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1. INTRODUCTION

A. Mathematical Theory

In this paper we discuss the motion, in the plane, of a region Q(¢)
whose boundary-curve evolves from a given region 2, according to the
equation

By V=GOYK-U (L.1)

with V the normal velocity and K the curvature. (Our sign convention is
such that the positive normal-direction is outward from 082 = 0£(t), and
K <0 when 02 is a circle.) Here B(#) and G(0) are given functions of the
normal-angle 6, which is the counterclockwise angle from a fixed axis to the
outward normal of Q, and U is a given constant.

For B(6) and G{(8) continuous and strictly positive, (1.1) is a parabolic
equation that is well understood, with fairly well-behaved solutions.' There
are, however, situations of physical importance for which G(6)=0
over certain angle-intervals and for which G(6) need not be continuous

' Cf. Angenent [Ag], Chen er al. [CGG], Soner [So], and Barles et al. [ BSS].
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(cf. Section 1.2). Here we will develop a fairly complete theory of (1.1)
under the following assumptions:

G is piecewise continuous and >0, and continuous on any
interval of strict positivity; (1.2a)

B is continuous and >0. (1.2b)
In some instances we will add the hypothesis

B has polar diagram a straight line on any angle interval for
which G =0, (1.3)

which is based on the underlying physics.

Because of the lack of continuity of G as well as the degeneracy of (1.1)
when G=0, it is convenient to discuss this equation within the weak
framework of viscosity solutions. This approach to geometric equations,
initiated by Evans and Spruck [ ES1] and Chen er al. [CGG], is based on
the use of level sets to characterize evolving curves, an idea due to Sethian
[Se], Osher and Sethian [OS], and Barles [Ba]. Here—to study
(1.1)—we will use this approach as well as an intrinsic approach given by
Soner [So] and Barles et al. [BSS]. The difficulties concerning (1.1) result
from the discontinuous nature of G; the degeneracy of the equation at
angles 6 with G(8) =0 causes no great difficulty; were G continuous, most
of our results would follow from those in [CGG].

Our main results, for evolution from a given compact region £, consist
of a theorem of existence and local uniqueness and a global comparison
theorem? for level-set solutions.

B. Physical Background

There are situations of interest in which the motion of a phase interface
is essentially independent of the behavior of the corresponding bulk phases.
One of the first models of such phenomena was proposed by Mullins [ Mu]
to study the planar motion of grain boundaries; the resulting evolution
equation has the form?

V=K (1.4)

2 This comparison theorem was established independently by Ohnuma and Sato [OS],
whose proof is different (and more concise) than ours.

> Allen and Cahn [AC] and Rubinstein er al. [RSK] deduce the equation V=K as a
formal approximation to the Landau-Ginzburg equation, a result established rigorously in
[BK], [BSS, ESS, Ch, Sol, DS]. See also [ ORS, OwS, RS].
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after an appropriate scaling. Equation (1.4) is a parabolic PDE with a
large literature:* its major consequence [ GH, Gr] is that all such boundary
curves, irrespective of their initial shape, shrink to a point in finite time, with
asymptotic shape a circle.

Mullins’s theory was generalized in [Gl, Sect. 8 AG1l] to include
anisotropy and the possibility of a difference in bulk energies between
phases. The resulting equation is

b)) V=g() K- U, (1.5)
where g(0), the energy modulus, is given by
gO)=1(6)+17"(6) (1.6)

with f(8) > 0 the interfacial energy, U is the relative energy of the material
in @, and b(8) > 0, the kinetic modulus, is a material function. The presence
of the angle € reflects anisotropy, and the particular form in which f
appears in (1.6) is a consequence of thermodynamics. In fact, a conse-
quence of (1.5) and (1.6) is the thermodynamic inequality

(dfdt) {Lm )f(H) ds + Uarea(Q(t))} = — bO) Vids. (1.7)

A1)y

When
2(6)>0 (1.8)

evolution according to (1.5) is governed by a parabolic PDE and the under-
lying problem is not much different than that for equation V=K What
makes (1.5) nonstandard is the possibility of interfacial energies that satisfy

g(0)<0 (1.9)

for certain ranges of the angle ¢, for in these ranges the evolution equations
are backward parabolic.®
Let

N(8) = (cos 0, sin ), T(#) = (sin 8, —cos &), (1.10)

4 Brakke [Br], Sethian [Se], Abresch and Langer [AL], Gage and Hamilton [GH],
Grayson [ Gr], Osher and Sethian [OS], Evans and Spruck [ ES1-3], Chen er al. [CGG],
Giga and Sato [GS]. Almgren et al. [ATW ], Taylor et al. [TCH], and the references therein.

® Material scientists give strong arguments in support of interfacial energies that satisfy
g(0) <0 for some values of @ (cf., e.g.. Gjostein [Gj] and Cahn and Hoffman [CH]).



ANISOTROPIC MOTION OF AN INTERFACE 57

so that T and N represent a unit tangent and normal to the interface when
¢ 1s its normal-angle. The conditions (1.8) and (1.9) may be displayed
graphically using the Frank diagram % which is the polar diagram of
f(6)7! (ie., the locus in R? of all vectors f(6) ! N(0)): & is locally strictly
convex where (1.8) is satisfied, locally strictly concave where (1.9) is
satisfied.®

One method of overcoming (1.9} is to allow the interface to contain cor-
ners corresponding to jumps in angle that exclude the backward-parabolic
ranges of 8 [AG1]; a limitation of this method is that the initial curve
0Q2(0) must also have such corners.

In the presence of a corner the evolution equation (1.5) does not by itself
characterize the motion of the interface; there is an additional relation
corresponding to the requirement that the capillary force

=f(G) T(6)+ f'(6) N(6) be continuous. (I.11)

Thus for a corner corresponding to an angle jump from 6, to 6, we must
have C(#,) = C(8,), which has an important consequence: the tangent line
to F at #, must also be a tangent line to & at 6,; i.e, #, and 6, must be
angles of bitangency for the Frank diagram [AGI1].

If the initial data @€2(0) has normal angles corresponding to backward-
parabolic behavior, another method of attack must be found. A possibility
is to allow the interface to infinitesimally wrinkle on such backward-
parabolic sections. Formally, consider an energy f(f) with Frank diagram
F; let 4(F) denote the convexification of F, and let F(6) denote the
energy whose Frank diagram is ¥(% ), so that f(6)> F(0). Then angles 0
with f(8)= F(8) satisfy g(8) > 0; we refer to such angles as globally stable
(GS), to angles 4 with f(0) > F(0) as globally unstable (GUS), and to each
maximal interval (8,, 8,) of angles 8 with f(8)> F(8) as a GUS angle-
interval. Then each GUS angle-interval (0,, 8,) has 8, and 0, as angles of
bitangency for # and hence as admissible angles for a corner. Thus if
I' is a section of 2Q(0) with normal angles between #, and #,, we can at
least formally consider I' as being infinitesimally wrinkled, with each
infinitesimal facet having either @, or 6, as normal angle.” The expansion

N(O) = u1(6) N(6,) + p(0) N(6,),  0€(8,,6,) (1.12)

¢ The importance of the Frank dlagram becomes evident when one consider the
homogeneous extension foffto R f(acN(B))—af(G) for all angles € and all > 0. Then &
is the one-level set of /. so that the convexity properties of f are related to those of #. (In
particular, f is convex if and only if & is convex.) Further g(8)=T(8) -[V(N(8))] T(8
(V?=VV), which, to some extent, explains the form of (1.3).

" This idea is due to Cahn and Taylor (private communication with Gurtin in 1990).
Cf. Taylor [ Ta) and Almgren and Taylor [AT].
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then defines, for each i, the density u,;(8) of 6,-facets at any point of I" with
normal angle 6, with u,(#) measured per unit length of I

The use of infinitesimal wrinklings is formally equivalent to replacing the
interfacial energy f(0) by the energy F(6) corresponding to (%), since®

F(9)=ﬂ1(9)f(91)+ﬂz(0)f(92), 95(91’62) (1.13)

A further motivation for the use of such wrinklings is furnished by the fact
that the initially wrinkled curve is more stable than the original curve:

j F(9) dssf £(8) ds. (1.14)
a2£2(0)

a2 0)

If we allow 082(¢) to infinitesimally wrinkle in the same manner, we are led
to the requirement that the effective interfacial energy for the evolution be
F(0), so that the effective energy modulus is given by

G(0) = F(8)+ F"(8). (1.15)

The next question we must answer is what is an appropriate Kinetic
modulus for the infinitesimally wrinkled curve If 77(r) is a finite wrinkling
whose facets have #, and 0, as normal angles, then I'(¢) evolves as a rigid
body with constant velocity ® defined by [AG1]

o-N()=-b06,)""0, o -N(6,)=—5b(0,) ' U (1.16)

(although I'(z) is allowed to shrink or grow tangentially ). Since w depends on
the particular wrinkling only through 6, and 4,, it seems reasonable to sup-
pose that infinitesimal wrinklings with 8, and @, as normal angles also evolve
with rigid velocity @, and this is equivalent to replacing the kinetic modulus
b(0) between 6, and 8, by an effective modulus B(8) that agrees with 5(8) at
6, and 6, and has polar diagram between #, and 6, a straight line:

B(H)*]=ﬂ1(9) b(01)~1+#2(9) 17(92)7l (1.17)

This proceedure defines an effective kinetic modulus B(8) for all 8 [G2]:
B(8) > 0 is continuous; B(f)=b(#) for all GS angles 8; the polar diagram
of B(#) is a straight line over normal-angle intervals with f(8) > F(8).

We will refer to G and B derived in this manner as the effective moduli
corresponding to f and g.

We are therefore led to the relaxed evolution equation (1.1) with B and
G the effective moduli corresponding to fand g [G2]. It is important to
note that this relaxed equation coincides with our original system (1.5) at

8 Indeed, F is the locus of the vector q(f) = N(g)/F(8) and F is flat between 6, and 6,;
thus q(8) = (1 — a) q(8,) + aq(8,), and since F(8,) = f10,), (1.9) yields (1.10).
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all GS angles 6. Note also that, because of the construction of G(8), no
matter how smooth f(6) is,

G(6) will generally be discontinuous (1.18)

whenever the angle 8 changes from GS to GUS; this property of G(8)

renders the relaxed evolution equation nonstandard. In addition, G(8) =0

whenever 6 is GUS, so that (1.1) degenerates to hyperbolic at GUS angles.
Our main result of physical interest are:

1°  Viscosity solutions of (1.1) not only satisfy (1.5) away from
corners, but, what is most interesting, such solutions automatically satisfy
the force balance (1.11) across corners.

2° If (6,, 8,) is a GUS angle-interval, then a wedge whose two sides
have normal angles 8, and €, and evolve according to b(#;) V= — U and
b(8,) V= — U, respectively, is a solution of the basic equations (1.5) and
(1.11) [AGI, Sect. 9]. We show that our choice of the effective moduli G
and B is the only possible choice if all such wedges are to be viscosity
solutions of (1.1). What makes this result so interesting is that G(6) and
B(9) differ from g(#) and b(6) only at angles # that are not globally stable,
and wedges by definition do not involve such 8.

3° For U<O0 and @, large enough, ¢ ~'€Q2(¢) converges to a dilation
of the Wulff region for 1/B(6).°

2. CLassicAL EvoLuTiOoN: WRINKLINGS AND WEDGES

Throughout the paper we restrict attention to energies f(#) and kinetic
moduli b(#) that are consistent with following hypotheses:

fis C? and >0; (2.1a)

each convexifying tangent to the Frank diagram & intersects &
at most at two angles, and there are at most a finite number of

such tangents; (2.1b)
g(8)>0 at each GS angle 8, (2.1c)
b is continuous and strictly positive. (2.1d)

We begin with a discussion of regions whose boundaries evolve according
to (1.5), but with normal angles constrained to be GS, so that (1.5) is

° This result, conjectured by Angenent and Gurtin [ AG1], was proved by Soner [So] for
G >0 and B with a convex polar diagram, and extended in [AG2] to general B> 0. Cf. Frank
[Fr].
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parabolic. Such boundaries will generally contain corners which are con-
sistent with (1.11) and for which the jump in normal angle removes angles
of backward parabolicity of (1.5).!° Not all initial data are consistent with
evolutions of this type; in particular, the initial region 4 must be admissible
in the sense that'!

A is closed with 24 piecewise C?, and at each point of smooth-
ness the (outward) normal angle # is GS (so that g(8)>0); (2.2a)

(1.11) is satisfied. (2.2b)

For each 1€ (0, T), let 2(¢) = R? be given. Then £2(1) is a classical evolu-
tion in (0, T) if:

€(t) is admissible at each re{0, T); (2.3a)

the evolution equation (1.5) is satisfied on each interval of
smoothness of d€2(¢) (up to the endpoints). (2.3b)

If, in addition,
Q0)=8Q,, (2.4)

then (t) is a classical evolution from Q.

THeoreM 2.1 (Existence and Uniqueness of Classical Evolutions [ AG2]).
Let Q, be bounded and admissible. Then there is a unique maximal classical
evolution £(t), te [0, Toax); from Q. Moreover, 882(t) is piecewise C™ at
each te (0, T, )

By definition, if the boundary curve 0§2(¢) of a classical evolution Q(¢)
has a corner corresponding to an angle jump from &, to #,, then (8,, 8,)
is a GUS angle-interval and C(4,)=C(f,). Suppose that 6,, 6, is such a
pair. Then we can construct classical evolutions, called (6,, 8,)-wrinklings,
whose normal angles jump back and forth between &, and #, [AGI,
Sect. 973; the flat portions of the wrinkling with angle 8, (i=1, 2) are then
called 6;-facets. By (1.5), each €,-facet evolves according to

V= -5(6)U, (2.5)

" The motivation for considering such regions can be found in [AGI, Sect. 9; AG2,
Sect. 2; G2, Sect. 11].

"' An assumption of piecewise smoothness for a boundary curve I" will always contain the
tacit assumption that I" is locally graphlike, so that, e.g., sets with a “figure 8" boundary are
ruled out.
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and from this we may conclude that the wrinkling itself evolves as a rigid
body with velocity @ given by (1.16). A (6,, 8,)-wrinkling with a single
corner is called a (8., 8,)-wedge. A (6,, 8,)-wedge (1) is prescribed by
specifying: (1) whether Q(t) is convex or concave; (ii) the position of the
corner at some time.

Suppose that 982, is a piecewise flat curve whose normal angle jumps
back and forth between 8, and 6,, with 0Q, the c-level set of an auxiliary
function @,; ie.,

092, = {xe R%: ®y(x) =c}, Q,={xeR* ®y(x)>c}. (2.6)
Then £, 1s the initial set of a (8, ,)-wrinkling Q(¢) if and only if

Q)=+ to={xeR* &1, x) =}, D(t, x) = Dy(x —tw). (2.7)

3. ViscosITy SOLUTIONS: RELAXED EvoLuTIONS

We will use the relaxed equation (1.1) to discuss evolution from an
initial region that has normal-angles § with g(#) <0. In the derivation of
(1.1), G and B are the effective moduli for f/ and b, but we will generally
require only that G and B satisfy (1.2).

A. Definitions

We are interested in the relaxed evolution problem defined by the
relaxed equation (1.1) supplemented by the initial condition (2.4)

B(o)V=G(O)K—-U, 20*)=2Q,. (E)

Suppose that B, G, and Q, are such that (E) has a smooth solution Q(t)
with 0€2(t) the c-level set of an auxiliary function &:

o2(t)={xeR%: ®(s,x)=c}, QA ={xeR:P(t,x)=c}. (3.1)

Assume further that @ is a smooth function whose spatial gradient V@ has
|V®(1, x)| never zero on 0£2(t). Then @ satisfies the PDE

&, = F(VP, VP), 3.2)
where V& is the Hessian matrix of second spatial derivatives of @, while
Z(p, A)=B(0)"" {G(0) T() - AT(6)— U [p|}
=B(0) ' {GO)u[(I-p®p) Al Ulpl}, (3.3)
f=sin""(~py),  p=p/Ipl
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for all vectors p # 0 and all symmetric matrices A. Thus solving (E) at least
formally reduces to solving (3.2) subject to an initial condition

B(x, 0) = By(x) (34)
for all x e R%, where @, is an auxiliary function satisfying
02, ={xeR: Dy(x)=c}, Ry={xeR%:Dyx)=c}. (3.5)

Z defined by (3.3) has two chief properties upon which much of the
level-set theory of (3.2) is based: the geometric property

F(ip, JA +vp@p)=1F(p, A) (3.6)
for all 4120, ve R; and the elliptic property
F(p,A+B)=2F(p. A) (3.7)

whenever B is symmetric and positive semi-definite.

The level-set method is not intrinsic, since it requires data irrelevant to
the problem: namely, the values of &, away from an arbitrary small
neighborhood of 0Q2,. A method of circumventing this is to work with the
characteristic function'?

u(t, X) = xonix) (3.8)

of the region £2(¢). 1t is reasonable to expect that u should, in some sense,
satisfy (3.2), an expectation motivated by viewing u as the limit of a
sequence {®,} of functions @, consistent with (3.3} for, say, ¢=1/2. We
will use the theory of viscosity solutions'® to define the sense in which u
satisfies (3.2).

Let 2 be a bounded scalar function on a subset # of R”; then A* and
h,, respectively, denote the upper and lower semicontinuous envelopes of h
defined on cl # by

h*(z) =lim sup A(q), h(z) =lim inf h(q), qe K. (3.9)
q—z

q—z
Let u be a bounded function on [0, «0) x R% Then u is a viscosity sub-
solution of (3.4) if, for every (scalar) test function we C" ({0, o0) x R?),

wllg, Xo) < F *(Vw(t,, X), VZW(to,xo)) (3.10)

12 Cf. [BSS].
'3 Crandall and Lions [CL], Crandall ef al. [CEL], and Jensen [Je]. A recent article of
Crandall et al. [CIL] provides an excellent survey of the subject.
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at every local maximum of u* —w; u is a viscosity supersolution of (3.4) if,
for every such w,

Wz(to, x()) ; 9*(Vw(to, xO)s Vzw(t()’ xO)) (31 ])

at every local minimum of u, —w; u is a viscosity solution of (3.4) if u is
both a viscosity subsolution and a viscosity supersolution of (3.4) [CGG].
We will also use viscosity subsolutions, supersolutions, and solutions on
finite time intervals (0, T').

Let £2(¢), ¢ 20, be given, and define u(1, X) =y, (x). Then Q(1), 1 =0, is
a y-subsolution or a y-supersolution of (1.1) according as w is a viscosity
subsolution or viscosity supersolution of (3.4) and £(¢) is uniformly
bounded on compact time intervals; Q(z), t =0, is a relaxed evolution if it
is both a y-subsolution and a y-supersolution of (1.1).

Let

Q*0*)={xeR%: limsup w*(t,y)=1},
=0t y—+x

Q*(O+)={XER2: llmlnf u*(t’y)zl},

0ty - x

so that Q*(0™") is closed, while 2,(0*) is open. Then Q(1), 120, is:

(a) yx-subsolution of (1.1) compatible with Q, if it is a y-subsolution
and Q*(0*)=cl 2;

(b) a y-supersolution of (1.1) compatible with Q, if it is a y-supersolu-
tion and 2,(0*)2int £,;

(c) a relaxed evolution from $, if it is a y-subsolution of (1.1)
compatible with 2, as well as a y-supersolution of (1.1) compatible
with 2,.

Note that if a relaxed evolution is to take on initial data £, in a classical
sense, then £, must be regular (i.e., cl Q=cl(int 2,)).

One should expect lack of (global) uniqueness for relaxed evolutions
from a given initial set;'* with this in mind, we introduce the following
definitions: the upper and lower envelopes % (t) and £(t) for relaxed evolu-
tions from an initial set Q, are defined at each ¢>0 by"

'* For G continuous there are conditions that guarantee the uniqueness of solutions [ BSS,
So]l. For motion by mean curvature and smooth initial data (V' = K) uniqueness holds generi-
cally [ES3].

15 Cf. [ So, Sect. 11].

505/119/1-5
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4 () = cl{union of all values at ¢ of y-subsolutions of (1.1)
compatible with Q,},
#(1) = int{intersection of all values at  of y-supersolutions of (1.1)

compatible with Q,};

the graph up to time T of a time-dependent set A(¢) is defined by

graph, A= |J) [A()x{1}];

0T

the time
T onig = sup{ T: graph, % = cl(graph, ¥) and int(graph, %) = graph, Z}
is the uniqueness time for relaxed evolutions from , and, for T,,>0,
Quuglt) =#()=cl ZL(1), 1[0, Typg)
is the unique relaxed evolution from 0,.

B. Existence and Uniqueness

We assume throughout this subsection that

G and B satisfy (1.2);

2, is a prescribed initial domain, assumed compact.

{Note that we do not require the consistency of B with (1.3)).

THEOREM 3.1 (Existence and Local Uniqueness of Relaxed Evolutions).

(a) there is at least one relaxed evolution from Q;
(b) the upper and lower envelopes are relaxed evolutions from .
If, in addition, 3Q, is C°, then
(c) the uniqueness time for relaxed evolutions from Q, is strictly
positive;'®

We postpone, until Section 8, the proof of this theorem and the next.

Let M([0, T] xR*) denote the set of all bounded functions on
[0, T]x R? that are equal to a constant outside of a large ball; ie,
@ e M([0, T] xR?) if and only if there are constants « and R such that

1 1If Q, is strictly star-shaped, then Tuniq = % (cf. [So, Sect. 9]; a more general condition
is given by [ BSS, Sect. 4]).
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@(t,x)=a for x| > R; here « and R may depend on ¢. We define M(R?)
similarly. Finally,

M([0, c)x R} = (| M([0, T]xR?),

T=>0

ie, pe M([0, oc)x R?) if and only if for every T there are constants o,
and R, satisfying ¢(t, x) =a, for |x| = Ry and t€[0, T].

Let &, be an auxiliary function for the initial set Q,; that is, a con-
tinuous function @, € M(R?) satisfying (3.5). Then ® e M([0, ) x R?) is a
level-set solution of (1.1) if @ is a continuous viscosity solution of (3.2); if,
in addition, & satisfies the initial condition (3.4), then & corresponds to @,.

THeEOREM 3.2 (Existence and Uniqueness of Level-Set Solutions).'”
There is a unique level-set solution of (1.1) corresponding to any given choice
of auxiliary function @, for . Moreover, the upper and lower envelopes for
relaxed evolutions from , are given by

U(t)={x:P(1,x) =}, L)y ={x: D1, x)>c}. (3.12)

Thus the sets {x: @1, x)=c}, {x: P(1,x)=c}, and {x: D(1,x)>c} are
independent of the choice of auxiliary function @,.'8

C. Comparison

In this subsection, we state comparison theorems related to weak solu-
tions of (1.1) and (3.2). We assume throughout that

G and B satisfy (1.2);

we do not require (1.3). The next theorem is the key technical result of the
paper.

THEOREM 3.3.'° Let ¢ e M([0, T} xR?) be a viscosity subsolution and
WweM([0, T} xR?) a viscosity supersolution, both of (32) on (0, T)x R~
Then

sup (@*—y,)=sup [¢*(0,y)—¢.(0,y)] (3.13)

[0, T] x R? y e R?

'” For G continuous and nonnegative, uniqueness and existence follow from Theorem 6.8
of [CGG].

'8 Cf. Theorem 7.1 of [CGG] for the case in which G is continuous and nonnegative.

1% Ohnuma and Sato [ OS] have independently established this theorem using a completely
different method of proof.
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Suppose that Q,(¢) and Q,(¢) are respectively a y-subsolution and a
x-supersolution of (1.1) and set

ut, X) = xg,n(X).

Since y-sub- and supersolutions are assumed to be uniformly bounded on
compact time intervals, u,e M([0, oc) x R?). Then (3.13) with ¢ =u, and
Y = u, yields
(u)* (£, %) —(u3), (1, X) < sup [(2)* (0, ¥) —(u3), (0,¥)] (3.14)
yeR

and we have

CororLrary 3.1 (Weak Comparison). Let Q,(t) be a y-subsolution and
Q,(t) a y-supersolution of (1.1). Suppose that, for all x,

(u)* (0, x) < (uy), (0, x). (3.15)

Then for all t 20,
cl Q,(t) = int Q,(1). (3.16)

Condition (3.14) follows if (3.15) is satisfied at 1=07". Unfortunately,
(3.14) is stronger then the requirement: 2,{0) < £2,(0).
We say that (1.1) with initial data Q, has strong comparison in (0, T) if

graph ; Q, = cl(int(graph, 2,)} (3.17)

for all 1€(0, T) for every y-subsolution 2,(¢) of (1.1) compatible with £,
and y-supersolution £2,(¢) of (1.1) compatible with £,.

The next result follows from the definitions of the upper and lower
envelopes #(t) and #(r) and the uniqueness time T, for relaxed
evolutions from Q,.

THEOREM 3.4. Let Q,(¢) be a y-subsolution and 2,(t) a y-supersolution,
both of (1.1) and both compatible with Q,. Then for all t 20,

cdQ,(1)su (1), int Q,(1) =2 .#(1).

Thus (1.1) with initial data Q, has strong comparison in (0, T ;).

4. RELATION BETWEEN CLASSICAL AND RELAXED EvVOLUTIONS

Our next theorem shows that our choice of effective moduli G and B for
the relaxed problem is the only possible choice, at least if wedges are to be
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relaxed evolutions; what makes this result so interesting is that G(f) and
B8} differ from g(#) and b(#) only at angles # that are not globally stable,
and wedges by definition do not involve such 6.

THeoreM 4.1 (Effective Moduli are Canonical). Let fand b be consistent
with (2.1), let G and B be consistent with (1.2), and let G(8) = f(8) + f"(0)
and B(0) = b(8) for all GS angles 0. Then all wedges are relaxed evolutions
only if G and B are the effective moduli for f and b.

Proof. 1t suffices to show that G(#) =0 and B(6) satisfies (1.17) on any
GUS angle-interval (6,,8,). Choose such an angle-interval (8,,6,).
Consider a (8, 6,)-wedge €2(r) with corner at the origin at t=1, and let
o be the corresponding rigid velocity defined by (1.16). Assume that Q(¢)
is a relaxed evolution, so that u(f, X) =y (X) is a viscosity solution of
(3.2).

Let Q(¢) be convex, and let

wit, x,0)=1—-[x—(r—1)©] -N(8)
for all (¢, x) and all 8e(8,, 4,). Then by (2.7),
Qy={xeRhw(t,x,0)>1,0=4,6,}.
Fix Ae(6,, 0,). Then,
¥, x)—wit,x, 0) <u*(1,0—w(1,0,60)=0

for all (¢, x) near (1, 0). Thus, since u 13 a viscosity solution of (3.2),

w(l,0,80)<F*Vw(l1,0,0), Vw(l1,0, 0)).
Further,

w,(1,0,0) = N(f), Vw(l, 0, 8) = — N(9), Viw(1,0,6)=0,

and (3.3) yields
F*(Vw(l,0,0), Vw(1,0,0))= — U/B(&);
hence
BO)< —Ule-N(@#)] L (4.1)

Now let Q(¢) be concave, and let

w(t, X} =w(t,x,0)= —[x—~(t—1) @]} -N(O)
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with @ fixed. Then u, —w has a local minimum at (¢, x) =(1, 0), so that,
arguing as before,

B(0)> — Ulw-N(6)] "
Thus, appealing to (4.1),
B0)= —Ulw-N@)]' forall 8e(f,,b,), (4.2)

and (1.17) follows from (1.16), (4.2), and (1.12).
Next, to show that G(8) =0 on (#,, 6,), we again take £(¢) to be convex,
and let

weLx, H=1—-[x—(t-DNa] NH+p[x-(t—1Ha]?
for all (¢, x) and all #e(¥,, 8,). Fix 8 and write w(t, x}=W(s, X, 6).
We first show that, given any fe R, u* —w has a local maximum at
(t,x)=(1,0). Choose (1,y) with u*(t,y}=1. Then
[y—(t—-1e] N6)<0,
i=1,2, and, since fe(0,, 8,),
[y—(z-1 o] -NO< —-a<(,

a=a(#). Therefore if (7, y) is close enough to (1, 0) that |y—(t—1})®| <a/28,
then

l=u*(r,y)<1+5aly—(r—1) o
Sl-[x=(—D ol -NO)+plx—(t-1)o]*=iry)
Further,
wry)20  if ly—(z—Dol+[flly-(r-Del*<l,

and hence
u¥(7,y) —w(t, y)<0=u*(1, 0) — (1, 0)

for all (t,y) sufficiently close to (1, 0); thus

W1, 0) < F X1, 0), VHi(l, 0)).
Further,
Ww,(1,0) = -N(b), i1, 0)= —IN(8), V2(1, 0) =281,
F*(Vi(1,0), V3i(1,0)) = (2pG(8) — U)/B(8);
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hence
o - N(0) < (26G(8) — U)/B(0), (4.3)

and this must hold for all fe R and f€(4,, 8,). On the other hand, by
(4.2}, o-N(8) = — U/B(8), and (4.3) can hold for all § only if G(6)=0. |

THeorEM 4.2 (Classical Evolutions are Relaxed Evolutions). Ler 2, be
bounded and admissible. Let G and B be the effective moduli corresponding
to f and b, with f and b consistent with (2.1). Let (1), te[0, T,.,), be the
maximal classical evolution from Q,. Then the uniqueness time T, for
relaxed evolutions from Q, satisfies T,,q 2 T .. and Q(1) coincides with the
unique relaxed evolution 2 ,,,,(1) for all 1[0, T,,).

Proof. Let (1), 0<t<T,,, be a classical evolution. We will show
only that Q(¢) is a x-subsolution; the proof that (¢} is a y-supersolution
is analogous. Let u(f, X) = y5,,(x). Suppose that for a test function w

u*(, x) —w(t, x) <u*(ty, Xo) —wlty, Xp) =0

for all (¢, x) near (14, Xg).
Case 1. xgeint €(¢,). Then u*(s, x)=1 for all (¢, x) near (¢, Xq) and
w1y, Xg) =0, Vw(t,, Xo) =0, Viw(tg, Xo) 2 0.
Hence
F X (Vwlty, Xq), Vwl(iy, X)) =0
and (3.10) 1s satisfied.

Case 2. x,€ R?\Q(1,). Then u*(z, x) =0 for all (1, x) near (1, X,) and
an analysis similar to that of Case 1 yields (3.10).

Case 3. x,e0Q(1,) and Vw(ty, xo)=0. Then w (¢4, xo) =0, since the
normal velocity V of 802(¢) is finite. Moreover, the definition of the upper
semicontinuous envelope yields

F*(Vw(ty, Xg), VW(lg, Xo)) = G(0) B(0) ' max{q-V*w(1y, X,) q: |q) =1}.
We claim that the quantity max{ ---} is nonnegative. Indeed, x,€ d9(1,)

and t,< T,..; hence X, is not an isolated point of (¢,) and there is a
sequence {x,} with x,edQ(1y), x,#X,, and x,—X,. By choosing a
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subsequence, if necessary, we may assume that (x, —X,)/|x, — X, | is con-
vergent, say to e. Then

w(tO’ xn) = u*“o, X,,) =1l= W(IO’ xO)’

€- V2M’Y(I0’ XO) e=2 lim [W(IO’ xn) - w(tﬂa XO)]/IXII —Xq 21 .

so that
0=w,(1y, Xg) < F *(Vw(t,, X¢), Vz(to, Xo)).

Case 4. Xg belongs to a smooth part of 9Q2(¢) and |Vw(t,, X)| #0.
Then the normal angle 8, the curvature K, and the normal velocity V of
08(1) at t =14 and x, satisty

N(O) = — Vw(ty, X,)/|Vw(ty, Xo)l,
K< divi Vw/iVw| ](1,, Xo),
V=w,t4, X0)/IVW(1g4, Xo)l,

and (3.10) follows from (1.15).

Case 5. X, is a corner point of Q(t,) and |Vw(zy, xo)] #0. Let (8,, 6,)
be the GUS angle-interval that defines the corner, and let z(r) with
2(1,) = X, denote the trajectory of the corner for f near ¢;,. Then 0Q(z) must
have a “convex-type” corner of the type shown in Figure 4.1 near z(t), with
curvature K(x, t) <0 for x near but not equal to z(z). Thus and by (1.5),
for such x the normal velocity of 9£2(¢) must satisfy

Vix, 1)< — U/bl8(x, 1)). (4.4)

On the other hand, consider the simple (8,, 8,)-wedge dA(t) which has
A(t) convex and has corner at x, at time ¢, and let ® be the rigid velocity
of the wedge as defined by (1.16). Then, since this wedge must have normal
velocity V'= — U/b(6,) on each of its facets, we may conclude from (4.4)
that there is a ball # centered at x, such that A(t)nZ = Q(1)n Z for all
t near ¢, with 1 <1¢g; thus

AN B {xw(t,x)=1}.

Further, since A(z) moves with rigid velocity ® and x, is the corner point
of A(t,),

Xo+ (t—tp) - N(x)] N(a) e A(¢)
for all 7 and all e [68,, 6,]. Thus for such a and for ¢ near ¢, with ¢ <1,

w(t, X+ (1 — 1) 0 - N(a)] N(a)) = 1 = w(z,, Xq)
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and it follows that
w1, Xo) + [@ - N(a) J[Vw(¢o, Xo) - N(x) ] <0 (4.5)

forall ae[6,,6,].
Now let a€[8,, 8,] be the angle defined by

Vw(ty, Xo)/|Vw(t, Xo)| = — N(a);
then (4.5) yields

w{tg, Xo) <@ N(a) [Vw(t,, X,)l, (4.6)
and, by (4.2),

w,(to, Xo) < — U |Vw(ty, Xo)|/B(a). 4.7)

If a€(6,, 0,), then G(x) =0 and (3.3) yields
FH(Vw(to, Xo), V?W(to, Xo)) = — U |Vw(to, Xo)I/B(a), (48)

so that, by (4.7), (3.10) is satisfied. If a equals 8, or 8,, then G(«) is
generally nonzero, but the definition of #* yields

Z*(p, A) =lim sup F *(p,, A)

Hn =

for any sequence p, — p. Let p=Vw(¢,, X,) and choose a sequence so that
G(8,) =0 for all n, where 4, is defined by N(8,)=p,/Ip,|. Then (4.8) is
replaced by

FH*Vw(ty, Xo), VW(ty, X0)) = — U |Vw(ty, Xo)|/B(x), (4.9)

which, with (4.7), yields (3.10).
We have only to show that

T oniq Z Trmax - (4.10)

Given 2, we can construct a one-parameter family of admissible initial
domains Q,(d) (|d] < J, for some J, > 0) satisfying

Q) cQy(F)  if 858, (4.11a)
lim Q4(8') = 24(0), (4.11b)
3 —9

the limit being in the Hausdorf metric®® Let Q(z;6), (1€[0, Tyur(d)),
[6] £J,) be the unique maximal evolution from the initial data Q,(J)

* For bounded sets the Hausdorf metric dy(A4, B) is the largest of the distances
sup{dist(x, 4): x e B} and sup{dist(x, B): xe A}.
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(cf. Theorem 2.1). Since for 1€ (0, T,,,.(8)), 0Q(t; §) is piecewise smooth,
we may use the compactness lemma [ AG2, Lemma 8.3] and the unique-
ness of classical solutions to show that: (i) T,,.,(d) is 1ower semicontinuous
in 6 (cf. also the proof of [AG2, Lemma 8.2]); (ii} by Corollary 3.1,
Q(; 0= Q(1;8") If 6=6'; (in) for fixed ¢, the map 5HQ(I,5) is con-
tinuous in the Hausdorf metric. {Assertion (iil) is proved by showing that
any limit point of (r; ) as d — ¢’ is a classical solution with initial data
Q,(d’) and hence by uniqueness is equal to Q(r; d').

Fix T< Ty = T1a:(0). By the lower semicontinuity of 7,,.(J) there is
a d(T)> 0 satisfying

Tox() 2T for all |6 <d(T).
For (1, x)e [0, T] x R? define
o1, ):{inf{& [6] sé(T), er(t;é)},
—T) if the set above is empty.
Since Q(1;6)= (1, 8") for 6 =6,
{x: (1, x) =} =Q(1;9)

whenever || <&8{T) and te[0, T). Morecover, for each J, 2(r;d) is a
classical and therefore related evolution from £,(J). From this one can show
that @ is a continuous viscosity solution of (1.1), so that, by Theorem 3.2,

U(t)={x: D(t,x) 20} =Q(;0)=Q(1), L(t)={x: P(1,x)>0}.

Since

Im Q(r; 8) = (¢, 0)

LY
for every xe%(t), there are J,>0 and x, — x such that x, e Q2(;6,)
< £(1). Hence cl £(t)=%(t) for all [0, T]. An analogous argument
shows that int % (1) = £(¢) at each 1e[0, T]. Hence T,,,>T, and the
desired conclusion follows, since T < T, ,, was chosen arbitrarily. |}

Remark 4.1. For bounded, admissible initial data €, there exist a
maximal existence time T, and a classical evolution &(¢), 1€[0, dex
from Q,. There is also (at least one) relaxed evolution Q(¢), te [0, o0)
from £, and, by Theorem 4.2,

Q(1)=Q(1) for all t€[0, Tphay)

Hence the relaxed evolution represents a weak extension of the classical
evolution €(r) after €(¢) develops a singularity at r=T,__.
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5. CONVERGENCE

Throughout this section

G and B satisfy (1.2);
Q, 1s a prescribed initial domain, assumed compact;

T ,pniq 1s the uniqueness time for relaxed evolutions from €.

A. General Results

We say that a sequence {Qf} of compact domains approximates
provided the signed distance to £2) approaches the signed distance to €,
uniformly on R

THEOREM 5.1 (Convergence of Relaxed Evolutions). Assume that
Toniq > 0. Let {Q3} approximate Q. For each integer n, let Q"(1), t€ [0, o0),
be a relaxed evolution from Q7. Then, for each 1€ [0, T,,,), £2"(1) converges,
in the Hausdorf topology, to the unique relaxed evolution from Q.

We now state a result that holds for all time. The proof will be given at
the end of this section, as will the proof of the theorem just stated.

THeOREM 5.2. (Convergence of Level-Set Solutions). Let @ be the
unique level-set solution corresponding to an auxiliary function @, for Q.
Let {®,} be a sequence of level-set sofutions of (1.1) such that

lim @,(0, x) = ®,(x)

uniformly on R% Then
lim @, (1, x)=¢&(1, x)

uniformly on compact subsets of [0, oc ) x R

B. Infinitesimally Wrinkled Solutions as Limits of Solutions from
Admissible Initial Domains

If the initial domain , is admissible, then there is a classical evolution
from £2, up to a maximal existence time 7T, ; each relaxed evolution from
Q, (unique up to T, > T,,.) supplies a weak extension of this classical
solution for times greater than T,,,,.

Suppose that Q, is not admissible (for example, suppose that 02, has
normal angles @ for which g(€) < 0). Then the notion of a classical evolu-
tion from £, breaks down, since classical evolutions are required to be
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admissible and hence to have globally stable normal-angels. On the other
hand, there is a relaxed evolution from £,. The derivation of the relaxed
formulation is based on allowing the boundary curve to develop infimi-
tesimal wrinkles whenever its normal angle is not globally stable. We now
use Theorem 5.1 to give a partial justification of this proceedure, under the
assumption that 0Q, is C' and piecewise C?, and that T, > 0.

We first approximate Q, by a sequence {Q7} of admissible bounded
domains. We accomplish this by dividing 8Q, into curves whose normal
angles are GS, interspaced with curves whose normal angles are GUS. We
approximate 9, by leaving the GS curves unchanged, but replacing each
GUS curve by a wrinkled curve. If I"is such a GUS curve, then the normal
angles of I' lie in a GUS angle-interval (#,, #,) with #, and 6, angles for
a corner consistent with (1.11). We replace I by a wrinkled curve #” such
that: the endpoints of #~ coincide with those of I, the facet angles of #~
are 8, and #,; #" lies in an arbitrary small neighborhood of I". The replace-
ment for 082, constructed in this manner is admissible and arbitrarily close
to 8Q, in the required sense.

For each n, we let Q2%(¢), te [0, oc), be a relaxed evolution from the
admissible initial domain Q7. Then, by Theorem 5.1, for each t€ [0, T',;,),
£2%(2) converges, in the Hausdorf topology, to the unique relaxed evolution
from Q,.

C. Proofs
Proof of Theorem 5.1. 1° Let

dist(x, 002,) A 1, xe,,
Po(x) = { -

—(dist(x, 002,4) A 1), x¢Q,.
Then @, is an auxiliary function for €, as defined in Section 3, and there
is a unique level-set solution @ of (1.1} corresponding to @,. For each n,
let @,,(x) and ®,(r, x) be defined in the same manner using £2; as the
initial set. Since {Q}} approximates Q,, P,,(x) converges to Dy{x),
uniformly for x € R% Thus Theorem 5.2, which will be proved subsequently,
implies that @ (1, x) converges to @(¢, x), uniformly on compact subsets of
[0, o) x R,

2° Let %(r) denote the (closed) ball of radius r centered at the
origin. Since 2, is compact and {Q}} approximates Q, there is an R, such
that Q5 = #(R,) for all n. Set

u=|U| {inf B(9)} -1
Then
By(t) = B(Ry +put)
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1s a gz-supersolution of (1.1) compatible with £, and hence

-1, X ¢ int B(1),

WI’ = .
(2, %) {1, X € int By(1).

is a viscosity supersolution of (3.2) with ¥(0, x)>®,(0, x). Thus
Theorem 3.3 with ¥ as supersolution and @, as subsolution yields ¥ > @,,.
In particular,

D (1, x)< —1, X ¢ int B,(1).
3° By Theorem 34,
{x: ®D,(t,x)>0} cQ"(1) < {x: D (1,x) >0} (5.1a)

for t = 0. Therefore
Q7(t) < By(t) (5.1b)

for t 2 0. Also, on [0, T,
by

niq) the unique relaxed evolution from €, is given
Q)= {x: D(1,x) > 0}. (5.2)
4° For 6>0, let
(1, )= {x: D(1,x)= — I}, P(t,0)={x: D(1,x)>5}.

Since @,(t, x) converges to @(t, x) locally uniformly, we may use (5.1b) to
conclude that there is an n(é) such that, for all n > n(d) and r€[0, T,,,),

(1, 6)2{x: D,(t,x) =0}, L8 = {x: ®,(1,x)>0}.

Hence (5.1a) yields
L, 8) = Q) U (L ) (5.3)

for all n=n(d) and te [0, T pnq).

5% Using the arguments of step 2°, we can show that
UL, 0), L1, 8) < Byl1).

6° Our next step will be to show that, for every fe[0, T,,), the
Hausdorf distance

ds=dy(U(1;6), £(1;6))
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satisfies
d; -0 as o0—0. (5.4)

Since £(t;0) =% (t; 6), we may use the definitions of Z(1; ) and % (; J) to
conclude that

dy=supld(t, x; d): ®(t,x) = — 4},
d(t, x; 0)=inf{|x —y|: D(t,y) > 5}.
Choose x(0) satisfying
D(1,x(0)) = — 9,
d(t, x(8); 8) = dys — &.

(5.5)
Since x(8) e % (t; 6) = By(t) and By{1) is compact, there is a sequence (also
denoted by J) such that x(d) » x, as 4 | 0; hence
D(t, Xo) = lim D(1, x(5)) =0,
310
and x,e#(t). Also, re[0, T,,,); hence we may conclude from the

definition of T, that % (z)=cl £(¢), and there is a sequence y,, — X,,
y,, € Z(t), or equivalently, @(¢,y,,)>0. Thus, for all § < d(1,y,,),

d(t,x(0); ) < |x(8) — ¥,,|-
Now let § tend to zero and then m to infinity to obtain
lim d(¢, x(8); 8) =0,
310
and this, with (5.5), implies (5.4).
7° By (5.2) and (5.3),
dyu(R27(1), Q1)) <dw(u (1, 6), L(t,8))=d;

for every te[0, T

A\

miq)» 0> 0, and n>n(d). Therefore, by (5.3),

lim dy(Q7(2), (1)) =0

n— o

for all 1[0, Ty

Proof of Theorem 52. 1° Since @, is bounded and @ (0, x) converges
uniformly to @4(x), there is a « >0 such that

[@,(0, x}| <« (5.6)
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for all x € R2 Since iy =x is a solution of (3.2), the inequality (5.6) and the
Comparison Theorem 3.3 yield @,(7, x)<x. Similarly, y = —k vyields
?,(t,x)= —k. Hence

|P.(1, X)| <& (5.7)

for all (£, x)€[0, oo) x R2
2° For (t,x)€e[0, oc) x R?, define

d*(t,x)= limsup D,(s,y),

(5, ¥) — (£, x)

®-(1,x)= liminf @(s,y).

" —

(£, ¥)— {1, X}

Then & * is a viscosity subsolution and @~ a viscosity supersolution of
(3.2) in (0, oc) x R? (cf. [FS; Sect. 2.6 and 7.41).

3° Theorem 3.3 applied to the subsolution @ * and the supersolution
@~ yields
D71, x) =P (1, x)<sup [@7(0,y) - (0, y)].
Yy
Note that @, is locally uniformly convergent if and only if @+ =@ ~. Also,

by construction, @* = @, > @ ~. Hence to prove local uniform convergence
of @, it suffices to show that

DH(0,x)=Dy(x)=D (0, x), (5.8)

which we shall accomplish in the next three steps.
4° Let
g* =sup{G(8):0€[0, 2n)}, o= U]

For x € R? and é > 0, define (cf. (5.6))

' B 0, |x—y| gR(f, 5)’
W(t,x,yﬁ)—{_zk’ [x —y| > R(t; 6),

where R(t; 4) is a solution of

dR(t; 8)/dt = —g*R(t;8)"' —a, te (0, 7(5)),
R(0; )=,
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with T(8) < + oc the first time ¢ for which R(t;8)=0. For each y e R?,
{x:|x—yI<R(;9)},  te(0, T(3))
is a classical subsolution of the relaxed equation (1.1), and hence ¥ is a

viscosity subsolution of (3.2) on (0, T(J)) x R>.

5° Fix yeR? and let f, = @,(y). Then, for all < f,, there are § >0
and 7, such that

¥(0,x;y,0)+ < 2,0, x)
for all x e R? and n = 5,. Since ¥ is a viscosity subsolution of (3.4), it is clear

from the form of this equation that ¥+ f§ is also a viscosity subsolution
(34).

6° We now use Theorem 3.3 with subsolution ¥+ f and super-
solution @, to obtain

Y, xy,0)+ <D, (L x)
for all (¢, x)e [0, T()) x R?, hence
V(L xy,0)+ <D (L, x)

for all (¢,x)e[0, T(J)) x R%. Applying this inequality at (¢, x)=(0,y)
yields S <@ (0, y) for all g < fB,=P,(y). Therefore @(y)=@ (0, y).

7° To show that @,(y)=®*(0,y), we follow the procedure of the
three previous steps replacing ¥ with supersolution

0, Ix —yl < R(z; 9),

(e, x; y,5)={2k’ |x —y| > R(z; 6),

of (3.2). 1

6. LARGE-TIME ASYMPTOTICS

In this section we discuss the large-time asymptotics of relaxed evolu-
tions, assuming throughout that:

G and B satisfy (1.2) and (1.3);
2, is a prescribed initial domain, assumed compact.

In particular, we will prove that, for U <0 and £, large enough, 1 ~'Q()
converges to a dilation of the Wulff region for 1/B(8). This result, conjec-
tured by Angenent and Gurtin [AGI], was proved by Soner [So] for
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G>0 and B with a convex polar diagram, and extended in [AG2] to
general B> 0. We here follow the ideas of [ So, Sect. 12-131.

Let (1) =R? 1> 0, be given. Then (t) vanishes in finite time if there
1s a T>0 such that

Q=g forall t>T.
Given a function ¢ >0 on (0, oc) and a set 4 = R?, we write

Qt)~op(t) A as t—w
if there are functions, ¢,, , >0 on (0, co) such that

P (1) A= Q(t) = @,y(1) 4
for all sufficiently large ¢, and
@:(t)/e(t) > 1 as t— oo (i=1,2)
The Wulff region W(h) for a given function A(8) (cf. e.g., [ G2]) is the set
Wih)={xeR%: x-N(8)<h(8), 8€[0,2r]}.

Our main result of this section is

THEOREM 6.1 (Asymptotic Behavior of Relaxed Evolutions). Letr Q(t)
be a relaxed evolution from Q.

(a) If U>0, then Q(t) vanishes in finite time.
(b) If U<O0 with |U] sufficiently large, then

Q(t)~t|Ul W(1/B)  as t— c.

Assertion (a) is a direct consequence of

LEMMA 6.1. Let (1) be a y-subsolution of (1.1) compatible with §,.
Choose a, such that

int 2, < a, W(1/B). (6.1)
Then, for t >0,
QY (— Ut +ay) W(1/B). (6.2)

Proof. The right side of (6.2), denoted by A(¢), is a y-solution of

B@®)V=-U

505/119/1-6
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for t>0 [So, Sect. 12]. Since W(1/B) is convex, A(¢) has curvature <0.
Thus, since G >0, A(z) is a y-supersolution of (1.1); (6.2) then follows from
(5.1) and Corollary 3.1. |}

Assertion (b) is more difficult to prove; for that reason we first give a
simple proof under a more stringent hypothesis on B. To state this
hypothesis, let & denote the differential operator defined on functions H(8)
by

DH=H+H".

Then the polar diagram of H is convex at angles & for which 2H(8) >0,
strictly convex at angles with 2 H(#)> 0. We now establish (b) under the
assumption that, for some constant C> 0,

G< C%(1/B) (6.3)

on [0,2r], so that the polar diagram of 1/B is convex; in fact, strictly
convex at angles 4 with G(8) > 0. Granted (6.3), (b) follows from Lemma 6.1
and

LEMMA 6.2.  Assume that (6.3) is satisfied, and that U <0 and sufficiently
large that

o, int W(1/B) c Q,, oay= —2C/U. (64)
Let a(t) be the solution of
a'(ty= — U— Cla(t), a(0)=a,.
Then any relaxed evolution Q(t) compatible with Q, satisfies, for t >0,
a(t) W(1/B) < L(1). (6.5)
Proof. Let A(t)=a(t) W(1/B). Then A(t) is a y-solution of (1.1) with G
replaced by CZ(1/B) [So, Sect. 12]. Since W(1/B) is smooth and

0<G<C2(1/B), A(t) is a y-subsolution of (1.1) (with G); hence (6.5)
follows from (6.4) and Corollary 3.1. J

Proof of Theorem 6.1. 1° Let
g=sup G(6),  b=sup B(6),
and assume that |U| is sufficiently large that

o, int &, = Q,, g = —2g/U,
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where 4, is the unit ball in R Let a(¢) be the solution of
ba'(1) = —U—g/au(t),  o(0)=ao,

and let A(t)=0o(t) #,. Then A(t) is a classical solution of the isotropic
equation 8V =gK— U. Also, V>0, since «'(¢}>0 for all ¢>0; conse-
quently, A(z) is a y-subsolution of (1.1) compatible with Q,, and, by
Corollary 3.1, A(z) = £(t). Further, «(z) — oo as t — oo; hence:

as t— oo, (1) expands to fill the entire space. (6.6)

2° Let W,cR? be a sequence of strictly convex, closed domains,
with smooth boundary, satisfying

(1—=n"YY W(1/Byc W,< W(1/B). (6.7)
Further, let y,(6) denote the support function of W,
7.(0) =sup{x-N(0):xe W,}

(so that W, = W(y,)). Since W, is strictly convex and 0 W, is smooth, y, is
smooth and 2y, > 0. Also,

1/B(8) > sup{x - N(8): xe W(1/B)},

and hence, by (6.7),
1/B=y,. (6.8)
3° Let
¢, =ginf 2,(60)} 7"

By 2°, ¢, < o0, but ¢, may diverge to + oo as n— co.
Choose t, > 0 satisfying

a,=int W,c Q(t,), a,= —2¢,/U, (6.9)
and let a,(?) be the solution of
()= —U—cyfa(t), >4,
o, {t,) =1,.
Then A,(t)=a,(t) W, is a y-solution of

yn(g)il V=Cn°@yn(0) K_ U
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for t>1, [So, Sect. 12]. Further, (6.8), the definition of ¢,, the convexity
of A,(t), and the positivity of ¥ imply that

BO) V<y (0" V=c,9y,(0) K— UK G(O) K~ U:

hence A,(#) is a y-subsolution of (1.1) for t>¢,. By Corollary 3.1 and (6.9),
A, (1) = Q(1) for all t>1,, and using (6.7) we conclude that

a ()1 —n~Y) W(1/B) < Q(1), >, (6.10)
4° For t>1, define

at)y=sup{(1 —n "o, (t):n=1, 1,21}

Then a(t) W(1/B) < £(t) for ¢ >1t,. Also, for each n,
()= (1—n"YHa,s), t>1,.
Hence
liminfa(?)/t=(1 —n Hliminfa,(t)/t=—-(1—-n"YH U

for every n, and consequently

liminfa(s)/t > — U. (6.11)

5° Summarizing, in 4° and Lemma 6.1 we have shown that
a(t) W(1/B) = Q(1) < (— Ut + o) W(1/B),
which, with (6.11), yields

lim a(t) —Ut+o,) '=1;

I — oo

hence Q(t)~ 1 |U| W(1/B) as t— 0. |

7. PrROOFS OF THE COMPARISON THEOREMS

A. Sub- and Superdifferentials

We recall several definitions from the theory of viscosity solutions.?' Let
@ be a bounded function on (0, o) x R, and let & denote the set of

* Cf [CIL, Sect. 2; C; CEL; FS Sect. 5.4].
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symmetric 2 x 2 matrices. Then the subdifferential D *¢(s, x) and the super-
differential D~ g¢(r, x) of ¢ at (¢, x) € (0, oo ) x R? are defined by

D*o(t,x)={(q,p, A)e Rx R* x &: lim sup 2(¢*)(h, z) <0},

(h,z) =0

D= o(t,x)={(q,p, A)e Rx R*x &: lim inf D(¢*)(h, z) >0},
{

h,z)—0
where

DD(h,z)=2P(t,x; h,z; 9, p, A)
=(lhl+|2z1>) " { Dt + h, x +2)— D(t,X) —hqg—2z-p—z- Az};

we close the sets D*¢(t, x) as follows:

cDEop(e,x)={lim (q,,p,,A,): (¢, Pn» A,) €DE (1, X,), (8, X,,) = (1, X)}.

Then?? (g, p, A)e D* (1, x) if and only if there is a we C'? satisfying
wlt,x)=q, Dw(t,x)=p, D?w(t,x)=A,

and (¢, x) is a maximum of the difference (¢* —w). Hence ¢ is a viscosity
subsolution of (3.4) if and only if

g F*(p, A) for all (g, p,A)eD*¢(t,x)
and all (¢, x)e(0, o) x R%. A limit argument then shows that

g< F*(p,A) for all (gq,p, A)ecD* (s, x). (7.1)
Similarly, ¢ is a viscosity supersolution of (3.2) if and only if

g=7,(p. A) for all (q,p, A)ecD ¢(t, x) (7.2)
and all (¢, x) (0, o0} x R~

B. Semiconvex and Semiconcave Functions

Let C<=R? be a convex set. We say that ¥ is semiconvex on C if there
is a constant x such that

FY)=P(Y)+x |Y|?

is convex on C; ¥ is semiconcave on C if — ¥ is semiconvex.

21, eg., [FS, Prop. 4.1, Sect. 5.4]; since ¢ is not necessarily continuous, the proof given
in [ FS] must be slightly modified.
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Let ¥ be semiconvex. Since P(Y) is convex, the set of subdifferentials,
standard in convex analysis [C], is given by

OPY)={PeR“ P Y)2¥(Y)+P-(Y-Y), VYe C}.
In addition, w the directional derivatives of ¥ exist and are given by

(9/02) P(Y) = lim r O P(Y +rZ)— P(Y))=sup{P - Z: PedP(Y)} (7.3)

for Z e R“\{0}. We now define
BP(Y)=0W(Y)+{—2xY} = {P: P=P—2cZ, Pcd¥(Y)}.
Then, using the formula for the directional derivative of ¥,

(8/0Z) ¥(Y) = sup{P-Z: P 0¥(Y)}

for Z e R/\{0}.
The following properties of semiconvex functions are well known:

¥ is differentiable at Y if and only if d¥(Y) is a singleton. (74)

if there are sequences P, - P, Y, —»Y and convex functions
i (uniformly on C) satisfying P, € 0%(Y,,) for all n, then
Pecd?(Y). (7.5)

Our next result is an implicit function theorem for semiconvex functions.
Let ¥ be a semiconvex function on C, and let 0 be an interior point of C.
We assume that ¥ is differentiable® at 0 with a nonzero gradient P,; and,
without loss in generality, we assume that P, =P,/|P,| satisfies

P,=(0,0,..,0,1).

Let §, be a constant satisfying

|P—P,|<|P,l/2, VPedP(Y), |Y|<24,, (7.6a)
P,> P12, VPedP(Y), |Y|<24,, (7.6b)
#(20,)={Y:|Y|<2d,} =C. (7.6¢)

Note that the existence of d, follows from (7.5) (with ¥, =¥ for all n).
ForY=(Y,,Y,,... Y, |, Y,)eRY we write

PY=(Y,Y,, ., Y, eRL

2 We make this assumption to simplify the analysis; an analogous result holds under the
weaker assumption 0¥(0) n {0} = (.
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THeOREM 7.1 (Implicit Function Theorem). There is a 6 >0 and a
unique real-valued, Lipschitz continuous function I on () such that, for
all Y,

YPY, (Y)=¥(Y,P,)  forall Y=(?Y,Y,)eB(). (1.7)

Moreover, 6 depends only on |Py|, §,, and the Lipschitz constant of ¥ on
B(d,).

Proof. 1° For |Y|<J, and a e R with || <J,, we define

D(o; Y) = V(PY, o) — P(Y,P,).
By (7.3),

Y(PY, 0) = (Y) + L (8/0P,) ¥(2Y, p) dp,

(8/0P,) Y(PY, p) =sup{ P, Pe8¥(PY, p)}.
Thus, by (7.6b), for |Y| <, and || <d,,

YPY, a) = P(Y)+ (a—Y,) |Pol/2, VazY,, (7.8a)
P(PY, ) < P(Y) +(a— Y) |Pl/2, VYa<Y, (7.8b)

2° Our next step will be to show that there is a d € (0, §,] such that
D(—6,;,Y)<0<D(6,;Y) (79)
for all |Y| <. Indeed, by (7.8a),
D5, Y)=P(PY,5,)— P(Y)+ W(Y)— P(Y,P,)
2(8,— Y,) [Pgl/2~L|Y—Y,P,l,

where L is the Lipschitz constant of ¥ on #(d,). (¥ is semiconvex on C
and hence Lipschitz continuous on every compact subset interior to C) Let
J be the lesser of 4,/2 and &, |Py|/4L. Then for all |Y| <4,

P(6,;Y) 2 (6, —~9) }P0]/2—L(]Yl =YD,
>3, [P,|/4~2L5>0.

The other inequality in (7.9) is proved similarly, with the same choice
for &.

3° Fix |Y| < J and consider the map

ta)=P(o;Y), ae[—6,,0,].
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Then # is continuous on [ —4,, J,] with
£(—6,)<0<72(8)).
Also, the argument leading to (7.8a) yields, for a, B[ —9,, d,],
L)y = (B)+{a— ) 1Pyl/2 for azp.

Hence there is a unique a, €[ —4,,d,] such that £(a,)=0.
4° For each |Y| <6 set
IY)=a,;
Then, for all |Y]| <6,

0="~(o,) = V(2Y, [(Y)) — (Y ,P,),

and (7.7) is satisfied.

5° OQOur last step will be to show that 7 is Lipschitz continuous. Let
{Y], IX]} <6 be given. Then (7.8a) and the Lipschitz continuity of ¥ yield

S(I(X)+p; Y)=¥PY, IX) +p)— V(Y ,P,)
> Y(PX, I[(X)+ p) — ¥(X,Po)—2L | X — Y|
= Y PX, [(X) + p) — V(PX, [X)) + ¥(PX, [(X))
— (X, P,) —2L X — Y]
>p [Pol/2+ ®(I(X); X)— 2L X~ Y| >0

provided
pZ4L X —Y|/|P,]. (7.10)

A similar argument shows that
PU(X)—p; ¥)<0

if p satisfies (7.10). Hence {Y)e[I(X)—p, I(X)+p]. §

Remark 7.1. Note that the Lipschitz constant of [ is <4L/|P,| , with
L the Lipschitz constant of ¥ on #(d,).

The next result, the key technical contribution of the paper, will be used
in an essential manner in the proof of Theorem 3.3. For p#0, let

é(p)=sin ~'(—p5,),  P=p/lpl
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ProposITION 7.1. Let v be a semiconvex function on [0, o0)x R? (so
that v(t, xX) + x(t* + [x|?) is convex for some constant k). Suppose that v is
differentiable at (t,, Xo) with
Po = Vu(ty, Xo) #0.

Then there exist (t,, X,,) = (1o, Xo) and (q,,, P., A,) €cD* v(t,, x,,) such that

linl (qna pn) = (Ur(to’ x(])a Po)a IPn| 7& 0’ (7113)
lim inf min{6(p,) — 8(p,), T(p,, A,)} <O, (7.11b)

where
I(p, A)=trace[ /- pPR®P) A]

To motivate the proof of this proposition, assume, for the moment, that
v is smooth. For re R, let

h(r)=0(Vu(tg, Xo +rw)), w=((Pg)2, —(Po)1)-
Then
1(0) = T(po, VZ0(ty, X,)).

Hence if T(py, VZ0(ty, X,)) >0 then A(r) <A(0) for r > 0.

This argument works only for smooth v. However, if v is semiconvex,
then its second derivative is bounded from below. We will use this lower
bound to prove (7.11b), with A playing the role of 4 (cf 7°).

The argument given above indicates the possible validity of the following
assertion, which is dual to (7.11b):

lim inf min{ 8(p,) — 6(p,,), T*(p,, A,)} <O (7.11¢)

n— o

Indeed, the proof of Proposition 7.1 with minor changes establishes the
existence of a sequence satisfying (7.11a) and (7.11c). One might believe
further that

hm lnfmln{g(l]n) “e(pO)’ - T(pn: An)} < 0’ (71 ld)

but (7.11d) is not valid, the reason being that, since v is assumed semi-
convex, its second derivatives are necessarily bounded only from below,
but the proof of (7.11d) requires an upper bound on the second derivatives;
in fact, (7.11d) holds for semiconcave functions.
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The proof of Proposition 7.1 will utilize the following result, which
connects the subdifferentials of convex analysis to ¢D~ and cD*. We omit
the proof; similar results may be found in [FS, Sect. 2.8 and Chap. 5].

LEmMMA 7.1. Let v be a semiconvex function on [0, o) x R% Then

(g, p, AYecD* o(t, x)ucD (e, x)
only if
(g, p) € v(t, x). (7.12)
Conversely, (7.12) implies that

(g, p, —2xI)e D7 v(t, x),

where k is the constant appearing in the definition of semiconvexity.

Proof of Proposition 7.1. 1° Let (y, z) denote a generic point of R
Assume, without loss in generality, that v is defined on R x R? that
(2o, Xo) = (0, 0,0), and that

Po=|Po! (0, 1).
If
lim inf inf{ 7(p, A): (¢, p, A) e cD *v(t, y, 2), |t| + |y + 2] <&} <0,
el

then (7.11b) follows directly; we therefore assume that there are y, &, >0
such that

T(p,A) =y, Vig,p, AyecD*v(t, y, 2), (8, y,2) e B(ey). (7.13)

The semicontinuity of v yields the existence 9f a 4, >0 satisfying (7.6),
and hence of a &, > 0 such that, for all (¢, p)eduv(s, y, 2), (2, v, z) € B(20,):

[P —Pol <Ipol/d, (7.14a)
P2 = |pol/4 (7.14b)

2° Since v is semiconvex, v is locally Lipschitz continuous. Therefore,
by Rademacher’s Theorem, v is differentiable almost everywhere; we define

H(t, y, z) at the points of differentiability by

H(t, y, z}y=0(Vu(t, y, 2)).
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3° By Theorem 7.1, there are a de(0,4,] and a function I(t, y, z)
satisfying

o(t,y, l(t,y,2))=1(0,0,z), V(¢ y, z)€ B(J) (7.15)

Further, by Remark 7.1, K¢, y, z} is Lipschitz continuous on #(J) with

Lipschitz constant no more than 4L/|p,|, where L is the Lipschitz constant
of v on #(4,).

4°  Our next step is to show that the map (¢, y, z)— (1, y, (1, y, 2))
with domain #(J) is one-to-one. Suppose (7, y, (1, y, z)) = (1, y, I({, 7, £})
Then (z, y) = (i, y) and

(0,0, z)=v0v(t, y, I(t, y, 2)) =v(i, 7, I(£, 7, 2)) = v(0, 0, 2).
Since p,=|po| (0, 1), (7.14b) yields
[0(0, 0, ) — (0, 0, 2)| > | — & |pg|/2 (7.16)

for all (0,0, a), (0,0, &) e #(26,); hence z=17Z.
5° The inverse of the map defined in 4° has the form (¢, yp, J(¢, 3, 2))
with
o(e, y, z)=v(0,0, J(¢, y, 2)),
and we may use (7.16) to show that J is Lipschitz continuous.

6° Thus the map (1, y, z) (1, y, (¢, y, z}) with domain #(J) is one-
to-one and Lipschitz, with Lipschitz inverse; hence it transforms null sets
into null sets.

7° In view of 6°,
H(t,p,2)=H(, p, K1, 1, )

is defined for almost every (¢, y, z) € (). We now define, for 0 <¢, { < /2,

k(e, O) =j [A(t, y+0 z)— At y, 2)] dt dy d=.

H(e)
In 9°-15°, we shall show that, for sufficiently small ¢, { >0,
kie,{) = || ¥e’/2 |po] (7.17)

with y as in (7.13), where |#,| is the volume of the unit ball in R* The
above estimate provides a weak method of proving that H(s, y,z) is
increasing in y. Indeed, if v were smooth, a direct calculation would yield

A,(0,0,2)=|po| =" T(pa, V?1(0, 0, 2)) = /|po .

(The details are given in 9°).
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We shall assume that (7.17) is valid and complete the proof of (7.11a, b),
before proving (7.17).

8° Let O denote the set of points of differentiability of v. For all
sufficiently small ¢, { > 0 there are ({, y, 2) € #(¢) satisfying

(&, 7, I(I, 7, 2)) e 0, (Ly+¢ I, y+(,2) e,
H(t, 5+, 2)— H(L, §,2) = y{ /2]po . (7.18)
Moreover, by (7.5) and Lemma 7.1,

Li?; (sup{|H(t, y, z) — O(po)I: (1, ¥, z) e B(p) " O} ) = 0.

Since 1(0, 0, 0) =0, by choosing £ > 0 small we can make |H(?, 7, Z) — 8(p,)|
smaller than (/2 |p,|. Therefore for every {=1/n there are ¢,]0 and
(£, V0o Z,) € Be,) satisfying

(tn’ Vns Zn) :=(in’ yn+n_1; I(t-n’ .)_)-n+n_l’ 7:,,))6@,
H(tnr Vns Zn)>0(p0)‘

This completes the proof of (7.11a, b), granted (7.17).
We now turn to proof of (7.17).

9° We now assume that v is smooth, a restriction we will later
remove using mollification. Since v is smooth, H is defined everywhere.
Recall that

H(t, y, 2)=0(Vu(s, y, z)), H(t,y,z)=H(t, y, I(1, y, 2)),
8(p)=sin “}(—p,),  p=p/Ipl,
v(t, y, I(t, y, 2)) =v(0, 0, z).
We claim that
H(t,y,z)=T(Vu(E), Vu(E)) v.(E) ", E=(Ly, 11, y,2)).  (7.19)

This formula may be verified using a direct but tedious calculation; instead
we give an indirect derivation, which also motivates our reason for
computing A,.

For (¢, z) fixed, the parametrized curve I': y+— (y, I(t, y,2)), |y|<d is a
subset of the ¢(0, 0, z) level curve of v. Hence the normal angle of I is
0=H(t, y, z) and the curvature is given by

0, = T(Vv, V2)/|Vo|
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with s the arc length. Thus
H,=T(Vy, V) s,/[Vol,  s,=(1+I})"2
By differentiating (7.15) with respect to y, we obtain
v,+v. 1, =0;

hence, s,=|Vv|/v,, which, when substituted into the previous formula,
yields (7.19)

10°  We continue to assume that v is smooth. The definition of k(e, {)
yields

ke, {)= J jlﬁ(t,y+r¢’,z)drdtdydz L.
RB(e)*0 Y

Let
K(t, y, z) = T(Vu(§), V’o(§)) v.(§) "
Then by (7.19),

1
ke, C)=[L( )L K(t,y+r¢, z)drdt dy d:} 4

for all 0 <e¢ (<482, and (7.17) follows from (7.13) and (7.14). Thus we
have established (7.17) for v smooth. We now remove this restriction; here
the manner in which & depends on v is important. The constant § comes
from Theorem 7.1 and hence depends only on |Dv(0, 0, 0)|, 4,, and the
Lipschitz constant of v on #4(d,); the constant ¢, is chosen in 1° and
satisfies both (7.6) and (7.14).

11°  Let v, be a molification of ». Then v, converges to v uniformly
on compact sets; v,(t,y, z) + k(1> + y*+z%) is convex, with x as in the
statement of the proposition; on compacts sets, the Lipschitz constant of v,
is < the Lipschitz constant of v.
Let k, and K, be defined as in 10°, but with v replaced by v,. Then 10°
yields

k(e ()= j fl K(t,y+r{,z)drdtdydz|( (7.20)
B(e) ¥ 0

for all 0 <¢,{<4,/2.

12° Consider a sequence (?,,¥,,z,)— (4, y, z). Since Dv.(1,, ¥, Z,,)
(the derivative in R?) is uniformly bounded in #, it has a subsequence, also
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denoted by n, such that Dv,(z,, y,, z,,) is convergent with limit (g, p). Then,
by (75), (g, p)edv(t,y,z). Thus Dv,¢,,y,,z2,)— Dv(t, y,z) for any
sequence (t,, V,, z,,) = (t, y, 2) € &. In particular,

lim Dv,(0,0,0)=Dv(0, 0,0) (721a)
lim k(e ¢)=k(e, &) (7.21b)

for all 0 <¢, { <4,/2 for sufficiently large n.

13° Recall that &, > 0 satisfies (7.6) and (7.14). In view of the pre-
vious steps, we may choose §,,— d,, as n — oo, satisfying (7.6) and (7.14)
with v replaced by v,. Since the Lipschitz constant of v, is < that of v on
each compact set, 12° and the discussion just before 11° imply that &, — .

14° Recall the definition of k, given in 11°. We claim that there is a
subsequence, also labeled by », such that

lim inf &, (¢, {) > |8, | y6'/2 |po) (7.22)

for all sufficiently small 0 <¢, {. Indeed, since v is semiconvex;
DWw=M+ A,

where M is an integrable matrix-valued function and A4 is a matrix-valued
measure orthogonal to the Lebesgue measure (cf. [J, Proposition 3.3]).
Moreover, 4 =0 and

v-M(t,y,2) v —k |3 YveR?, (7.23)

with k as in the statement of the proposition. Since v, =v * m, for some
smooth mollifier m,,

Dzvn=Mn+Ana MI‘I=M*m"’ AnzA*mn'

The measure A, has density with respect to Lebesgue measure. Moreover,
A,20 and M, satisfies (7.23).
The monotonicity of 7(p, A) in A and the positivity of A imply that

K, (1, y,2)=T(Vv,(&,), Vv, (§))/(0/0z) v,(§,),
E.=(6, . 1(ty,2))

Suppose & ={t, y, K1, y, z))e €. Then, by 12°,

Vo,(8,) > Vo(€),  (9/02) v,(8,) —(0/0z) v().
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Further,
K, (t,y,2) 2 T(Vv,(8,), M,(§,))/2 |pol
for all (¢, y,z) e #(5,) and sufficiently large n. Also M, — M in L'. Recall

that the map (¢, y,2)— (¢, y, {1, . 2)), on #(J), is one-to-one and
Lipschitz, with Lipschitz inverse cf. 6°). Let

M1y, 2) =M, &), Mty z)=M(Q).

Then M, — M in L'(%(8)). Therefore, by passing to a subsequence, also
labeled by n,

lim M, (t,y,z)=Ml(t,y,z2)

for almost every (¢, y, =) € #(J). Since

V'Mn(én) v> —K |V|2’
it follows that
T(an(én)’ Mn(én))? —K.

Fatou’s Lemma then yields

liminf [ T(Vo,(&,), M,(&,) dt dy dz

n—x #le)

> j T(Vu(E), M(E)) dt dy d=
B(e)

for all £ <d/2. Hence, for 0 <¢, { <9/2,

1 /
lim inf k(e 4)2“ j TUt, y + 1L, z) dr dt dy d:J /2 Ipol
n—x R(e) 0

where

T(1, y, z) = T(Vu(§), M(§)).
Also for £ @, & ¢ supp 4,
(Dv(8), M(§))e D v(§).
Let ¢ = ¢ ~ complement (supp A). Then ¢ has full measure and, by 6°, so

also has {(1,y,z)e B(d): &(1, y, :)e@}. Moreover, by (7.13), T(z,y,z) =y
for every (1, y, z) € B(&,) n 6. We have therefore proved (7.22).
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15° The desired result (7.17) follows from (7.20), (7.21a,b), and
(7.22). 1
C. Semiconvex and Semiconcave Approximations

For ¢ >0 and (1, x)e[0, o) x B2, we define

@(t, x) =sup{@*(s, y) — (4) > (|t —s|*+ |x —y|*): (5, y) € [0, 0) x R*},
et x)=inf{@ (s, y) + (4e) "2 (|t —s|* + Ix —y|*): (5, y) € [0, o0) x R?}.
These definitions are similar to the sup and inf convolutions of the theory
of viscosity solutions [LL, FS, JLS, CIL], in which the second power
rather than the fourth is used in the translations. Our reasons for using
the fourth power are its simplification of our proof of comparison (cf.

Lemma 7.4c¢).

Let ¢ be bounded. Then ¢° is semiconvex. To verify this, choose a
maximizer (s,, ¥o) in the definition of @*(¢,, X,), and set

r=1ty—So, W=Xo—Yo-
Then
@10, Xo) = @*(59, ¥o) — (48)_2 ("4 + |W|4)a

@1, X) = @*(50, Yo) — (4e) 2 (|t —s50|* + [x —¥o|*)

for all (1,x). For 0<h<t, and zeR? we use this inequality at
(t, x)=(tot h, X, +2z) to obtain

Qty, Xo; A, 2) = @*(1g + h, Xo +2) + @*(tg — h, Xo — 2) — 20%(£,, Xo)
= —(4e) P [(r+)*+(r—h)*=2r* + |w +z|*

+]w—z|*—z]*].

Hence
Lminf [A% + |z]2] 7! QUtg, Xo; h, 2) = —3(4e) "2 [ + |w|?].
(h,z)—> 0
Also,
(42) 72 [r* + |W[*] = 9*(50, Yo) — (20, Xo) <2 ll@ |,
with |- || the sup norm. Therefore

D> —(kfe)I in D'
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for some constant k depending only on [¢|; hence ¢° is semiconvex.
A similar argument shows that ¢, is semiconcave (cf. [ CIL, Sect. 3; FS,
Sect. 5.4]). Also, as £]0,

P x)Le* (6, x), @1, x) T (1 x)

for all (¢, x)e [0, ) xR2

The next lemma is similar to [ FS, Lemma 7.2, Sect. 5.7] (see also [ CIL,
Sect. 3]). Let M*(¢, x) denote the set of all maximizers in the definition of
¢“(t, x) and m*(1, x), the set of all minimizers in the definition of ¢ (¢, x).

LemMA 7.2. Fix (1,x)€(0, o0) x R? and &£ > 0. Then
[t—s|*+ [x—y[*<8 [l@l &, (7.24)
Jor every (s5,y)e M*(t, X) nm®(1, x). Suppose

1>1,:=(8 |g| )" (7.25)
Then

D @*(t,x)= D o(s, y)
for every (s,y) e M%(1, x) and
D o (t, x)c D e(s,y)

for every (s, y) e m*(t, X).

Suppose that ¢ is a viscosity solution of (3.4) in (0, oc) x R% Then we
may use Lemma 7.2 and (7.1) to conclude that ¢° is a viscosity subsolution
of (3.2) in (¢, o) x R? and that ¢, is a viscosity sypersolution of (3.2) in
(1, c)x R~

LemMmA 7.3. Suppose that

(q: p’ A) GCD+¢E(10, xo)'
Then

A= —3(|pl/e)*” I. (7.26)

Proof. We assume, without loss in generality, that (g, p, A) € D ¢%(1,, Xo).
Then there is a function we C'"? such that

Wy, Xg) =4, Vw(ig, X¢) =P, Vzw(Io, Xg)=A

505:119:1-7
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and (74, X¢) 1s a maximizer of ¢ —w. Let
Yt x; 8, ¥) = @*(s, y) — (4e) 2 ([t —s]* + |x —y[") — w(z, x).

Choose (s,, ¥o) € M*(ty, X,)- Then  has a maximum at (f,, X,; 5o, Yo)-
Thus

& (Yo — Xo) 1Yo~ Xo|* = Vw(14, Xo) =P,
—& [1yo— %ol I+ 2(¥o— Xo) ® (Yo — X0) ] S VW(15, o) = A,
and (7.25) follows. |}
A similar argument yields

B < 3(pl/e)?” L (7.27)

for all (g, p, B) € cD ~%(1,, X,).

LemMa 7.4. Let ¢, B> 0 and bounded functions @,y on [0, oc) x R? be
given. Suppose that (t,, X,) € (t,, oc) x R? is a maximizer of t, (¢f. (7.25))

We(’) X) = (pe(r’ x) - ‘1(]5([5 x) _ﬁt
Then:

{a) @° and y, are differentiable at (1, x,) with
Voti(t,, Xo) = Vi (1o, Xo) =: P, (7.28a)
—B+ (@), (tq, Xo) = (Y.) (Lo, Xo) =1 4, (7.28b)
(b) there are symmetric matrices A, < B, such that
(g.+B,p., A)ecD 91y, %), (4., P, B.)ecD Y {10, Xo);

(c) if p,=0, then A,=B,=O0.

Proof. (a) Recall that ¢® and , are semiconvex and semiconcave,
respectively. Thus there is a «, such that

@6, x) = (1, x) =k (1 + [x]?)
is convex and

Yt x) =y (4, x) — k(2 + |x]?)
Is concave.



ANISOTROPIC MOTION OF AN INTERFACE 97

Let (g, p,) €8@(ty, Xo), (g2, P2)€ — O —¥)(tg, Xo)- Since (2, Xo) is a
maximizer of W¥t, x),

@1, X) — Y1, x) = W1, x) + Bt + 2 (12 + |x|?)

< We(tg, Xo) + Bt + 2k (17 + [x]?)
Also, by the definition of the subdifferentials 6¢ and —&( —y),

@1, x) —P(1, %)
= @29, Xo) = WlLo, Xo) + (g1 — @2)(t — 1g) + (P, — P2) - (X — Xo)
= W¥(to, Xo) + Pto + 26,(15 + X 17} + (g1 — g2)(t — 1)
+ (P —P2) - (X —Xp).
Thus
(91— 92— BNt —10) + (p; — P2) - (X —Xo) <2k, (2 + |X[* — 1] — [X,[?)

for all (¢, x), so that
g1=q:+f  pi=p

for all (g,,p,)€d@(ty, Xo), (g5, P;)€ —B(—Y)(tq, X,). Hence 8¢(1,, Xo)
and —0(—y)(7y, Xo) are singletons, and Y and ¢ are differentiable at
(ty, Xo). Assertion (a) then follows from the definitions of y and ¢.

(b) Since ¢° is semiconvex and ¥, semiconcave, this assertion follows
from (7.25), (7.26), and Jensen’s maximum principle [Je; CIL, Sect. 3; FS,
Theorem 5.1, Sect. 5.5].

(c) Using (7.26) and (7.27) , we obtain
=3(p.1/e)** I< A, <B.<3(Ip 1/ 1. 1

D. Proof of Theorem 3.3.

We will prove Theorem 3.3 by contradiction. Suppose that conclusion
(3.13) is invalid.

1° By hypothesns pe M([0, T] xR?) and ¢ € M([0, T] x R?); thus
there are constants x, &, R such that

p(t, X)=ua, Y, x)=4 for |x|=R, te[0,T]
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Thus, by (7.24), for all sufficiently small ¢,
@1, x)=a, W (1, x)=4& for |x|=R+1, tel0, T]
2° Set

I=sup [¢*(0,x)—¢,(0,x)]

.
x € R

Then I>a—d. Since (3.13) does not hold, there are (s, y) e (0, T] x #(R)
and y > 0 such that

P ¥) (s y) = T+ (7.29)
3° For g >0 consider the function

HE(1, x) = (1, x) — (1, x) — it
for (¢, x) € [0, T] x R% Then, by the definitions of ¢° and .,

He(t, x) = o*(1,x)—y (1, x)— ft
for all (¢, x) e [0, T] x R% In particular,

His,y)=I1+y—pT.

Therefore, by 1° and the inequality Iz« — 4, for f<y/T, H* achieves its

maximum at some (#(¢), x(&)) (0, T] x B(R+ 1).

4°  Suppose t(¢) <, for all sufficiently small ¢ > 0, where ¢, is defined
in (7.25). Since |x{e}] <R+ 1, there is a subsequence, also labeled by e,
such that (1(¢), x(¢)} — (0, z) as £} 0, and

12 *(0,2) — (0, z). (7.30)
Also,
P(1e), x(e)) — i L1(e), x{(e)) — Bt(e) = T+ — BT. (7.31)

Choose (s(g), y(&)) e M*(t(e), x(¢)). (Recall that M*(¢, x) is the set of all
maximizers in the definition of ¢*(t, x).) Then by (7.24), (s(¢), y(¢)) — (0, z)
as £ 0. Moreover,

o(t(e), x(e)) < @, (s(e), y(¢))
and therefore

lim sup @°(t(e), x(&)) < @*(0, z).
el0
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Similarly,
lim inf . (#(¢), X(e)) = ¥ (0, z).
£|0

Using (7.30), (7.31), and the inequalities above, we are led to the inequality
B=y/T
5° We now fix

B=y/2T.

Then in view of the previous step, #(¢) <1, for some small ¢>0. Let
(ty, Xo) = (#(€}, x(¢)). Then, by Lemma 74, ¢° and ¢, are differentiable at
(2o, Xo) and (7.28) are satisfied. Moreover, there are A, <B, satisfying
Lemma 7.4b. We now write g¢, py, Ag, By for ¢, p,, A,, B, to emphasize
the fact that ¢ is now fixed. Since ¢* and ¥, are, respectively, a viscosity
subsolution and supersolution of (3.4), Lemma 7.4, (7.1), and (7.2) imply
that

9o+ B < F *(Po> Ag), (7.32)
do = #,(Po, Bo). (7.33)

6° Suppose that p, =0. Then, by Lemma 7.4c, A, =B, =0 and (7.32)
and (7.33) yield

do+ < F*0,0)=0<q,,

which contradicts the positivity of . Hence p, # 0.
7° Suppose that G is continuous at

0, =6(py)-
Then for any symmetric matrix A,
F (o> A) = F,(Po, A) = Z(po, A).
Since A, < B, the ellipticity property (3.7), (7.32), and (7.33) yield
o+ B F*(Po, Ag) = F (Do, Ap) £ F (P, By) = F(po. By) < g4,

which again contradicts the positivity of f.

8° Suppose that G is discontinuous at 6,. Then, by (1.2), there
is a y>0 such that G(#)=0 either for all #e[6,,80,+y] or for all
Oe6,—1y, 0,] We will consider only the case in which

G(0)=0, VO0e[0,—7,6,];
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the other case is treated similarly. Let

p=B(0,) "}, Gy =p lim G(8).

616
Then
F*(po, Ao)= —pU |po| + Go(T(po, Ap)) T,

Fe(po. Bo) = —pU |po| — Go(T(po. By)) 7,
where (a)* =max(a, 0) and (a) =(—a)*.
9°  We will analyze three cases separately.

Case Ay=0. Since B,>= A, it follows that By>0 and T(p,y, By) =0.
Then, by (7.33),

do = F(Po, Bo) = —pU |po]|. (7.34)
We now use Proposition 7.1 to construct

(s Pn» A ECD T 9%(1,, X,),

(7.35)
(qn’ pn)'—’(q()—’_ﬁ’ pO)’ (trn xn)—"(t()'xo)
satisfying (7.11b). By (7.35)
4. < F X, A,)
and therefore
go+ B <liminf F*(p,, A,). (7.36)
On the other hand, (7.11b) implies that
lim inf #*(p,, A, ) < —pU [po|. (7.37)
Indeed, (7.11b) yields either &(p,) <6, or
lim inf 7(p,,, A,) <0. (7.38)

n—

In the first case G(8(p,)) =0 and
y-*(pns An) = _pU lpnlﬂ

and hence {7.37) follows from the convergence of p, to ps. On the other
hand, (7.38) and 8° yield

F*pas A,) < —pU |p, | + max,[G(0) BO) ' I(T(p,, A,))",
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which implies (7.37). Now combine (7.36) and (7.37) to obtain
& + ﬂ < pU ,po I»

which, with (3.2) contradicts the positivity of p.
Case By <0. Then A;<0 and

F*(po, Ag)= —pU pol,

and we may use Proposition 7.1 with —, and argue exactly as in the
previous case to obtain a contradiction.

Case Ay <0<B,. Then
Go+ B F*(po, Ap) = —pU |po| = ZPo. Bo) = Z,(po, By) < g0,

which once again contradicts the positivity of §. |}

8. PrROOF OF THEOREMS 3.1 AND 3.2

Proof of Theorem 3.2. The uniqueness of a level-set solution of (1.1}
corresponding to an auxiliary function @, follows from Theorem 3.3.

Let {6,,6,, .., 8, be the set of points of discontinuity of G. For n a
sufficiently large positive integer, let G, be the continuous 2r-periodic
function with G, (8)=G(#) for |6—0,|=1/n, k=1,2,.., M, and G (0)
linear otherwise. Further, let % denote the function defined by (3.3) with

G replaced by G,. Then %, approximates % in the sense of the following
lemma, whose proof we omit.

Lemma 8.1, Let (p,,A,)— (p, A)eR?>x S as n— oo. Then

lim sup (Z,)* (p,, A,) <.F *(p, A),

-

liminf (%), (p.. A,) 2 Z,(p, A).

Since G, is continuous, we may use [ CGG, Theorem 6.8] to conclude
that there is a unique, continuous viscosity solution @, € M([0, o} x R?)
—of (3.2) with % replaced by %, —satisfying &,(x, 0) = Py(x), and we
define @* and @~ as in the proof of Theorem 5.2. Moreover, Lemma 8.1
together with classical stability results for viscosity solutions [FS, Sect 2.6
and 7.4] imply that @* and @~ are, respectively, a viscosity subsolution
and a viscosity supersolution of (3.2) on (0, oo) x R%. We now follow the
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steps 4°-8° in the proof of Theorem 5.2 to conclude that @* =@~ =@,
Hence @ is a level-set solution of (1.1) corresponding to @,,.

We complete the proof by establishing (3.12). Let & be a level-set
solution of (1.1) corresponding to an auxiliary function @.

For 6>0, let n5: R— R be smooth and satisfy: (i) #5=0; (ii) #s(r)=0
for r<e; (1) nsr)=1 for r=c+ 4. Then the geometric property (3.6)
implies that

D41, x) = ns(D(1, x))

is a level-set solution of (1.1).%*
Next,

ut(t,x)= limsup Dus,y)

510
(s.y) = (1, x)

is a viscosity subsolution of (3.2) (cf. [FS, Sect. 2.6 and 74]). If we let
4(t, x) be the characteristic function of

H={x:d(t,x)>c},
then the continuity of ¢ and the properties on #, yield
ut (1, x)=a*(t, x) =1(1, x),
so that #(z) is a y-subsolution of (1.1). In fact, since

cl Q4= {x: Py(x) = c} = {x: limsup d(s, y) =1},

510,y > x

(1) is a y-subsolution of (1.1) compatible with £,.
Similarly,

u {t,x)= liminf Dys,y)
540

(s5,¥) = (4, %)

is a viscosity supersolution of (3.2), and, further, v~ =4,; hence H(ty is
also y-supersolution of (1.1) compatible with Q,. Thus #(t) is a y-solution
of (1.1) compatible with Q.

Next, in view of the definition %(t), %(t) < %(t). In fact, they are equal.
To verify this, let Q(t) be a y-subsolution compatible with Q,, and let
u(t, x) be the characteristic function of Q(¢). For any d <, let u(¢, x; d) be
the characteristic function of

Lt d)={x: D(1,x)>d}.

2 Cf. [CGG, Theorem 5.6.] for the proof of this fact when G is continuous.
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Then u*(0, x) <u,(0, x; d) =u(0, x; d}, since £(¢) is compatible with Q,
and @4(x) = P(0, x) is an auxiliary function for 2,. Then, by Corollary 3.1,
Q(t)yc Z(t;,d) for any y-subsolution €(r) of (1.1) compatible with €.
Hence %(t) < £(t; d) for all d <c, and, since the intersection over all such
d of £(t;d) is %(t), (1)< #(t). Thus %(t)=4(1).

The analogous assertion for #(r) is proved in the same manner.

Proof of Theorem 3.1. Parts (a) and (b) follow from Theorem 3.2. To
prove (c) note first that, since 9, is C°, there is a C* parametrization
o> Y(a) (R— R?), periodic with period 1, such that

092={Y(a):x€[0,1]}
and
Y (o)/[Y'(a)] = T(Gp()),

where 6,(a) the normal-angle at Y(a) and T(0) is defined in (1.10).
Proceeding formally, let £(¢) be a solution of (1.1) such that

X(t, ) = Y(a) + (1, a) N(6y(2))
is a parametrization? of 9§2(¢) for some real-valued function A(¢, «). Then
h(t, @) is periodic in a with period 1. (8.1)

Assume that £ is C% Let Ky(a) denote the curvature of dQ, at Y(a), and
let &(t,a), V{(t,a), and K(z, a) denote the normal-angle, normal-velocity,
and curvature of d2(¢) at X(t, a). Then

T(0(r, 2)) = X, (¢, a)/1X(1, 2}

(where the subscript denotes differentiation with respect to that variable),
and defining

Fi(a, by hy) = [Fy(a, h)* + k312,
Fylo, h) = |Y' ()] — hKo(a),

a tedious computation yields
0(t, o) = 0o, h(t, ), h,(t, a)),
with 8(a, h, h,) the solution of

T(O(a, h, h,)) = [Fy(a, ) T(8p(x)) + h N(Oo(@))] Fy(a, b, h,) " (8.2)

2% A similar parametrization was used by Chen and Reitich [CR] in their proof of local
existence for a modified Stefan problem.
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and
Vit, ) =X,(t, ) - N(O(t, )y = h,Fy(a, h)/F\(e, h, h,), (8.3a)

K(t, a)=0,(t, 0)/|X (t, 2)| = F5(o, h, by, hyy)

= {Fz(a, h)[houx +hK0((X)2] +K0(a) IY'(G)P
+ ho[2Ko(2) b+ Ko(a) h] —T(6o(a)) - Y'(a) A,
— N(Og(a))- Y"(2) hKo(a)} Fy(a, b, h,) ™2, (8.3b)

(Note that #(z, ) is well defined provided the right side of (8.2) is non-
zero.) Thus, since

B(6(1, &) V(1, 0) = G(6(1, &) K(1, &) — U,
h(t, o) satisfies
B, h h))h,=G(a, h, h,) h,, — Fla, h,h,), (8.4)
with
B(a, h, h,) = B(O(a, h, h,)),
Gla, b, h)=G(6(x, h, b)) Fi(a, h, h,) "2
Fla, h, h) = Gla, h, h ){hKy(®)? + Fylo, B) 7' (Kgla) [Y' ()]
+h,[2Ko(a) b, + Ko(a) h] —T(8(a)) - Y'(a) ki,
—N(0g(a)) - Y'(«) hKo(2))} — UFy(a, b, h,) Fy(a, h)~".

We will complete the proof by solving (8.4) subject to A(a, 0) =0. Let

a = {(a, h): |h| < [Y'(2)]/2 |Ko(a)]}.
Then
[Y' ()] — hKo(a) = [Y'{a}|/2 > 0.

Hence the right side of (8.2) is nonzero and 6(«, 4, A,) is continuous on
& xR. Moreover, F: xR— R is continuous; B: & xR—[0, cc) is
continuous and strictly positive; G: & x R — [0, o) is continuous except at
finitely two-dimensional manifolds in & xR, and suffers at most jump
discontinuities across such manifolds.

Although G has discontinuities, one can prove a comparison result for
viscosity sub- and supersolutions of (8.4) using a modification of the
analysis given in Section 7. Indeed, requisite modifications of all arguments
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except Proposition 7.1 are either straightforward or minor, and Proposi-
tion 7.1 should be replaced by

PrOPOSITION 8.1. Let v(t, &) be semiconvex on [0, :c) x R and differen-
tiable at (ty, og) with v, (ty, o) #0. Then there are (t,,n,)— (15, %y) and
(9> Pns @, ) ECD 0L, 0,) = RY such that

llm (qns pn) = (Urs Ua)(IO’ aO) = (quPO)’

n— x

lim inf min{&(a,, h,, p,) — Oaq, ho, Po), Fa(a,, Ay, P,s a,)} <0,

n— oc

where h,=v(t,, a,), hy=0v(ty, ), and F is defined in (8.3).

Once a comparison result has been obtained, the existence of a unique
viscosity solution A of (8.4), satisfying (8.1) and an initial condition for
h(1,0), can be established utilizing an approximation argument of the type
used in the proof of Theorem 3.1. This solution is defined on [0, T, ] x R,
where T, is the largest time satisfying («, h(¢,«))ed@ for all (1, a)e

[0, 7.1 x R.

max

Let
&= igg {1Y"(2)|/4 | Ko(2)]},

and for l|e|<e,, let A(t,a;e), (1,0)e[0, T ()] xR, be the unique
viscosity solution of (8.4) satisfying (8.1) and A(0, «; £} = &. The uniqueness
associated with such solutions ensures that (7, «; ¢) depends continuously
on ¢ Our next step will be to show that

T, =inf{ T (e): le] <eo}
satisfies
0 < T* S Tuniq'

To verify this assertion, define, for (¢, x)e[0, T,] x R?,

€ if xedQ(t¢e), el <sg,
o1, x)=<¢g, if xedQ(t;e,),
—¢&g if x¢08(t; —¢&),

where €2(t; €) is the closed region enclosed by

{Y () + A1, a; ) N(Oof@)): € [0, 17} (8.5)
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(Since t<T,, (o h(t,a;e)) e and the curve (8.5) enclose a region.)
Further, a tedious calculation shows that ¢ is a level-set solution of (1.1}
corresponding to an auxiliary function compatible with Q,. By Theorem
3.2 (cf. (3.12)),

Aty = {x: D(t, x) =0}, L(1)={x: P(t,x)>0}.
Since # depends continuously on ¢,

Tuniq > T,
To establish the positivity of 7*, observe that, by the maximum principle
(or comparison result for (8.4)),

|h(t, o; &) — el < Kkt

for all |¢] <&, 1[0, T..(¢)), where x is a suitable constant depending on

the C* norm of 922,. Hence
|h(t, a; )| < 2&0

for all r<egy/x. Finally, the definitions of & and ¢, imply that
T*=2e0/k. |

ACKNOWLEDGMENT

This work was supported by the Army Research Office and the National Science Foundation.

REFERENCES

[AL] U. ABriscH AND J. LANGER, The normalized curve shortening flow and homothetic
solutions, J. Differential Geom. 23, 175-196 (1986).

[AC] S. M. ALLEN aND J. W. CaHN, A macroscopic theory for antiphase boundary motion
and its application to antiphase domain coarsening, Acta. Metall. 27, 1085-1098
{1979).

[AT] F. ALMGREN, anD J. E. TAYLOR, Motion of curves by crystalline curvature and flat
curvature flow, preprint.

[ATW] F. ALMGREN, J. E. TAYLOR, AND L. WANG, Curvature driven flows a variational
approach, SIAM. J. Control Optim. (issue dedicated to W. Fleming) 31, 371-398
(1993).

{Ag] S. ANGENENT, Parabolic equations for curves on surfaces, 1. Curves with p-integrable
curvature, Ann. Math. 132, 451-483 (1990); II. Intersections, blowup, and general-
ized solutions. Ann. Math. 133, 171-217 (1991).

[AG1] S. AncenenT, AND M. E. GurTiN, Multiphase thermomechanics with interfacial
structure, 2. Evolution of an isothermal interface, Arch. Rational. Mech. Anal. 108,
323-391 (1989).



[AG2]

[Ba)
[Br]
(BK]
[BSS)
[Ch]

[CR]

[CGG]

[CH}
[Cr]
[CEL]

[CIL]

[CL]
[DS]
[DGP]
[ESS)
[ES1]
[ES2]
[ES3]
[FS]

[Fr]
[GH]

[GS]

{Gi]

ANISOTROPIC MOTION OF AN INTERFACE 107

S. ANGENENT, AND M. E. GURTIN, Antisotropic motion of a phase interface. Well-
posedness of the initial-value problem and qualitative properties of the interface,
J. Reine Angew. Math. 446, 1-47 (1994).

G. Baries, “Remark on a Flame Propagation Model,” Rapport INRIA no. 464
(1985).

K. A. BRAKKE, “The Motion of a Surface by its Mean Curvature,” Princeton Univ.
Press, Princeton, NJ, 1978.

L. BronsarD, aND R. KoHN, Motion by mean curvature as the singular limit of
Ginzburg-Landau model, J. Differential Equations 90, 211-237 (1991).

G. Barres, H. M. Soner, anD P. E. Soucanipis, Front propagation and phase field
theory, SIAM J. Contvol Optim. (issue dedicated to W. Fleming) 31, 439469 (1993).
X. Cuen, Generation and propagation of the interface for reaction diffusion equa-
tion, J. Differential Equations 96, 116-141 (1992).

X. CHEN, anD F. RerTicH, Local existence and uniqueness of solutions of the Stefan
problem with surface tension and kinetic undercooling J. Math. Anal. Appl. 164,
352-362 (1992).

Y.-G. CHEN, Y. GiGa, aND S. GoTo, Uniqueness and existence of viscosity solutions
of generalized mean curvature flow equations, J. Differential Geom. 33, 749-786
(1991).

J. W. CauN, aAND D. W. HorrmaN, A vector thermodynamics for anisotropic
surfaces 2: curved and faceted surfaces; Acra Metall. 22, 125-1214 (1974).

M. G. CrRaANDALL, Quadratic forms, semidifferentials and viscosity solutions of fully
nonlinear elliptic equations; Ann. fnst. H. Poincaré Anal. Anal. 6, 419435 (1989).
M. G. CranpALL, L. C. Evans, aND P.-L. LioNs, Some properties of viscosity solu-
tions of Hamilton-Jacoby equations, Trans. Amer. Math. Soc. 282, 487-502 (1984).
M. G. CraNDALL, L. IsHn, anD P.-L. Lions, User’s guide to viscosity solutions of
second-order partial differential equations, Bull. Amer. Math. Soc. 27, No. 1, 1-67
(1992).

M. G. CranDALL, AND P.-L. Lions, Viscosity solutions of Hamilton—Jacobi
equations, Trans. Amer. Math. Soc. 277, 143 (1983).

P. DEMOTTONI, AND M. ScHATZMAN, Development of surfaces in RY Proc. Roy. Soc.
Edinburgh 116, 207-220 (1990).

A. DiCarLo, M. E. GURTIN, AND P. Poplo-GuIDUGLI, A regularized equation for
anisotropic motion-by-curvature, SIAM J. Appl. Math. 52, 1111-1119 (1992).

L. C Evans, H. M. SonERr, aND P. E. SouGaNIDIs, Phase transitions and generalized
motion by mean curvature, Comm. Pure Appl. Math. 45, 1097-1123 (1992).

L. C. Evans, AND J. SPRUCK, Motion of level sets by mean curvature, 1, J. Differen-
tial Geom. 33, 635-681 (1991).

L. C. Evans, anND J. Spruck, Motion of level sets by mean curvature, II, Trans.
Amer. Math. Soc. 330, 635-681 (1992).

L. C. Evans, AND J. SPRUCK, Motion of level sets by mean curvature, 111, J. Geom.
Anal. 2, 121-150 (1992).

W. FLEMING, AND H. M. SonNer, “Controlled Markov Processes and Viscosity
Solutions,” Springer-Verlag, Berlin, 1993.

F. C. FRaNK, Phys. Chem. N.F. 77, 84-92 (1972).

M. GagGe, AND R. S. HamiLTON, The heat equation shrinking convex plane curves,
J. Differential Geom. 23, 69-95 {1986).

Y. Giga, aAND M. H. Sato, Generalized interface condition with the Neumann
boundary condition, Proc. Japan Acad. Ser. A Math. 67, 263-266 (1991).

N. A. GrosTEIN, Adsorption and surface energy 2: Thermal faceting from minimiza-
tion of surface energy, Acta Metall. 11, 969-977 (1963).



108

[Gr]

[G1]

[G2]
[Je]

[JLS]

(LL]
[0s]
[0s]

[ORS]

[Ows]
[RS]
[RSK]
[Se]
[So]
[Sol]
{5Z]
[TCH]

{Ta]

GURTIN, SONER, AND SOUGANIDIS

M. A. GraYsON, The heat equation shrinks embedded plane curves to round points,
J. Differential Geom. 26, 285-314 (1987).

M. E. GurTIN, Multiphase thermomechanics with interfacial structure. 1. Heat
conduction and the capillary balance law. Arch. Rational Mech. Anal. 104, 185-221
(1988).

M. E. GurTIN, “Thermomechanics of Evolving Phase Boundaries in the Plane,”
Oxford Univ. Press, Oxford, UK, 1993.

R. JenseN, The maximum principle for viscosity solutions of second-order fully non-
linear partial differential equations, Arch. Rational Mech. Anal. 101, 1-27 (1988).
R. JENSEN, P.-L., Lions, aND P. E. SOUGANIDIS, A uniqueness result for viscosity
solutions of second order fully nonlinear partial differential equations, Proc. Amer.
Math. Soc. 102, 975-978 (1988).

J. M. Lasry, AND P.-L. LioNs, A remark on regularization in Hilbert spaces, Israel
J. Math. 55, 257-266 (1986).

M. OHNUMA, AND M. SaTo, Singular degenarate parabolic equations with applica-
tions to geometric equations, preprint (1992).

S. OsHER, AND J. A. SeETHIAN, Fronts propagating with curvature dependent speed,
J. Comput. Phys. 79, 12-49 (1988).

N. C. OweNn, J. RUBINSTEIN, AND P. STERNBERG, Minimizers and gradient flows for
singularly perturbed bi-stable potentials with a Dirichlet condition, Proc. Roy. Soc.
London 429, 505-532 (1989).

N. C. OweN, aND P. STERNBHER, Gradient flow and front propagation with boundary
contact energy, to appear.

J. RUBINSTEIN, AND P. STERNBERG, Nonlocal reaction—diffusion equations and
nucleation, IMA J. Appl. Math. to appear.

J. RUBINSTEIN, P. STERNBERG, aND J. B. KELLER, Fast reaction, slow diffusion and
curve shortening, SIAM J. Appl. Math. 49, 116-133 (1989).

J. A. SETHIAN, Curvature and evolution of fronts, Comm. Marh. Phys. 101, 487-499
(1985).

H. M. SonEer, Motion of a set by the mean curvature of its boundary, J. Differential
Equations 101, No. 2, 313-372 (1993).

H. M. SonERr, Ginzburg-Landau equation and motion by mean curvature, I: con-
vergence, J. Geometric Anal., to appear.

P. STERNBERG, AND W. ZIEMER, Generalized motion by curvature with a Dirichlet
boundary condition, to appear.

J. TayLor, J. W. Cann, anNp C. A. HANDWERKER, Geometric models of crystal
growth 1, Acta Metall. 40, 1443-1474 (1992).

J. TavLoR, Motion of curves by crystalline curvature including triple junctions and
boundary points, Proc. Symp. Pure Math. 54, 417-438 (1993).



