points at which N(t, x; dn) is not
a Dirac measure. Since the heat equation (1.5) does not have any external forcing
term, we expect this set to be of lower dimension.

4. A related question is whether the equation

Lo(t, x,n) + B(t, x)]n = H(t, x) (2.14)

holds for dm almost every (z, x, n). The equation (2.12) implies (2.14) only after
integration with respect to N(t, x; dn). Radially symmetric examples indicate that
(2.14) may be true.

Suppose that (2.14) holds. Then, formally, if 8(¢, x) %= 0 and N(t, x,*) is not
a Dirac measure, then v(t, x, n) is different for each n in the support of N(t, x;-).
Therefore formally N(s, x,") would become a Dirac measure for s >t and s
near t.

3. Elementary Estimates

In this section we obtain several elementary estimates by using the heat kernel

g2
T

G(t,¢) = (drt)~ %2 exp( -

), (t, &) (0, co)x #°.

Since &' = g, the heat equation (HE) and integration by parts yield

0°(t, x) = A*(t, x) + B¥(, x), (3.1)
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where
A*(t, x) = (G(t,-) = [0 + H(0,") — H*(t,")])(x),

B (t, x) = g(GI(T,')*(H‘(t,‘) — H(t — 7,")))(x) dr,

He(t, x) = h((ps(ta x))5

and * denotes convolution in the x-variable.

All the constants in this and later sections depend on T but we generally

suppress this dependence in our notation.

Constants independent of ¢ are denoted by K; this constant may change from

one line to the next.

Lemma 3.1. There is a constant K such that
el Vo'llo,r = K,
10% o, 7 = K[1 + |Inel].
Proof.
1. Fix T > 0 and set
mi(T)=¢[ Vo'llo,r, n(T)=[6°|,1,

1 1
fi=— po W' (o®) + EQ(CPE)HS-

Then
1l = [2+8n (T)]
and the order-parameter equation (OPE) may be rewritten as

@ —Agp*=f*.
2. Fix (t, x) € [0, T] x #°. Then for any ¢ € (0, t], (OPE) yields

Vo' (t, x) = (VG(o,") * ¢°(t — 0,-))(x) + } (VG(z, ) #f*(t — 7" ))x) de.
0

Observe that for any 7 > 0,

NS )Ih—()

Therefore

’

g 2K (2 8T
JEVG( )« 4= )10 <@

[(VG(o,")* 9*(t — 0, ))X)| =

S

(3.2)
(3.3)
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Also, if ¢ =1, then
(VG(o, )% ¢°(t — 0, ))(x)] = [(G(t," ) * Voo (X)| = || Voo -
3. Now use the foregoing inequalities with ¢ = ¢ A t; the result is
K
— 1[5 + 2en*(T)] if ¢ > g2,
[Voi(t, x)| <
= Lell Voillw + 22 +en®(T))] if t < &2,
By (A3), ¢|| Vi | » < K; we therefore conclude that
m*(T) < K[1 + en®(T)]. (3.4)
4. Let A% B® be as in (3.1). Then
| A%t ) = 1661 + 2.
For 6 (0, ],

t

J. [Gr(T")* (Hs(ta') - He(t - T,'))](X) dr

ag

Observe that

t
<2{11G(e, "), dr.

—dj2 d )
165 =P J (5 + |y|2>e—w dy <K.

2
t
§K1n<—>.
o

Since AG = G, and VH = gV, integrating by parts we obtain

R d
Hence

t

JLGr, )= (H(t,) — HYt — 7, ))1(x)dr

L2

E [G.(c, ) # (HH(t, ) — H¥(t — . )] (9)da

i | VG(r,x — y)-[VH(t, y) — VH(t — 7, y)]dydr
0z?

= (f) IVG( )11 Vo't — 1,) | + [ Vo' (t,) | ) dT

m(T)./o.

5. Estimates obtained in Step 4 and (3.1) yield

=

o | =

10°(6, )] < 1108 + 2 +Kln< ) +%;msm_

t
4
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Choose ¢ = ¢? A t; then
W(T)<L|604lo+2+KInT + K|lng| + Km*(T), (3.5

and hence (3.4) and (A6) yield

n(T) < Ko(1 + [Ingf + en®(T')).
Hence (3.2) and (3.3) hold for all ¢ > 0 satisfying

2Koe £1 < 6 =< = (3Ko).
For 1 =2 ¢ =&, (3.2) and (3.3) can be proved easily. []
Remark 3.1. The family 6° is not necessarily uniformly bounded in & Indeed
consider the Mullins-Sekerka problem with radial symmetry and one interface. If
the radius R, of the initial interface is sufficiently small and the initial temperature
8, is sufficiently large, then the radius R(t) of the interface becomes zero in a finite
time T. Since the phase-ficld equations with radial symmetry are known to

approximate the Mullins-Sekerka problem [30], this example, which is discussed in
the Appendix, shows that 6% is not uniformly bounded in e.

Next we use the techniques developed in this section to obtain uniform bounds
for ¢2|D?¢?| and &| V67|
Lemma 3.2.

sup {&’[1D%0°|w, 1 + [ @il o, 7] + ]| VO [0, 7} < 0. (3.6)

O<e=x1

Proof.
1. Differentiate the (OPE) to obtain

@5 — A, = Fj,

& 1 " t4 € 1 / t4 £ & 1 & &
Fi=—5W"@°)o5, + - g (¢°)5,0° + — g(¢°) 05,
& & &

Using (3.2) and (3.3) we conclude that
£ 1 1 &
[Fillo,r =K e ‘|‘g I V0| o, 7

for some constant K. Set
m(T) = e[ D?¢*|lo,r, A(T)=2| VE|,1-
Then we use (A4) and (3.2) as in Step 2 of the proof of Lemma 3.1; the result is
w(T) < K[1 + ea*(T)]; 37
hence (3.3), (3.7), and (OPE) yield
e i o, r S K[1 + &n*(T)]. (3.8)
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2. Let A® and B® be as in (3.1). Then,
VA (t, x) = (G(t,")* V(b + H*(0,") — H(1,"))) (%),

VB:(t, x) = ; (VG(x,") = [H(t,") — H*(t — 7, )])(x) dr.
4]
Fix (t, x) € [0, T] x #°. In view of (A6) and (3.2),
K
| VA (£, x)| S [ VOl oo + 21 VO |l oo, x =

Also for o € (0,1t A 1],

JIG(r, )= (H*(t,") — H'(t — 7,7))1(x)dx

t t 1 1
< 2] | VG.(5, )1 dv < [ Ko ¥2de §K<— .__>.

NN

3. Integrating by parts in the z-variable, we obtain

[ [G.(t, )= (HH(t,) — H(t — 1,)])(x) de
0

S| VG(o, )+ (H (1,") — H(t — 0,7 ) ])(x)| +

E(VG@ Va(HEE ~ 7)) () de

é% 1H*(t, ) — H(t — 0,7 ) |l + z IVG@, )i I Hfl o, v dr.

< K0 [ Hf | w,r S K019l -
4. Combine Steps 2 and 3, and choose ¢ = & A ¢; then
| VO, )| < £(1 + 2] 9 o, 7).
As in the last step of the previous lemma, this estimate together with (3.7) and (3.8)
imply (3.6) for sufficiently small ¢ < g,. But for ¢ = g, (3.6) holds trivially. [

Assumption (A7) and the arguments of Lemma 3.2 yield
sup {&’|D°¢°ll, 7 + & | D?0° | oo, 17 + & |6 ||, 7} < 0. (39

O0<ex1
Lemma 3.3. For 1 Ep<owand T 20,

sup 16°(t, ") L2 @ty < 0. (3.10)

O0<egg1,tT

Proof.
1. Recall that, by (2.5),

| Ho(ty,") — H¥(to, )[4 £ CT/t1 — to.
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Since |[H*| < 1,

1HE(t1,7) — H*(to, )l < 2°CY /11 — to.

2. Let A® and B*® be as in (3.1). Then, by (2.7) and the previous step,
1A%), S 11061, + 1 H @) — HY(0,-) ], = K(1 + ¢1/%%).
3. By Step 1,

I1B%]l, = g 1Ge(z,-)* (H*(t,") — HH(t — =, ) [ pdr

< [1Gm) L IH ) — Ho(t ~ v,0) |, dv

IIA

t
Kjz i+t gr. O
)

We close this section by proving the strong convergence of the sequence 6°
Proposition 3.4. For every t > 0, 0%(t,) converges to 0(t,") strongly in L2, (%%). In
particular,

pee - )—plt ) Vi 20,

in the weak® topology of Radon measures.

Proof. . -
1. Let 0° = 6° — 0° with 8° the unique solution of

07 —AG* =0 in (0, o) x #*
with initial data 8°(0, x) = 85(x). Then (A8) implies that 0%(z,-) converges to
0(1,") = G(t,-)* 8,
strongly in L*(%%).
2. By integration by parts, 0° = %' + 02, where
0>1(t,-) = G(t, )« [H*(0,") — H*(t,")],

0%2(t,:) ziGr(r,')*[Hs(t,‘) — H:(t —t,)] dr,
0

and H(t, x) = h(¢(t, x)). Clearly (2.6) implies that for every t =0, 6%(t,-) con-
verges to

0'(t,)) = G(t,-)» [H(0,") — H(t,")]
strongly in L (29).
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3. For t,0 >0, set 6 = min{o, t}. Then

t
{ Gz, )« [H(t,") — H*(t — 7,")] dt
]

converges to

}Gt(t,-)*[H(t,~)~—H(t —1,7)] dt

strongly in LE.(%#9). And by (2.5),
J

[(Gu(z,")*[H*(t,") — H*(t — ,")] dr
0

2

S IG() I HA @) — HoE — 7,0 ) |2 dr,

QO ey

ll/\

K[ZIHt ) = H(t —7,7)|{? dr
0

< K(6)* < Kg'/*.

A similar argument shows that

< Ke'*,
2

}Gr(‘c,-)*[H(t,-)—H(t—'c,')] drt
0

Therefore, for all o,¢, R > 0,
limsup [|6°(t,) — 0(t,) | 128,y < Ka'/*,

g0
where -
0@, x) =0(t, x) + G(t,- )= [H(0,") — H(t,")])(x)

+j"G yx[H{E, )~ H({t —1,-)]dt. O
An elementary argument, very similar to the proof of Proposition 3.4, shows

that the map
L= 105, ) )12

is uniformly Holder continuous in ¢ e (0, 1], with exponent 4. This fact will not be
used in our analysis.

4. A Gradient Estimate

The main result of this section is

Theorem 4.1. For T > 0, there exists a constant K* = K*(T) satisfying

V28t X)) < 1+ JeK*(1 + |25, %)), (4.1)
Jorall (t,x) [0, T]x %% and 0 < < 1.
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This estimate is an essential ingredient of the monotonicity result that is proved
in §5. In particular, (4.1) implies that the weak™* limit of the discrepancy measure £°
introduced earlier (cf. (1.7), (2.1)) is nonpositive, Later we show that this limit is zero
(see Proposition 7.3.).

The proof of this estimate, which is tangential to the main thrust of this paper,
will be completed in several steps. Before I start the lengthy analysis, 1 briefly
explain the main idea. Set |

we = | Vz*|2.
In view of the equation (ZE),
WE 4+ Lo + RE(, x, w*) — 2V V2 <0, (4.2)
where for y € C*(%%),
4p(t, x
P09 = — Ay + 220D prte - vy ),

Ratsa ==q
X =5q{—

4 (Za(t’ x)>r(r -1, r=0.

In [29, §8], I obtained pointwise estimates for a differential inequality obtained by
setting the last term involving V@ in (4.2) to zero. Here we start by using the
technique developed in [29]. Using (3.6), we first obtain the crude estimate that

K
[2V0% Va*| £ 2] VO" oo, rw = — W*

for w® = 1. Then the proof of Proposition 8.1 in [29] yields that w® is uniformly
bounded in e.

Our next step is to obtain a uniform bound for £|z;| (see (4.8)). Using these
estimates, we shall obtain a bound for | V8|, which is slightly better than (3.6).
Finally, we shall use this new estimate of | V#?| in (4.2) together with an argument
similar to the ones used in [29] to obtain (4.1).

Remark 4.1. In the phase-field equations if, in contrast to the choice we actually
made, we take

g=2W=(q),
then w satisfies

2
w; + Liw® + Rt x, w®) — 2q'VO*- Vz* — " q"Fwt L0,

and the proof of the estimate (4.1) simplifies greatly. Indeed an attendant modifica-
tion of the proof of Proposition 4.1 below yields this estimate.

As in §3, we fix T > 0 and denote by K all constants depending only on T.
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Proposition 4.2. There is a K = K(T') satisfying
|V, 0> < K(1+ |25 %)), (6 x) € [0, T]x 27 (4.3)
Proof.
1. Fix T > 0 and set
Ko=2 sup & V0w.r,

O<e=<1
Py =L — 2|Vt )|y

Then R
wy + Fw + R, x, w') = 0. 4.4)

In the next several steps we construct a “supersolution” to (4.4).

2. Let zo > 0 be the point that satisfies

¢ <@> = ¢!t =20 = 2(g) ).

3
Then z, behaves like ¢|ln¢| as & tends to zero. Indeed,

Zg

li =—,
EI.E% gllng] 8

Now define )
() = {%Cerz +1, Ir| < zo,
(Ko + D)[Ir] = 2ol + hel20),  Ir| > 2o,
where '
c.— Ky +1 ’
Zo

so that h, is continuously differentiable with Lipschitz derivatives. Finally we set
W =1+ h(z°).
3. By (ZE) and a direct calculation, we obtain
I=W,+ W + R(t, x, W)
=

K 4
2 h()z — A+ o'W — B =2 W+ q/(g)ha(ze)w

ZS

2 4 K
2@ HE) W+ ) + 4 ( 8 ) hEW = =2 W — )" + ()"

Observe that h, > 1, |h,| £ Kq + 1 and

| lw = C., limeC, = 0. (4.5)

£=0
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Hence
2 4 K
12;¢MW+n+;¢W—;%V—qw—mvumwmm

4. Suppose that
|25z, %) = zo.

(The opposite case will be discussed in the next step). Then

q/ <i> g q, <59> B 81/4.
& €

Since ¢°h, = 0, W = 1, by (3.3), we obtain

4

82

K
I=—qgW —?0 W —Cw* — (Ko + )]0, 7

4 K
g&__cﬂw_cmu4&+nKuﬂmm
g CS(W - WE)

for sufficiently small ¢ > 0.
5. Suppose that |z%(t, x)| = z,. Then

he(12°(8, x)1) = Ko + 1,

o0 =N ) 2 () 2]

for sufficiently small ¢ > 0. Therefore
@°(t, X)h(z°(t, X)) = |@°(t, X)| b (12°(, %)]) = 3 [Ko + 1].

Since ¢’ = 0,

20° K
zgfwww+nmfw—qw4m+mwmj

Ko+ 1 K L
2( ot _Cs)ws_?oW+(K0+1)|:g—|198||00,T:|,

- &

and (3.3) and (4.5) imply that I = 0 on {w* = W }.
6. In Steps 3, 4 and 5, we proved that for every T > 0 there is an g = o(T) > 0
that satisfies

W, + W + R(t, x, W) = C,(W — w?)
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on (0, T)x 2% {w* = W} for all 0 < & < ¢o(T). Also in Step 1, we showed that
w4+ 2wt + R¥(t, x, w?) <0 in (0, T)x #“.

Since W = 1 = w*(0, x), by the maximum principle we conclude that W = w*® on
(0, T) x #“. See the proof of Proposition 4.2 in [29, §8] for an application of the
maximum principle in a very similar situation.

7. Since

h(z) < (Ko + )]z| + 1,
we conclude that

wEW=1+h((2)<14+ Ko+ 1)(z°| +1).

Our next step is a crude estimate of |zf|. We obtain a better estimate in
Lemma 4.4.

Lemma 4.3. For 0 <g <1,

K
g2’

|25t x)| < (t,x) € [0, T x #°. (4.6)

Proof.
1. For a > 0, set

> }
) s )

Hence, on the complement of £,

By (3.6),

K

5

2. Set v = z{. Differentiate (ZE) to obtain

£ £

2
Ve Vo + 5 g <%>(| Vzi)? — 1)o = 67, 4.7)

y=5(1412)
> g

4
v, — Av + i
g

3. For K; >0, let
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We show that for appropriately chosen K; and g, the function V is a supersolution
of (4.7) in Q. Indeed in Q,

48
[=V,—AV + z’

2 z® 5
VZE'VV—i—S—Zq' - (V21" — )V

K 3 4 € &
> A e | 2 g (T
g%\ z°| & g €

z@&éwul+wwn SWWmT—2wpqu+U}
K !
%—3{211(00—8”08““ ZSupq(r)(r—i-l)}.

Since ¢'(r) is exponentially small for large values of r, (3.3) and (3.9) imply that there
are constants K; and o such that

Iz 0|l r inQ

for all sufficiently small &. By redefining K, if necessary, we may assume that

K
infvr="2(1+a2 = sup |z¢].
Fle) & Q¢

K
eq'(2)
4. We proved that there is an g5 > 0 such that for, 0 < ¢ = ¢y, V is a supersolution

of (4.7) in Q. Moreover V = v on 9Q. Therefore, by the maximum principle,

Vv inQ,e=s.

v =z <_v8— 1+
3

for all 0 <e <¢y. For ¢o £ ¢ < 1 this last estimate is easier to prove. These
arguments also yield the same bound for —z/.

5. Set

Hence, by Step {,

~

~ K
Q={zf|=1}, V= —2(1+t)
Then on [0, T]x #°NQ,

—AV +

4¢* 2 o
Z’ vz VP + 2q< )(IVZ]Z N4

K K1+T 1
25 -5 ()2 1eth

g gt

for sufficiently small ¢. Also, by Step 4, V= |v| on 6Q. Hence (4.6) follows from the
maximum principle. []
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Next we improve (4.6).

Lemma 4.4.

|Zi(t, )| + |D*2°(t, x)| <

o | X

Proof. Fix T > 0. All the constants in this proof depend in T. Set

At
k£=sup{w'(t,x)e[0, T x %, i,j=1,...,d}.

1+ 1285, x)|

1. In view of (4.3), for any t < T and x, y € %%,
(128t ) + 1) = 5711258, %)| + 1).
Also (4.6) implies that there is a K* such that for all t € [0, ¢],

*

(12— 7 9) + 1>§<1 v

T)(Izﬁ(t, W+ 1)

K* "
< <l + 8—;) XTI 25e, x)| 4+ 1).

2. Fix (tg, xo) € [0, T] x #°. For any h e (0, t, A 1], (ZE) yields

Z;ixj(to, Xo) =a+ b +c,
where
a= (Gxi(hn : ) * Z;j(to - ha : )(xo),

b= j.(Gxi(T:.)* H;J(to -1 '))(Xo)d’f,
¢ = [(Gu(t, ) Fito — 7, ))(x0) d1,
0
Fe— 2(‘:’8(1 —vz).

3. f h =t,, by (A4), we obtain
K
lal £ | G(h ) 11 D?23 || o s

When h < t,, (4.3) and (4.9) imply that
lal = | KIVG(h, xo — YILL + |2%(to — h, y)| 1> dy
g?d

82

K*h\1/2
g—( + 82> (1 4 |2%(to, x0)|)"/*.

K
K
N

(1 + 128, x)]), (x)e [0, T]x %

K*h\'/2 L
< (1 + ) [ +12°(to, x0)|1'? | e2¥" ™| VG(h, w)| dw
'@d
1

163

(4.8)

(4.9)
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4. By (3.6),

UERNA

5. Diflerentiate F*® to obtain
2 £ 4 &
VF == g (Z—> Vai(l — | Vo) — ~2 D2 e,
& 3 &
The definition of k%, (4.3) and (4.9) yield

K
[Fylto — oI = 3 |:SUP g+ e’ + (1 + |25 — 7, Y ka}

K K*7)2 3
= po [1 + k£<l + e;) (1 4 |2%(to, xo)|)** exp <§ K*|xq —

Therefore

h K*h\3/2
|c|§c*8£2[1+k8<1+ S ) (1+|z‘(t0,x0)|)3/2]

for some C*, and without loss of generality we may assume that C* = 1.
6. Choose

h = min{t,, e2[4(1 + K*)*(1 + [2(t0, X0) N(C*)* 1™}
Since h < €%, (1 + K*h/e*) £ (1 + K*) and therefore

*

1 C
el =5 (1 + 12°(to, ) DK* + —,
3 g

and, by Step 3,
K 2
lal=—1+ K*PC*(1 + [2%(to, Xo)1)-
Therefore
1
125, (F0, Xo)l = — (1 + |2%(to, xo0)|)[K + 3 k71
The inequality (4.8) follows from this estimate and (ZE). [
We continue by improving the estimate for { V6°|.

Lemma 4.5. For every (t, x) € [0, T]x %,
K
| VOr(t, x)| =
Jele + (201 A 1]

for some constant K = K(T).

o)

(4.10)
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Proof. Fix (ty, xo) € [0, T] x #* and set

_ [z%(to, Xo)| A 1
P>

&

If p* £ 1, (4.10) at (ty, xo) follows from (3.6); so we may assume that p® = 1.
1. Fore A >0, set

0., = [to — &Ap%, to + 2Ap"1x B, B = {|x — xo| < eAp°}.
We assert that there exists 2 = A(T) > 0 satisfying
&
|Z£(t> x)| gips V(ta x)eoa,l-

Use (4.3) and (4.8) to construct a constant K = K(T') such that

t—s
1255, ) + 1 = (12 %)) + 1)epr('T' lx— y|>

for all s,t £ T. Now suppose that
z%(to + %1, Xo + &) = 3ep®  for some (7, y) e #°7 .

We use the previous estimate with (s, y) = (to, Xo) and (¢, x) = (to + &1, xo + &y) to
obtain

1+ep® <14 |2°(tg, X0)| < <1 +%ps>e5K(lf+M).

Since gp® < 1,

p°.

| ™

g 4
1 — t4
t3

1 t4
eK(l] +|y) = In| —P | > 1n(1 +fp8> >

Hence, for 4 = 1/8K,

lzs(ta X)l g %Bpe V(t, X) € 0£,A~
2. Set
o = min{t,, e2Ap°}.
By integrating by parts and by (3.1), we obtain
VO(to, Xo) =a +b +c
where
a=(VG(to, )+ [06 + H(0, ) — H*(to,")])(x0),
g

b= [(VG.(z,")*[H(to,") — H*(to — 7,-)])(x0) dt,

[

¢ = [ (VG.(r, )% [H¥(to, ) — H¥(to —1,")])(xo)d.
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3. Since ep® £ 1, (A6) yields

[(VG(to, ") * 05)(x0)| = [(G(to,") * VO5)(xo0)| =

Also, when to > g24p®,

[(VG(to," )+ [H*(0,) — H*(to," ) D) (x0)| = —= =

However, if o < £21p%, then
{O} x Bt = Os,l
so that by (3.2) and Step 1,

| VH®(0, y)| = 19(#*(0, y)) Vo°(0, y)| < % d <Z_(%l))

&

K
<—9q (p_) Yye B
3 2

Hence,

[(VG(zo," )+ H*(0,)) (x0)]

I

[(G(to, ") * VH?(0,))(x0)]

2\ K . K
JG(to, Xo — V)G (%); dy + f G(to, xo — y); dy

B* #1—p*

K ’ p8 |w| = eAp®}
§?‘[q (E) +IG(1, W)X{ﬂo P dw

UGG

Since to < ¢2Ap®and p* = 1,

lIA

K
& p"'

I(VG(to, ) H*(0,"))xo)| =

Indeed, we can estimate this quantity by a function decaying faster than the square
root, but this sharper estimate does not improve the final estimate.
Next, we estimate |(VG(to,)* H*(to," })(xo)| exactly the same way to obtain

K

la] = .
e /Pt

4. Since || VG.(z,")|l; < Kt~ 372,

ib|§K<\%—i>§ £
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5. By integration by parts in the variable ¢,

el < | T (V6 (@, * glot(to — 1)) i(Eo — 1)) ko) de
[¢]

+1(VG(a,")* [H?(to,") — H'(to — 0,")])(x0))!-

Since ¢ < g2Ap®,
[to — 0, to] x B* < O, ;.

Therefore, for any y € B%, 1 € [0, o], (3.6) yields
& b & £ ! p8 K ’ pE
lg°(@°(to — 7, M) @ilto — 7, W) = l@ilq <7> =549 <—~>

As in Step 3,

j (VG(5, ) g(@*(to — 7)) @ilt0 — ) (x0) e
0

[

K £ K
g”WG(r,xo—y)l;q’(%)de | 1v6ex =1
0 B®

0 #*-B°
K Z Ap®
<5 [o(5) ol E)
€ 2 40

} K

< .
e/ Pt

Also, if ¢ = £2Ap°,

(VG(a, ) * [H*(to, ) — H(to — 0,")])(x0)| £ K[| VG(o,") 1 =

If ¢ = ty, then by step 3,
(VG(a, ) * [H*(to,") — H*(to — 0.") 1) (Xo)

= [(G(to, ) *[VH*(to,") — VH*(0,")])(x0)| =

K
s\/z?
6. Finally, we combine Steps 3, 4 and 5 to conclude that

K
& pa'

| VO:(to, x0)| < a

We are now in a position to prove Theorem 4.1.

Proof of Theorem 4.1. This proof is very similar to the proof of Proposition
1. Let z, be as in Proposition 4.3, i.e.,

{20 1/4
— ="

167

4.2.
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Set
K, = (z0)7*".

Since ¢'(r) decays exponentially,

-
grgs—llzg—al:g, lim (e[ In ))** K., < . @.11)

2. For a real number r, set

1K+ 1, Ir| £ 2o,
£ =1 2[/r = /201 + filzo), Ir| €20, 11,
7l — 1+ £(1), =1

Observe that f, is continuously differentiable with Lipschitz continuous derivatives.
3. For K* > 1 define

W =1+ eK*f,(z").

In the next three steps, we show that for K* large enough, W is a “supersolution”
of (4.4).
Let &, R? and w® be as in Proposition 4.2. Then

I=W,+ PW + Rt,x, W)
4
= JeK*f, [Zf — Az + *;p— Ws} — JeK* v
4 [z .
+4 <z>\/§K*fsW — 2| V02, x)| W
.| 2¢° " 4 (=
> /eK*{ f1 R ) 0 W g (=)W - 2| VW
4. We split the estimate of I into the three cases:

@ |27l = zo, (b) [2°] €20, 1], (o) |2 21,

and start with case a. Since zo = &(g’)” }(e'/*),

& &

By (4.11),
’ & & K
VeI = Ve Koz < (e 2K, <
[ln g
for some constant K. Since f;¢® = 0,
K
Iz K*[ _\/ﬁ 10%o, 7 — /e Kow® + 43‘5/4W] = 2| V0|l W.
ne

1
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Using (3.3), (3.6), (4.11), and the fact that W = 1, we construct g, = &o(T) > 0 such
that

12 /eK¥K (W —w), e<ept<T

for any K* = 1.
5. Suppose that |z%| = 1. Then for sufficiently small &,

0" =10¢°| 2 3.

Moreover, f, (z°) = 0 and, by (4.10),

K
| VO°(z, x)| < —-.
Je
Since ¢’ = 0,
K* 2K
1= (W + 1) — JeK* 6% .0 — —5 W.

N Nz

So if K* = 2K, (3.3) implies that I = 0 on {w* = W} for all sufficiently small e.
6. Finally we consider the case |z%| € [z, 1]. Then, for sufficiently small ¢ > 0,

1

2/1z°

’ 1 ! &
f@)o" =fl2* Dol 2 5 full2*) =
Moreover, by the construction of f;,

Vefliz) S 1, flE) 0= —flw 2 0.

Since ¢ =z, < 2% £ 1, by (4.10),

K
| Voi(t, x)| < ,
Nl
K* 2K
Iz W'+ 1) = K*|[ 0|, r ———=W

e¥z%| LA

Hence, there exists a constant g > 0 such that, on {w*= W}, I =0 for all
K* =z 2K and ¢ € (0, g9].

7. Steps 4, 5 and 6 yield

Iz \/EK*KE(W —w%) on{w'=W}

for K* > 2K and ¢e (0, &]. By (A3), W(0,x) =1 =|Vz§|® and therefore the
maximum principle implies that W = w® for ¢ < g, (see [29, §8] for the details of an
application of the maximum principle in a similar situation). Since by construction

L@ =l = L1 Sirl + 4,
this proves (4.1) for all ¢ < gy. For ¢ = ¢, (4.1) follows from (4.3). O

The following lemma will be useful in the next section.
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Lemma 4.6. Suppose that there is a bounded, open set O < (0, c0) x ¢ for which

B =liminf inf |(s,y)| > 0.

=0 (5,9)e0

Then for every (s, y) € O,
liminf ~ |z%(s’, y')| Z inf{|§ — y|:(s, §) € O}.

5" y) = (s,5)e >0

Proof.
1. Since O is compact, there is an gy > 0 satisfying

10*(s, )| 238 V(s, ) €0, &< g.

Since ¢° is continuous and h(¢®) is convergent in LL., either

() 23B V(s »)e0, e<e (4.12)
or
PSS -3 V(s,9)€0, & < go. (4.13)
2. Multiply (ZE) (of Section 2.1) by ¢ to get
C20%(| V22 — 1) = e(—2z8 + Az®) + e0". (4.14)

In view of (3.3),

lim & 6°] .7 = 0.

£—=0

Set

Z*(t, x) = limsup z%(s,y), z,(t.x)= liminf Zz°(s, y).
£=0,(s,y) > (t,x) e>0,(s,y) ~(t,x)

Then, as ¢ approaches zero, (4.14) yields
|Dzy| =120 in O if (4.12) holds, (4.15)
|Dz*| —1 <0 in O if (4.13) holds.

These inequalities are to be understood in the viscosity sense [147; the details of this
argument are given in [29, Lemma 4.1].

For (s, y) € O set
d(s, y) = inf{|y" — y|:(s, ¥') ¢ O} if (4.12) holds,
d(s,y) = — inf{|y — y|:(s, y') € O} if (4.13) holds.

Then d(s, y) satisfies (4.15) in the viscosity sense and the comparison theorems for
the eikonal equation [14] imply that

z.(S, y) 2 d(s, y) 1if (4.12) holds,
z¥(s,y) = d(s,y) if (4.13) holds. [



The Phase-Field Equations 171
5. Monetonicity Formula

In this section we obtain an extension of the monotonicity formula of CHEN
& Struwe [13], which originates from StrRUwE’s formula for parabolic flow of
harmonic maps [32], and a later result of ILMaNEN [23] for the Cahn-Allen
equation, which originates from Huisken’s formula for smooth mean-curvature
flows [22].

For x,xo € % 0 <t < ty, let

p(t7 X, th xO) = (4n(t0 - t))I/ZG(tO — T, X9 — x)
2
_ -2 _Eﬁlﬁi__
(4n(to — 1) eXP( pT7a—
Then

(x — xo)
P

[d=1 x—xP
P2 — ) 4t — 02|

2 | I (x — x0) ® (x — xo)
Dx"‘[ oD Ato—1 }”’

Vip =

where I is the identity matrix and & is the tensor product. For ¢ Z 0 and any Borel
set A = &9 let pé(t; A), (*(t; A) and &° be as in §2.2 and (1.7), and set

a’(t; to, Xo) = f p(t, x; to, Xo) A°(t; dx).
%d

Theorem 5.1. There is a constant C,, depending only on the dimension, such that
Ca

Sto—t

Proof. Fix (t,, xo). We suppress the dependence on (¢, x¢) in our notation.
1. By (OPE) and (HE),

dt 2o — (5.1)

d 1
— a*(t; to, Xo) < T [ p(t x5 to, x0)E°(t; dx) +
‘%d
d £ Ae & £ 1 ? £ & ENE
i (t)=jpt'u +Jp Vo' Vor + - W (@%) i + 6°6;
= thﬁs — Jsz' Vo o;
& £ 1 ’ & & € t4 (3
 [[o0t (= a0+ 5w+ a0~ o |

_ f pufit — jsz- Vo'l — f S0}V + f 6°A0% —
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. Vp- Vi)
= thu" + 8J[Vp' Vo'e; +(p—;’i—)—}

V- Vor\? 1
—gj<<pf+ ”p "’) p—JIVGSlzp—l—JApE(@E)Z.

Since

1 1
Ap= ——— HE = ¢ _682
p:+Ap 2(t0_t)p, a u+2( )%

it follows that

d V- Vo©\?
—fx"(t)=—8j<¢f+ pp q)) p

dt

1 Vp- Vo©)?
+ Hpt/f + Vp- Vo <8A</f — W’(qos)) + s(p—(p)—]

p

2 1 & . £ EAYal
= [o| 17+ g0 |+ [ vt

2. Let v=1v®be as in §2.3, ie.,

for | Vp®| # 0. Set

T=3<v®v—%1)|V<p‘|2—%W(go£)I.
Then
T=cVo'® Vo' — GI Vo*|* +% W((ﬂ‘)) I
5 2, <p;.<sA<pﬁ - W'(qf))
=1 Ox; / £
Since &° + pf = ¢| Vo®|* dx,
Tdx=vQvWe — (I —v® v)u-.

Let k be the second term appearing in the expression at the end of Step 1:
1 Vo Vo)
k= f[p,;f + Vp- Vp? <3Aq)“ 3 W’((p8)> + s%} .

Integration by parts and the identity & + u® = ¢| Vo°|? dx yield

(Vp- vy

k= Jpzu” —D?p:Tdx + (&" + 1)

=J[pt +D%p:(I —v®v) +@:’MS+ ”:@—sz:v(@v] £,
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where M : N = trace M N, for symmetric matrices M, N. Explicit formulae for the
derivatives of p imply that, for any unit vector v,

Vp-v)?
p,+D2p:(I-v®v)+( ppv) =0,
Vo>, p
D2 = .
A T

Hence

p
= é(t; dx).
|55t e
3. Recall that H® = h{¢p?) and VH® = Vp®g(¢°). By an integration by parts,

[ Vo Vo'g(¢®)0° = — [[ApH*0° + H*Vp- VB°].
In view of Steps 1 and 2,

d

1
Ed(t)émjvpé (t,dX)+I+J,

where
I= —_“:pl VO:|?2 + HEVp- VO?],

4. Since |¢*] < 1, |H?| <% < 1. Hence

Vp|?

Vi 2
I=—jp‘V9£+HS + J| p| |Ha|2
2p 4) p

IX—XO|2

= Jmp(t X; to, Xo) dx

/\

[@emepypentay,

1
N
Qd

5. To estimate J, we observe that

IApH80£|S|: d—1 |X—-—x0!2

2(t0 ~ 1) 4(to—t)2}|H8H95|P

| H*|| 6.
Since

‘ e =X e e X e
MHHM<[d L+%t~0] 0" + [d LS )yHl,

p Xol?

_ [x
_2(t0—t)|: R TPy 2(t0
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we have
. 0°)p
[ApH™0®| < e )+C(t x)p,
where
1 |xo—x|2 2
C(t,x)= -1 4+——1.
(%) 4(to—t)|:d e~
Hence

J <[ C(t, x)pdx
1 2
=——— [ (@ @2 d -1 +2]yP)e " dy.
2 tQ —t a¢
6. Combining the previous steps, we obtain (5.1) with

— 3@ [ [P + @=L+ 2yPPle™2dy. O
@d

Remark 5.1. Suppose that in the heat equation (1.1), 4 = ce with some constant
¢ > 0. Then (HE) in §2.1 takes the form

07 — cAO" + g(0) i = 0.

This change does not affect the results of the preceeding sections. However, for
¢ =+ 1, the monotonicity formula (5.1) has to be modified: For any § > 0, there is
a constant Cy 4 such that

L —— | pdE+ — 5
@’ =200 -1 fp SN PO AT
Since the new error term E(t) = (to — t)” /2 7# is integrable over (0, t,), the main
results of this paper and their proof remain unchanged.

The proof of the modified monotonicity result is very similar to that of (5.1).
Indeed, in Step 1 we now have an additional error term

L-c fp,(ey ix.

For any p > 1, Holder’s inequality and (3.10) yield
11—¢|
c

L=

IL| = ollg 1B:(2, )V M1, < Kop,elto — 8127422,
For a given § > 0, choose p =d/2p. O
The monotonicity formula and the gradient estimate (4.1) yield

Corollary 5.2. For any T > 0, there exists a constant K = K(T') such that, for any

Xo€ R and 0 St Zr <ty £ T,
K./ _ \KJe
> 4K J <t° T) (52
—F tO—T

e®(r; to, Xo) = a°(t; to, Xo) <
to
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Moreover, as ¢ tends to zero,

afr; to, Xo) < a(t; to; Xo) + Cal\/to — 1t —/to —T]. (5.3)

1 & 2
£ (6 dx) = o (q' (%)) (v = 1),
(4.1) and (5.1) yield

1 1 z N oF
2(to—r>Jp%<q (’E» Kl +121) + 7=
Observe that

€ 2 € 2
i (q’ (—)) dx <~ (q’ (—)) [1+ | V2P dx = (s dx),
2¢ 2 2e s
Za 2 2
(¢(%)) 1= = (supator) =4
& rz0
Hence

L oo e sfoin o

and consequently

Proof. Since

d
— ¢ <
dtoc (t)_.

K./e Ca
Z i) < € d
ta(t)s(to_t)Jp(u o+t

Ky . Ko

@ —t) (t)+ dex+ pap—
K e K
o O —

Now an application of Gronwall’s inequality yields (5.2). O

IIA

II/\

6. Clearing-Out

In this section we follow the proof of [29, Theorem 5.1] to prove an extension of
the clearing-out lemma established in [23, 29].

Theorem 6.1. For every T > 0, there are positive constants 1, t* > 0, depending on
T, such that if

§ (2, x5 to, xo)pult; dx) < 1 (6.1)
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Jor some t, ty, xo satisfying
(to—t*)st<ty=T, (6.2)
then there exists a neighborhood O of (ty, Xo) such that

im  |2%(s,y)| >0, ¥s,y)eO. (6.3)

(s',y) = (s,¥)e—~0

In particular,

(to, x0) € | {t} xsptut,-). (6.4)

t=0

Proof. Fixt, tq, xo. Suppose that (6.1), (6.2) hold with some #, t* that will be chosen
later.
1. Holder’s inequality yields

§ Pt x5 to, x0)(O%(t, X)) dx < || p(t,5 to, Xo) | 1(60°(2,))* 115
= (dnlto — )2 11G(to — ) 1 10°(2,))* I

. . 1 1 .
for any 1 < p < oo, where p’ is the conjugate of p: — + 17 = 1. Since
p

” G(T’ : ) ”pl ht K(p),c—d/Zp,

we have
[ 2, x; to, x0)(6°(t, x))* dx < R(p)(to — )" ~4P||(6°(t,"))* |-

Choose p = d + 1 and use (3.10) to obtain
[ p(t, % to, xo)(O°(t, X))’ dx < K*(to — 1), 0<e=1,

for some constants K* and y > 0.

2. The continuity of p, the convergence of u® to p and (2.2) imply that there are
a constant g, > 0 and a neighborhood U of (g, xo) such that for all ¢ < ¢, and
(s, veU,

t+82<tzt0<s, (6.5)

o, x; s, y)ui(t; dx) < 2.

Step 1 yields
oa*(; 5, ¥) = [ p(t, x5, ) [ (5; dx) + 3 (0°(t, x))* dx]

§2}’]+%K*(S——t)y, (S,J/)EUa 8§80-

Note that &, may depend on #, t and U.
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3. Since s — &% > t, we may use (5.2) with (o, Xo) = (5, ) and r = s — &2 to obtain

S"SZ

KV —T\KVE
af(s—g%s,y)§<sg—zt> #(i5,9) + K f (SSZT) -

AN/S—T
s—&

AN V2
<S—2t> a’(t; s, y) + K J dr dr

é s—1

t

HA

t

L \KVe
= <S 2 t>K [of(t; s, y) + 2K /s — t].

As ¢ approaches to zero, g 2KV converges to 1 and therefore, by (6.5), there is
a constant 0 < &, £ g, that satisfies

s — KV
=)

wi(s — &% s, Y) <dn+ K*(s —t) +4K. /s —t

IIA

2, & é §09 (Ss y) el.

Then, by Step 2,

for all (s, y) e U and ¢ < &,. Set
U=Un(ty— t* to + t*) x A,
so that, for any (s, y) € Uandt, t, satisfying (6.2), (s — t) < 2t*, and consequently
for an appropriately chosen t* = t*(i),
K*(5 —t) + 4K /s — =< K*¥(2*) + 4K /2t* £ 1.
Therefore
OC(S'—SZ, S,Y)ésﬂa (Sa y)EI?aSééO'

Recall that this estimate is obtained under the assumption that (6.1) holds with
t, to satisfying (6.2) with t* = t*(y) and that we have not chosen # yet.
4. Let B,(y) be the sphere centered at y with radius . For any x € B,(),

_ ul2
o(s — &2, % 5, ) = (dme2) =@~ D12 exp<_ |x482J’| )

> [(475)—(11— /2 p— 1/4] g@-1 - (K*Sd_ 1)_ 1
for some constant K,,. Therefore

-1
f5(s — €% B.(y) < [ min p(s — &%, x; s, y)] a’(s — €% s, )

xeB.(y)

L (6.6)
S5Kne'™t Vs, neU, e<é,.
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5. Define
g =liminf inf |¢*(s,y)|.

>0 (sys

In this step we show that for a carefully chosen #, we have f = Z.
Suppose that < 4. Then there are ¢, — 0 and (s,, y,) € U satisfying

| 0% (sn — &n, Yl <F = |2(sn — &2, ya)l < g™ ' (3)-

Using (4.1) we construct K, and ng, independent of #, such that
|2(s, — &7, X)| < &lg '(3) + Kol Vxe B, (yn), nZno,
and therefore
W (9™(sn — &1, %)) > W(a(a~'(8) + Ko)) Vx€ B, (y,), nzno.
Hence, for n = ng,
W= B2 | 2 WG, ik ) d
B, (¥) K
> w,Wiglg ' (3) + Ko))en)' ™,

where w, is the volume of the d-dimensional unit sphere. Now choose

(%) + Ko)),

= SK

(6.7)

where K, is the constant appearing in (6.6). With this choice of #, (6.7) contradicts

(6.6). Hence B = %.

In the foregoing discussion we have established the following: If (6.1) and (6.2)
hold for some t,t, with 5 as in (6.7) and t* as in Step 3, then there exists

a neighborhood U of (¢, xo) such that

B =liminf inf |¢%(s, y)| = %.

=0 (s,y)eU
Now, by Lemma 4.6, (6.3) holds on any open set O satisfying 0 < U and

liminf inf |z%(s, y)] > 0.
>0  (s,y)e0
Then (4.1) yields
pi(0) = [ [ 4: (¢ BN V2> + Ddxdt
, J

<[{H@EPC+K /el +1z7)dxdt,

o

and therefore p*(0) converges to zero as ¢ tends to zero, proving (6.4). [
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7. Dimension of I and Equipartition of Energy

Let A(f) = #° be the support of u(t;') and I' <= Q be the support of
du = p(t; dx)dt. Then

rc | {t} xA@).
t=0
Suppose that (fo, xo) ¢ I'. Then there is a neighborhood U of (to, xo) such that
UnT = §. Therefore
lim | p(t, x; to, Xo)u(t; dx) = 0

t1to
and, by Theorem 6.1, (t,, xo) satisfy (6.4). Hence
r=J {tx40.
tz0

Let I, be the t-section of I'. In this section we first estimate the Hausdorff
dimension of I, (cf. [17]). Then we show that the discrepancy measure {7, defined in
(1.7), converges to zero, hence proving the equipartition of energy. Our arguments
closely follow Sections 6, 7 and 8 in [23].

The next theorem follows from [34, Theorem 5.12.4.].

Theorem 7.1. Let pu be a positive Borel measure satisfying
B
HB) _

d—1
xe@’, R>0 R

My =

Then there is a constant K 4, depending only on the dimension d but not on i, such that

fo(x)uldx)| < K;M(p)|| Volly, Yoe CP(RY).

We continue with an estimate of the dimension of the interface.

Proposition 7.2. For every T > 0 there is K(T) > 0 such that
1*(r; Br(x)) < K(T)R*™H, (7.1)
YT £ K(T), (7.2)
forall0<e<1,R>0and 0<r<T.
Proof.
1. Theorem 7.1, (AS) and (A6) imply that
2°(0; to, Xo) = [ p(0, x; to, Xo) [1°(0; dx) + 3(05(x))* dx]
< K[| Vep(0, -5 80, xo) 1 + 1p(0,°; 2o, X0)[l1]
<K(H/to+ 1)

for some constant K, independent of ¢.
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2. If RZ(C¥)"“~D = Ry, then the energy estimate (2.2) yields
pe(r; Br(x)) < £°(; RY) < CF S R*T1.

Hence (7.1) holds for all = 0 and R = R, with constant K(T) = 1.
3. FixO=Zr<T,e£R=ZRyand xo € #°. Then for to > 7,

pE(r; Br(xo)) £ f°(r; Br{xo))

-1
é [ lnf p(ra X, tO: xo):| as(r; tO» XO) (73)

x€Br{xo)

2
Ao — 1)
Choose to = r + R? so that t; < T + R = T, and, by Step 1 and (5.2),
t K f fo — K./ d
vt 5500 () 4k ()2
[4
0

2
R g

= (m(to )™V exp ( ) (05 Lo, Xo).

KJe
<K <%> (Vo + 1).

Since R = ¢, there is a constant K = K(T') satisfying
af(r;r+ R%x) <K, 0<eZl, r=T.
Then (7.3) implies that
p(r; Br(xo)) < (4m)“~ D2l KR!, e SR < Ry;

hence (7.1) holds for all R = «.
4. In this step we study the case 0 < R < ¢. The inequality (3.2) yields

€ 1 K K
WO Balrol) = [ 51T + L W (o) S Batrn)] = RS
Br(xo)

for0 <r < T.Since R <& R%™! < R, this completes the proof of (7.1) for all R.
5. The inequality (7.2) follows from Theorem 6.1, (7.1) and an application of the
Besicovitch covering theorem (see the proof of [23, §6.3]). O

In the remainder of this section we prove that £° converges to zero. OQur proofis

a direct modification of Sections 7 and 8 in [23].
Let 5 be as in Theorem 6.1. Define

Z = {(t, x)e I'n[0, TT1x #%:sup [ p(t, x; 5, y)u(s; dy) < ﬂ}-
slt

Then Section 7 in [23] implies that for any 6 > 0,
H42*%(Z;7)=0 for almost every te [0, T]. (7.4)
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Let & be as in Section 5. For a Borel set A < [0, T] x %* define
£(4) = | &(5; dx)dr.
A

Since |£%| £ uf, by passing to a further subsequence we assume that £° converges to
a Borel measure ¢ in the weak*® topology of Radon measures.

Proposition 7.3. £ =0.

Proof. ~
1. For £ > 0 and any Borel set A = Q, let

Vo(A) = Jzt;( <Z>> (V2P — 1)* dxdr,
J3(A) :f—;;(q'(%))zﬂ Vze? — 1) dxdt
A

where for any real number b, (b)) = max{b, 0}, b~ = max{ —b, 0}. Then

és =y — )¢,
2. Equation (4.1) and the proof of Corollary 5.2 imply that
vi(A) < K Je[p*(4) +¢lA]], 0<e=<1 (1.5)

for any A = [0, T]x #°. Hence v* converges to zero and A° converges to —¢.
3. Fix (s, ) € [0, 00) x #¢ and 0 < ¢ < s. Integrate (5.1) on [0, s — ¢]. Using (7.5)
and the exponential decay of p, we let ¢ go to zero to obtain

s—a

s =i )=o) S = || 5ol w s i) + 25— o).
o a°

This inequality and Step 1 of Proposition 7.2 yield

[ ]

Fix T > 0 and integrate this inequality against u(s; dy)ds and then use (2.2); the
result is

p(t x; 8, ) d(t, x) < K(/s + 1).

T+1 5=

J j J Jz( p([ x; s, y) dA(t, x) u(s; dx) ds

T+1

[ [ &5+ nusayas s e

0

for some constant C(T') depending on T.
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4, Fubini’s theorem and the monotone convergence theorem enable us to send ¢ to
zero to obtain

T+1 T+1

J f f f plt, x5, Y)uls; dy)ds dA, x) < O(T).
26—

Hence
t+1
1
J p(t, x: 5, Yu(s; dy)ds < Clx, 1) < o (76)
2(s — 1)
t @2

for A almost every (t, x) € [0, T] x %°.
5. Fix (¢, x) such that (7.6) holds. For s e (¢, t + 1] define

B=ln(s—1), h(s)= j o(t, x5, Y)A(s; dy).

'@d
Then (7.6) implies that
0
[ At +ef)dp < 0. (7.7
We wish to prove that
lim h(s) =0

st

Clearly (7.7) implies that h(t + ) converges to zero on a subsequence. We now use
the monotonicity of k to prove convergence on the whole sequence.

6. Following [23], for y € (0, 1] we choose a decreasing sequence f;; - — co such
that

|Bivs — Bl <, h(t+eP)<y.
Then, for any S e [ B, fi—1),
Wt + ey = [ p(t, x; t + €, y)u(t + €F; dy)
=[p(t + e, x; 0 + 268, y)u(t + €*; dy)
=aft +ef;t + 2%, x).
Use (5.3) to obtain
h(t + e?) S a(t + eP;t + 2e%, x) + Cd[\/m - \/?]
<a(t + eyt + 268, x) + Can/26P, (7.8)
and the preceding identity with f§ = p; yields
v = h(t + eP) = a(t + efit + 26, x). (7.9)
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7. We assert that for any 6 > 0 there is a y(9, T') > 0 satisfying
a(to; to + Ry, x) < (1 + 0)alto; to + Ro, X) + 6 (7.10)

forall0<t, £ T+ 1, xe #'and 0 < Ry < Ry < (y(8) + 1)R,. This result follows
from (7.1) and it is stated in [23, Lemma 3.4(iv}]. We postpone the elementary
proof of {7.10) to the next step and complete the proof of the Proposition.

Set

to=t+efi, R, =2 —ef, Ry=¢eF

so that

R
-Ri =2 P12 2[f F—1]+1S1+Ky
0

for some constant K. So if Ky < v(d), then (7.10) holds and, by (7.8) and (7.9),
h(t + e®) < a(t + efi;t + 2e°, x) + Cd\/ﬁ
S(1+ 8)alt + ePyt + 2%, x) + & + Cyy /2P
= (1 + S)h(t + €¥) + 6 + Cai/26*

S(148)y + 0+ CaJ2eP

for all § > 0 and 0 <y < v4(). Now pass to the limit i — o0,y — 0 and then § — 0,
to obtain

lim h(s) = 0

slt

for every (t, x) satisfying (7.6). Recall that (7.6) holds for A-almost every (¢, x). On the
other hand, (7.4) and (7.1) imply that

limsup A(s) =24 >0

st

for p-almost every (¢, x). Since 1 = — ¢ is absolutely continuous with respect to y,
we conclude that A = — ¢ = 0.
8. In this step we establish (7.10). Recall that

1 d—1)/2 5
a(to; Lo + T, Xo) = J("“) e” XTI (ty; dy).

drt

Without loss of generality we take x, = 0. Set u(dy) = u(to; dy),

d-1)/2
ro= [() e uan,

dnt

Then, for any 0 <o < 1,

: L\ev L
f(l — oz) = j(@) e PO u(dy).
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Furthermore, for 0 < § and « < 4,

I

If

f(l )—(1 +9)f(7)

1 @-1/2 2 2
J<4m> e ¥l /4r(ea(|y| Y4t _ (1 + 5))

[IA

lIA

@—-1)/2 .
<4m> eV u(dy),

A= /%m(l +5).

Since by (7.1), u({|y| £ R}) < KR*™ %, and since the integrand is radially symmet-
ric, an integration by parts yields

| 1 \@=v2 R R2/4 d-1
< - *KR dR.
= J<(4m)> 4'c

4

By a change of variables,

where

oo}

I<K f |£|de”"f'2df < Kexp<_w> < Kexp<—i>
20 20
4/2/2%

provided o is sufficiently small. [

lIA
%

8. Passage to the Limit

In this section we complete the proofs of Theorems 2.1, 2.2, and 2.3. We start
with the following lemma.

Lemma 8.1. For any T > 0 and o = 0 there are constants K(T, o) and K(T') such
that, for any Borel set B = ¢,

T
sup | (1 + |25, x)|)*ui(t; dx)dt < K(T, o)(1 + |B|), (8.1

0<e<10B

O e

§ @, )2 ue (6 dx) dt < K(T)(1 + /¢|B)). (8.2)

Proof. Set
Q={(t,x)e[0, T]xB;|z°(t, x)| < 1}.
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Then the energy estimate (2.2) yields

Q ey

!

185

(1 + 125, )" (5 dx) dt

27§ pi(t dxyde + § (1 +[2°])*p(t; dx) dt
2 &

S+ DCET + [ [( + 122D = 1t dx) dt,
o

where Q° denote the complement of Q. For any r = 1,

(1 +7r)*—1Zwrmax{l,(1 +7r)* 1} Sar(l + 1~

Since |z°| > 1 on Q°, this inequality and (4.3) imply that, on Q°,

£ 2
[+ 1241 — Laetes d) = [(1 + |27 — 1%(4 (;)) (V2 + 1)

<K

o

|2°
£

) 2
I(l + Izs|)a+1 <qr<z_>>
&

¥ +1 ! r 2
<Ka sup sup-(1+r)*""{g p

O<g<1lrz1

= Ko sup sup (1l + &) g (7))*

0<g=<1 r>e¢

= Ko sup 7(1 + 7)*"1(q'(F))* = C*() < oo.

r>0

This proves (8.1). To prove (8.2), first recall that, by (2.2),

T

T

f f ety d dit = J j Ll P dxdis CE

0 2*

0 #¢

where ¢’ is evaluated at (z%/¢). Hence, by (2.2) and (4.1),

T t
[ [erutana = | |5 erara + vpaxa
0B 0B

<CH+K/e

< CY+ K /e

I
I

‘%d

1
2
B

[}

[ NSRS

(252(q' (1 +|2°)) | dxdt

T
1
wipdxdi+ | |5 PGP ard
0 B
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By (4.6) and (2.2),
T
j f L gz dxds
e
0B

1
< [ [5 @@t + 121 Jdas
B

&

IA

Ot} O N

K
§(@) + “— (@127, dcd

@d

IIA

C

%

T
K
+”E§suprq'<g)dxdtgf<[1+|B|TJ- O
r=z1
0B

Proof of Theorem 2.1. The only assertion left to prove is the convergence of #°,
where
dm® = — zidm".

The L? estimate (8.2) implies that
sup |mf|([0, T]xBgx8? ) <o forR, T >0.

O0<g=1

Hence on a subsequence, denoted by &,m° converges to a Radon measure m.
Moreover, (8.2) implies that m is absolutely continuous with respect to m; let
v denote the corresponding Radon-Nikodym derivative, so that, by (8.2),

ve L*((0, T)x #*x S Y dm). [
Proof of Theorem 2.2. We first prove the existence of the mean-curvature vector H.
Following [23, §9.3], let V*(t;-) be the varifold (cf. [28])
VE(t; dx dS) = bymyny (dS) i’ (t; dx)
so that (V(t;+))™ is supported at (vé(t, x))* and
[V M = p(5)-

1. In this step we show that
T

2
sup “.{_ Ag + éli W’((PE)] dxdt < o, 8.3)
O<eg<1

0

Since g? = 2W, (OPE) implies that

1 2 1 2 4
8[— Vo + > W’(fpe)] =g [— @; + gg(q)e)@‘] < 2e(pf)” + " W (9%)(6°),
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while Theorem 7.1 and (7.1) yield
L W (@)0° dx < [(0°) dp* < K| V(0°) |l < K [(0°)* + | VO° .

T

2
J Je[— Ag® +8—12W’(q08)] dxdt
0

T
< JJ[% (@) + K| VO** + K(0°)*] dx dt,
(4]

Hence

and (8.3) follows from (2.2).
2. For any smooth vector field Y (x), the definition of ¥* and the definition of the
first variation (cf. [28]) imply that

SV )Y) = [ VY :SVi(5dxdS) = [ VY (I — v ® v*)p(t; dx).
Let T be as in Step 2 of Theorem 5.1. Recall that
I — v @ v = (v @ v*)é — Tdx,
. 1
divl=—c¢ Vq)s[— Ap® + o W’((ps)].
As in Theorem 5.1,

SVEL WY ) = | VY [(v ® v*)dE® — T dx]

(‘—_}

:jY div T dx + VY: (v’ ® v*)dé

1
= — JgY- V(p’s[— Ag® + > W’((p‘)} dx + J VY vf® vidEs.

Hence

1/2 1 2\ 1/2
v = ([aveiveras) ( [o] -ae s wen |

+J|VY|d|«fs|.

3. In view of (8.3), Proposition 7.3 and (2.2), for every T > 0 there is a constant
K(T) satisfying

lim sup f [0Vt )(Y)ldt = K(T)] Y ||
el0 0

forall Y e C2(#? — %“). Choose a further subsequence ¢, | 0 such that the Radon
measures dV>(t;-)dt on #*x G,_(#*)x [0, c0) are convergent in the weak*
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topology. By a slicing argument [16, Theorem 10, page 14], we conclude that there
are varifolds V(t;-) that satisfy

dva(t;Ydt—dV (L) dt.
4. By definition,

T T
[16V(t;-)Y)|dt = sup y(; Y(x):SV(t; dx dS))h(t)dt,
0 lk@®) =10
so that Step 3 yields
T
[16V @, )Y)|dt £ K(T)|Y | VYeCO(R — 2.
0

Since C2(#* — #“) is separable,
K(t):= sup |oV:(t,- Y)| <0
I¥|=1
for almost every t = 0.
5. Let t =0 be a point with K(t) <oo. Then (7.2) and ALLARD’s theorem of

rectifiability [1, 5.5(2)] imply that || I7(t;-)|1 is d — 1 rectifiable. Moreover, by the
definition of the varifolds V*(¢;-),

Ve ) =) = 1V@)l = ).
Since a (d — 1)-rectifiable varifold is uniquely determined by its mass measure,
V(t ) - u(t

Hence dV*(t;*)dt converges on the entire original sequence ¢ and more impor-
tantly, u(t;-) is (d — 1)-rectifiable.
We have also proved that

1 1/2
15Vu<z;~)(Y)l§1iminf<f8[ SAgt W(q)):| ) (jm e dx)) .
£—0

Hence, for almost every ¢t =0, u(t,-) has a generalized mean-curvature vector
H(t, x) and

1 2
JIH(t, x)2u(t; dx) £ liminffsl:— Ay + po W’(go“‘)] dx
&0

Step 1 implies that H € L?((0, T') x #% du) and in Step 2 we have established that,
for any Y € C*(#° — #%),

JfY'H(t, x) dtu(t; dx) = — JéV(t;')(Y)dt = —lim | 6V?(t;-)(Y)dt (84)

=0

1
= lim JSY' V(pg[— Ap® + = W’(qog)] dxdt.

=0
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6. In this step we show that 6 € Ly, (dp). In view of (2.9), there exists a sequence of
smooth functions 8, satisfying

lim [|0, — 02,7 =0, SI;P | VOcll2, T <0 (8.5)
k— o0
for every T > 0. Fix A > 0 and T > 0. Then, by Theorem 7.1, (7.1) and (2.2),
T
[ [ 16— ouatntiax < f f [ 10, — 0,17 + M] di (s )
0 a* z¢

A
< k|21 0+ ] |

T
= K[Mek —O0ill2, 7| VO, — 0} 2,7 +7:|’

which converges to zero as k, | — oo, since we can take 1 — co. Hence § € Llloc(du)

and
[i10@ x)n- Y, x)ydm(t, x, n) = lim {[{6cn- Y dm.

7. For ne 8471, let Pne G,_(#°) be the (d — 1)-dimensional, unoriented plane
orthogonal to n so that P: §~! — G,_ {(#%) is a surjective map. Then, by definition,
dvi:)  dm®
po(t dx) i dx) it
By the weak* convergence of these measures,
5T uit;) = dV#(t,)(t, ) = dm OP
e ult; dx) ult; dx)dt
Therefore the support of N(t, x;-) is orthogonal to T,pu(t;-) for du-almost all
tx). O

-1

L= N(t,x;")o P

Proof of Theorem 2.3.
1. Let y(t, x) be a smooth compactly supported function. Then the action of the
distribution 8, — A8 on Y is given by

I00) = — § [ (b + AY)0dxdr = lim | § (6F — A6%)y dxdt,
so that, by (HE),
1)) = — lim j f g(¢") ol dx di

g—0

€ 2
— lim j‘J‘l <q’ (Z—>> ziy dx dt
e—0 & &

limJ Y dm® + lim Jl//zfdrfs

g0 e=>0

= Jﬁu(t, x, By (t, x)dm +11j‘; Hnﬁfdés.
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We assert that the second term in the last expression is equal to zero. Indeed, since
[£°] = p, the Cauchy-Schwarz inequality yields

< (I j lwvd!«:ﬂ)m( i IZfIZduE>1/2.

sptiy

IR ZA

By Proposition 7.3 and (8.2), the right-hand side of the previous expression
converges to zero as ¢ tends to zero; hence (2.10) holds. Equation (2.11) follows after
an integration by parts in the variable ¢.

2. Let Y be a compactly supported, smooth vector field. The definitions of m® and
o(t, x, n) yield

L(Y)= fjfv(t, x,mn-Y(t, x)dm = Jjjn Y(t, x)dm

= — lim fzfvg' Y u(t; dx)de

=0

£ 2
= — lim szfva- Y 1 (q’ <—Z—>) dxdt — lim fzfvﬁ' Y désde.
e—0 & € =0

As in Step 1, the second term in the above expression is zero. Next we use the
identities

z* z* eVop®
e 2 ) _ £ e 2 ) — &y QW (0ot =g
th<8> £y, vq<£> VT 9(9%) (0)=¢,

together with (OPE) and (8.4) to obtain

1
|Vz?|

dx dt

g0

: 1
= —lim | |g(Z) Vo' ¥ —— 6°dxdt
&0 € | Vz?8|

1 1
+ lim JJ£Y~ V(p‘|:— Agp® + o W’(qos)] dx dt

=0 I VZE|

& 2
= — lim j[l (q’ (Z—)> ve-YO¢dxdt
£—0 ., € €

1
+ lim stY- V(p‘[— Ap® + s W’((pa)} dx dt

L(Y)= —lim JS(pf Vp®- Y

-0
. 1 1—|Vvz
. gl £ Pe: dx dt
+£E’I(} JSY V(P[ Ao +£2W(§0):|( V| )x

= lim I* + ffH Y dtu(t; dx) + lim E®. (8.6)

80 £—0
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3. In this step we show that E° converges to zero. By (8.3),

1 2\1/2 1 —|Vz* 2\1/2
|Ewguan<jfs[—A¢“+;vaﬂ]) [[arern ()

sptY sptY

([ a-re]

sptY

émn(

while (4.1) yields
A =1V2)? =0 = V2P Uyvar 21y T A= 1VZ2D g g <y
< Ke(l + |28))* + |1 — | VZ)2).
Hence

172
Egmm(HKm+wwwwma>,

sptY

and by Proposition 7.3 and (8.1), the limit of E® is zero.
4. Let 8, be asin (8.5). In Step 6 of the previous proof we have shown that 6 € Liso(dp)
and

10):= —[{[Y-nfdm= — lim [{[Own- Y dm.

Then
» r‘l .
I0)—-I*= - (q')*ve- Y (6° — 0,)dx dt
rr 1
+ j(; (@) ve-Ydxdt—n-Y dm£> 6,
rr
+ jn- YO, (dm® — dm) + jjjn Y6, — 0)dm.
Since

1
—(q@'Vv*- Ydxdt — n-¥Ydm® = v*- Y d&*,
€

Proposition 7.3 and the convergence of m® to m yields

limsup [I° — I(0)] < limsup

=0 =0

jfjn Y6, — H)dml.

f J % (@ P Y (0" — 6,)dxdt

+
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Recall that 6° converges to 6 strongly in Lz (cf. Proposition 3.4). So as in Step 6 of
the previous proof,

lim sup
g0

H% (@'Y ve- Y (6° — 0, dx dt

< ¥ 1., limsup st—ekwtwa; &)
o sptY

T
§K||Y“oo|:/1 “9“91(”214'7:',

for any 4 > 0. Finally, let k and then A go to infinity to show that I * converges to I(8).
5. Combining the previous steps we conclude that

[§§Y-n+0)dm=({H Ydu

for any smooth vector field Y proving (2.12).
6. The computations of §2.3 imply that, for any ¢ € CX(%* — [0, c0)),

d
r § o0t dx) = — | pleli) + | VO] dx + 3 [ Ap(0%)* dx

—&| V- Voof dx.
By Step 2,

t

t
1
Y -nodm= —lim J‘a(prq)s- Y dxdr.
|Vz?|

s

We now proceed as in Step 3 to obtain
}” Y -nmodm = — limij e V- Y dx dr.
Hence
A0 — AA) < — mind ] [$(01 dxdr
4 ][ fon Vi dm + [ 30°Ag — | VOPg)dxdr

Since ¢ is compactly supported, following the proof of the estimate (8.2) we find
that

lim inf.jt" | (@) dxdr =lim infjt' | (z)? ui(r; dx) dr.
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For any we C*(Q x 847! - %),

t
0 < liminf { [ | ¢(z + w)*dm®

= lim inf}f G (25 pi(r; dx) dr + j“ dWw?* — 2wr)dm;

hence

§{fpv*dm =[] $pL(w — v)* — (W* — 2wv)]dm

<lim infjl"j O (9% dx dr + }“ dw — v)* dm.
Since v € L*(dm),
_t[“ ¢v* dm < lim infj'j (@) dx dr,

which proves (2.13). [

9. Appendix

In this section we study a simple radially symmetric solution of the Mullins-
Sekerka problem. We show that if the initial radius of the interface is sufficiently
small, then the temperature is not a bounded function.

The Mullins-Sekerka problem (1.5), (1.6) with radial symmetry and one interface,
takes the form

B, — Af = %(X{m gR(t)})’

while the radius R(t) of the interface is a solution of

R(t) = 0(t, R(®), te(0, Teu),

“RG

where the extinction (or melting) time T, is defined to be the first time at which
R(Tey) =0, if there is such a time; otherwise T, = o0. Let (R(1), 6(t, 7)) be the
solution of this problem with initial data

0(0,)=0, R(0)=R,.

The following result was obtained in collaboration with T. ILMANEN.

Theorem 9.1. For all sufficiently small Ry, the extinction time Te, < o0 and

Q(Text - 53 0)

Iim < 0.
510 [In(5)|
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Proof.
1. Let G be the heat kernel. Then

o, x)=‘—§jR’(s)[ [ G@—s, x—y)d%”d_l(y):lds
0 {l¥y|=R(s)}

and there is a constant C(d) such that for any 7, p > 0 and x € #*,

[ Glox -y <9

{vi=s} - 8\/; .

Set
0(2) = sup{[6(s, )| : (s, x) € [0, £] x #%},

I;(t) = sup {R—I(SS:S e [0, t]}

so that
0691 <5 [supIR):s [0 t]}%ds
4]
< C@/LLR(@) + 8(1)].

Hence

0(t) < Cd)/t TR @ + 6()].
2. Set

t* = inf{t € [0, Ty ]: R'(t) = 0},

or t* = oo if this set is empty. Since 8, = 0, it follows that * > 0 and

R@dlK@zﬁBmeﬁ]

Also, if t* < Ty, then

B(t*) = — 00, R(t*)) = = K(t%).

R(t*)
3. Set

. 1
to = min {Tm, W}

so that, for s € [0, t4],
1

I D i <Lk
00 3RO +00) = 005 K0 =550

Therefore t;, < t* and

, 1
R(S)é—m Vte[(),to].

©.1)
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Since R(to) = 0, the preceeding differential inequality yields
R} = . J/to—s Vse[0,to].
Suppose that
1
R .
°<3¢@)’
then

1
< JR—
\/t- =Ro< 3C({d) ’

and we conclude that T.,, = t, < oo. Also, since 6 < 0, we have

1
(- 2
Rz =g 02
hence
ST~ S SRE /2T —9) Vs [0, Tun]. ©.3)
4. Set

AQ) :={ | }G(l,y)d?f"‘l(y)-
I¥1=¢

For 6 > 0, by (9.1) and (9.3),

Text— 6

2 1
_ < = - _ _ d—1
0a=s05 -3 [ 26l [ 6m—s-snareioi
0 {ly|=R(s)}
Tex— 8

REA R
I \!R(S)\/Text'_(s_SA<\/Text_5—S>dS

Teyy—0
2 1 R(Tyy — 6 — 1)

< — A dr.

- 3\/5 OJ \/‘;1 /T+ 6 ( \/; > ‘

Lo AT RTw—0-9_ EGINY ]
r = \ﬁ = T T

Hence, for 7 = 6,

For 7 = 4,

R —5—
A<(’Ten—5r)>g)‘0 >0,

N

where g is an appropriate constant. Therefore

T =0 Te— 0

2;L0

J' ! dt<—é Jldt M
32 51h+@ﬁ -3 T

H(Text - 57 0) é -
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