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The study of a crystal shrinking or growing in a melt gives rise to equations

relating the normal velocity of the motion to the curvature of the crystal boundary.
Often these equations are anisotropic, indicating the preferred directions of the
crystal structure. In the isotropic case this equation is called the curve shortening

or

the mean curvature flow equation, and has been studied by differential geometric

tools. In general, there are no classical solutions to these equations. In this paper
we develop a weak theory for the generalized mean curvature equation using the
newly developed theory of viscosity solutions. Our approach is closely related to
that of Osher and Sethian, Chen, Giga and Goto, and Evans and Spruck, who view
the boundary of the crystal as the level set of a solution to a nonlinear parabolic
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uation. Altough we use their results in an essential way, we give an intrinsic
finition. Our main results are the existence of a solution, large time asymptotics
this solution, and its connection to the level set solution of Osher and Sethian,

Chen, Giga and Goto, and Evans and Spruck. In general there is no uniqueness,
even for classical solutions, but we prove a uniqueness result under restrictive
assumptions. We also construct a class of explicit solutions which are dilations of
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1. INTRODUCTION

In a series of papers, Gurtin studied the nonequilibrium thermo-
mechanics of two-phase continua [26, 27]. Based on the assumption of a
sharp interface with its own thermomechanical structure, he derived the
thermomechanic restrictions on the constitutive relations and several free
boundary problems that are consistent with these restrictions. In simple
versions of these problems, the temperature distribution solves the heat
equation in the interior of each phase, and certain boundary conditions are
satisfied at the interface. Hence the interface motion is coupled with the
evolution of the temperature, and this coupling renders the problem
difficult.' For perfect conductors, however, the temperature is constant and
the free boundary condition reduces to a single equation?

P(B)V +trace(G(8)-R)—v=0, (E)

where 6, V, and R are the outward unit normal vector, the normal velocity,
and the second fundamental form of the interface dC(7), respectively. The
kinetic coefficient (0) measures the drag opposing the motion in the 6
direction, G(#) is a linear function of the interfacial energy (or surface
tension) and its second derivatives, and the constant v is the energy density
difference between two phases.

Angenent and Gurtin [6] developed an extensive theory for the perfect
conductors in two space dimensions. Further development of a general
theory including the nonperfect conductors in space dimensions higher
than two, however, requires an analytical study of the interface motion
equation (E). In this paper we develop a weak theory for (E), and then
obtain asymptotic results for large time.

We begin with the isotropic version of the interface equation.’ In this
case (E) takes a particularly simple form

P (MCE)

where k is the mean curvature. Following the standard terminology in dif-
ferential geometry, we refer to (MCE) as the curve shortening or the mean
curvature flow equation. Since (MCE) is the gradient flow for the area
functional, the surface area of any classical solution of the isotropic equa-

! Recently Gurtin and Soner [28] studied these problems in one space dimension. Also a
preliminary analysis of multi-dimensional problems is contained in [29].

? See Angenent and Gurtin [6].

*In a slightly different set-up, Mullins [37] derived the isotropic version of this equation
as a simple model. For a more detailed discussion, we refer the reader to Sekerka [39]. Also
see Allen and Cahn [2].
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tion is nonincreasing in time. Owing to this property, the mean curvature
flow has been studied extensively by differential geometric tools. The flow
of an embedded plane curve under the mean curvature flow equation was
analysed by Gage [ 19, 20], Gage and Hamilton [21], and Grayson [23].
They showed that a smooth embedded plane curve first becomes convex
and then shrinks to a point in finite time. Also the limiting shape is a circle.
Huisken [30] generalized this result showing that any convex set, in any
space dimension, shrinks to a point smoothly. The flow of a smooth curve
embedded in a smooth Riemannian surface was pursued by Grayson [24].
Recently, Angenent generalized some of the two dimensional results [3-5]
to the nonlinear case.

All of the above results show the existence of a classical flow. However,
this is not always the case if the space dimension is larger than two and the
initial shape is not convex. Indeed, Abresch and Langer [1] and Epstein
and Weinstein [14], in their study of nonembedded curves, proved that
these curves develop singularities before they shrink to a point. In higher
dimensions, even the smooth embedded hypersurfaces may develop
singularities. Grayson [25] gives the example of a dumbell shape in R>
This is a region obtained by connecting two spheres by a thin long pipe.
Grayson argues that under the mean curvature flow, the boundary of this
region will pinch off, leaving two bubbles. Also numerical studies of
Sethian [41] support this observation. Hence a weaker formulation of this
equation is necessary to define the subsequent evolution after the onset of
singularities.

Brakke [9] was the first to study the mean curvature flow past the
singularities. Using varifolds of geometric measure theory, he constructed
global generalized solutions for a large class of initial conditions. An alter-
nate approach, initially suggested for numerical calculations by Sethian
[40] and Osher and Sethian [38] and for a flame propogation model by
Barles [7],* represents the solution as the zero level set of the auxiliary
continuous function . This latter suggestion has been extensively
developed by Evans and Spruck [15], [16] and Chen, Giga, and Goto
[10].° To describe this approach in detail, let 3C(¢) be the interface and @
be an auxiliary function satisfying

8C(t)= {xe R*: ®(x, 1)=0} (1.1)

with
C(t)={xeR?: ®(x, 1)>0}.

“ The equation studied in [7] is of first order.
* Chen, Giga, and Goto consider a more general class of equations than (E), which they
call geometric. A discussion of this class of equations is given by Giga and Goto [22].
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Then, @ formally satisfies the parabolic equation

( Dd(x, 1)\ (0/21) D(x, 1)
A ‘|D¢(x,z)|> |D@(x, 1)|

o _ D&(x, 1) D®(x, 1) ~
= trace [G( DB, t)l> D <|D¢(x, t)l)] + v, V>0, d(x, 1)=0,

(1.2)

where D denotes the differentiation with respect to the spatial variable x.
The above equation is nonlinear, degenerate, and undefined when
D®(x, 1)=0. Evans and Spruck and Chen et al. circumvent these rather
subtle technical problems using the newly developed theory of viscosity
solutions of nonlinear partial differential equations as in Crandall and
Lions [12], Crandall, Evans, and Lions [11], Jensen [33], Jensen, Lions,
and Souganidis [34], Lions {35, 36], and Ishii {32].

In this paper, we define a notion of viscosity solutions of (E) which is
closely related to the one given in [ 10, 15]. We observe that the “signed”
distance function

distance (x, dC(1)) if xeC(r)

—distance (x, éC(1)) if x¢C(1) (1.3)

d('(x’ t) = {
of C(-) satisfies

ﬁ(_Dd(‘(x’ t))—éa—tdC(xvt)
= trace[ G(— Dd(x, 1)) D* de(x, t)] +v  VYxedC(r), (1.4)

as long as 0C(r) is smooth. Using the viscosity formulations of first and
second derivatives of semi-continuous functions, we give an intrinsic defini-
tion of viscosity solutions of (E) by requiring that (1.4) should hold in the
viscosity sense.® Following the techniques and the results of [10, 15], we
obtain an existance result and prove that any supersolution {C(1)},,, of
(E) includes any subsolution {I(t}},., of (E) provided that the closure of
I'(0) is a compact subset of C(0). In general, there is more than one solu-
tion of the initial value problem. In fact, this is the case whenever the level
set of the solution of Evans and Spruck and Chen e7 al. develops a non-
empty interior (Section 8). However, the comparison result enables us to
define two solutions. One of these solutions contains all the subsolutions of

® See Definition 5.1 and Section 4 for the precise formulation.
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the initial value problem and the other is contained in all the super-
solutions of the initial value problem. These solutions are given by

Ut)={xeR': ®(x, t)=0},
and
L(1)={xe R*: ®(x, 1)>0},

where @ is a solution of (1.2) on the whole domain R“x(0, oo} (Section 10).
For a nonpositive v, we also prove the uniqueness of solutions to the initial
value problem provided that the solution is initially “strictly” starshaped
(Section 11).

The stationary version of (E) is formally related to a variational problem
and its celebrated solution is known as the Wulff crystal [447 of the inter-
facial energy.” It is also known that any solution of (E) shrinks to an
empty set in finite time if v is nonpositive, or if the solution is initially
small.® But if v is strictly positive and initially the solution is large enough,
then the solution grows for all time.” In Sections 12 and 13 we construct a
class of explicit solutions which are dilations of the Wulff crystal of (1/8)
and then use them to obtain asymptotic results. In particular, we show that
the solution asymptotically looks like the Wulff crystal of (1/8), when it is
growing.'®

In a forthcoming paper with Evans and Souganidis [17], we use the
signed distance function to prove asymptotic results for a reaction-diffusion
equation with fast reaction and slow diffusion. We show that in the limit,
the motion of the zero level curve of the solution is governed by the
generalized mean curvature flow. This is an independent check on the
reasonableness of the weak theory developed here and in [10, [5].

2. PRELIMINARIES

In this section we make several definitions which will be used throughout
the paper. We will use the notation cl A4, int 4, and A° to denote the
closure of A, the interior of 4, and the complement of A, respectively. Let
S9~! be the set of all unit vectors in R% We assume that G(f) is a dx d
symmetric matrix, and for all e S7',

B and G are continuous on $¢7°, and B(0)>0, G(6) =0, G(8)0=0. (A)

7 Alsa see [13, 42, 43, 18] for its properties and definition of it, and Section 6.1 of Ange-
nent and Gurtin [6] for the connection between the equation (E) and the Wulff crystal.

& This result is proved in [6, 15, 10], under different assumptions.

? In two space dimensions it is proved in [6].

1% This result was conjectured by Angenent and Gurtin [6].
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DEFINITION 2.1. (a) A subset of R“ is called proper if the interior of
itself and its complement are nonempty.

{(b) Let {C(1)},. 0. be a collection of proper subsets of R*. The
signed distance function of {C(1)}, o 1 1S

dist(x, 0C(r))  if xeC(r)
)

_dist(x.0C(r))  if x¢c(ny €T

do(x, 1) = {

where dist(x, 4) denotes the distance between the point x and the set A4.

Finally we define the notion of a classical solution of (E). Basically we
require that the signed distance function is smooth on a neighborhood of
the boundary, and satisfies (1.4). Also an additional “causality” condition
is needed (see Example 5.5), but we do not require the global continuity of
the distance function.

DEerFmNITION 2.2. We say that an open collection of smooth subsets
{C(1)},0 of RYis a classical solution of (E) if:

(a) There is 0 < 7T < oo such that
Cn=yg Viz T,
or
C(t)=R" Vi2 T,

and for t < T, C(t) is proper, d is smooth in a {space-time) neighborhood
of every boundary point x € éC(¢), and d, satisfies (1.4).

{b) For every t < T and xe RY,

limsup [d(z,5) A 0] =limsup [dq(z, s) A 0], (2.1)
(o.5) = (X, 1) (z8)T(x, 1)

liminf {de(z,s) v 0]= lim mf [(de(z, 5y v O] (2.2)

(z.5) = (x, 1) (z.3) T (x
3. SEmI-CONTINUOUS ENVELOPES
In this section, we define the upper and lower semi-continuous envelopes

of a collection of subsets of RY. We also prove several elementary proper-
ties of them which will be used in later sections.
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For a given collection of proper subsets {C(f)}, (. of R’ and for
te [0, T) define

C*(z)=mc1[ U C(s)], (3.1)
{r

e>0 sl<es< T

C*(z)=Uint[ N C(s)]. (3.2)

£>0 Ir- sl<es<T

Observe that for every re [0, T), C*(¢) is a closed set and C,(¢) is an open
set.

LemMa 3.1, Let {C(1)}, 1 1) be a collection of proper subsets of R4
(a) RNC(1)=(RNC(-)*¢), Vre [0, T),
(b)  RINC*(1)= (RINC(-)) (1), V1€ [0, T),
() if (x,, 1,) = (x, 1) and x,,€ C*(1,)), then x € C*(t),
(dY if (x,,1,) = (x, 1) and x, & C (1,), then x¢ C_(1),
(e) the map (x,t) — dq(x, 1) is upper semi-continuous,

(f) the map (x, 1) —>d, (x, t) is lower semi-continuous.

Proof. (a) and (b) These follow from De Morgan’s rule.

(c) Since x,eC*(t,) and (x,,t,)—(x,t), there is a sequence
{(¥,: 5,)— (x, 1) as n tends to infinity, and satisfying y, € C(s,) for all n. Set

g =supfls,— 1l :nzk}.
Observe that

y.€Cls,) < U C(s), if n>k.

(t - si<ex.s520

Hence,

xecl{ U C(s)}, vk.
ft

st <ep3 20

(d) This follows from (a) and (c).
() Fix (x,1)eR'x [0, T). Set B=d.(x, ). Suppose that f=0.
Then, there is a sequence y, ¢ C*(1) satisfying

|x —y,] - B
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The definition of C*(7) yields that there are ¢, > 0 satisfying

y,é¢cl L: U C(s)].

s Kep 520
Hence y, ¢ C*(s) for all se ({(t—¢,) v 0, t +¢&,) and consequently

deu(z,8)< |z =yl VzeRY se((t—e,) Vv 0, (t4+e,)AT).

Therefore,

limsup d.(z,s)<  lim  |z—y,|=8

(2.8) = (x. 1) LY G R Y

Now suppose that f < 0. We first claim that

a= limsup d, .(x,t)<0.

(z.s)~ (X, 1)

Indeed if it is not the case, there exists a subsequence (w,,, t,) — (x, t) such
that w, e C*(¢,). Then, part (c) implies that x e C*(¢) which contradicts the
assumption B <0.

Choose (z,, t,}) — (x, t) such that

a=limd. .(z,,t,)

Choose another sequence y, € C*(t,) satisfying
x= hm - ‘Zn - .]',ni'
Since |x — y,| < |z, — v, + 1z, — x|, | ¥,/ is uniformly bounded in ». Hence

we may assume that y, is convergent. Let y=1Ilim y,. Then, x = —}x— |,
and part (c) yields that ye C*(1). So

a=—|x~y|<do(x,1)=p

(f) This follows from (b) and (e). |}

We will use (a A b) and (a v b) to denote min{a, b} and max{a, b},
respectively.

LemMMA 3.2, Let {C(1)},c 0.1 be a collection of proper subsets of R.
Then, [d .(x,t) A0] and [d(.‘(x,t)VO] are upper and lower semi-



MOTION OF A SET 321

continuous envelopes of the functions [d(x,t) A0] and [d (x, t) v 0],
respectively, i.e., for (x,t)e R*x [0, T),

deox, 1) AO= limsup [d(z,s) A 0], (3.3)
(£.8) = {x.1)

d.(x,t)vO0= liminf [d-(z,5)vO0] (3.4)
* (2.8) > (1)

Proof. Since C(t) is included in C*(¢), do(x,t)<dc«(x,t) for all
(x, t)e R*x [0, T). Then, the upper semi-continuity of d.(x, 1) yields

des(x, ) AO0= limsup [dq(z,5) A 0].

{z.8) > (x, 1)

Fix (x,¢)e R'x [0, T). Suppose that xe C*(¢). Then there are (z,,t,) =
(x, 1) such that z, e C(¢,). Hence,
O0=d x, 1) A0
= Iim[d('(zna tn) A 0]
< limsup [d.(z,5) A 0].

(2.8) = (x.0)

Suppose x ¢ C*(1). Then, there is y € C*(¢) such that
deo(x, 1)= —|x— |

Since ye C*(t), there is a sequence (w,, !,) = (y, ¢t} such that w,e C(z,).
Then,

d(‘(x5 tn) Z - |x—wn|a

and consequently
—lx—yl=1[dc(x, 1) A 0]
=dc.(x, 1)
= limsup [d-(z,5) A 0]

(z.8) — (x.1)
> lim d(x, ¢,)
2lim— |x—w,|

=—|x—yl
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This completes the proof of (3.3), and (3.4) is proved after observing that

d(‘(x, 1) v O0=—[dgicplx t)A0]
= — limsup [d g ()2, 5) A 0]

(zo8) = (x, 1)

= liminf [dq(z,5)vO0] 1 (3.5)

(z,5) > {x, 1)

4. SUB- AND SUPERDIFFERENTIALS

We first recall the definition of sub- and superdifferentials of semi-
continuous functions; see [12, 11]. We then define the sub- and super-
differentials of a set-valued map.

Let S(d) be the collection of all d x d symmetric matrices.

DerFINITION 4.1. Let T>0, & be a function on R*x [0, T), ®* and D,
be the upper semi-continuous and lower semi-continuous envelope of @,
respectively (see (3.3) and (3.4)).

(a) The set of superdifferentials of @ at (x, t)e RYx (0, T) is given by

D P(x, t)= {(n, p)eRYxR:

. P¥(x+ vy, t+h)—DP*(x,t)—ph—n-y
lim sup Nty lth) (x. 1) = ph—n "SO}.
(1h) =0 [yl + A

(b) The set of second superdifferentials of @ at (x,t)e R*x (0, T) is
given by

D2+ d(x, 1)

={(n, A, p)eR'x S(d)x R :

PH(x+ v, 1+ h)— DX, 1) — ph—n-y—(1/2) Ay - y
lim sup (x+y,t+h) (x 2!) ph—n-y—(1/2) Ay "<0}.
(x ) =0 [y1°+ Al

(c) The set of subdifferentials of & at (x, t)e R*x (0, T) is given by

D &(x, t)={(n, pP)eR'xR:

lirm iaf D (x+y t+h)y—D (x,1)—ph—n- 'VZO}.
(3,41) 0 | ¥| + 14
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(d} The set of second subdifferentials of @ at (x,t)e Rx (0, T) is
given by

D 2, '®(x, 1)

= {(n, A, p)e R“x S(d)x R :

L. D x4+t h)—D (x,t)—ph—n-y—(1/2) Ay -y
lim inf f(X+ ) *(rz) ph—n-y—(1/2) Ay )20}.
(v.h)—>0 |_V| + |h|

See Appendix A for several well-known properties of these sets. We con-
tinue with the definition of sub- and superdifferentials of a set-valued map.

DerFINITION 4.2, For a given collection of subsets {C(¢)},,, of R,

D*C(1)= |J D2 '[des A0, 1) VI<T(C(-)),

xe RS

D C()= () D3, '[de, vOl(x.1)  VI<T(C(.)),

xe R4

where T(C(-)) is called the extinction time and is given by

T(ClN = inf{>0: C*(1)=Ror C ()=}
(ct-n= o0 if C(z) is a proper subset of R?for all 1 >0.

Remark 4.3. (a) Observe that for any (z, s)e R“x [0, T),
[des A 0](z, )= —inf{|z—w| :we C"(5)}
=sup{ —|z—w|:w¢ C*s)}.
Hence for any (z, s)e RYx [0, T) and (Z, s)e R x [0, T),
[[des A O](z, 8)— [des A O], s) <z —ZI
Fix (x, 1)e RYx (0, T). Since C*(1) is closed, there is z* € C*(¢) satisfying

ldes A 0](x, 1) = —|x—z¥|
= —|x—z* + [dee A 0](z*, ).

Now use the previous identity with z=x+ y, and Z=:z*+ y, and s=1+ 4,
to obtain

[des AOT(x+ 0 +5)2 —|x—z* + [des AOJ(Z* + 1+ 5),

505/101,2-8
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for all ye RY and se(—1t, T—1t). Therefore
[des A OJ(x+ v, t+5) — [dew A OJ(X, 1)
Z[dee AOHz*+ 3, t+5)— [dee A 0](2%, 1)

Hence, D }? *'[dc. A 0](x, t) is included in D}2'[dc. A 0](z*, 1), and
consequently

D*C(t1)= U D2 dee A 0](x, 1) (4.1)
xe C* (1)
(b) Similarly
D C(t)= U D;z," ‘[d(.‘ v 0](x, t). 4.2)
X ¢ C (1)

Other properties of the above sets are gathered in Appendix A. Also see
Example 5.5 for a discussion of the definition. In particular, in Example 5.5
we discuss why the set

U D:Q 1+l[d(“ A 0](.’(, f)

xeC*(1)

is not large enough to yield a complete theory.

5. VISCOSITY SOLUTIONS; DEFINITION

We start with rewriting Eq. (1.2) as

1

] 0
2 - =
D& (x. 1) F(DP(x, 1), D*P(x, 1), Y d(x, 1))=0, (1.2)

where D and D? denote the gradient and the Hessian matrix with respect
to the x variable alone and for (n, A, p)e [R/\{0}] x S(d) x R,

wcanes( ) £ [o )l o

Let F* and F, be the upper and lower semi-continuous envelopes of F.
Note that F* and F, are both defined on Rx S(d) x R and are given by

F*(n, A, p)= limsup F(m, B, q),

(m.B.q)—(n A,
B

Fun A, p)= liminf  F(m, B, q).

(mBql (()nAp)
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Since f>0, and G =0, the function F and its upper and lower semi-
continuous envelopes satisfy

F(n, A, p)<F(n,A—B, p+q) Vg>0,B=0.
Hence Eq. (1.4) is degenerate parabolic. Also G(8)8 =0 implies that

Flin, A, p))=/1F(n, (1-,;"-%?) A, p) Vin| £0, 1 4> 0. (5.2)

DEfINITION 5.1. (a) A collection {C(r)},,, of subsets of R? is a
viscosity subsolution of (E) if

F,(n, A, p)<0, V(n, A, p)eD*C(¢), te (0, T(C(-))).

(b) A collection {C(1)},., of subsets of R is a viscosity supersolution
of (E) if

F*(n, A, p)=0, Vin, 4, p)e D C(1), te 0, T(C(-)))-

(c) A collection {C(1)},,, of subsets of R?is a viscosity solution of
(E) if it is both a viscosity subsolution and a viscosity supersolution of (E}).

See Appendix B for an equivalent definition. Also a stability theorem is
stated in Appendix C.

Remark 5.2. (a) Since [dq. A 0](x,1?) is the upper semi-continuous
envelope of [d A 0](x, 1), {C(1)},,, is a subsolution of (E) if and only if
[de A 0](x, t) is a viscosity subsolution of (1.2) on RYx (0, T(C(-))). The
viscosity solutions of equations like (1.2) are defined in [10, 15]. Similarly
{C(t)},5, is a supersolution of (E) if and only if [d- A 0]J(x, 1) is a
viscosity supersolution of (1.2} on RYx (0, T(C(-))).

(b) {C(1),, is a supersolution of (E) if and only if its complement
is a subsolution of

B(—0)V =trace G(—0) R —v.

(c) Suppose that {C(t)},., is a viscosity subsolution of (E). For
0< T T(C(-)), define
C(t) if +<T

F(t)={® it (>T
Then, T(I'(-))=T and {I'(1)},., is also a subsolution.

We make the following definition to distinguish between a “maximal”
sub- or supersolution and others constructed like {77(#)},, .
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DEFINITION 5.3.  We say that a collection of subsets {C(7)},,, of R
is maximal if whenever T(C(-)) is finite either

C (=90 Vi T(C()),
or
C*t)=R?  ¥i=T(C(-))

We continue by showing that any classical solution {C(r)},., of (E) is
a maximal viscosity solution. For simplicity we make a simplifying assump-
tion which rules out several pathological cases. We assume that there is
I=1{t,, 1, .., ty} such that

d, is continuous on R x ([0, T(C(-))\I). (5.3)
LEMMA 5.4. Any classical subsolution {or supersolution) of (E) satisfying
(5.3) is a maximal viscosity subsolution (or viscosity supersolution) of (E).

Proof. The maximality of classical sub- or supersolutions follow from
Definition 2.2. Let {C(1)},., be a classical subsolution of (E), and
(n, A, p)e D*C(z) with 1 < T(C(-)). Then, for some x e R¢, we have

(ns Aa p)eD_:—zfl[d(" A 0](x’ ’)-

First assume that [do. A O)(x, t)=[d, A 0](x, t). Using (4.1) we may
assume that xecl C(7). If xeint C(¢) the smoothness of {C(7)},., yields
that (x, 7)eint{(y, s)e R‘x [0, ov) : ye C(s)}. Hence,

(n, p)=(0,0), A=0,
and
F,(n, A4, p)<F,(0,0,0)=0.

So suppose that xe dC(1). Set # = Dd(x, 1). Then, —n is the outward unit
normal vector at x e 8C{t). Let £ e R be a vector satisfying & -# > 0. Then,
the smoothness of dC(t) yields that

(x—1&)¢ C(1) for sufficiently small t > 0.
Using the definition of the subdifferential and Corollary 14.3, we obtain

[de A0 x—1& )= Tde A0 x, )+ & - n

0= lim

o T €]
= lim de(x—1, ) —de(x, )+ 18 -n
T T ]¢|

=[—n-&+n- VIl
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Hence,
n-égné Y& e R satisfying ¢ -5 = 0. (5.4)
Also,

(x+1)eC(r) for sufficiently small 7 > 0,

and a similar argument based on [d A 01(x + tn, 1) =0 yields

n-n=0. (5.5)
Inequalities (5.4) and (5.5) imply that

n=pn (5.6)

for some pe [0, 1]. Set

de(x, 1)

2]~

Then, for every £>0,
x+1t(l—¢g) Ve C(t—1) for sufficiently small 7 > 0.
Since (n, p)e D™ [d A 0](x, 1),

C [de A0l x+t(l =)V t—1)—[do A 0)(x, t)—t(1 —¢) Vnp-n+ pt
0=lim "
T]0

—lim de(x+t(l—g)Vnt—1)—d(x, t)—t(1 —¢) Vn-n+ pt
t]0 T

=Vl—-&)=V—-(1—¢)Vyp-n+p
=—eV—(1-¢)Vp+p.

Hence,
p<pV.
A similar argument based on

x—t(l+e)VneC(t+1) for sufficiently small 7 > 0,

yields that p > pV and therefore

p=pV. (5.7)
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Let € RY be a unit vector orthogonal to 5. Since the boundary of C(1) is
smooth, there is a sequence z,, € dC(¢) converging to x and

Set 7,,= |z,, — x| and w,, =(z,, — x)/7,,. Then, w,, converges to { and

Ozd(‘(zm’ t)

1
= d(’(x’ [) + j Dd(‘(x + 1T, Wy, ’) T Wy dr
0

| 1
= f [Ddc(x, N+ J- Drd (x+rtt,w,, [)TT,,W,, dr:I T, W, dt.
4] 0

Divide both sides of the above equation by (t,,)? and then let m go to o«
to obtain

lim ['JT‘L"’]: lim [l—)if—(%”—)ﬂ]: —(1/2) D*d(x, 1) - L.

” m

Also,

bed — . — [y 7 - 2 YLW
0> lim [de A 01(zms t)— [de A O](x, 1) — T, 0, - n—(1,,)°(1/2) Aw,, - w,,

mo X (Tm)2

im d('(znn t) - d('(xs ’) T Wy N — (Tm)z(l/z) Awm W

= h 3
"o x (T", -

= lim [—pw—{l/Z)Awm-wm]
m— Tim

p(1/2) D*d(x, 1) {-{—(1/2) AL L.

Hence,
[A—pD*d-(x,1)]¢-{=0 V¢ e R? satisfying { -9 =0,
or equivalently

(I=n®n)A>p(I—Ddc(x, )® Dd(x, 1)) D* dc(x, 1)
=p D¥dq(x, 1) (5.8)
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Suppose that p > 0. Then, (5.6), (5.7), and (5.8) imply that
F.(n, A, p)=F(n, A, p)
= F(p(n, 4, p))/p

é
< F(Dd('(xa t)a D2 d(‘(x’ t)~ @—td((x’ t))/[)
=0.

If p=0, then (n, p)=(0, 0). Also, (/—n1®n)A =0. Hence

F*(n’ A, P): F*(O’ Aa O)SO
Recall that we have assumed that [d A O](x, t)=[dec A 0])(x,2). If
[de ~0](x, 1)# [des A 0](x, 1), then using (2.1) and (5.3), we can con-

struct a sequence X,,, l,, My, Ay P Such that [de A 0](x,,1,)=
[dC‘ A OJ(X,", tm),

lim(xm’ ’V"’ nm’ Am’ Pm) = ('r’ t? n’ A’ p),

and

(nm’ Ama Pm + K’m)e D,:2r+l[dC A 0](xm’ Im)

for some K, > 0. Such a sequence is constructed by considering the local
maxima of the map [dq A 01(y, s)— ¥(y,s)— [m(t —s)] ' on the region
RYx (0, t), where ¥ is a smooth function as in Theorem 14.1{b) with
@ = [d A 0]. Using the previous argument we conclude that

Fun,, A, p,)<F,n,. 4, p,+K,)<0.

Passing to the limit as m tends to infinity yields that {C(1)},., is a
viscosity subsolution of of (E). The assertion about the supersolutions is
proved by using the proven result and Remark 5.2(b). §

We give a simple example to clarify the definition.

ExXAMPLE 5.5. For t>0, define

{(x, MeR 20— < x|+ |y* <421} if 1<l
Cle)=4 {(x, ¥)e R : |x|* + | y|? <4 — 21} it 1<r<2
%] it =2
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Then, C(-)is a classical solution of (MCE) with d=2. In fact it is the
unique viscosity solution of (MCE) with initial condition

CO)={(x, y)eR*:2<|x]>+|y|*<4}. (5.9)
Also define
C(1) if 1<(1/2)
F(y=< {(x, y)e R*: [x|*+ |y <4 -2t} if (1/2)<1<2
6] if t=2.

Then for any (x, y)e dI'*(1),
F(n’ Av P)<0 V(nv Aa p)eD.:z:-ldl“((xa )’)»1)~

Observe that {I'()},,, does not satisfy (2.1) and therefore it is not a
classical solution. Also

(0’ 09 p)e D.:zfldr'((oy 0)7 05))

for any p>0. Hence {I(1)},., is not a viscosity solution of (E), either.
This example indicates why we need a subdifferential which is larger than
the set

U D/ lde(x, 1)

X e dC*(1)

However, if {C(1)},., is “continuous™ in the time variable, there may be
an equivalent definition which only uses the above set.

6. EXISTENCE BY PERRON’S METHOD

In this section we obtain an existence result by assuming the existence of
a viscosity subsolution and a viscosity supersolution of (E). Existence of a
solution satisfying a given initial data is discussed in Section 10.

We use Perron’s method to obtain existence of viscosity solutions. Qur
proof is very closely related to the proof of Proposition 2.3 in [10]. We
also refer to Ishii [31] for the first use of Perron’s method in the context
of viscosity solutions.

LEmMa 6.1. (a) Let C be a collection of viscosity subsolutions of (E).
Define

Cy={ry:r(-)yeCand t<T(I'(-))} v

Then {C(1)},., is a viscosity subsolution of (E).
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(b) Let A be a collection of viscosity supersolutions of (E). Define
Cy={rt):I'(-)eA and < T(I'(-))} " R*
Then {C(1)},., is a viscosity supersolution of (E).

Proof. (a) Remark 5.2(a) and Proposition 2.2 of [10] imply the result
provided that for all re [0, T(C(-))) and x,

[de A 0](x, 1) =sup{[d, A 01(x, 1) : I'(-)eC and 1 < T(I(-))}. (6.1)

Indeed if xe C(t) with t < T(C(-)), then xe I'(t) for some I'(-)e C which
is proper at time f, and (6.1) follows easily. Suppose x¢ C(r) with
t <T(C(-))- Then, there are y, e C(¢) such that

de(x, t)=lim—[x— y,l.

The definition of C(r) implies that for each n, y,e I, (¢) for some I, €C
which is proper at time ¢. Hence,

—lx =y, <dp,(x,0)=[dr, A Ol(x,1)  Vn,
and

[de A 0OX(x, 1) <sup{[d A 0](x,t): I'(-)eC and 1 < T(I(-))}.

To prove the reverse inequality observe that for every r< 7(C(-)) and
positive integer n, there is I',(-) € C which is proper at time ¢ and

[dr, A 0](x, 1) Zsup{[d; A 01(x,1): I'(-)eC and t < T(I'(-))} — (1/n).

Also choose z, e I',(t) satisfying

—lx—z,|=1d;, A 0](x, t)—(1/n).

Then by the definition of C(¢), z,,e C(¢) and
[dC A OJ(X, I)Z —IX‘Z,,’.

Combining the above inequalities, we arrive at (6.1).
(b) This follows from part (a) and Remark 5.2(b). |

We need the following technical lemma in our main existence result.
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LEMMA 6.2. Suppose that there are 5>0, y,e RY, so>0, and smooth
functions [ and g satisfying

P (DF . 500 DY (50,501 5 (300300 <0, (62)
F(os 50)= &(30, 50) =0, (63)
and
fx1)>0=g(x, )20,  V|x— yol + |1 — 5ol <& (6.4)
Then,
Fu (Detyo.su). D(30,500 5, 80 50) ) <O (65)

Proof. We analyse three cases separately.

(1) (Df(xo, 50), (6/01) f(yo, 50)) # 0. Set

a
n= (Df( Yos So)s (7_tf( Yo, 50))-

Then, for any ve R“* ' satisfying - v >0, there is p(v) >0 such that
SU e 50) +pv)>0  Vpe(0, p(v)].
Assumption (6.4) yields

g(( 1o, So) +pv) =0  VYpe[0,p(v)]),veR*" andn -v>0,

and therefore there is x> 0 such that
a
(Dg( ¥o> So), o g(yo. So)) =an
d
:a<Df()vU’ sO)* E;f(y(]’ SO) . (66)

Let {e R“*' be a unit vector orthogonal to n. By the implicit function
theorem, there is a sequence (z,,!,) converging to (vg, sg) such that
Sz, t,,)=0 and

. Zyy— X
fim — == ¢,

|2, — x|
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Set 7, =|(z,,— x, t,,— )| and w,, = (z,, — X, t,,— t)/1,,. Then, w,, converges
to { and

0=f(z,,, tm)
=f()"0,50)+£) (Df((}'OaSO)TT ) f( Yos So) + 1T, m)) Ty Wy, dT

1 1
=J. |:’7+J‘ D.rlzf((yO*s0)+rtrmwm) TT,,,Mmdr:' T W dT,
0 0

where D_Zf is the Hessian matrix of f with respect to all of its variables.
Divide both sides of the above equation by (t,,)* and then let m go to o
to obtain

lim [’7 ' """] — (1/2) D2 f(ren 50) L.

”

Also, an approximation argument based on (6.4) and (Df(ys. o),
(6/81) f(yo 50)) #0 yields 0< g(z,,, 1,,). Hence,

0<glz,, 1)

‘—g(}Oa 50 +f Dg((Vo, S0)+_’r‘rm m) g(()o’so)'*'rrm"‘m)) Tme dT

L J
= “-0 [(Dg( Yos So)s é—t g(¥yo, 30))

1
+ f D.2g((yo» S0) + rTTuW,) TTuW, dr] T, W,, dt.
0

Divide both sides of the above equation by (z,,)* and then let m go to
oc to obtain

0<lim [(Dg(g"’ So) (6/5’)“-""’ So)) ”] +(1/2) D, 2 g( o, 50) L&

. an -w,, v
=1xm[”t—]+(1/z)bd(yo,so)c-g
= —a(1/2) D2 f(¥0, So) (- C+(1/2) D 2 g(yo, S0) - L.
Hence,
[eD.}f(yo,50)— Dl 8(y0,50)1L-{<0  ¥Y{-np=0.

Combining (5.2), (6.2), (6.6), and the above inequality, we obtain (6.5).
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(2) (Dg(yo, So), (6/01) g(yo, 86)) #0. Using the negation of (6.4),
proceed exactly as in the previous case to obtain

[Duzf( Yo, o) — Dx:zg( Yo, 50)1¢-0<0
A (6.7)
. . [
for all { satisfying, C-(Dg( Yo» S0)s Fr g(xo, s(,)) =0,

d é
(Df( Yos So)s a1 f()w%))—“(Dg(‘o,so) (3 g(}o»so)) (6.8)

for some o = 0. If 2 >0, then (6.5) follows from (6.2), (6.7), and (6.8). Now
suppose that o =0. Then, (6.2), (6.7), and the definition F* imply that

é
0>F* (Df( Yo, Soh sz(}'()a So)s ’a—rf(J’Oa So))

= F*(0, sz( Yor S6), 0)
= lim sup F(p Dg( yq. So)» sz( Yo S0 0).

pl0
However, (6.7) with =0 yields
F(p Dg(yo, $0)s D*f(¥0, $0).0) 20

for every p > 0. Clearly the above inequality contradicts (6.2), hence « # 0.

(3) (Df(yo, $0), (8/81) f( ¥g, 56)) = (Dg(¥o, So), (6/01) g( ¥, 5¢)) =0.
Set

A = sz( ,V()a So)s
B= ng(}’o, So)-

Then, (64) and the fact that (Df(ye,S0), (/1) f(ye, $6)) =
(Dg(yo, So), (0/01) (¥, 50)) =0 yield
Ae-e>0=>Be.e=>0  VeeR" (6.9)
Let e, f'€ R* be given. We claim that
Ae-e+ Af - f>0=Be-e+ Bf - f =0.

Indeed if Ae-e and Af - f are both strictly positive, then (6.9) yields the
result. If they are both negative, then there is nothing to prove. So we may
assume that

Ae-e>0z2Af-f  and Be-e20> Bf-f.
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Define two second order polynomials by
P, (ry=A(f+re)-(f +re) and P,(r)y=B(f+re)-(f+re)

For large r, P (r)>0. Hence (6.9) implies that P,(r) is nonnegative. But
this is possible only if Be-e>0. Let 4, < A, be the roots of P, and p, < u,
be the roots of P,. Observe that

AAy=Af-f/Ae-e, Hipy=Bf - f/Be -e.

Hence to prove the claim it suffices to show that
A+ 1>0=pupu,+120.

Using (6.9) we conclude that whenever P, (r) >0, then P,(r) > 0. We also
know that Ae-e>02= Af - f, and Be-e¢>0> Bf - f. Hence

A <0<p, <4,

Consequently 4,4, <y, u, and the claim is proved.

The hypothesis (6.2) and the assumption (A) of Section 2 yield that trace
G(6*)A4 >0 for some 0* € SY '. Using this inequality and the nonnegativity
of the symmetric matrix G(0*) we may represent G(6*) as

2M
G(0*)= ) e,Qe;
i=1
for some eigenvectors e, of G(6*) (not necessarily distinct) satisfying
Aey €+ Aey -4, >0 Vk=1,.., M.
Then we have
Bey e 1+ Bey ey 20
Sum this inequality over k& to obtain that trace G(8*)B>=0, and (6.5)
follows. |
THEOREM 6.3. Let {L(t)},., be a viscosity subsolution of (E) and
{U(1)}, 5 be a viscosity supersolution of (E), respectively. If
L(r)= U(1), Vi< T(L(-)) A T(U(-), (6.10)
then there exists a viscosity solution {C(1)},., of (E) satisfying

Lityc C(yc Uty Vi< T(L(-)) » T(U(-)). (6.11)
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Proof. Set To=T(L(-)) A T(U(-)), S¢= T(U(-)), and

{I'(#)},501s a subsolution of(E)}

C:{{r(’)}@": r(t)yc Ut) Vi< Sy n T(I(+))
Then Lemma 6.1(a) yields that

U{r():r(-yeCand t<T(I(-)}u@  if 1<S,

C(’)={g it =S,

is a subsolution of (E). Also (6.10) implies that {L(¢)},,,€C. Hence
To< T(C(-)) < S,. Suppose that {C(t)},., is not a supersolution of (E).
Using Lemma 14.6 we conclude that there exists a smooth function & and
(xo0, to) € R*x (0, T(C(-))) such that

0=[d, v 0](xo, 10) — B(x,, 1)
=min{[d. v 0)(x, )= B(x, 1) : (x,1)e R‘x [0, T(C(-)))}

and

- - 0 +
F* <D¢(X0, tO)’ DZ(D(XO’ t0)3 -(‘/?f— ¢(x0s tO)) <0.

In view of (4.2) we may assume that

Xo ¢ C (1) (6.12)
Set
D(x, 1) =B(x, 1) — [|x — x>+ |t — 10’12
Then,
(a) [de, v O0Xx, )= ®P(x, 1) =2 [1x—xol + |t 10]*]* ¥(x, 1)

(b)  D(xo, 1) = [dc' v 0](xq, o) (6.13)

0
(c) F* (qu(xo, to), DB, 1), 5 Do, zo)) <0,

Since C(r)< U(r) for all 1< T(C(-)) and {U(1)},,, is a supersolution of
(E), (6.13)(c) implies that

Ldc, v 0)(xo, 1o) = P(xq, 1y) < [d,;, v 0](xo, 1o).
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Hence by the lower semicontinuity of [d,, v 0] there is a d, such that

B, (X0, 1) = {(x, 1) € R¥x [0, 00) : |x — xo|2 + |t — tp]2 < (6,)?}

c U [U(n)x {1}]. (6.14)

120

Also due to the smoothness of @ and the upper semi-continuity of F* there
is a ¢, satisfying

F*<D¢(x,t),Dzdi(x,t),éa—l¢(x,t)><O V(x, 1) € By, (X0, L) (6.15)

For t < T(C(-)), let
Y(x, t)=max{D(x, t)+ (80)*/2, [dc v 0](x, 1)},
where

do=min{d,, J,}.

For any (x, 1) ¢ Bs,(x,), (6.13)(a) yields that
D(x, 1)+ (80)*2 <D(x, )+ [|x — xol* + |1 — 1,)°]°

<[de, v O0X(x, 1)
<[de v 01(x, 1).

Hence, for 1 < T(C(-)),

W(x, 1)=[de v O0](x, 1),  Y(x, )¢ B (xo, to). (6.16)
Finally define
S(t)={(x, 1) e R*x [0, 0) : ¥(x, 1)>0} if t<T(C(-)),

and S(r) is defined to be the empty set of 1 = T(C(-)). The definition of S(¢)
and (6.16) imply that

U [S@)x {t}1<= | [Ct)x {1}1v By, (xo, to).

120 r20
Since C(#) is included in U(t) for all t < Sy A T(C(-))=S, A T(S(-)) and
0o=68,, (6.14) and (6.16) yield that

S(tyc U(t)y  Vie[0, Sy A T(S(-))). (6.17)
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Using the smoothness of @ and the inequalities
V> d+(d,)%2,
and
B(xo. 1) = [d,, v 0] (xo. 10) >0,

we conclude that

Bs(xo, to)= ) [S(1)x {1}] (6.18)

r=0
for some 6 > 0. Suppose that
B;s(xg, t) = U [C(t)x {t}] (6.19)
t=20

for some & > 0. Then, x,€ C,(,). Recall that x, is chosen from the comple-
ment of C(t,) (see (6.12)). Hence, (6.19) does not hold for any positive &
and (6.18) yields

U [Cox{}1# U [S()x{}] (6.20)

1< T(CC)) (< T(CC))

Since {C()},,, is the largest subsolution of (E) included in {U(1)}, .,
(6.17), (6.20), and the fact that C(r) is included in S(7) imply that
{S(1)},, 0 is not a subsolution of (E). Hence to complete the proof of this
theorem it suffices to prove that {S(r)},., is a subsolution of (E).

First note that T(S(-))= T(C(-)). Suppose that a smooth function y and
(Yo, SoY € RYx (0, T(S(-))) satisly

O0=[ds A 0](yo,50) —7( Vo> S0) > [ds« AO01(y,8)  Y(y,5)# (o, 50)

We need to show that

a
F*(DV(YO’ o), DZ}’(.V(), o) a1 ?( Yo, So)) <0. (6.21)
Since [des A 0] < [dge A 0], if

[dce A 01( o, 50) = [dse A 01(yo, So)

(6.21) follows from the fact that {C(s)},,, is a subsolution of (E). So we
may assume that

[des A O0J(yo, So) < [dge A OJ( o, s0)- (6.22)

We analyse four cases separately.
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(1) @(po, o)+ (89)*/2>0. Then, [ds. A 0] is equal to zero on a
neighborhood of (yg,s,). Hence, Dy(yg, s0)=0, (8/81)7(yy,59)=0,
D*1( yo, 50) =0, and (6.21) follows easily.

(2) @(yy, 50)+ (80)*2=[dge A 0]( g, 56)=0. We claim that the
hypotheses of the previous lemma are satisfied with f=® + (8,4)*/2, and
g =7. Indeed we have

W Yas 50} =P(¥o, So)} + (50)4/2 =0.

Now suppose that @(y,s5)+(5,)*2>0 for some (y,s). Since
Y>d+(5,)%2, we have [dg. A0](y,s)=0. We also know that
12 [dg. A 0]. Hence,

w(r,5)=0 whenever @(y, 5)+ (8,)%/2>0.
Also y,e S*(s,) and consequently ¥ >0 in a neighborhood of (g, o).
Since, by (6.22), [dce A 01( 3o, 5o) <0, we conclude that ¥ > [d« A 0] in
a neighborhood of (g, 5¢). Therefore by (6.16), (v, 5o)€ B, (x,, 1,) and

{6.15) implies (6.2) with /=& + (8,)%/2. Now use the previous lemma to
obtain (6.5) which is equivalent to (6.21).

(3} [dge A0)(yo.S0)<0. Hence yoé¢ S*(sy). Choose z,edS*(s,)
such that

[dew A OJ(yo. 50)= —|yo— 2ol
Define
E(y, s)=y(y+ yo—20, S)+ | yo— 2ol
Then,
[dge A 01(z0, 50) —&(20, So) = [ds+ A 01( o, S0) —7( Yo So)
2 [dse A 0](3,8)~7(1,8) Vs,
= ‘lf-'_}’l+ [dS‘ A 0](‘?!‘9)_})(.}1’5‘) v,v-: S, Z.
Let y=z+ yy— 2z,
[dse A 01(zq, 50) — E(20, So)
2 —|yo—zol + [dse A 01(z, 5) —7(z + yo— 20, 5)
=[dge A 0](z, 5)— &z, 5) Yy, s.

Since zy€ 85*(sy), ¥(zq, So) = 0. Also (6.22) yields that z, ¢ C*(s,). Hence

505/101:2-9
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¥(zy, 5o) = D24, 5o) + (8,)*/2. Using the previous two cases at the point
Zp, o We obtain

, ¢
F* <D£(ZO’ SO), D-é(ZOs s()))’ 51'5(20’ SO)) < 0
Now (6.21) follows after observing that

";
(Dz(zo, soby D&z, o) 5 £z, so))

J
= <DT( Yo, So)s Dz?’(}’o» o), E"—t ?( ¥os 50))-

(4) D(yy, 50)+ (80)*/2<0, [dse A O0]( o, 50)=0. Using (6.22) we
conclude that ¥ =&+ (5,)*/2<0 in a neighborhood of (yg,s,). This
contradicts the fact [dge A 0](yg, 50)=0. |}

7. COMPARISON

THEOREM 7.1. Let {L(1)},,, be a viscosity subsolution of (E) and let
{U(N)},5 o be a viscosity supersolution of (E), respectively. Assume that for
each T> 0, there is a positive constant R(T) satisfying

L(r), U(t) = Brypy Vi<T. (7.1)
Also, assume that there is o >0, such that
[dpe A 01(x,0)< [dy, v 01(x,0)— 2 ¥xe R (7.2)
Then,
L*(t)c U,(1) YOt < T(L(-)) A T(U(-)). (7.3)
Proof. Set Ty=T(L()) A T(U(-)), for (x, t)e RYx [0, T,,) define
u(x, t)y=1[d;« ~ 0](x, 1),
and
v(x, 1y=[d,_ v Olx, 1)—a

Remark 52(a} yields that » and v are a viscosity subsolution and a
viscosity supersolution of (1.2) on R“x [0, T,), respectively. Clearly, (7.2)
yields that

u(x, 0)<v(x, 0) Yxe R
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Also, using (7.1) we obtain that for any t< T A Ty and |x| = R(T) + a,
u(x, ty=d;«(x, t)
< —distance(x, ¢ Brr))
=—q
< [dU‘ vOlix, t)—«
=v(x,1).
Hence, Theorem 4.1 of [10] implies that
u(x, t)<v(x, t) Vi<T A Tyand [x] < R(T) +a. (7.4)
Suppose x e L*(¢) for some 1t < T A T, then |x] < R(T) and
u(x, )=0<v(x, 1)< [du‘ v O0](x,t)—a.
Therefore du‘(x, t) 2 2, in particular xe U_(z). |
For 6 >0, define
L°(1)={(x, 1)e RYx [0, o) : d,(x, 1) > =8},
Us(2)= {(x, 1) e RYx [0, o0) tdy (x,1)>0}.
Remark 7.2. Condition (7.2) is equivalent to
L*(0) = (U,).(0). (1.5)

The following is a weak regularity result in the time variable and it will
be used in Sections 9 and 10.

Lemma 7.3, Let {L(t)},,, be a viscosity subsolution of (E) and let
[U(1)}, . be a viscosity supersolution of (E), respectively. Then,

(@) limsupg,, [dee A O0](x,5)=[dev A 0](x, 1)
V(x, t)e R x (0, T(C(-))),
(b) lim inf:T,[dU_ v 0](x,s) = [a'u_ v O0](x, 1)
V(x, t)e RYx (0, T(U(-))).
Proof. (a) Fix (x,t)eRYx (0, T(U(-))). We analyse two cases
separately.

(1) xe C*(¢). Suppose the contrary. Then

—a=limsup [dq. A 0](x, s) <0,
sTe
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and consequently there is é >0 such that
[des A 0](y, 8) < —(2/2), Vix—y|<d,se[t—3, 1)
Hence, for any positive p

[dee AOJ(p,8) = [dee AO)(X, )= (s—1) p
< —(a/2)—0—(s—1) p, Vix—y|<d,se[t—6,1)
<0 Vix—y| <o, se[t—({(a/2) p A 8), 1)
For szt and positive p, (s—1t)p=0. Hence the above inequality also

holds, for (y, s)e RYx [¢, oc). Therefore, (0,0, p)e D*C(1). Since >0
(see assumption (A)),

F (0,0, p)=min{B(—n/in|)p:ne R} >0 ¥p>0.

The above inequality contradicts the subsolution property of {C(1)},.,.
(2) x¢ C*(1). Choose z e dC*(t) such that

des(x,t)=—|x—z|.

Then, the upper semi-continuity and the sublinearity of [d. A 0] imply
that

des(x, 1) = lim sup [dea A 0](x, 5)
st

2 lim sup {dee A 0](z, 8)— |x — 2|
sTe

=limsup [d¢s A 01(z, )+ doe(x, 1)
str

Since z € dC*(1), we apply case (1) to obtain

lim sup [d.« A 0}(z, 5)=0.
sTe

(b) This follows from part (a) and Remark 5.2(b). |}

8. NONUNIQUENESS; EXAMPLES

We give two planar isotropic examples to show that there is no general
uniqueness result. Nonuniqueness of solutions is related to the development
of an interior of the level sets of viscosity solutions to (1.2). Similar
examples are also discussed in Section 8.2 of [15].



MOTION OF A SET 343

ExaMPLE 8.1. Let A(z, t) be the solution of

il a2 ¢ -1
Eh(z, t)=§;h(z, t) [l + (52 h(z, l)) Vt>0,z>0, (8.1)(a)
0
—a:h(O, 1)=0 Vi>0, (8.1)(b)
.0
gll-.nl Eh(é,t)zl Vi>0, (8.1)c)
h(z,0)=z VzzO. (8.1)(d)

The existence of such a solution can be proved by an approximation
argument. Define

D(1)={(x, y)e R*: |x| > h(| yl, 1)},
and

C(t)={(x, y)e R*:|y| <h(|x], 1)}

A straightforward calculation shows that both {C(1)},,, and {D(1)},.,
are classical solutions of (MCE) with initial condition

C(0)=D(0)= {(x, y)e R*: |x| > |y }.

ExaMPLE 8.2. Let (h(z, ), A(t)) and T be a solution of

6 52 a 271
Eh(:, t)=52—:h(z, 1) [l +<—é; h{z, t)) ] Yte [0, T), ze (0, A(1)),
(8.2)(a)
%h(o, ty=h(A(t),)=0 Ve [0, T), (8.2)(b)
lTim ;—h(é, ty= —xc Vte [0, T), (8.2)(c)

EtanCZ

h(z,0)=z /1 =7z? Vze(0,1), (8.2)(d)
A(0)=1. (8.2)(e)

For 1 < T define

D(1)= {(x, y)e [—A(1), A() I x R: | y| <h(]x], 1)}.
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Let (p(z, t), b(1), B(t)) and T be a solution of

6 62 a 23 -1
zq—p(z,t)=7p(:,r)l:1+<—— plz, t)) :' Vie[0, T),
Mt iz az

ze(b(1), B(1)), (8.3)(a)

p(b(1), 1) = p(B(1), t) =0 Vie[0,T), (8.3)b)

lim ip(é,z)z — lim -a—p(é,t):ao Vie[0,T), (83)c)
clotn 0z £1B(1) 6z

p(z,0)=z /1-2 Vze(0,1),  (83)(d)

6(0)=0, B(0)=1. (8.3)(e)

For t < T define
C(t)={(x, y)e ([—B(2), =b()] U [b(1), B(1)])x R: | y| < p(Ix|, 1)}.

If there are solutions to (8.2) and (8.3), it is easy to show that both
{C(1)},,, and {D(1)},,, are classical solutions of (E) with initial
condition

COY=DO0)=T={(x,y)e[—L1Ix[-1,1]: |yl <|x| /1 —x}.
See Fig. 1.

FiG. 1. Two solutions with initial data C(0).
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9. UNIQUENESS FOR NONPOSITIVE v

In this section we prove a uniqueness result for v <0 and a class of initial
conditions. Along with other properties, the boundaries of these initial
conditions do not have self-intersections. We start with the description of
the condition we imposc on the initial conditions.

For pe(0, 1), < R and x € R define

F(x, p)=p(I®{—x})@® {x)
={py+(1—p)x:yel}
DErINITION 9.1. We say that a bounded open subset I” of R? is strictly
starshaped around a point x € R if there is py € (0, 1) such that
min{dist(z, I“):zecl [(x, p)} >0, Vpe[pg, 1)
The precompactness of /" implies the following.
LEMMA 9.2, A bounded open set I is strictly starshaped around x if and
only if there is py such that
sup{ —dist(z, I'(x, p)) —dist(z, '“):z€ R} = —a(p) <0 Vpel[pg 1)
9.1)

THEOREM 9.3. Let {L(1)},., be a viscosity subsolution of (E} and let
{U(1)}, o be a viscosity supersolution of (E), respectively. Assume that v <0
and there is a bounded open set I satisfying

L*O)cc I and T U,0). 9.2)

Futher assume that I’ is strictly starshaped around a point x and for each
T >0, there is R(T) such that

L(1), Uty By, YIST
Then,
L*(1)cc U, (1)< U*(1),
and
L(NcU(r) YO<t<T(L(-)) A T(U(-)).

Proof. Since the equation (E) is invariant under translation, without
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loss of generality we may assume that [ is strictly starshaped around the
origin. Fix p < 1, and define

!
C(1)=pL (—5> Vi 0.
p

We claim that {C(1)},., is a subsolution of (E). Indeed suppose
(n’ Aa p) € D:Z /+ ! [d(“ A O](x, ’)
at some (x, 1)e RYx [0, T(L(-))). Since C*(s)=pL*(s/p?) for every 5=0,
we have
s
deolyos)=pdie (2. 5). VO

pp

Then the definition of the set of second superdifferentials yields

{[d(<./\0](x+y, t+ Y- [dee A0)(x, t)—n-y—ph-(1/2) Ay-y}
thl+1y1?

{P[du A 0]((x + p)/p, (2 +h)/p*) — pld,. A O](x/p, t/p*)
Al + 1y

0 = lim sup
(3h) =0

= lim sup
(s h) =0
—n-)'—ph—(l/Z)Ay-y}

|l + [ pl?

_1 {“m sup [d A OX((x/p) + 2, (1/p°) +Sl— [d.- A 03x/p, 1/p?)
p {(z.5)—0 IS" + ’ZI
—n -z—pps—(l/2)pAz-z}
! REAER ‘

Hence,
(n, pA, pp)eD 2 ' d,. A OX(x/p, t/p?).
Since {L(r)},., is a subsolution of (E),
0= F,(n, pA, pp)

=pF (n, A4, p)—v (a1 -p)
= pF,.(n, 4, p).

Combine (9.1) and (9.2) to obtain

[dee A 0](x,0)< [dye v 0)(x,0)—a(p). (9.3)
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Hence the hypotheses of Theorem 7.1 are satisfied by {C(s)},., and
{U(1)},5o Thus

pL* <—’%> =C*)c U, (1), Vee [0, T(L(-)) A~ TLU(-)).  (94)
Suppose xe L*(¢) with t < T(L(-)) A T(U(-)), using Lemma 7.3(a) we
obtain a sequence (x,, t,) — (x, ¢) satisfying
1, <! and x,€L*(1,)Vn.
Set p, = \ﬂ/t—,, Then
PuXn € pL¥(1,)=C*(1). (9.5)
Since p, <1 and p, — 1, (9.4) and (9.5) yield that for sufficiently large n
PnXn€ U,l1)

Now let n tend to infinity to conclude that xecl U_(r). Suppose that
xeL,(t). Then by the definition of L,(¢),

t
pxepl (—5)
)

for all p sufficiently close to one. Since L(s) is included in L*(s) for all s,
(9.4) yields that xe U_(¢). |}

10. ExiSTENCE; INITIAL VALUE PROBLEM

In this section we construct a maximal viscosity solution to (E) with a
given initial data. Our construction is closely related to Section 6 of [10].
In view of Section 6, to obtain an existence result it suffices to construct a
viscosity subsolution and a viscosity supersolution satisfying the given
initial data

C*(0)cdl T, (10.1)(2)
C,(0)>int I, (10.1)(b)

where I" is a given bounded subset of R“
For r 20, define w(r) by

rR—In(rR+1)

wir)= KR ,
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where
K = max {trace G(n)/f(n):ne R¥and |n| =1} v 1,
R = (max{|v|/f(n) :ne R*and [n|=1}/K) v 1.
For a given x,€ R? and p >0, define

L(xo, p)1) = {x€R*: p— 1 —w(|x — x4|) >0},

and
U(xg, p)(t)={xeR: —p+1t+w(]x—x,])>0}.
Then,
L{xo, p){1) = B,,(,)(x0),
and

Ulxy, p)(t) = Rd\Bpm(xo),

where B, (x) denotes the d-dimensional sphere with radius p and center x,
and p(t#) is the unique solution of

p=14wp(1)).

Hence,

d d -1
EP(’)= “[; W(P(’))]

K

p(1)
1 trace G(n) v

p(t)  B(m)  Bny

for all n. A straightforward calculation, using the above estimate shows
that { L(x,, p)(#)}, o is a classical subsolution of (E), and { U(x,, p)(1)},5,
is a classical supersolution of (E). Finally, define

L(1) = {L(xo, p)() : L(xo, p)O) = T}, (10.2)
and

U(r) =) {Ulxo, p)(1) : I'= Ulxo, p)(0)}. (10.3)
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Then, Lemma 6.1 implies that {L(t}},,, and {U(1)},,, are a viscosity
subsolution and a viscosity supersolution of (E), respectively. Observe that

L(nc U Vi< T(L(:)) A T(UC()). (10.4)
THEOREM 10.1.  For any given proper subset I' of R¥ there is a viscosity

solution {C(1)},., of (E) satisfying (10.1). Moreover, the extinction time
T(C(-}) is strictly positive.

Proof. The existence of a viscosity solution {C(1)},,, satisfying
Lyc C(tyc Ulr),  Vi<T(L(-)) A T(U(-)),
follows from the preceding calculations and Theorem 6.3. To show that
(10.1) is satisfied by {C(¢)},.,, suppose that x,¢cl /. Then using the

definitions of U(t} and U(x,, p)(t), we conclude that there exists p>0
satisfying

C(t) = U(r) = Ulxg, 2p)(1),
for all 1> 0. Since

Ulxo, 2p)(1) = R\B, (xo)

for all small ¢, C(¢+) does not intersect B,(x,) for all small . Hence
xo ¢ C*(0), and consequently (10.1)}(a) holds. A similar analysis also yields
(10.1)(b).

We continue by showing that the extinction time of {C(1)},., is
positive. Since /" is a proper subset of R there are R, >0, R,>0 and
xo€ R, yo€ RY such that

L(xg, R )(0)= "= U(yo, R2)(0).
Then, the definitions of L(x,, R,)(¢) and U(y,, R,)(¢) imply that

& # L(xq, R ()= L(1) = C(1) Vi<R,,
and

C(t)yc U(t)c U(ye, RN #R?  Vi<R,.

Therefore,

T(C(-)ZR, A Ry |
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Remark 10.2. Let {V(1)},., be a viscosity supersolution of (E)
satisfying (10.1)(a) and (10.4). Then,

Y(1)=U(t)n V(1)

is again a viscosity supersolution of (E) with initial condition (10.1) and
satisfies (10.4). Hence, by using {Y(¢)},., instead of {U(t)},.,. in the
proof of the above theorem we obtain a viscosity solution included by the
given viscosity supersolution {¥(1)},,,.

We need a technical lemma to prove that the viscosity solution
constructed in the proofs of Theorem 6.3 and Theorem 10.1 is indeed a
maximal one. Suppose that {C(1)},., and {['(f)},,, are viscosity sub-
solutions of (E) satisfying,

[dre A 0](x,0)< [dee A 0](x, tg), Vx, (10.5)

at some point ¢,. Set

s(z)={c") st
I'(t—1,) if >t

LemMma 103. {S(1)},., is a viscosity subsolution of (E).
Proof. Let (n, 4, p)eDF? ' [dge A 0](x,, 50). We need to show that

Fo(n 4, p)<0. (10.6)

If sq#1,, then (10.6) follows easily from the subsolution properties
of {C(1)},., and {I(1)},.,. So assume that s,=1,. Using (10.5) and
Lemma 7.3(a), we obtain

[dee A 0(x, 1) if 1<,
A0 x, )= .
[dse 2 01(x. ) {[d,, AOY(x, 1 —15)  if 1> 1,
Let ¥ be as in Theorem 14.1(b) with & =T[ds. A 0] and (x, )= (x,, {,).
For ¢ >0, define

Y(x, ) =W(x, 1)+ [1x —xol* + |1 —1,%] +st -
o—

Choose {x,, t,) such that 1, <¢,, and

[d(“ A Oj(xm [.‘2) - q’u (xm tg)
>[de A0)(x, ) =YP.(x, 1) VxeR%tel0, )
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It is easy to show that (x,,,)— (x4.%,) as ¢ tends to zero. Also the
subsolution property of {C(r)},. , implies that

F* (qut:(xm tl:)’ DZ'II;:(XM fﬂ), é—f We(xm te)) <0

Since F, is nondecreasing in the p-variable and

) ¢
liminf — ¥ (x,, t.) = — W(xq, 1),
“211(1)“ Et t,(x‘ﬂ ) 6f (YU O)

we obtain (10.6) by letting ¢ go to zero. |

THEOREM 10.4. For any given nonempty bounded open subset I’ of R?
there is a maximal viscosity solution {C(1)},., of (E) satisfying (10.1),

Proof. Since I' is bounded, the extinction time of the viscosity super-
solution {U(¢)},., given by (10.3) is co. Let {C(1)},,, be the viscosity
solution of (E) constructed in the proofs of Theorems 6.3 and 10.1. Recall
that for ¢t < T(U(-)),

B ~ {I"(1)},.1s a subsolution of (E) }
co=u {”’)'rmcU(z)Vr<T<U<-))A T

Since

C(r)< Ulr),

and T(U(-)) = o0, we need to show that

intCy (=g  Vi=T(C()).

Suppose to the contrary. Then, Theorem 10.1 and the Remark 10.2 imply
that there exists a viscosity solution {I'(#)},., of (E) and initial condition
I' = C*(T(C(-))). Moreover, it has a positive extinction time and

I'(ncUt—T(C(+))) Y12 T(C(-)).
Define

S(t):{c(t) if +<T(C())

It—TC-)))  if 1> T(C())
Since {I'(1)},., satisfies (10.1) with I"= C*(T(C(-))), the previous lemma
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yields that {S(r)},,, is a viscosity subsolution of (E). Then by the
definition of {C(1)},.,

TCeN21SCN2TCC-N+TU()

This contradicts the positivity of T(7°(-)). |

11. CoNNECTION BETWEEN (E) AND (1.2)

Let u# be the unique viscosity solution of
2 (? d
F | Du(x, t), D°u(x, t), Ey u(x, 1) | =0, Vxe RY >0, (1.2)

with initial condition

dist(x, oIy A 1 f xerl

e I

where /" is a given bounded subset of R“ The existence, the uniqueness,
and the continuity of « are proved in Theorem 6.8 of [10]. Set

L(1)={xe R% u(x, 1) >0}, (1L
Ut) = {xe RY; u(x, 1) >0}, (11.2)

THEOREM 11.1. (a) For any bounded nonempty open subset I' of RY,
{L(1)},,0 and {U(1)},,, are maximal viscosity solutions of (E) satisfving
(10.1).

(by Let {I'(t)},., be a viscosity solution of (E) satisfying (10.1).
Then,

Lyl (t)cU*(1) Vie [0, T(L(-)) A~ T(U(- ). (11.3)

Proof. Let A be the collection of all viscosity solutions of (E) with
initial conditions which are compact in int /. Set

J(y=) {C() : {C(1)},, o€ A, t<T(C(-))} U D.
Since I is bounded, if {C(1)},,,€ A then there is « >0 such that
[deo A 0](x,0)<u(x,0)—a (11.4)

Also {C(#)},., is included in the viscosity supersolution defined by (10.3).
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In particular {C(¢)},,, is bounded. Therefore (11.4) and Theorem 4.1 of
[10] yield that

[dee AO](x, ) < u(x, t)—a.
Suppose that x e C(z) with t < T(C(-)). Then, u(x, t) > a>0. Hence, J(t) is
included in L(r) for all 1 =0.
Suppose that xge L(zg) with 1, < T(L(-)), then u(xg, {y)>7 for some

y>0. By Theorem 10.4 there is a maximal viscosity solution {C(1)},,,€ A
such that

[d(-‘ v 0](x,0) = u(x,0)—1y. (11.5)

Then, Theorem 4.1 of [10] implies that [dC‘ v 0)(x, t) = u(x, r)— 7y for all
(x,1)e R¥x [0, T(C(-))]. Since {C(#)},,, is maximal and I" is bounded, if
T(C(-)) is finite,

CT(C(-))=1D.
Therefore the continuity of « and (11.5) yield that
T(C(-)) =z inf{1>0: there is x such that u(x, 1)>7y}.

Hence x,¢€ C(ty), to<T(C(-)), and consequently L(z)=J(¢) for all 1=0.
The stability theory, Appendix C, yields that {L(t)},.,={J(1)},., is a
viscosity solution.

Now let B be the collection of all viscosity solutions of (E) with initial
data which compactly includes cl I". A similar argument yields

Uly= ) {C(1) : {C(1)},50€ B, 1 <T(C(-))} N R“.

Let {C(t)},,, be a viscosity solution of (E) and (10.1). Theorem 7.1
implies that

K*(1) = C1) = V, (1),
for all {K(1)},,,€A, {V(1)},.0€B, and re [0, T(L(-)) A T(U(-))). 1
COROLLARY 11.2.  If the level set
r(t)={xe R u(x,1)=0}

has a nonempty interior then there is more than one viscosity solution to (E).
When there is a unique solution {C(1)},., to (E),

r(t)=2C(t) Vi< T(C(-)).
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12. A CLASS OF EXPLICIT SOLUTIONS

In this section we construct a class of explicit solutions of (E) which are
related to Wulff crystals [44] (also see Dinghast [13], Taylor [42, 43],
and Fonseca [18]). We will use these solutions in the asymptotic analysis
of (E). Let

1
B(6) = 0
T
and we assume
d d 62
B(O)E, E >0 ve-£=0. 12.1
,,-; i;Z] 30,30, (0)¢,¢> 4 (12.1)
For xe RY and x #0, set £ = x/|x|. Then define
B(8
R(x)=min {(—,):HeRdandH-)%>0} Yx#0, (12.2)
X
and
B(6
O(x)= {QES"' :0-Xx>0and ﬁ:R(x)} Vx#0, (12.3)
where SY " '={fe R*: |0 =1}. We gather several elementary properties of

the above functions into a lemma.

LEMMA 12.1. (a) There is a continuously differentiable function 8(x)
such that

O(x)={0(x)}  Vx#0.
In particular,
DB(0(x))[0(x) - £] — B(6(x))% =0. (12.4)
(b) For all x#0,
B(0(x)) = R(x)[0(x) - 2] =max{R(»)[6(x) - §]: y#0}.
In particular,

DR(x)[0(x)- %]+ R(x)%%—)-— R(x)[0(x) - %] ﬁ‘z: 0. (12.5)
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Proof. (a) Fori=1,..,d, set
H. (6, x)=[6~i]a% B(6)— B(8) x,. (12.6)

Then,
H(O, x)=(H,(8, x), ..., H,; (6, x))=0  V8eO(x). (12.7)

We directly calculate that

2

é
B — B(0).
06, ¢, )

66‘

J

—a—H (O, x)=[0 %] ——

ao, O+ 69 B(H)

Let & be a vector orthogonal to 6. Using (12.1) we conclude that

d d
» z[ (0, r)]:,f,
J=1 i=1
A d d 62 i
=[0 -x] }_: igl[aeiagjl?(@)]fifj>0, V8-£=0,0-x>0.

j=1

Hence for every x, there is a unique solution (x)e S?~! of Eq.(12.7).
Using the implicit function theorem we conclude that 6(x) is continuously
differentiable.

(b) This follows from straightforward calculations. J

Let h be a real-valued, continuously differentiable, strictly decreasing
function on [0, «c). For x # 0, define

u(x) = h(|x|/R(x)).

Using the previous lemma, we directly calculate that

Du(x) = (1x|/R(x))[1 e DR(x)]
x x| x o(x)
'h("'"/mx”[l IR(x) (R(x))’ {R(X)W_R‘x)m}]
. 0(x)
= WSRO st
0
= W(Ix|/R(x)) B(;i‘x’)). (128)

505/101:2-10
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Since h is decreasing and 8(x)e S ',

Du(x) _
D(lDu(x)l)_ D(0(x)). (12.9)
Set
g(0)=D*(B(8))/(d—1). (12.10)

LEMMA 12.2.  For any nonzero x € RY,

trace[ g(8(x))(I - 0(x) ® 0(x)) D(6(x))] = Rli’(C) (12.11)

Proof. Recall that H, (8(x), x)=0, where H, is as in (12.6). Differen-
tiate this equation with respect to x; and then use the same equation to
obtain

1
[(8(x) - x) D*(B(8(x)))]1 D(B(x)) = B(6(x)) [1— 7 ’<®0(X)]- (12.12)

(x)-x

Since B(8) is homogenous of degree one, D*(B(6))8 =0 for every 6. Hence,
(d—1) g(O(x)I— 0(x)® 0(x)) = D*(B(H(x))).

Using (12.12) we obtain

gOx)T — 6(x) ® 6(x)) D(0(x))

__ B(B(x)) L
T ({@d—1)(6(x)-x) <’— T ®9(x)>

_ R(x) _ 1
TETY (’ e(x)-x"@"(”)'

We prove (12.11) after observing that trace(/—(1/8(x)-x) x®8(x))=
(d-1). 1

For any « >0, and a real number A define

C(1)={xe RN\{0} : h(|x|/R(x)) > e} U {0}

Recall that for 8e S9! B(0)=(B(#)) ' and h is decreasing. Identities
(12.8), (12.9) and (12.11) imply that at xe éC(¢t),
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ftae""
A (1xI/R(x)) B(6(x))
__ AR(XI/R(x))
h'(|x|/R(x)) BB(x))

outward unit normal = = 8(x),

outward normal velocity =V =

and
Du(x) \ _R(x)
trace g(8(x))(/—0(x) @ O(x)) D()Du(x)]>- i
Hence, {C(t)}},,, is a classical solution of (E} with
G(0) = Cg(8)
provided that
M: LS Vp = |x|/R(x). (12.13)
h(p) P

ExampLE 12.3. Suppose v>0. Then a solution to (12.13) with 1= —1
is

Hence, for any a >0,
Ci ()= {xe R\{0} : h(|x|/R(x)) > ze "} U {0}
is a classical solution of
B(8)V = —trace Cg(0)R +v.

The solution {C,(r)},,, is increasing in time with infinite extinction time.

ExaMpLE 12.4. Suppose v>0. Then a solution to (12.13) with A=11is

C C C
h(p)zexp[%+;2-1n(—p+7>] Vpe[O,;].

Hence, for any a >0,

Cy(1) = {xe R\{0} : h(IxI/R(x)) > 2e'} U {0}
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is a classical solution of
B(B)V = —trace Cg(6)R + v.

In this case the solution is decreasing in time with extinction time

T(Cz(-))=v—c;ln (%)—lna.

ExaMpLE 12.5. Let v=0. Then with i1=1,

h(p) = exp (—2%)

is a solution of (12.13). Hence, for any o >0,
C3(1)= {xe RU\{0} : h(|x|/R(x)) > e’} U {0}
= {xe R/\{0} : [|x|/R(x)] < /2C[~1—Ina]} L {0}
is a classical solution of
B(6)V = —trace Cg(6)R.
In this case the solution is decreasing in time with extinction time
T(C:())=—Ina
DEerFINITION 12.6. The open set
W(1/B)={xe R\{0} : x| <R(x)} L {0}

is called the Wulff crystal of the surface energy (1/6). However, we should
note that in the equation (E), the coefficient (1/8) is the kinetic coefficient,
not the surface energy.

All the solutions constructed in the above examples are dilations of the
Wulff crystal W(1/f). We collect the previous examples into the following
lemma.

LEmMMA 12.7. Fori=1,2,3,

where h(a; (1)) = ae™. In particular, x; (1) is the unique solution of

d C
Ea,(z):[—m-{-vJ V>0, (12.14)
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with initial condition
a, (0)=h"Ya). (12.15)

Remark 12.8. 1If B satisfies (12.1), then the Wulff crystal vi#(1/8) is a
solution of the stationary problem,

0= —trace g(8)R + v.

This fact was proved by Angenent and Gurtin in two dimensions (see
Section 6.1 of [6]).

13. LARGE TIME ASYMPTOTICS

In this section we show that any solution of (E), with bounded initial
condition, has finite extinction time if v <0 or if it is initially small. We also
show that if v>0, then solutions of (E) with large enough but bounded
initial conditions have infinite extinction time. These results were already
proved by Angenent and Gurtin [6] for classical solutions in two dimen-
sions. Also Chen, Giga, and Goto [10] proved the finite extinction when
v=0. We use the comparison result Theorem 7.1 together with the explicit
solutions constructed in the previous section. Our techniques also show
that when the solution is growing, asymptotically it has the shape of the
Wulff region W(1/8).

We employ the notation 4 = < B, if 4 1s a compact subset of B. When
B is bounded, and 4 < c B, then 4 and B satisfy (7.5), ie., A< B, for a
suitable a.

LeEMMAa 13.1. Suppose that {C(1)},., is a viscosity subsolution of (E)
and there is K such that

C*(0)= = B4(0).

Further assume that

trace G(8)

v<0 and 50)

=>g,>0,v0.

Then,
2

T ))s—.
(CN<5,

Proof. Let
r'(ty=a(1) W(1),
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where o is the solution of (12.14) with C=g, and initial condition
2(0)= K. Then, Lemma 12.5 yields that {I'(r)},., is a classical solution of

V=—guk

Since the mean curvature of /(1) is always positive, {I(1)},,, is a super-
solution of (E). Moreover, I'(0) = B,(0). Hence Theorem 7.1 yields that

C*tyeI'(1) Vi<T(C(NAT()).
We complete the proof after observing that T(I'(-))=K?*/2g,. |

Let g(0) be as in the previous section and (12.1) is satisfied.
LEmMMA 13.2. Ler {C(1)},,o be a viscosity subsolution of (E). Assume
that v>0 and that there is g, >0 satisfying

G(9)= g(0) g,

for all 6. Further assume that there is K, < g /v such that
C*(0)c = K, W(L/B).
Then, T(C(-)) is finite.
Proof. Let

()=, (1) W(1/B),

where «, is the solution of (12.14) with C=g, and initial condition
%(0) = K,. Then, Lemma 12.5 yields that {1,(¢)},., is a classical solution
of

B(B)Y = —trace g(0) g, R+w.

Since the second fundamental form of 6T, (1) is always positive definite and
G(0)= g, g(0), {I,(1)},.o 1s a supersolution of (E). Therefore
Theorem 7.1 yields

Cxye () Yi<TCEN AT ()

Using the assumption K, < g /v, we obtain

ri(n= {xe R x| < R(x)~gv—land h(1x|/R(x)) > h(K,) e’},
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where

h(p)=exp[f—f+%ln(—p+%)] Vpe[O,i‘:'-'].

Recall that the above function is the one computed in Example 12.4 with
C=g,. Hence, T(I"\(-}) 1s finite and so is T(C(-)). 1|

Lemma 133, Ler {C(1)},. o be a maximal viscosity supersolution of (E).
Assume that v>0 and there is g, >0 satisfying
G(0) < g(0) g,
for all 8. Further assume that there is K, < (g,/v) such that
K, W(1/p) e = C*(0),
and C*(0) is bounded. Then, T(C(-)) is infinite.
Proof. Let
()=, (1) W(1/B),

where «, is the solution of (12.14) with C= g, and initial condition
2(0) = K,. Then, Lemma 12.5 yields that {I',(1)},,, is a classical solution
of

P(O)Y = —trace g(0) g, R+ v.

Since the second fundamental form of &77,(¢) is always positive definite,
{I'y(1)},, 0 is a subsolution of (E). Therefore Theorem 7.1 yields

I () Cu(r) Vi<T(C(- ) A T,

Using the assumption K, > g,/v, we proceed as in Example 12.3 to obtain
d. 82
()= {xe R x| < R(x) T}
U {xe R: x| > R(x) 5; and A(|x|/R(x))> h(K,) e }

where

2 8>
h(p)=exp [—%—%ln (p—g—>] Vp>==,
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We complete the proof after observing that T(15(-)) is infinite, {C(t)}
is maximal, and C(¢) is bounded for each r. |

=0

PROPOSITION 13.4. Let {C(1)},, , be a maximal viscosity solution of (E)
and g, and g, be positive constants satisfying

g g, <G(O)<g0)g,,

for all 8. Further assume that there are K, and K, such that

B kB
v v

K, W(1/B)= = C*(0),

K, <

and
C,(0)c = K, W(1/B).
Then,

a, (1) W(/B)= C()c oy (1) W(1/B)  Vi>0, (13.1)
where o,(-) and a,(-) are solutions of (12.14) with C=g, and initial
conditions o, (0)=K; for i=1, 2.

Proof. Lemma 12.5 implies that «, (t) W(1/8) is a solution of

B(O)V = —trace g, g(0)K + v, for i=1,2.
The positivity of the second fundamental form of W(1/8) and the
comparison principle yield the result. ||
Remark 13.5. Since for i= =1,2 «, (1) tends to infinity, from (12.14)

we obtain that

.o ()
lim ——=u.

I |

Hence,

lim lC(z)=vW(|/ﬂ).

I~>’X:t

The above asymptotic result is conjectured by Angenent and Gurtin (see
[6, p. 354]).
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14. APPENDIXES

A. Properties of Sub- and Superdifferentials

In this section we gather some properties of the set of sub- and super-
differentials. The proof of the following lemma is similar to the proof of
Proposition 1.1 in [11] and LemmaI.4 in [12] (also see Lemma 2.15 in

[33)).
For an open set O, C*'(0) denotes the set of functions which are twice
continuously differentiable in x and once continuously differentiable in .

LEMMA 14.1. (a) (n, p)e D* ®(x, t) if and only if there is a continuously
differentiable function ¥ such that

D¥(x, t)=n, (14.1)(a)

8
= ¥ 0=p, (14.1)(b)

D*(x,1)— V(x, 1) > D*(z,5)— ¥(z, 5), V(z, s)# (x, 1).  (14.1)c)

(b) (n, A4, p)eD 2 *'®(x, t) if and only if there is ¥e C*'(R“x R)
such that

D¥(x, t)=n, (14.2)(a)

i Y(x,)=A; Lj=1..4d, (14.2)(b)
0x; X,

9 Wi )= 14.2

F (x,0)=p, (14.2)(c)

O*(x, 1)— P(x, 1) > B*(z, 5)— ¥(z,5),  V(z s)£(x,1). (142)(d)

() (n, p)eD " ®(x,t) if and only if there is a continuously differen-
tiable function ¥ such that

D¥(x, t)=n, (14.3)(a)
8
% ¥(x,t)=p, (14.3)(b)

D (x, )= P(x, 1) <D (z5)— P(z,5), V(z8)#(x 1) (143)(c)
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(d) (n. A, p)eD_?, '®(x, 1) if and only if there is ¥eC*'(R?x R)
such that

D¥(x, t)=n, (14.4)(a)
; — W(x)=Ay =1l .d, (14.4)(b)
ax; x;

0

_é_; g]/(x’ [)___ D (144)(C)

D (5. )= P(x, ) <P (2 5)— P(z,5), V(z5)#(x 1) (144)d)

Proof. (a) and (c¢) These are proved in Proposition 1.1 of [11].
(b) Without loss of generality we may assume that 4=0, n=0, p=0,
and (x, 1)=0. For p>0, let

(P* (-,‘)vo . }
hip)= Thsli<
(p) SP{ EE Sz IsP<p

Then # is continuous on [0, oo), with A(0)=0. Let

Wiz, 5)=F(JIz1* + Is]?),

where

l 2r p2¢

F(r):—j |7 npy dp az.

rvy J&

Straightforward calculations show that ¥ satisfies (14.2).
(d) This is similar to part (b). §

Remark 14.2. In the above lemma, ¥ can not be smoother than C>! in
parts (b), (d) and C' in parts (a) and (c). However, by a simple
approximation argument we obtain an equivalent definition of viscosity
solutions which uses only smooth functions (see Appendix B). Also the
global smoothness of these tests functions is not necessary.

COROLLARY 143, (a) If (n, A, p)e D} 'd(x, 1), then (n, p)e
D*®(x, 1),
(b) If (n, A, p)eD 2, '®(x, 1), then (n, p)eD P(x, 1).

LEMMA 14.4. Suppose 0 <|n| <1, and An=0. Then, the following are
equivalent :

(a) (n, A4, p)eD*C(ty).
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(b) There are xa€dC"(1,) and a collection of open sets {S(1)},.q
satisfying (see Fig. 2)

dg is C*'(N) on a neighborhood N of (xq. ty), (14.5)(a)

Ddy(xo, to) ==, (14.5)(b)
{nf
-
C dxg )= = d (185)(c)
axl'xj ) '
9 dilrar ey =2 14.5)(d)
Ey s(-‘m’o)’lnl» (14.5)
U [LCHs)n(S(5)) T x {s}]1= {(x0, to) }- {14.5)(e)

520
{c) (1/in)n, 4, P)ED:z ;Ll d(xq, 1) for some x, € SC*(1y).
Proof. (a)=(b). The definition of D* C(t,) implies that
(n, Aa P) € D_:zfl[d(" A OJ(X()v t())

at some x,€ R Since [n| #0, x,¢int C*(t,). We analyse the remaining
two cases separately.

(1) x,€0C*(1,). Let ¥ be as in Lemma 14.1(b}. Set
S(t)={(z, )e R*x [0, oc): ¥(z, 1) >0}.

Then, (14.5)(a)-(d) is satisfied by {S(1)},., due to the smoothness of ¥
and the positivity of |n|. Since ¥(x,, r0)=0

Xo € [C*(15) N (S(26))]).

FIGURE 2
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Suppose that
ze [C*(s)n (S(s))].

Then, d.(z,5) 202 ¥(z, 5), and (14.2)(d) yields that (z, s)= (x,, to). So,
(14.5)(e) is satisfied by {S(1)},.,-

(2) x,¢C*{1,). Let ¥ be as in the previous case. Choose yo€ 8C*(1)
such that

dea(Xg, to) = —[Xg— ¥ol.

Define
P(z,5)=P(z+ xo— Vo, 5) + x4 — Yol

Then,
[dee AOY(yo, 1) — P( Yo, 1) = [dce A 01(x0, tg) — Pxg, Lo)
2 [dev A 0]z, 5)— Pz, 5) Yz, s.
Using the above inequality and
[des A0](z, )= —lz—w| + [des A O] (w, 5) Yw, s,
we obtain
[dee A 0 po, to) — P(¥o, to)
= —lz—w|+[de A 0](w, s)— ¥(z, 5) Yz, w,s.

Let z=w+ x4— y, in the above inequality and then use the definition of
@ to obtain

{des A 0)(yo, to) — D yy, ty)
= —|xo— yol + [dee A OF(w, 5) — P(W+ xo— Vg, §)
= [dee A O](w, 5) — P(w, 5) Yw,s.

By Lemma 14.1(b) we conclude that

0
(D2, D70, 2 ®) (0. 1) €D [dce 1 01 v0s 1)

Also,
., 0 2y O
Do, D tD,E(D (Yo, tg)=| D¥, D '{’,E‘I’ (x9, to)
=(n, A, p).
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Therefore (n, A, p)eD 2 ''[de. A 0](yo, to), and part (b) yield (14.5) at
the point y,.
(b)=(c). We claim that
dea(xg, to) —dg(Xg, to) Z dca(x, t) — dg(x, 1) V(x, 1)€ Rx [0, ).
(14.6)
We analyse three cases separately.

(1) xe[C*(t)n(S(1))']. Then, (14.5)(e) yields that (x, t)= (x,, ty)
and (14.6) holds trivially.
(2) xeclS(r). Choose z,e€ dS(¢) such that

lx — zol =ds(x, 1).

Since dc.(xg, ty) =ds(xo, 1,)=0 and we are trying to prove (14.6), we
may assume that d..(x, 1) > ds(x, t)=|x—z,|. Therefore zoe C*(t), and
consequently

dedx, 1) < | X — 2ol +dee(20, ).

Hence,
des(x, 1) —dg(x, 1) < |x — 2] + dee(20, 1) =[x — 29
=d(<.(:0, t)
=dc(29, 1) —ds(2g, t).
So

ded(zgy 1) —dg(zg, 1) Zdee(x, 1) —dg(x, 1) 2 0. (14.7)
Since dg(zp, 1) =0, dee(zy, 1) 2 0. Therefore
zo€ [cl C*(e) A (S(1))°].

We now apply case (1) to conclude that (z,, ¢) = (xq, t,) and (14.7) yields
(14.6).
(3) x¢ C*(t). Choose z,e€ ¢C*(t) such that

- I.x - ZOI = d(-.()f, t).

Since dou(xg, ty) =dgs(x, 10)=0, we may assume that —|x—z,|=
doe(x, 1) = dg(x, t). Therefore z, ¢ cl S(¢), and consequently

ds(x, )= — |x —zo| + ds(z0, 1).
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Proceed as in the previous case to obtain

dealZon 1) — dg(z0, 1) = delx, 1) — dg(x, 1) 2 0. (14.8)

Since do+(zq, 1) =0, dg(z,, 1) <0. Therefore

2o€ [C*(1) n (S(1))].

We now apply case (1) to conclude that (zq, 1) = (X, #y) and (14.8) yields
(14.6).

This completes the proof of (14.6). Since 4 is smooth near (xq, ),
Remark 14.2 and (14.6) yield

a )
(DdS’ D2 dS’ E d8> (x()a t()) € D:- r+l d("(XOa r())-

(c)=>(a). The fact that
[dee A 0] d o

implies that D ¥ *' d .(x, ¢) is included in D *'[d.. A 0](x, 1) at every
t=0, and x e ¢C*{t). Therefore

1
m (n’ Aa p)e D:21+][d(“ A O](x(h ’0)'

Also, (0,0,0)eD 2 '[dee n0](xg, 1o). Hence the convexity of
D2 [des A 0](xq, t) yields (a). |
Observe that
D C(n)= U D;Z[ 1(—d(Ra\\‘(v(‘,). v 0)(x, t)

xe RY

= U —D;:Zf](dm-l\('(.,)' A 0)(,\’, f)

ve RY

= —D ¥ (RNC())(1).

Hence we have the following analogue of the previous lemma for the
superdifferentials.

LEMMA 14.5. Suppose 0< |n| <1, and An=0. Then, the following are
equivalent:

(a) (na Aa p)EDC(!())
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(b) There are x,€0C,(t,) and a collection of open sets {S(1)},.,
satisfying (see Fig.3)

dg is C*'(N) on a neighborhood N of (x,, ty), (14.9)(a)

Dd(xq, 10) =|:_l’ (14.9)(b)

a—j%ds(xo, to) =|%’I’, i j=1,.nd, (149)c)

+ ds{xo. 1) -, (149)(d)

U [HC () nS(s)Ix {s}]= {(x0, o) }. (14.9)(e)

520

(c) (1/In[)n, A, p)eD_* ! d(v‘(x[,, ty) for some x,€0C (1)

B. An Equivalent Definition

Following the proof of Theorem 1.1 of [11], we obtain an equivalent
definition (also see Lemma 2.5 in [33]).

Lemma 14.6. (a) {C(1)},.q is a viscosity subsolution of (E) if and only
if for all smooth ¥,

5]
F (D¥(x, ), D*¥(x, 1), % Y(x,1)<0,

whenever [dq. A 0] — ¥ attains its maximum at (x, t).

FIGURE 3
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(b) {C(1)},., is a viscosity supersolution of (E) if and only if for all
smooth ¥,

FX(DW¥(x, 1), D*¥(x, 1), g P(x, 1))=0,

ot

whenever (d,. A 0]— ¥ attains its minimum at (x, t).

C. Stability

The following is an analogue of the stability theorem of Barles and
Perthame [8] for the first order Hamilton-Jacobi equations. We state it
only for subsolutions. Also, an analogue result holds for supersolutions. Let
{C.(t)},. 0 be a sequence of viscosity subsolutions of (E). Set C, ()=
for 1= T(C,(-)) and then define

C(t)=1lm sup C,(s)

s tn—-

-0 elLy, el

£>0 [t—s|<e

LemMA 14.7. {C(1)},., is a viscosity subsolution of (E).
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