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OPTIMAL CONTROL WITH STATE-SPACE CONSTRAINT II*

HAL|L METE SONERt

Abstract. Optimal control of piecewise deterministic processes with state space constraint is studied.
Under appropriate assumptions, it is shown that the optimal value function is the only viscosity solution
on the open domain which is also a supersolution on the closed domain. Finally, the uniform continuity of
the value function is obtained under a condition on the deterministic drift.
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Introduction. We are interested in the optimal control of jump processes with a
state-space constraint. By that we mean the trajectories of the controlled process have
to stay within a given subset 0 of n. These kinds of processes arise naturally in some
applications [5], [9], [10]. The deterministic counterpart of this problem is studied in
[11] and the optimal value function is characterized as the viscosity solution of the
corresponding Hamilton-Jacobi-Bellman (HJB) equation. Also the concept ofviscosity
solutions, introduced by M. G. Crandall and P.-L. Lions [2], was used to identify the
boundary conditions satisfied by the optimal value function. For more information
about viscosity solutions see [1], [3], [7], [8] and references therein.

In this paper we generalize the results mentioned above to a certain class ofjump
processes, namely piecewise deterministic processes. These kinds of processes are
introduced by M. Davis [4] and used by D. Vermes in [12]. Let us summarize the
construction of the piecewise deterministic processes.

Let u be a Borel measurable map of 0 [0, c) into a compact, separable metric
space U and yo(x, s; t, u) be the solution of

d
(0.1) d-tYo(X, s, t, u)= b(yo(x, s, t, u), u(x, t-s)) for t-> s

with initial data y(x, s, s, u) x. Pick the first jump time T1 so that the jump rate is
A (yo(x, 0, t, u)). Then construct the post-jump location Y1 such that Q(yo(x, O, r, u),
u(x, r),. is its conditional distribution given T1 r. Starting from Y1 at time T1 select
the inter-jump time T2- T1 and the second post-jump location Y2 similarly. Set To 0,
Y0 x and iterate the procedure above to obtain {(T,, Y)" n- 0, 1,...}. Between the
jumps T, and T,+I the process y(x, t, u) follows the deterministic trajectory passing
through (Y., T.), i.e.

(0.2) y(x, t, u)= Yo( Y., T., t, u)

Moreover, { Y., T.)} satisfies

P(rn+l T,. >= rl, Y1, Tn, Y.)
(0.3)

=exp

if t[T, Tn+l).

A(y(x,s, u), u( Y,s- T.)) ds},
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(0.4)
P( Y.+I AI T, Y, , Y., T./)

Q(yo( Yn, T., Tn+l, u), u( Yn, T.+I- T.), A) for all A c 0.

The process y(x,., u) is a strong Markov process and the following version of Ito’s
lemma is proved in [4]. Set y(t)=y(x, t, u) and u,(t)= u(Y,, t-T,). Then for any

Cl(ffx [0, T]) we have

E(y(T), T)

(0.5)

(x, 0)+ E b(y(t), u,(t))Vd/(y(t), t)
n=0 ,I Tn^ T

0
+--(y(t), t) + A (y(t) u,(t))
0t

f [(z,t)-(y(t),t)]Q(y(t),u,(t),dz)]dt}.
We assume that the post-jump locations are in 0. Then one can define the set of
admissible strategies SCad as"

(0.6)
u’O x [0, oo) U, Borel measurable and

Sad :=
P(y(x, t, u) 0 for all => O)= 1, for all x ff

The optimal value is given by

(0.7) v(x) := inf E e-y(y(x, t, u), u( Y,, t- T)) at
ad 0 ,IT.

It is shown, in 2, that v is the only viscosity solution of the corresponding HJB
equation, satisfying the same boundary condition as in the deterministic case [11].
This result holds if the optimal value is in BUC(O) and the dynamic programming
relation (0.8) is satisfied.

(0.8)
v(x)=.infad E{Ior^r’ e-f(y(x, t, u), u(x, t)) dt + e-T^Tv(y(x, T ^ T, u))

for all T >= 0 and x e 0.

Finally, in 3 we show that under assumptions (A2)-(A4) v is in BUC(O) and satisfies
the dynamic programming relation (0.8). Note that these assumptions yield that the
optimal value of the corresponding deterministic problem is in BUC(O). By an induc-
tion argument one can extend this result to piecewise deterministic processes with
finitely many jumps. We eventually pass to the limit to conclude.

1. Main result. Let 0 be an open subset of R" with connected boundary satisfying"
(A.1) There are positive constants h, r and R"-valued bounded-uniformly con-

tinuous map r/of 0 such that

B(x + trl(x), tr) 0 for all x 0 and (0, hi.

Here B(x, R) denotes the ball with center x and radius R.
Remark 1.1. If O is bounded and 00 is C, then (A.1) is satisfied. Also boundaries

with corners may satisfy (A.1), for example, 0 {(x, y) R2: x > 0, y > 0}.
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The strategies take values in U which is a compact, separable metric space. Also,
we assume the following throughout the paper. Let x and y be in O.

(1.1) sup ly(x, a)-y(y, a)l<-L(y)lx-yl, y=b,f or A,

(1.2) sup ]y(x, a)]<=K(y), y= b,f or A.

x

For each bounded, continuous function h on 0, there is
a continuous function Wh with Wh(0)= 0 such that

(1.3)

aeU d d

(1.4) Q(x,a,O)=l for allxE0andaEU.

(1.5) A(x, a)_>-0 for all x 0 and a U.

The corresponding Hamiltonian H is a continuous map of 0 xR"x BUC(O) given as:

(1.6) H(x,p, O)=sup {-b(x, a).p-f(x, a)-h(x, a) f [O(z)-O(x)]O(x, a, dy)}.
aU

This Hamiltonian is a nonlocal operator but still one can define a notion of viscosity
solutions.

DEFINITION. Let K be a subset of R" and v BUC(K).
(i) We say v is a viscosity subsolution of v(x)+H(x, Dr(x), v)=0 on K if

V(Xo)+ H(xo, V0(Xo), v)<=0 whenever 0 Cl(Nxo) and (v-q) has a global maximum,
relative to K, at Xo K, where N0 is a neighborhood of Xo.

(ii) We say v is a viscosity supersolution of v(x)+H(x, Dr(x), v)=0 on K if
V(Xo) + H(xo, V O(Xo), v) >- 0 whenever 0 Cl(Nxo) and (v 0) has a global minimum,
relative to K, at Xo K, where N is a neighborhood of Xo.

Remark 1.2. This is an obvious generalization of the original notion introduced
by M. G. Crandall and P.-L. Lions [2]. The definition we used above is analogous to
one of the definitions introduced in [1].

We are interested in the following notion of viscosity solutions.
DEFINITION. V BUC(O) is said to be a constrained viscosity solution of v(x)+

H(x, Dr(x), v)= 0 on 0 if it is a subsolution on 0 and supersolution on 0.
Remark 1.3. The fact that v is a supersolution on the closed domain imposes a

certain boundary condition. Suppose that v is smooth and a constrained viscosity
solution. Then H(x, V v(x) + av(x), v) >-_ H(x, V v(x), v) for all x 00 and a >- 0 (v(x)
is the exterior normal vector). This effect is discussed in [11].

THEOREM 1.1. Suppose (A.1), (1.1)-(1.5) hold. Then there is at most one constrained
viscosity solution ofv(x) + H(x, Dr(x), v) 0 on O. Moreover ifv BUC( O) and dynamic
programming relation (0.8) holds, then the optimal value function v is a constrained
viscosity solution.

2. Proof of the main theorem. We need the following lemma:
LEMMA 2.1. v BUC( O) is a viscosity subsolution of v(x) + H(x, Dv(x), v) 0 on

0 (or supersolution on ) if and only if
V(Xo)+ H(xo, V@(xo), 0) =<0

(or >=0) whenever d/ CI(No) and v-O has a global maximum relative to at Xo 0
(or minimum at Xo 0 respectively), where N is a neighborhood of Xo.
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Proof. We will prove the statement for subsolutions only, the other statement is
proved exactly the same way.

Necessity. Suppose v BUC(O) is a viscosity subsolution and q, Xo are as above,
i.e.

V(Xo) O(Xo) max v(x) O(x).

Then we have V(Xo)-V(Z)>-O(Xo)-O(z) for all ze 0. Then (1.5) yields"

g(xo, V0(Xo), q) --< H(xo, Vq(Xo, v).

Hence the viscosity property of v gives the result.
Sufficiency. Let O’C(N) and (v-q)(Xo)=max,o {(v-q)(x)}=0. For each

e > 0 we define @ as follows"

(2.1) (x)- q(x)x(x)+ v(x)(1 -X(x)) for x 0

where X is a smooth function satisfying

0X<-l,

(2.2) X(x) 1 if x B(xo, e),

X(x)=0 ifxRn\B(xo, 2e).

Observe V(Xo)-dP(Xo)=O and v(x)-dP(x)=(v(x)-O(x))x(x)<-_O. Hence

(2.3) V(Xo) aP (Xo) max { v(x) aP (x)}.
x

Thus the hypothesis of the lemma and V(Xo)= Tq(Xo) yields

(2.4) V(Xo)+ H(xo, Vq(Xo), dP)<----O.

The following estimate follows (1.5)"

[H(xo, V ,(Xo), )- H(xo, V(Xo), v)l
(.5)

<=sup {A(x’ a) I laP’(x)-aP(Y)-V(X)+v(Y)lQ(x’ a’

Observe that dp(Xo)=V(Xo) and dP(Xo+y)=V(Xo+y) for yC:B(O, 2e). Also for y
B(0, 2e)

lap (Xo + y)- V(Xo+ y)l [/(Xo+ y)- V(Xo+ y)lx (Xo + y)

(2.6)
-< q(Xo+ y) 4(Xo)[ + IV(Xo) V(Xo+ y)[

--< IIvlloly[+
--< 211v,ll +,o(2).

Here o)v is the modulus of continuity of v and we used (Xo)= V(Xo) in the second
inequality. Combine (2.4)-(2.6) to conclude that v is a viscosity subsolution, l1

Remark 2.1. It is easy to prove that in Lemma 2.1 we may replace q e CI(No)
by q C1()(see [1]).

Proofof Theorem 1.1. Suppose Vl and v2 are two solutions in BUC(0). For 1, 2
define f and Hi as follows

I(2.7) f(x,a)=f(x,a)+A(x,a) (vi(y)-vi(x))Q(x,a, dy) for xc=O, ac= U,

(2.8) H(x,p)=sup{-b(x,a).p-f(x,a)} for xeO, pel’.
ag
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Notice that Hi is the Hamiltonian of the corresponding deterministic problem with
running cost f. Using (1.1)-(1.4), one can show that the f’s are uniformly continuous
in x uniformly with respect to or. Pick z 0 such that

vl(x) v2(x) <- Vl(Z) v2(z) + 8 for all x 0.

Then Corollary 2.3 in 11 yields

(2.9) Vl(Z)-v2(z)<=c$+toA(c$)+tof(c$)+sup {fl(z, a)-f2(z, a)}.

But f(z, a)-f2(za, a)<= tA(za, a)_-< tK(A) for every a. Substitute this into (2.9) and
send t to zero, to prove the uniqueness.

Let ,e C(ti) and Xoe 0 such that (v- ,)(Xo) max {(v-6)(x); xe ti} 0, where
v is the optimal value. For any u e ZZd the dynamic programming relation (0.8) yields

q(Xo) V(Xo) <= E e-Sf(y(xo, s, u), U(Xo, s)) ds + e-’^ r,v(y(xo, ^ T,, u))

Set y(s) y(xo, s, u) and u(s) U(Xo, s). Use v -<_ q, to obtain:

(2.10) ,(Xo)<=E e-Sf(y(s), u(s)) ds+e-’^r,4,(y(t ^ T1))

Ito’s formula (0.5) on e-*y)) yields

(2.11) E e-[q(y(s))-b(y(s), u(s)) Vq(y(s))-f(y(s), u(s))] ds<-O

where

f(x, a)=f(x, a)+A(x, a) (O(z)-O(x))Q(x, a, dz).

Observe that on [0, ^ T1) y(. is a deterministic trajectory. Thus standard estimates
on y(.) and (1.1)-(1.4) yield

(2.12) 1E [,(Xo)-b(xo, u(s)) Vq,(Xo)-f(xo, u(s))] dsh(t)

where h is a continuous function with h(0)= 0. Since Xo O, for any a U there is a
strategy u Ma such that u (Xo, t) a for all dist (Xo, O)/K (b). Use this strategy
in (2.12) to obtain

[(Xo)-b(xo, ) V(Xo)-f(xo, )]E[(t A T1)/t]h(t).

Hence (Xo)+ H(xo, V (Xo),)0. So Lemma 2.1 and Remark 2.1 imply that v is a
subsolution on 0.

Now let C(ff) and (v-)(Xo) =min {(v-)(x)" x }=0 for some Xo g
The dynamic programming relation and v yield

(2.13) v(xo)=O(xo)e inf e-f(y(s), u(s)) ds+e-’r,(y(t T))
ad

For 1/m one can pick u e, such that

6(Xo)+ E e-f(y(s), Urn(S)) ds+ e-r/m y T
0
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First, use Ito’s lemma (0.5) on e-S(y(s)) then (1.1)-(1.4), as in (2.10)-(2.12) above
to obtain

Tl^l/m
(2.14) mE [q(Xo)-b(xo, Us(S))" V(xo)-f(xo, Us(S))] ds >= K(m)

dO

where K(m) is converging to zero as m tends to infinity. Rewrite (2.14) as

[(Xo) B(m). Vq(Xo)- F(m)]E(mT1 ^ 1) _>- K(m)(2.15)
where

B(m) E T1 ^ E b(xo, tim(S)) d$,

(( IoF(m) E TI ^ E f(xo, Us(S)) ds.

Observe that (B(m),F(m))co{(b(xo, a),f(xo, a))" a U}:=co[BF(xo)]. Hence
there is (B, F)co[BF(xo)] such that (B(m),F(m)) converges to (B, F) on a sub-
sequence, denoted by rn again. Pass to the limit in (2.15) to obtain

q(Xo) + sup {-B. V@(Xo)-F" (n, F)co [nF(xo)]}>-O.
Also

sup {-B. V0(xo) F" (B, F) co [BF(xo)]} H(xo, V(xo), 0)-
Thus, Lemma 2.1 and Remark 2.1 imply that v is a viscosity supersolution on 0.

3. Uniform continuity and dynamic programming. We assume the following.
(A.2) There is a Borel measurable map a of 00 into U and/3 positive satisfying

b(x, a(x)) z,(x)-<_-/3 < 0, where z, is the exterior normal vector.
(A.3) The boundary of 0 is of class C2.
(A.4) If 00 is not compact, there are constants p and such that for any x

there is a C2(B(x, p)) function T with C(B(x, p)) inverse T- satisfying

(i) T(B(x,p)f’lO){yR"’y,,>O},

(3.1) (ii) T(B(x, p)f"lO0)c {y R"" y,, =0},
(iii) IITllc=<<x.,))+llT-’ll.<<x.,, < 1.

The subscript n denotes the nth component.
Remark 3.1. The assumption (A.2) holds with some/3 > 0 if

sup min b(x, a) ,(x)<0.
xO0 U

Note that we do not assume that b(x, a) points inwards the domain 0 for all a and
x 00. Thus there may be controls that allow the deterministic process to reach the
boundary.

Remark 3.2. The assumptions (A.2)-(A.4) are used to obtain the uniform con-
tinuity of the corresponding deterministic problem 11 ]. In particular see 11, Lemma
3.2].

Let Vo be the optimal value of the deterministic problem and define vN as follows

vv(x) inf J(x, u)

where

(3.2) jN (X, U) E e-tf(y(x, t, u), u(x, t)) dt + e-TtvN-I( Y1)



1116 HALiL METE SONER

LEMMA 3.1. Let
i.e., for all T 0

N-1 BUC(0), then the dynamic programming relation holds for

(3.3)

vv(x)= infad E(Ior^ e-rf(y(x, t, u), u(x, t)) dt

+ e-VS-I(y1)xo,TI(T1)+ e-v(y(x, T, u))X(,)(T1)]
where XA is the indicator function of set A.

Proof Fix x and T positive. Let Iv (x, u) be the right-hand side of (3.3) before
taking the infimum. To simplify the notation, put y(t)= yo(x, 0; t, u), u(t)= u(x, t),
h(t)= h(y(t), u(t)) and A(t)-exp {-to h(s) ds}. Recall that Yo is the corresponding
deterministic trajectory given by (0.1). In terms of these quantities Iv (x, u) is given by

I(x, u)= h(t)A(t) e-f(y(s), u(s)) ds

+ e-t I vN-l(z)Q(Y(t)’ u(t), dz)x[o, Tl(t)

(3.4)

+ e-Tv (y( T))X(T,oO( t)] dt

+A() e-tf(y(t), u(t)) dt+e-vN(y(T))

]h(t)A(t) e-Sf(y(s), u(s)) ds +e-’ vN-l(z)Q(y(t), u(t), dz) dt

+ A(T) e-Sf(y(s), u(s)) ds + A(T) e-Tvv(y(T)).

Since y(T) is a deterministic quantity determined by x, T and u, one can pick u* Mad
such that vv(y(T)) -> jv(y(T), u*) 6. Now we define a as follows:

(3.5) a(z, t)= u(z, t)Xto,Tl(t)+u*(yo(z, O, T, u), t- T)xtT",)(t).

Define 37(t)= 37(x, 0; t, if) and X,

_
similarly. Then we have

JU(y(T), u*) (A(T)) -1 X(t + T)(t + T)

(3.6)

e-f(y(s + T), t(x, s+ T)) ds

+e-t I vN-l(z)O((t+ T), if(x, t+ T), dz)] dt

+ A() e-y(fi(s+ T), (x, s+ T)) ds
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Change variables in (3.6) and use v (y(T)) jN(y(T), u*) to obtain

e-A(r)v’(y(r)) >_- X(t)5.(t) e-f((s), a(x, s)) x
T T

+ e-t I vX-l(z)Q((t), (x, t), dz)] dt

+X(m) e-f(2(s), (x, s)) ds-e-rA(r)&
T

The fact that I X(t)X(t) dt A(T) -X(m) and the above inequality yield

(r e-f((s, u(sl as +(r e-% ((

r

+ A() e-f((s, a(a s)) s- .
Substitute the above inequality into (3.4) and use the Nct I () X(t), A(t)

for e [0, T] to obtain

(x, ule X(X(I e-f((s, a(x, s as

+e-if vS-’(z)Q(fi(t), (x, t), dz)] dt

(3.7)
+( e-f((sl, a(x, sl as

=J(x,a)-v(x) &

Thus, v (x) N inf. I (x, u). One can prove the other inequality similarly.
The following lemma is an analogue of Lemma 3.2 in 11].
LNMa 3.2. Let v- e BUC() and (1.1)-(1.4), (A.2)-(A.4) hold. en for any

Tpositive, there is a positivefunction hr and a projection r(u) ofany Borel measurable
map u of 0 x [0, m) into U such that r(u) e ,e and

(3.a) IJ(au)-J(x,(.))lNh(sup{dist(yo(x,O,,u),)" eel0, rl})
where hr is a continuous function with hr(0)= 0 and

(3.9) J(x, u) e-f(y(x, s, u), u(x, s)) ds + e-r,v-(Y)xo,rl(T)

Proo Define to(x, u) =inf{t0: yo(x, O, t, u)eO0} or infinity. Let t* and k be as
in Lemma 3.2 of 11 ], i.e.

t* rain {o/K(), l/L()K(),ln (1 +l/4K())/L()},
(3.0

where K()= IK(b) and L()= lK(b)+ lL(b). We now construct u as in Lemma
32 of []

u(x,t)=u(x,t) iftNto(x,u) or teto(x,u)+keo(x,u),
(3.11)

(yo(x, 0, to(x, u), u)) if to(x, u) < < to(x, u)+ keo(x, u)
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where a as in (A.2) and eo(X, u)-sup{dist (yo(x, 0, t, u), if): t[0, t*]}. Since x-
to(X, u) is a Borel measurable map u is measurable. Also in Lemma 3.2 of 11] it is
proved that

(3.12) yo(x, O, t, u 1) for all e [0, t*].

Now construct a sequence of strategies {u"" n- 1, 2,...} by the following recursive
formula

then

t,(x, u") inf ( >= nt*" yo(x, O, t, u") O0) or infinity,

e,(x, u")= sup [dist (yo(x, O, t, u"), 0)],
t[O,(n+l)t*]

u"+(x, t)=
u"(x’ t) ift-t,(x,u or t>=t,(x, u + ke,(x, u ),
a(yo(x, 0, t,(x, u"), u")) if t,(x, u) < < t,(x, u) / ke,(x, u").

Iterate (3.12) to get yo(x, O, t, u") 0 for t[0, nt*]. We have to estimate the
Lebesgue measure of the following set

(3.13) M"(x) {t [0, nt*]: u"(x, t) # u(x, t)}.

For every we have

leo(x, 0, t, u")-yo(x, o, t, u)l

<_-J 2K(b)+j
[o,t]n Mn(x) [O,t]\Mn(x)

thus the Gronwall’s inequality implies

e,(x, u")<= e,(x, u)+2K(b) e

The construction of u" yields

n--1

meas M"(x) <= k E e,(x, u i)
i=0

(3.14)

that

L(b)lyo(x O, s, u)- yo(x, O, s, u")[ ds;

meas M"(x).

n--1

<-nke,_l(X, u)+ k2K(b) e"L(b)‘* Y’, meas Mi(x).
i=0

Iterate this inequality to obtain C(n), depending only on n, K (b) and L(b), such

(3.15) meas M"(x) <= C(n)e,_(x, u).

Now, for given T, choose f so that T-< flit*. Then define 3TU as

u(x, t) for t<= T,
TU(X, t)=

a(yo(X, 0, T, u ’), T) for > T

where is any strategy in
Observe that for any u

JT(X, u)= A(t)A(t) e-Sf(y(s), u(s)) as+ e-’ vN-l(z)Q(y(t), u(t), dz) at

+ A(T) e-Sf(y(s), u(s)) ds.
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By using (1.1)-(1.4) one can show

(3.16) IJ(x, u)-J(x, r(u))l<= CT[dr(x)+ W-(dr(x))+meas M(x)]
where C is a positive constant and

d(x) sup {[yo(x, O, t, u)- yo(x, O, t, (u))l}
t[0,T]

<_-2K(b) eL(b)T meas Mn(x).
Plug this into (3.16) together with (3.15) to conclude Lemma 3.2.

LEMMA 3.3. Let (A.2)-(A.4) and (1.1)-(1.5) hold; then vV BUC() and there
is a g-optimal strategy u* such that

jv (x, u*) <- vv (x) + 15 for all x 0-.

Proof. It is proved that v BUC() [11, Thm. 3.3]. Now suppose vv-1 BUC()
and define

o(r)=sup(Iv(x)-v(y) I" x,yff and Ix-yl<r} for r>0.

At the origin to(0)= limro to(r). Using Lemmas 3.1 and 3.2, we can conclude, as in
Theorem 3.3 of 11], that for some positive,

(3.17) to(r) <- h,( Cr) + e-’to (r) + Ctr

where C > 1, C > 0 and ht is as in Lemma 3.2. Iterate (3.17) to obtain

n-1

o((-")<_-e-"’o(1)+ Y e-mt[ht(f(m-n))+c(m-n)t].
m=0

Use dominated convergence theorem to get lim,,_.o to(-")=0. Hence v
Pick {Xm" n 1, 2,’’ "} c 0 such that 0 c Um B(xm, r) where r to be chosen. Then

select {u," n 1, 2,. .} c

(3.18) JN(x,,, urn)<--__ Vv (X,,) +-.
Now define u as follows

u(x, t) tlm(Xm, t) if X Om y B(X,, r B(x,, r).
=1

Let u*= T(U) where T to be chosen. Note that u* depends both on r and T
but this dependence is suppressed in the notation. For every x 0,, we have

IJ(x, tl*)--JN(Xm, u)l<=lJT(x, u*)-J’(x, u)l+lJ’(x, tl)--JT(Xm, tl)
(3.19)

+ 2 sup IJN (x, u) J(x, u)l := I1 + I2 + I3.

The construction of u and standard ODE estimates yield

(3.2o) sup ]yo(x, o; t, u)-yo(x,, o; t, u)]<- c(r)r
0,,,

te[0,T]

where C(T) is a positive constant. Since y0(Xm, 0; t, U) 0 for all _-> 0 above inequality
implies that

(3.21) sup d(yo(x, 0; t, u), O) <-_ C(T)r.
xO

t[0,T]
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Now, in the case of 11 use (3.8), (3.21) and in the case of I2 use (3.20), (1.1)-(1.4) and
the continuity of vN-1 to obtain

(3.22) Ii + I2<=hN( T, r)
where hN C([0, m) x [0, m)) with limr,o h(T, r)=0 for every T and N. Also (3.2)
and (3.9) imply

IJ(x, u)-J(x, u)l= e-rlV-(g)x(,(T1)+ e-f(y(x, s, u), u(x,s)) ds
TT

e-[ll v-lll( + K(f)].
Recall that K(f) is the sup-norm of f and it is easy to show that v is bounded by
K(f) for every N. Hence we have

(3.23) K(f) e-
Substitute (3.22)-(3.23) into (3.19) to get for all x 0
(3.24) [(x, u*)-(x, u)[ (r, r)+4(f) e-
The continuity of v, (3.18) and the above inequality imply

J(x, u*) v(x)++(r)+h( T, r)+4K(f) e-
Recall that limr,oh(T, r)=0; thus we can choose T and r so that J(x, u*)
v(x) + 8. fi

TnogM 3.4. If (A.2)-(A.4), (1.1)-(1.5) hold, then v BUC(O) and the dynamic
programming relation (0.8) holds.

Proof Iterating the second asseion of the previous lemma, one gets

inf N e-’f(yo( Y, T, t, u), u( Y, t- T)) dtv(x)
,,’",a .=0 .

(3.25)

+ e-(yo( g, r, , uu(g, -rTN

Now define v by

(3.26) v(x) inf
{un: 1,2,’"}c daa

Hence we have

e-tf(yo( Yn, Tn, t, un), un( Yn, t- Tn)) dt
n=0

sup Iv(x)-v(x)l<-2K(f) sup E(e-rN).
O u,’",uN}c ,d

To prove that v converges to v it suffices to show that E(e-) is decreasing to
zero independent of control.

Let {un" n 1,...} c 4d and set An(t) h (Yo( Yn-1, O, t, un), un( Yn-1, t)).

E(e-+"-’IY1, Yn-1, Tn-1)= e-tAn(t) exp An(s) ds dt

1 e- exp In(s) ds dt

<- 1 e(-(l+K(x))t) dt := Y < 1.
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Observe that y is independent of control and strictly less than one. Hence

(3.27) sup E(e-T’) <- y
{IA1,’",UN} gad

Therefore vN converges to v uniformly on ft. So v BUC() and v satisfies (0.8).
We now proceed to show that v= v. First observe that v-< v because of the

definitions of v and v. Also we can construct u* as in the previous lemma such that
for all x 0

(3.28) E e-tf(yo(x, O, t, u*), u*(x, t)) dt + e-Tv(YI) <= v(x) +

Apply (3.28) at x Y1 to obtain

e-f(Yo( Y1, O, t, u*), u*( Y1, t)) dt

+ e-(T:-T1)I3( Y2)IY1, T1}.
The above inequality and (3.28) yields

(3.29)

E e-tf(yo( Y,, T,, t, u*), u*( Yn, t- Tn)) at + e-T:v(Y2)
n=0

<= v(x) + SE E
n=0

Iterate this procedure to obtain

J(x,u*)<_v(x)+SE e-r. <_ V(X) + t(1 T)-1
=o

where 3’ is as in (3.27).
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