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FRONT PROPAGATION AND PHASE FIELD THEORY*

G. BARLESt, H. M. SONER$, AND P. E. SOUGANIDIS

This paper is dedicated to Wendell Fleming on the occasion of his 65th birthday.

Abstract. The connection between the weak theories for a class of geometric equations and the
asymptotics of appropriately rescaled reaction-diffusion equations is rigorously established. Two different
scalings are studied. In the first, the limiting geometric equation is a first-order equation; in the second, it
is a generalization of the mean curvature equation. Intrinsic definitions for the geometric equations are
obtained, and uniqueness under a geometric condition on the initial surface is proved. In particular, in the
case of the mean curvature equation, this condition is satisfied by surfaces that are strictly starshaped, that
have positive mean curvature, or that satisfy a condition that interpolates between the positive mean curvature
and the starshape conditions.
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Introduction. In this paper we study the connection between the weak propagation
offronts (closed hypersurfaces in E N, which propagate in the normal direction with
the velocity depending on the position, the normal vector, and its gradient) and the
phase field theory, as it applies to the study of the asymptotic behavior of reaction-
diffusion equations. More specifically, we study the properties of the signed distance
function to the front; we relate these properties to the level set formulation of moving
fronts, and we present some new, general, and, in some cases, sharp results guaranteeing
the uniqueness of the fronts ("no interior"). Finally, we develop a rigorous justification
of the "phase field" theory.

The study of propagating fronts is very interesting from both the theoretical point
of view as well as for applications (e.g., phase transitions in continuum mechanics,
flame propagation, pattern formation, chemical kinetics, etc.). The strong geometrical
formulation of the motion (which requires smoothness) faces the development of
singularities; the motion can, therefore, be defined only locally in time, which is quite
unsatisfactory for the applications. On the other hand, a weak geometrical formulation
by Brakke [Br] for motion by mean curvature gave rise to nonuniqueness problems,
but resulted in deep regularity results for the motion. More recently, two different
approaches were introduced to deal with these issues, namely, the level set and the
phase field approach. The level set approach, which was put forward by Evans and
Spruck [ESpl] for motion by mean curvature and Chen, Giga, and Goto [CGG] for
general motions, is based on considering the front as a level set (for definiteness the
zero level set) of the solution of a degenerate parabolic partial differential equation
(pde). The phase field approach, suggested by Bronsard and Kohn [BrK] and DeGiorgi
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[D], defines the front as the boundary of the regions where the solutions of certain
(scaled) reaction diffusion equations converge to the equilibria points of the associated
vector field. Both approaches have their own advantages. The level set formulation
provides a large number of analytical tools to study the motion because it allows for
the use of very recent developments of the theory of nonlinear degenerate parabolic
pde’s. The phase field formulation is very indirect but also closely related to (and very
natural for) the applications. A great deal of work in this paper is devoted to justifying
the "phase field" formulation. One way to relate these two approaches is to study the
properties of the distance function to the front; much of the work in this paper is
devoted to this. In fact, we could propose an alternative way to study front propagation
using the distance function. This was done by Soner [So] when the normal velocity
of the front does not depend on its position. We chose not to do so in this paper,
although given what we prove here for the distance function we can easily develop
such an approach. A very intriguing mathematical question arising with the weak
formulation of moving fronts is whether such fronts are uniquely determined by their
initial position (if they are described using the distance function); this is closely related
to whether the level set formulation gives rise to fat level sets. Two sections in this
paper are devoted to studying these questions.

The paper is organized as follows: In 1 we recall the level set formulation and
slightly improve some of the known results. In 2 we discuss the "nonempty interior"
difficulty and give an equivalent characterization. Section 3 is devoted to deducing
some important properties of the (signed) distance to the fronts. In 4 we study the
nonempty interior difficulty. We give some general sufficient conditions and present
some counterexamples. Section 5 provides some uniqueness properties for the distance
function, which will be used in 10. In 6 we discuss the asymptotic limits of
reaction-diffusion equations and the phase field theory. Section 7 is devoted to a formal
derivation of the results. In 8 we briefly review the theory of traveling waves of
reaction-diffusion equations and we formulate our main assumptions. The main results
about the phase field theory are stated in 9; their proofs are given in 10. Finally,
in 11 we present some possible applications and state a few open problems.

1. Geometrical evolution of level sets and degenerate parabolic pde’s. In this section
we recall and slightly generalize the level set formulation presented in Chen, Giga,
and Goto [CGG] (see also Evans and Spruck [ESpl] for motion by mean curvature
and Giga et al. [GGIS]). As mentioned in the Introduction, the underlying idea is to
think of the front as the zero-level set of the solution of a pde. This type of formulation
first appeared in a theoretical work of Barles [Bali on fronts moving with constant
normal velocity. Barles [Bali was motivated by the computational work of Sethian
[Sell for a simple model in flame propagation. Later, Osher and Sethian [OS] exten-
sively used this type of idea to perform numerical computations for different types of
motions and, in particular, motion by mean curvature. Evans and Spruck [ESpl]
provided the mathematical foundation of the level set approach for motion by mean
curvature and Chen, Giga, and Goto [CGG] independently studied motions in the
generality described below.

To better explain the ideas involved, we first present a formal derivation: Let Ft
be a smooth front at time > 0 and assume that Ft ODt, where D, cN is open. The
outward normal velocity V of F at x(Ft) is given by

(1.1) V= v(x, t, n, Dn),

where v is a continuous function of its arguments, n is the exterior unit normal vector
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tO F,, and Dn is its gradient. Furthermore, we assume that there exists a smooth
function u :[2N [0, C) [2 such that

D, {x N u(x, t) > 0}, F,={xRN:u(.,t)=0} and DuOonF,.

A classical calculation yields

u Du
V- n- and Dn=-

IDol
I-

Inserting the above formulae in (1.1) we obtain

u, + F(x, t, Du, D2u) =0,

where F is related to v by

(1.2) F(x, t, p, X)=-Iplv x, t,
Ipl’ Ipl

I-
p

for p e and X e S, the space of N x N matrices. An immediate consequence of
(1.2) is that, for all (x, t)e x (0+), pN, and X e SN, F satisfies

(1.3) F(x, t, Ap, AX +/x(p (R)p)) AF(x, t, p, X) (A > O,/x [2).

Any F that satisfies (1.3) will be called geometric.
For (1.1) to be well-posed, it is also necessary to assume that it is parabolic, i.e.,

that v is nonincreasing in the Dn argument. This translates in terms of (1.2) to F being
(degenerate) elliptic, i.e.,

(1.4) F(x, t, p, X) <= F(x, t, p, Y) ifX_-> Y,

for all (x, t) [2N X (0, --00), p S, and X, Y SN. The fact that F is degenerate (in
fact at least in the p(R)p direction) follows from (1.3). Finally, we point out that F is
as smooth as v with a possible discontinuity at p 0.

The level set approach to front propagations can be described as follows. Given
a closed set Fo in [2N (front at time 0), choose Uo: NN

_
[2 such that

ro {x e: Uo(X) 0},

solve (in the appropriate way) the pde

ut + F(x, t, Du, D2u) --0
(1.5)

u(x, O) Uo(X) on, in [2 x (0, ),

and, finally, define F, (the front at time t) by

(1.6) F, {x [2: u(x, t) 0}.

The main issues associated with such a program are (i) whether (1.5) does have a
global solution allowing to define F, and (ii) whether F, depends only on Fo and not
the form of Uo outside Fo.

The first issue is settled ([ESpl], [CGG]) by considering viscosity solutions.
Viscosity solutions, which turn out to be the correct class of generalized solutions for
first- and second-order fully nonlinear pde’s, were introduced by Crandall and Lions
[CL](see also [CEL] and Lions [Li] for first- and second-order equations, respectively).
Forthe precise definition and some ofthe most recent developments, as well as references,
we refer to the "user’s guide" by Crandall, Ishii, and Lions [CIL]. In what follows
(unless otherwise stated) by solution we will always mean viscosity solution. To avoid
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some technicalities we will denote by (F) a set of some general assumptions needed
for the statement of the next theorem. We will state and discuss these assumptions at
the end of this section. Finally, we will denote by UC() the set of real-valued
uniformly continuous functions defined on .

THEOREM 1.1. Assume (F), (1.3), and (1.4). Then, for any Uo UC(RN), there
exists a unique solution u6 Uc(RN[o, +o)) of (1.5). Moreover, if u and v are,
respectively, sub- and supersolutions of (1.5) in UC(rv [0, +)), then

(1.7) u(., 0)_--< v(’, O) in =:>u <= v in [0, +).

Next we discuss the issue of whether F, depends only on Fo. This follows from
(1.3), which yields that (1.5) is invariant by nondecreasing changes u--q(u). (See
[ESpl], [CGG]).

THEOREM 1.2. Assume the hypotheses of Theorem 1.1 hold and let u, v
UC(rv [0, +)) be solutions of (1.5) such that

and

(1.8)

{x: u(x, o) > o} {x: v(x, o) > 0}, {x: u(x, o) < o} {x: v(x, o) < 0},

Then, for all > O,

and

{x: u(x, O) O} {x: v(x, O) 0},

lim lu(x, 0)1, lim Iv(x, 0)1> O.
Ixl-+ Ixl-/

{x: u(x, t) > O} {x: v(x, t) > 0}, {x: u(x, t) < O} {x: v(x, t) < O}

{x: u(x, t) O} {x: v(x, t) O}

This result justifies the term equation of geometric type for (1.5), since it yields
that the evolution of the level set Fo- F, depends only on F and on the "signs" of
the initial datum in the different regions (which in turn give a sense to the expressions
"inside Fo" and "outside F0") and not really on the choice of the initial datum. Such
a result was first obtained by Evans and Souganidis [ES1] in the case where F is
independent of D:u using representation formulae from the theory of deterministic
differential games. In the generality stated above the result was obtained in [CGG].
Next we present a slightly simplified proof.

Proof. Consider the functions 4 and q given by

ch(t)=inf{v(y,O)lu(y,O)>-t} and d/(t)=sup{v(y,O)lu(y,O)<=t}.

It is immediate that b and q are nondecreasing, lower- and upper-semicontinuous
(lsc and usc), respectively, and

(1.9) b(u(., 0))_-< v(., 0)-< q(u(’, 0)) on RN.

Moreover, the assumptions on u(., 0) and v(., 0) yield that 4 and q are actually
continuous at 0 with 4(0) q(0) 0. Finally, standard regularization procedures imply
the existence of two sequences of nondecreasing and nonincreasing, respectively,
smooth functions (4n), and (qn), such that

(1.10) b sup 4. and
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Since F is geometric, b,(u) and q,(u) are solutions of (1.5). Moreover, (1.9), (1.10),
and Theorem 1.1 yield

4,(u) --< v_<- q,(u) in EN X [0, +c).

Letting n we conclude easily, since, in view of the assumptions on u(., 0) and
v(., 0) and the definition of and , (t) > 0 if > 0 and (t) < 0 if < 0.

We continue by discussing some examples of motions and their related
"geometrical" equations.

In the first example, the hypersurface is assumed to propagate in the normal
direction with velocity v(x, t, n). The geometric equation in this case is

(1.11) u,-v x, , lDul =0 in x (0, ),

with F(x, t, p, M)= -v(x, t, p/Ipl)lpl satisfying (1.3). This type of propagation, when
v c constant, was introduced by Landau as a flame front propagation model and
was studied both analytically and numerically by Sethian [Sel] using (1.11). Then
Barles [Bal] showed the connections between (1.11) and (1.3).

Another very interesting example, both theoretically and from the applications
point of view, is the motion of a hypersurface with normal velocity equal to its mean
curvature. Here (1.5) takes the form

(1.12) Ut--AU+ (D2uDuIDu)=o inN x(O, ),
IDul2

where (. .) denotes the usual inner product in . In this case (1.3) holds for every
A (not only A > 0). This yields that the equation is invariant by any change Equation
(1.12) was studied first numerically by Osher and Sethian [OS] and then analytically
by Evans and Spruck [ESpl]-[ESp4] (see also Chen, Giga, and Goto [CGG], Soner
So], etc.).

Another example of propagations that arise very naturally in the theory of phase
transitions is the case of anisotropic motion where (1.5) is of the form

+lOul =0

for some smooth functions H and , with H convex. Equation (1.13) is studied in
[So] and [CGG]. There are some very interesting models of phase transitions that
yield (1.13) but with H not convex. Following a relaxation process, these problems
give rise to (1.3) but with F discontinuous (in addition to p 0) at ceain directions
in the gradient space. This is the subject of Guin, Soner, and Souganidis [GSS].

We conclude this rather long overview of the level set approach by stating and
discussing assumption (F), which was necessary for the comparison result of Theorem
1.1. Assumption (F) consists of several pas, namely,

(x, t, p, X)F(x, t, p, X) is bounded for bounded (p, X)

(F) and continuous forx, t[0, R], pB(O,R){O}

and IIX R, for all R > 0.

F,(x, t, (x-y), x)- F*(y, t, (x-y), Y) -(Ix-yl( + [x-yl)),

Y S such

(F2)

where w(0+) 0 and for all x, y EN, (0, +c), a _--> 0 and matrices X,
that (ox _v)_-< Ka( -}) for some constant K > 0. Finally,

(r) ,(x, t, o, o)= F*(x, t, O, 0);
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we recall that F* and F. denote the upper- and lower-semicontinuous envelopes of
F, respectively.

The proof of Theorem 1.1 can be found in [CGG]. The arguments of [CGG] can
be, however, slightly simplified by remarking that, since (1.5) is invariant under
nondecreasing changes, it is enough to have a comparison result in BUC(u [0, )),
the space of bounded, uniformly continuous functions. This leads to an easier treatment
of the unboundedness of the domain. In fact, with these assumptions, Theorem 1.1
extends easily to the case where either the sub- or the supersolution to be compared
is discontinuous. Since we will use this remark throughout the paper, we state it as a
separate theorem. (For the definition of discontinuous sub- and supersolutions we
refer to [Is].)

THEOREM 1.3. Assume (F), (1.3), and (1.4). Ifu UC(N x[0, 0(3)) isasubsolution

of (1.5) and v: N X [0, oO) is a discontinuous supersolution, then u(., 0)_-< v(., 0) on
Nyields u(., t) <-- v( ., t) on Nfor all > O. A similar result holds ifu is a discontinuous
subsolution and v UC(N x [0, oo)) is a supersolution.

The final remark of this section is that assumption (1.8) in Theorem 1.2 can be
relaxed to handle the case of unbounded fronts: we only need to assume that for each
a > 0 there exists e > 0 such that

lu(x, 0)l, Iv(x, 0)l--> e > 0 if d(x, Fo) ->- a > 0.

2. The nonempty interior dittieulty. The level set approach seems to avoid all the
geometrical difficulties related to the onset of singularities, etc. The evolution Fo
is well defined and unique. Given this fact, the next natural questions are related to
the regularity of Ft. When N 2 this issue was completely resolved by Angenent [A1],
[A2] (see also the references therein). For N >_-3 the issue is more complicated. In
addition to a local existence result by Hamilton [HI and Evans and Spruck [ESp2]
for motion by mean curvature, there are only partial regularity results (only for motion
by mean curvature) due to Evans and Spruck [ESp3], [ESp4] and Ilmanen [Ill], [I12].

A more basic question is whether F has an empty interior for > 0. In principle,
we expect It to be a hypersurface in u; in view of this F, having interior seems rather
unreasonable. This is related to the nonuniqueness features for the motion of front
described by the distance function, as we will explain in the next section. Before we
continue discussing this difficulty, we give a more precise definition.

DEFINITION 2.1. Let F be the evolution of Fo by the level set approach. We say
that {Ft}__>o is regular if

cl {(x, t): u(x, t) > 0} {(x, t): u(x, t) >- 0} and

int {(x, t): u(x, t) >-_ 0} {(x, t): u(x, t) > 0}.

Clearly if {Ft}t__>o is regular then U ,=>o (Ft { t}) has an empty interior inu [0, ).
Moreover in most examples the later is equivalent to F, having an empty interior for
all => 0. Indeed for motion with constant normal velocity, this follows from the finite
speed of propagation. For motion by mean curvature, it can be shown using explicit
solutions of the form ([x[2+(N-1)t) as barriers.

We continue with a new formulation of the no empty interior question in terms
of whether (1.5) has unique discontinuous solutions, with initial datum ao-]a, where
]A denotes the characteristic function of the set A, and Oo and O are the "inside of
Fo" (i.e., the set where Uo is negative) and "outside of Fo" (i.e., the set where Uo is
positive), respectively. (See the discussion after the statement of Theorem 1.2).

THEOREM 2.1. {Ft}to is regular ifand only if there exists a unique solution of (1.5)
with initial datum ]o-
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In the above statement by a uniqueness we mean that if v, w are two solutions of
(1.5) with the same initial data, then (v)* (w)* and (v). (w)..

Proofof Theorem 2.1. Let u UC(Eu [0, )) be the solution of (1.5) with initial
datum d(x, Fo), the signed distance to Fo, which is normalized to be positive inside
Fo and negative outside. Recall that by Theorem 1.2, it suffices to use d(x, Fo) as an
initial datum to obtain Ft. For e > 0, and a scalar a set

u(x, t)- tanh ((u(x, t)+a)/e),

where tanh (.) is the hyperbolic tangent function, u is also a solution of (1.5) (by
(1.3)). The stability results for discontinuous viscosity solutions (cf. Crandall, Ishii,
and Lions [CIL]) yield that the limit u--lim_.o u is a viscosity solution of (1.5).
Moreover, the properties of tanh yield

1 if u (x, t) > a,

u%(x,t)= -1 if u (x, t) < a,

0 if(x, t) Int {u a}.

For the rest of the points, the value of uo(x, t) depends on the lsc or usc envelope we
consider in the definition of the discontinuous viscosity solution. Now set

tT=limu and _u=limu.
a’o e$o

The above limits are taken in the viscosity sense (cf. [CIL]). The functions tT and _u
are again solutions of (1.5). Moreover,

t)= 1 if u(x, t) => 0
and _u(x,t)= ifu(x,t)>0

-1 ifu(x,t)<0 [.-1 if u(x, t) <- 0"

If {F,},__>o is not regular, tT and _u, are two different discontinuous solutions of (1.5)
with initial datum ]]no-;.

Conversely, if {F,},__>o is regular, let w be a solution of (1.5) with w(., 0) ]no-n
and choose a sequence (bn)n of smooth functions such that b 1 on [0, +), 4" => 0
in , 4n() c [-1, 1] and inf, 4n ---1 on (-, 0). Since w*(x, 0)-< b,(d(x, Fo)) in,
(1.3) and Theorem 1.3 yield w* <- 4,,,(u) in u (0, +c) and

w*(x, t) --<_ -1 inf b,(u(x, t)) on {u < 0}.

On the other hand, (F3) gives

F*(x, t, O, O)= F,(x, t, 0, 0)= 0;

hence, +1 and -1 are, respectively, sub- and supersolutions of (1.5). Therefore,

-1_-< w.=< w*=< 1

and, finally, w* -1 on { u < 0}. The same method shows that w. 1 on { u > 0}, which,
in view of the assumption that {u 0} is regular, identifies w uniquely. [3

By examining the solutions tT and _u, both equal to u in the "empty interior"
case, we see that we switched from the pde formulation of the motion to a "quasi-
geometric" formulation, since the notions of sub- and supersolution are only relevant
on the sets F, =0{(., t)= 1} and _Ft =0{_u( t)= 1}. This is related to the distance
function formulation for the motion, which we explain in the next section.
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3. The properties of the distance function to the moving front. In this section we
study the properties of the (signed) distance d(x, F,) to a front F,, whose evolution
has been defined by the level set approach described in 1. The results we present
here extend the work of Soner [So], who actually used the properties of the distance
function to define the evolution of fronts in the case where the velocity of the front is
independent of the position. Although we could do the same here, we chose not to do
so, since, once the correct definition is given, all the arguments will follow exactly as
in [So]. Another motivation to study the properties of the distance function, in addition
to the fact that this quantity intrinsically defines the front, is that the distance function
plays a central role in studying the fronts generated by reaction-diffusion equations
("phase field theory"), as we will explain in 6-10.

As usual we begin with a closed set Fo in N and assign to it a notion of inside
and outside in terms of the sign of its distance function. Let Fo- F, be the evolution
of Fo defined by the level set formulation. To state the main result we define the
extinction time t*6 (0, +c] for F, by

t* sup { > 0 such that F, }.

Finally, we denote by d the signed distance function to the front F,.
THEOREM 3.1. Assume that {F,},=>o is regular. Then _d d ^ 0 and d d v 0 satisfy,

respectively,

and

(3.2)

_d At- F(x _dD_d, t, D_d, D_d) <= 0 in x (0, t*)

d + F(x d-Dd-, t, Dd-, D2d) >= 0 in ,N (0, t*).

Moreover,

(3.3)

and

(3.4)

-( D2_dDd_ D_d <= O in {_d <0}

Remark 3.2. The assumption that F, has empty interior was made only to simplify
the presentation. In fact, when F, is not regular we can show that (3.1)-(3.4) still hold
when d is replaced with appropriate functions. Indeed let F, =0{x: fio(x, t)= 1} and
F_, =0{x: _u(x, t)= 1}, where _uo and are defined as in the proof of Theorem 2.1.
Then (3.1), (3.3) and (3.2), (3.4) hold true for d(x,F,) and d(x,F_,). This again is
related to the connections between the nonempty difficulty and the nonuniqueness in
the weak geometric and distance function formulations of motions. For a detailed
discussion of these connections we refer to [So].

Remark 3.3. We can read the speed of the moving front from (3.1) and (3.2).
Indeed, if we know a priori that the front moves along its normal direction and if d
is assumed to be smooth, then

dt + F(x, t, Dd, D2d) 0 if d O,

which, in view of (1.1), yields V= v(x, t, n, Dn)= -F(x, t, n, Dn).
Remark 3.4. We cannot expect that d will solve a pde like (1.5) as it can be

observed by a direct calculation if everything is smooth. The term x-dDd in (3.1)
and (3.2) has a geometric meaning. Indeed, if x F,, then x- dDd F,.

-(D2dDdlDd)>:O in
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Proof of Theorem 3.1. We only prove (3.1) and (3.3); (3.2) and (3.4) can be
obtained by similar arguments. To this end, observe that for each k > 0 the functions

0 ifu(x, t)= 1,
Wk(X, t)

-k if uo(x, t)=-l,
0are solutions of (1.5), where u u is defined in the proof of Theorem 2.1. We next

introduce the function

An easy calculation yields

#t,(x, t)=Sy?pN {Wk(y, t)--lx--Yl}.

ff;k(X, t)= max (_d(x, t),-k).

On the other hand, standard arguments from the theory of viscosity solutions (cf. Lasry
and Lions [LL], Jensen, Lions, and Souganidis [JLS]) yield that #k is a subsolution
of (1.5). The inequalities (3.1) and (3.3) then follow easily when d 0. If d =0, we
must observe that 12k Wk in NN X (0, oe) and if lk(X t) Wk(X, t) at some point (x, t),
then D2’+ffk(X, t) c D2’+Wk(X, t); the last inclusion being exactly what is needed at
d 0. Letting k- oe completes the proof.

4. When is the empty interior condition fulfilled? We hope that it has been become
clear by now that settling the empty interior condition, is of great importance, since it
may lead to some rather unintuitive situations. Unfortunately, if no conditions are
imposed on Fo, interior may be created for > 0. See, for example, Evans and Spruck
[ESpl], Soner [So], and Ilmanen [Ill] for some simple examples in this direction for
motion by mean curvature. However, it can be argued that the interior in the examples
of [ESpl] and [So] is due mainly to the fact that the initial data are not smooth, which,
in turn, yields that the normal direction is somehow not well defined. This, of course,
raises the question of finding some necessary and sufficient conditions of Fo so that
no interior is created. We will address this question below for the case of first-order
and second-order motions whose geometric pde’s are of the form

(4.1) u, + a(x, t)lDu 0 in N X (0, 00)

and

(4.2) u, + F(Du, DZu) =0 in NN X (0, ),

with initial datum

(4.3) u(x, O) d(x, Fo) in N.
Throughout this section we will assume that

(4.4) Fo O{x N. d (x, Fo) < 0} O{x " d(x, Fo) > 0}

which, in particular, implies that Fo has no interior.
THEOREM 4.1. Assume (4.3), (4.4), a wl’(NN x (0, T)) (VT> 0), and that either

(i) a does not change sign in RNx (0, +o0) or (ii) c is independent of t. Then F,=
{x" u(x, t)=0} is regular, where u UC(N x (0, oo)) is the solution of (4.1), (4.3). In
particular F, has empty interior.

Theorem 4.1 is almost sharp. Indeed at the end of this section we will give an
example of a(x, t) which changes sign and F, develops interior. We do not, however,
know whether interior is created if a =-a(x,p/[p[) changes sign. (The case. where
a(x, P/IPl) > 0 was treated in [Sor].)
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Proof of Theorem 4.1. We present here the proof only in the case of (ii) since (i)
is obtained by similar and even simpler arguments. In view of Theorem 2.1 and the
discussion after Definition 2.1, it suffices to prove the uniqueness of discontinuous
solutions of (4.1) with the initial datum

u(.,0)=ao-a in’N,

where 12o(X: d (x, Fo) > 0}. To this end, we first claim that we can examine the situation
separately in the sets

OI--{xNIoI(x)>O} and O={xRNIa(x)<O}.
A formal argument to understand why this claim is true consists in looking at the
optimal control interpretation of (4.1) and in remarking that the paths of the dynamics
starting from a point in O1 (or O) can never reach the boundary of O (or O2). To
justify this argument completely, we adapt some arguments introduced by Barron and
Jensen [BJ1] (See also Barles [Ba2]).

Let u be a solution of (4.1) and consider the function u: O x [0, +oo) - N given
by

u(x, t)= inf {u(y, t)+ e-’tlx-yl
yeO ea(y)

Combining classical (in the context of viscosity solutions) computations with the
arguments of [BJ1], we easily show that u is an approximate subsolution of (4.1) in

O1 x (0, +) for 3’ > 0 large enough. Moreover, u is continuous and satisfies

u (., O) _-< ao- la; on 01.

If v is another solution of (4.1) and (4.3), we claim that, as e-0,

u<=v.+o(1) in 01 x [0, +o).

Indeed, we perform the usual uniqueness arguments for viscosity solutions with a test
function O: (01 x (0, +)) x (01 x (0, +oe))- N given by

O(x, t, y, s) u (x, t) v.(y, s) Ix YI 0 Ix[2+lyl2+ +
t (x) (y)’

where fl and 0 are small parameters. The only slight new point comes from the term

(x)
+

ce(y)

which takes care of the lack of boundary condition on 001 (0, +). We leave the
rest of the routine but tedious details to the reader.

Remark 4.2. An alternative way to understand the comparison result in the proof
of Theorem 4.1 is to say that (4.1) holds up to the boundary of O1 (0, +). Indeed,
let u by a usc subsolution of (4.1) and assume that (x, t)001 (0, +) is a strict
local maximum of u-4 for some smooth 4. The function

0
(y, s)-u(y, s)-c(y, s)-

o(y)

attains a maximum at (yo, so)(x, t) as 0-0. Evaluating (4.1) at (yo, so) and letting
0 - 0 yields the result.
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We next turn our attention to the case of the motion governed by (4.2); the typical
example here being motion by mean curvature. We will be making the following
additional assumption on F:

(4.5) F( txOtp, la,:OtXQ)= /.t2F(p, X)

for all x > 0, p En, X SN and Q ((N), where O’ is the adjoint of O and (N)
is the group of N N orthogonal matrices (Qt= Q-).

THEOREM 4.3. Assume that (1.3), (1.4), and (4.5) hold and that Fo is of class C2.
In addition, assume that there exist nonnegative constants ci 1, 2, 3), a skewsymmetric
matrix H, and Xo EN such that

(4.6) c(x-xo) Dd(x)+c2H(x-xo) Da(x)-c3F(Da(x), D2s(x)) 00n Fo,

where d is the signed distance to Fo. Then the set t_J ,>o (Ft {t}) has empty interior in
u (0+o).

The left-hand side of (4.6) is the generator of rotation, dilations, and translations
in (x, t) evaluated at =0 on Fo. Condition (4.6) includes as special cases results of
Ilmanen [Ill] and Soner [So] for motion by mean curvature. On the other hand, (4.6)
is not necessary. Indeed, recent work of Soner and Souganidis [SS] (see also Altschuler,
Angenent, and Giga [AAG]) for bodies of rotation moving by mean curvature shows
that there exist smooth Fo’S which do not satisfy (4.6), but their evolution never develops
interior. It follows, however, that (4.6) holds near the singularities of F, [SS]. This is
related to a conjecture of DeGiorgi [D]. A related observation is that if (4.6) holds at
a later time, this again yields no interior. For the case of mean curvature, Evans and
Spruck [ESp4] also showed that under some assumptions on Fo, almost every level
set of the solution of (1.12) does not develop interior. Finally, at the end of this section
we give an example where interior is created if the velocity depends on t.

Proof of Theorem 4.3. Let u UC( +(0, oe)) be the unique solution of (4.2)
and (4.3) and, for h > 0, define the function

Uh(X, t)= (U((1 + Clh e c2hl (X-Xo)+ Xo, (1 + ch)t + c3h))

where is some increasing smooth function with q(0)= 0 to be chosen later. In view
of (1.3) and (4.5), Uh is also a solution of (4.2), since H being skewsymmetric yields
Q ec2hH (N). Moreover, if h is small enough, there exists some r/> 0 such that

(4.7) [u(’,0)-uh(’,0)l >-rlh onion.

Assuming for the moment (4.7), we observe that Theorem 1.1 yields either Uh <= U- qh
or uh=<u+r/h in NNx(0, ee). If U,>o(F,x{t}) has interior, either of the above
inequalities, however, yields a contradiction, for if u 0 in some neighborhood of a
point (Xo, to), then so does Uh for h sufficiently small.

We return now to the proof of (4.7). We first observe that we may choose so
that we only need to check (4.7) in a small neighborhood of F0. But for a suitable
choice of such a neighborhood u is smooth. We can therefore perform the expansion

u((1 + c,h) ec2" (X-Xo)+ Xo, c3h) u(x, 0)+ h(c,(x-xo) Du(x, O)

+ c2H(x-xo" Du(x, 0)+ C3Ut(X 0))-{’- o(h).

Using (4.6), that u(x, 0)= d(x), and the fact that the equation holds for small t>0
(since Fo is smooth) we conclude the proof.
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In fact, with a modification of the above proof, we can prove that F, is regular.
We leave this modification to the reader.

We continue with an example of interior for a motion governed by (4.1).
PROPOSI’rON 4.4. Consider (4.1) in (0, ) with a(x, t) x- t. There exists an

interval I (fl, y) such that the evolution Fo F has nonempty interior at some to> 0,
where Fo 0L

Proof In view of Theorem 2.1, it suffices to show that there exists I such that the
equation

ff u, + (x t)lul- 0 in x (0, c),
(4.8)

u(x, 0) (, ,) (x) on ,
has more than one solution. To this end, choose Xo > 0, solve the forward and backward
ordinary differential equations (ode’s)

(t) +a(X+/-(t), t) with X+(xo)= Xo,

and set /3 =X+(0), r/= X_(0), and 1=(/3, r/). We will compute the minimal and
maximal solution of (4.8), using the control interpretation of this equation. Indeed,
consider the dynamics given by

gx(s) a(yx(s), s)v(s), yx(t) x,

where v(. L((0, +), [-1, 1]) is the control process. Following Barles and Perthame
[BaP] or Barron and Jensen [BJ2], we can prove easily that the minimal and maximal
solution of u, + (x-t)lux1-0 in 111 {x > t} are, respectively,

u.(x, t)= inf u,(y,(O), 0) and u*(x, t)= inf u*(yx(O), 0),
v(.) v(.)

where u(x, 0) (i -]xc) (x). It is easy to see from the above formulae that u. =-1 on
{(x, t): x t}, u* -1 on {(x, t): x t}\{(Xo, Xo)} and u*(xo, Xo) 1. We now turn our
attention to f2 {(x, t): x < t}. Here the maximal and minimal solutions are, given by,
respectively,

and

fi(x, t) sup {-]=, + u*(y,(z),
v(.)

_u(x, t) sup {-]=t + u,(y,(z),
v(.)

where, for each v(.), r is the exit time from -2" It follows that, while
fi equals 1 at each point (x, t) f for which the trajectory y may reach the point
(Xo, Xo). It is easy to check that the set of these points is exactly the region {(x, t) f2"
X/(t) _-< x -_< X_(t)} which has a nonempty interior.

Since (4.8) has a nonuniqueness feature, we conclude by Theorem 2.1. l-1
The next example of nonuniqueness corresponds to volume preserving mean

curvature flow. The derivation of this motion and its significance for applications is
discussed in 11.

Let Fo be the union of three disjoint circles in Re, i.e., Fo=
OB(x,Ro)k_JOB(x,Ro)k_JOB(x3, ro), with x(i=1,2,3) to be chosen later and
0 ro < Ro. We consider the motion of Fo with normal velocity

V=-div(Dn)+a(t) (t> 0),
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where a(t)=27rN(t)L-l(t), N(t) and L(t) being the number of disjoint parts of Ft
and its length, respectively. In view of this explicit formula, at least for small time,

F OB(x, Rt) [._J OB(x2, Rt) [..J OB(x3, rt),

where Rt, rt satisfy the ode’s

t -Rt-1 + o(t) and i* --rt
1- + a(t) with a(t) 3(2Rt + rt) -1.

Let tl sup { > 0 such that rt > 0}. The form of Ft above is valid for all (0, q). Since
t is independent of the choice of the xi’s we can choose xl and x2 so that Ix1- x2]-- 2Rt,.
In view of this choice,

Ft, OB(x,, Rt,) U OB(x2, Rt,),
with the two circles touching at a point. There are two possible evolutions for t_>-t
depending on whether we think of F, as one set or two separate ones. In the first case
Ft moves with a(t) 27r (length (Ft))- and actually converges to OB((x + x2)/2, Ro),
as t-, where R=(2R+ r)/2. In the second case, Ft remains stationary (i.e.,

-1 for t>t)ce( t) Rtl
We conclude the discussion about the "nonempty interior" difficulty with a general

comment for the t-dependent velocities. It appears that we cannot hope to have a
general theorem guaranteeing no interior without making very severe restrictions on
the t-dependence of the normal velocity. The reason for this claim is the following.
In principle, all motions have some "pathological" situations, where interior develops.
We can take any such motion, perturb its velocity by a time dependent forcing term
so that to drive the front to the pathological situation, and then simply turn off the time.

5. Uniqueness results for the distance function formulation. As mentioned in 3,
we can have a weak formulation of the propagation of a front in terms of whether the
signed distance to the front satisfies the inequalities (3.1) and (3.2). A natural question
to ask is whether (3.1) and (3.2) are enough to identify the distance function uniquely,
i.e., if z satisfies (3.1) and (3.2) and z(x, O) d(x, Fo), is it true that z-= d? In addition
to being a natural mathematical question to ask, having such information simplifies a
lot some of the analysis of the "phase field" theory.

In the following, and only to considerably simplify the presentation, we will only
consider the equation

( (D2uDu, Du))(5.1) u,- o An IDul- + a(x, t)]Du[ 0 in [u x (0,

with the initial datum

(5.2) u(x, O) d(x, Fo) in N,
with 0-->0 and a W’(N x (0, oo)). (Some of the arguments and the conclusions
below hold if 0 O(x, t) (under some assumptions) as well as for anisotropic motions.
We will discuss these situations elsewhere.)

As before, we denote by F, {x: u(x, t)=0}. Theorem 3.1 and the discussion
following it say that the functions dl= d(x, F,) and d2-- d(x, F_t) (where F,
O{x" u(x, t) > 0} and _I’, O{x" u(x, t) >= 0}) satisfy the inequalities

(5.3) z,-OAz+a(x-zDz, t)<-O, 1-lDz[ =0 in {z<0}

and

(5.4) z,- OAz + ce(x zDz, t) >= O, IDzl 1 0 in {z > 0}.
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Of course, if the no-interior condition holds for every > 0, (5.3) and (5.4) are satisfied
by d d(x, F,). The inequalities in (5.3) and (5.4) are a combination of (3.1) and (3.3)
and (3.2) and (3.4), respectively, as they apply to (5.1). On the other hand, the equalities
in (5.3) and (5.4) follow from the differentiability properties of the distance function
and the definition of viscosity solutions.

Next we look into the converse of Theorem 3.1, i.e., we are interested in whether
(5.3) and (5.4) identify z as the distance function.

TIqEOREM 5.1. If the usc (respectively lsc) function z satisfies (5.2) and (5.3)
(respectively (5.2) and (5.4)), then

(5.5) z<=d2 in {z<0}{d2<0},

(5.6) z>-dl in {z>0}{dl>0},

respectively. If z satisfies (5.2)-(5.4) and {F,}t__>o is regular, then

(5.7) z(x, t) d(x, F,) in

Proof The proof is based on the following two lemmas.
LZMMA 5.2. Ifz is USC (respectively lsc) and satisfies (5.3) (respectively, (5.4)), then

z is a subsolution (respectively supersolution) of

(5.8) zt-O(Az-(D2zDz’ Dz))i-D-zl5 / (x zDz, t)lOzl 0

in {z < 0} (respectively, {z > 0}).
LEMMA 5.3. If a use (respectively lsc) function z satisfies (5.3) (respectively (5.4)),

thenfor C large enough, z_ et(z ^ O) (respectively e’(z v 0)) is a subsolution (respec-
tively supersotution of (5.1).

We first conclude the proof of the theorem and then prove the lemmas. We proceed
by proving (5.5), since (5.6) follows in a similar way. To this end, observe that, since
_z (defined in Lemma 5.3) is a subsolution of (5.1), Theorem 1.2 yields _z=<u ^0 in
N (0, ); recall that u ^ 0 is still a solution of (5.1), since (u) u ^ 0 is an increasing
change of u. So, if u <0 (or, equivalently, if d2 <0), z <0 and the proof of (5.5) is
complete.

Finally, if {Ft},__>o is regular, then dl d2--d and (5.5) and (5.6) yield

{z < 0} {d < 0}, {z > 0} {d > 0} and {z 0} {d 0};

therefore, z d by the uniqueness results for the equations Dz[- 1 0 and 1 -[Dz O,
respectively, in {z > 0} {d > 0} and {z < 0} {d < 0}.

We now return to the proofs of the lemmas.
ProofofLemma 5.2. We only treat the case of a usc z that satisfies (5.6); the other

case is proved similarly. Since z is usc, the set f--{z < 0} is open. Moreover, z being
a solution of 1-IDzl--0 in f, {x" z(x, t)< 0} for all t> 0, yields

z(x, t)=sup{z*(y, t)--lx-yl" yf,},

where z*(y, t) lim supFt,y’--,y z(y’, t). This formula implies that z is locally semiconvex
with respect to x, i.e. O2z/Ox2> -C in 12, for all unit vectors X N. Next we define
the e-supconvolution z of z in f with respect to by

z (x, t) sup ( z(x, s) s)2}(x,s)f



FRONT PROPAGATION AND PHASE FIELD THEORY 453

It follows easily that, for (x, t) belonging to compact subset V of f and e > 0 small
enough, the supremum is actually achieved in f (and not on 012) and that z satisfies

(5.9) 1-[Dz]=0 and z-OAz+(x-zDz,t)<--Ce in V,

where C depends only on the Lipschitz bound of ce. Let (Xo, to) f be a strict local
maximum of z-b in f for smooth 4 and take V f in (5.9) to be a neighborhood
of (Xo, to). Since z - z, there exists (x, t) V maximum points of z- b, such that
(x, t)-(Xo, to) as e-0. Now we use Alexandrov’s Maximum Principle-type argu-
ments, brought in the theory of viscosity solutions by Jensen [J]. More precisely,
Lemma A.3 of [CIL] implies the existence of X SN such that

(5.10) (,(x, t),Dqb(x, t),X)JZ’+z(x, t) and -K <-_X<-_D,ccfl(x, t),

for some constant K, which is related to semiconvexity constant of z and, therefore,
of z in V; the upper bound on X comes from the Maximum Principle. (We refer to
[CIL] for the definition of j2,+.) Also we claim that XDd(x, t) =0. Indeed, since

IDz almost everywhere, 2 eOzeDxxz 0 at any point where z is twice differentiable.
On the other hand (cf. [CIL, Lemma A.3]), XDch(x, t) is obtained as a limit of
DZxzDz evaluated at nearby points. Finally, recall that Dch(x, t) Dz(x, t), since
z is differentiable at maximum points of z-b (again due to the semiconvexity).

Inserting all the information in (5.9) we obtain

ID[: ] + (x-D, )- C,

where in the two inequalities above, z and b and its derivatives are evaluated at
(x, t). Letting e- 0 we conclude, the proof.

Proof of Lemma 5.3. We again only present the proof in the case that z is a usc
subsolution.

If c is larger than the Lipschitz constant of a, Lemma 5.2 implies that ee’z is a
subsolution of (5.1), since Dzl 1 yields

(x zDz, t) >- (x, t) cz (x, t)lDzl cz.

To conclude let (q,), be a sequence of smooth functions such that q, (t) 0 if >_- 1 / n,
q/, =>0 and q/, 1 uniformly on compact subsets of (-, 0]. Using the preceding
lemma, it is easy to check that d/,(ee’z) is a subsolution of (5.1). Letting n o we
conclude, since q,(e’z) et(z A 0).

6. Asymptotic limits of Reaction-Diffusion equations-Phase field theory. Reaction-
diffusion equations of the form

(6.1) b,- Ab +f(x, t, 4’)= 0 in

arise naturally in many areas of applications, such as phase transitions, flame propaga-
tions, pattern formations, chemical kinetics, etc. In most of these applications, fronts
develop for large times as the boundaries of the regions where the solution b of (6.1)
converges to the different equilibria of the vector field f (cf. Fife [Fi]). For a discussion
of some cases where the solutions of (6.1) converge to the different equilibria off we
refer to Aronson, and Weinberger [ArW], Fife and McCleod [FiM], etc. The main
issue is to identify the rate at which 4) converges to the different equilibria. For this,
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we must have a better understanding of the fronts and, in particular, the way they
propagate. In the case f(x, t, b)=f(b), formal results of Fife [Fi] and Caginalp
[Cal]-[Ca3] imply that the fronts propagate with normal velocity

(6.2) V= ce +-K + O (t >> 1),

when K denotes the curvature.
Our goal here is to justify (6.2) rigorously in the generality of (6.1). One way to

do this is to scale 4 so as to capture the different terms in the asymptotic expansion
(6.2). To obtain the first term, the appropriate scaling is (x/e, t/e). If a =0, we then
go to the next scaling (x/e, t e2). These considerations give rise to singular perturbation
problems of the form

(6.3) ;-e+f(x,t,)=O in=(0,+)

and

(6.4) qbT-A4)+l-f(x,t, dp)xO in Ru x (0, +eo),
E

with initial data

(6.5) b( ., 0)= b(.) on

Here 4 is a given function that initializes the front and f is some approximation
of f Singular perturbation problems of the form (6.3) and (6.4) are of independent
interest for they also arise in models with slow diffusion and fast reaction, in phase
transitions, etc.

In the following we study the behavior, as e- 0, of (6.3) and (6.4) under the
assumption that 4-f(x, t, 49) is a "cubic-type" nonlinearity, i.e., it has two stable
and one unstable equilibria. Typical examples off are

(6.6) f(x, t, q)=Z(q-etx(x, t))(q2- 1),

(6.7) f(x, t, q)= 2(q-/x(x, t))(q2- 1),

and

(6.8) f(x, t, q)=2(q-tx)(q2-1)+eO(x, t),

where 0,/xe WI’(N" x [0, +oe)) are given and/x takes values in (-1, 1).
To simplify the presentation, we restrict ourselves to problems where the second-

order operator is the Laplacian, although all the arguments can be modified to apply
to more general elliptic operators (under, of course, suitable hypotheses). This will be
addressed in the future. Finally, we remark that the case where f is of "quadratic"
type (i.e.,f has one stable and one unstable equilibria) has been studied by probabilis-
tic methods by Freidlin [Fr] and, in greater generality, by pde-type techniques by
Evans and Souganidis [ES2], [ES3] and Barles, Evans, and Souganidis [BaES]. The
latter work actually studies a general system of reaction-diffusion equations.

We conclude this section with a brief discussion of the "phase field" approach
to study propagating fronts. This consists of first studying the behavior of b as e - 0
in (6.3) and (6.4) and then defining the propagating front as the boundary of the
regions where the b’s converge to the different equilibria of the vector field. The
advantage of this approach, which is rather indirect, is that it avoids any discussion
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of the empty interior and the nonuniqueness difficulties at least at first glance provided
of course that such a convergence can be proved. However, it will become apparent
below that the convergence is closely related to the interior issue. Perhaps another
advantage of the phase field approach is that it allows other numerical methods. This
way to study motion by mean curvature was proposed by Bronsard and Kohn [BrK]
and DeGiorgi [D]. A byproduct of our analysis in the following sections is that the
phase field formulation is equivalent to the level set and distance function ones, taking
into account the nonempty interior difficulty.

7. Formal discussion. In this section we discuss, in a formal way, the essential
mathematical difficulties involved in the study of (6.3) and (6.4). To simplify the
arguments, we consider the special case

(7.1) f(x, t, q)=fo(q)-eO=2(q-tx)(qZ-1)-eO (0).

We begin observing that, for sufficiently small e >0, there exists h%(0)< h(0) <
h

_
(0) such that

Set

f(x, t, h_(O))=f(x, t, h;(O)) f(x, t, h_(O)) =0.

m(O)=h_(O)-hL(O),

(7.2) q(r, 0)= hL(O)+ m(0) (1 +exp (-m(O)[r+ r(O)]))-l(rN),

c(O) 2h;(0)- h_(O)- h%(O),

where r(O) is chosen so that q(0, 0)= h;(O). A straightforward calculation yields

qrr+C(O)q;=fo(q)--eO(7.3)

with

(7.4) lim q(r, 0)= h. (0);

in other words, q is the traveling wave corresponding to the nonlinearityfo- e0, which
travels with speed e(0). Indeed, if we set

(,t)=q(-e(O)t) inNx(0,),

then

,-=fo()- e0 in x (0, ).

In fact, for any "cubic-type" nonlinearity, there exists a unique pair of traveling wave
and speed satisfying (7.3) and (7.4). A detailed discussion of this fact as well as
references will be given in the next section.

We now return to (6.3) and write the solution as

=q(,0) inNx(0,).

A simple calculation yields

1
-q;[zT- ez + c(0)]

1
q;(lDz[2 1)=0 in NN X (0, )

where q and q are evaluated at (z / e, 0).
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Analyzing the two terms in the above equation separately, as e 0, we formally
conclude that IDze 1 and, therefore,

z (x, t) signed distance function of x to F,,

where F, is the interface, and

z,-eAz+c(O)=O on F,.

Since h;(O)= lz + eO(f[(lx))- and h:(O)= +l + eO(f[(+l))-, (7.2)yields

lim c (0) 2
0

Therefore, always formally, F, moves with normal velocity V=-2/z. The geometric
pde that gives F, as the zero level set of its solutions is

u, + 2txlDu 0 in [N x (0, o).

In view of the discussion in 6, to consider (6.4) with the vector field f given
by (7.1), we must assume/x-0, i.e.,

f(x,t,q)=Zq(q2-1)-eO.
Proceeding as for (6.3) above, we write

b q(-, 0)in N x (0, c)

and find

lq;[zT_Az+e_,c(O) lzq;r(lDz12 1)=0 inN(0, o),
F E

where q7 and q rr are evaluated at (z/e, 0). Arguing as before, we find (formally) that
z(x, t)signed distance function from x to F,, where F, is the interface, and

zT-Az+e-c(O)=O on F,.

Using the expressions for h(O), h.(O) and (7.2) we find

lim e- c (0) -- 0.
e-0

Therefore, always formally, F, moves with normal velocity

V mean curvature + 0.
The corresponding geometric pde is

( (D2uDulDu)) 3
in N (0,

8. Traveling waves. Here we discuss the existence and the general properties of
traveling waves for functions uf(x, t, u), which have the property that, for a and
e small, the function uf(x, t, u)-ea behaves like a "cubic function" of u. More
precisely, we assume that, for a and e sufficiently small, the equationf (x, t, u)- ea =0
has exactly three zeros: h(x, t, a) < h(x, t, a) < h_(x, t, a). Moreover, we assume that

f(x,t,.)-ea>O in(hL, h;)U(h_,+oo),

f(x,t,.)-ea<O in(-oe, h__)U(h;,h_),

f,(x, t, h.)>= y>O,

with 3’ independent of (x, t, a, e).



FRONT PROPAGATION AND PHASE FIELD THEORY 457

Since, for fixed (x, t, a, e), the function u-f(x, t, u)-ea satisfies the hypotheses
of Aronson and Weinberger [ArW] and Fife and McLeod [FiM], there exists a unique
pair (q(r, x, t, a), c(x, t, a)) such that

qr(r,x, t, a)+c(x, t, a)q;(r,x, t, a)=f(x, t, q(r,x, t, a))-ea(8.2)

and

(8.3) lim q(r,x,t,a)=h,(x,t,a) and q(O, x, t, a) h)(x, t, a);

the second part of (8.3) is necessary to fix q since (8.2) is invariant under translation
in r.

We continue listing a set of technical assumptions that we will be making on
(q, c). We then verify these assumptions for a particular class of f’s, which arise
naturally in applications. To this end, we assume that, as e- 0,

(8.4)

(8.5)

and either

(8.6)

or

(8.7)

q and c depend smoothly on (x, t, a),

h(x, t, a) h+/-(x, t, a), h;(x, t, a) ho(x, t, a),

c(x, t, a)-ce(x, t, a)

-e-’c(x, t, a)- ce(x, t, a), if c(x, t, a)O,

with all the limits local uniform in (x, t, a). Moreover, if

a(x, t)= ce(x, t, 0), h+/-(x, t)= h+/-(x, t, 0), and ho(x, t)= ho(x, t, 0),

we assume that there exists K > 0, independent of (x, t), such that, for e and a small
enough and all (x, t),

(8.8) Ice(x, t)- a(y, t)[ _-< glx-y[.

If (8.7) holds, we also assume

(i) ]h+/-,-ah+/-l <_- K
(8.9) (ii) lim sup [elqTl+elaql+lDqrl]=O

eO (x,t,r,a)

(iii) -l lqr(r, x, t, a)] + l-Tlq;(r, x, t, a)l <= K e-K/ for all Irl>_-,

Finally, for all (x, t) and e, a sufficiently small, we assume

(8.10) q_>-0 and q]>=0.

Next we present an example where the above hypotheses hold true. Indeed,
consider

(8.11) f(x, t, q)=2(q-tx(x, t))(q2-1)-eO(x, t),

where 0’NUx (0, oe)-[ is a given function. Let h;, h,, q and c be as in 7 for
each (x, t) and define

h;(x, t, a)= h;(O(x, t)+ a), h.(x, t, a)= h(O(x, t)+a),

q(r, x, t, a)= q(r, O(x, t)+ a),

and

c(x, t, a)= c(O(x,t)+ a).
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It is immediate that (8.4) holds (if 0 is smooth) and that (8.5) holds with h+/-(x, t, a) +1
and ho(x, t, a)=/.t; (8.6) holds with c(x, t, a)= 2/.t(x, t)where/ lim_o % If/.t(x, t)=
0, then (8.7) yields a(x, t, a)=(O(x, t)+ a), provided that O(x, t)- O(x, t) uniformly.
In view of the above, (8.8) needs

(8.12) ]O(x, t)-O(y, t)[Klx-yl or ]/(x, t)-tz(y, t)[-K[x-yl

To conclude, using the explicit formulae in (7:2) we compute

D,q qo 0,, Dxq qoDxO, Axq qoAxO + qoo[D)O] 2.
Since Iqo] <--eK and [qoo] <--e2K for some K > 0, (8.9) (ii) holds if 0 is such that

(8.13) lim e[sup
eo (x,t)

For (8.12) and (8.13) to hold, it suffices to assume that

(8.14) (0)>o is uniformly bounded in C2’1(N [0, 00)).

Finally, (8.9)(iii) and (8.11) hold provided 4e]0l-< 1, which follows from (8.14) for e

small.
We conclude this section observing that similar computations are possible for

(8.15) f(x, t, q)=Z(O(x, t)q-t.t(x, t))((O(x, t)q)2-1).
9. Asymptotic behavior of reaction-diffusion equations; the main results. We next

state our main theorem about the behavior of the solution b of (6.3) and (6.4). To
study (6.3) we consider f’s that satisfy (8.1)-(8.6) and (8.8) and (8.10). For (6.4) we
will consider f’s such that (8.1)-(8.5) and (8.7)-(8.10) hold. In either case, we will
denote by (q(r, x, t), c (x, t)) the pair of traveling wave and speed which corresponds
to f and we will assume

(9.1) a(x, t, a) >- a(x, t) for all a>0.

Throughout the discussion below we will be assuming that

(9.2) ck (x, O) q(d(x’ F) ),x, 0 on N,

where F0 is a closed set in N. The last assumption can be weakened at the expense
of rather lengthy arguments. We will address this issue elsewhere.

In view of the (formal) discussion in 7 we expect that the limiting behavior of

b will be governed by the geometric pde’s

(9.3)
for (6.3) and

u,-a(x,t)]Du]=O in(O, oo)

[Du]- -a(x, t)[Du] 0 in N (0, 0o)

for (6.4), with (by (9.2)),

(9.5) u(x, O) d(x, to) on N.
THEOREM 9.1. Let b be the solution of (6.3), (9.2) with f satisfying (8.1)-(8.6)

and (8.8), (8.10), and (9.1). If u is the solution of (9.3), (9.5), then, as e-O,

(i) qb(x, t) h+(x, t) ifu(x, t)>O,
(9.6)

(ii) b(x, t)- h_(x, t) ifu(x, t)< O,

with the limits locally uniform in {(x, t) u(x, t) 0}.
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THEOREM 9.2. Let qb be the solution of (6.4), (9.2) withf satisfying (8.1)-(8.5),
(8.7)-(8.10), and (9.1). If u is the solution of (9.4), (9.5), then, locally uniformly in
{(x, t): u(x, t) 0}, as e 0

(i) ch(x, t) h+(x, t) if u(x, t)>O,
(9.7)

(ii) 4 (x, t) h_(x, t) if u(x, t) < O.

In the special case where f(x, y, u)= 2(u-/x)(1-u2), Barles, Bronsard, and
Souganidis [BaBS] studied the limiting behavior or of the solutions 4 of (6.3). Gfirtner
[G] also studied the same problem when f(x, t, u)=f(x, t, u) by a combination of
probabilistic and analytic techniques. Evans, Soner, and Souganidis lESS] studied the
limiting behavior of 4 in (6.4) when f(u)= 2u(1- u2); this problem was first studied
in the context of radially symmetric functions by Bronsard and Kohn [BrK]. Finally,
Chen [Ch] and DeMottoni and Shatzman [DS] obtained results similar to Theorems
9.1 and 9.2 (for special cases of f) assuming, however, that F, is a smooth surface.
No such assumption is made here.

We conclude this section by remarking that we can actually obtain more precise
results than (9.6) and (9.7). Indeed, it is possible to obtain WKB-type expressions for
4 of the form

(d(x,F,)+o(1) )(x,t)=q ,x,t
E

This is done in 10.1 for some simple cases. The arguments for the general case are,
however, rather complicated and will be presented elsewhere.

10. Proofs. Instead of presenting a general proof for Theorems 9.1 and 9.2, we
will first give some less general but more direct arguments utilizing the results of 5.
At the end we will turn to the general case. The reason for doing this is that in the
less general cases it is possible to work directly at the e 0 level, as opposed to the
general case where we need to build super- and subsolutions for e > 0. The latter
approach ties us down to cases where the maximum principle holds.

10.1 The (x, 0-independent case. Here we assume that f (and therefore q) is
independent of (x, t) and is given by (6.6) for (6.4) and (6.7) for (6.3). In fact, the
traveling wave in either case is q(r)=tanh (r)(rE) and the speed 2e/z and 2/z for
(6.6) and (6.7), respectively.

Following the discussion in 7, if

(10.1) b q(-) in N (0, C),

then z solves

(10.2) z;-eAz+2q (IOz

in the case of (6.3), and

(10.3) zt -Az +-q ([Dz
E

in the case of (6.4), with, in either case,

1)+2/z=0 inNx(0,

1)+2/x=0 inNx(0,)

(10.4) Z(X, O) d(x, ro) on
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We want to study the behavior of z as e --> 0. To this end, we assume for the moment
that (z)>o is locally uniformly bounded inEN x (0, T) for some T> 0 and we proceed.
Since (10.2) and (10.3) are translation invariant with respect to x, it is immediate that

(10.5) IDzl_-< 1 in N x (0, ).

On the other hand, the form of (10.2) and (10.3) makes any kind of estimate z hopeless.
To circumvent this difficulty we use the, by now classical, half-relaxed limit techniques
described in Barles and Perthame [BaP] (see also [CIL]), i.e., we consider the functions

(10.6) z*(x, t)=limsup z(x,s) and z,(x, t)=liminf z(x,s).
e-->O e->O
S-->I S-’>I

We begin with (10.3), which can be rewritten as

(10.7) z, Az+2/x
2 (_)

_
__q (IDz12-1).

The form of q and (10.5) yield

--q (1 -_->o ifz>0

and

--q (IDz -1)=<0 ifz <0.

Using (10.5), (10.7), and the above inequalities we get that z* is a usc subsolution of
(5.3) with a=-2tz and a solution of 1-1Dzl=0 in {z<0} and that z, is an lsc
supersolution of (5.4) with a =-2/x and a solution of IDzl- 1 =0 in {z > 0}. That z*
(respectively, z,) is a subsolution (respectively, supersolution) of (5.3) in {z<0}
(respectively, (5.4) in {z > 0}) follows from (10.7) and the above inequalities, that z*
(respectively, z,) solves 1-1Dzl =0 (respectively, IDzl-1=0)in {z <0} (respectively,
{z > 0}) follows the passage to the limit in both (10.5) and (10.7).

Theorem 5.1 implies that z* _-< de in {z* < 0} {u < 0} and z, >= dl in {z, > 0}
{ u > 0}, where u is the solution of (9.4) with a -2/x. Moreover if the "empty interior"
condition holds, Theorem 5.1 yields z*(., t)= z,(., t)= d(.,F,); therefore we have
the result.

In the case of (10.2), we rewrite the equation as

zT-ez+RlOzl=-(IOzl-1) 2+2q (IOzl + 1))

and pass to the limit using sign-type arguments, similar to the first case but for the
limiting equation. Indeed, since/z (-1, 1), we obtain

z,+ZlOzl<-_O in{z<0} and z,+ZlOzl>-O in{z>0},

where above we have suppressed the z* and z, notation. The arguments of the proofs
of Theorem 5.1 and Lemmas 5.2 and 5.3 yield

{z* < 0} { u < 0} and {z, > 0} = {u > 0};

we conclude as before.
It remains to prove the uniform local bound on z. Such a bound is easy for (10.2)

and we leave it up to the reader; here we concentrate on (10.3). Let q: --> be a C
function such that q-=0 in [0, +co) and q(-)=-I with q’>0 in (-c,0) and q/’
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bounded and consider the function o3 defined by o5 0(z). In view of the choice
of 6, it is clear that -1 =< a3 =< 0, i.e., o3 is bounded. Next we define

*(x, t) lim sup o3 (x, s);
e-->0

v* is well defined and v*=-1 if z*=-oo, v*= 6(z*) if z* (-oo, 0) and v* =0 if
z*_-> 0. Combining the above with arguments from the proof of Theorem 5.1, it can be
shown that v* is a subsolution of the two-sided variational inequality

max w, min w+l,w,-Aw-
Dwl

A direct modification of the usual comparison results yields

* -< (u) in ,i (0, o),

where u is the solution of (9.4) with c---2/x. Arguing in exactly the same way with
_w =-p(-z), we find

w.(x, t)= lim w_(x, t)>--(-u) in u (0,
-->0
s-->!

We conclude as follows: Let t*= sup {t > 0: there exists x N such that u(x, t)> 0}.
If < t*, the sets { u > 0} and { u < 0} and, therefore, {z* < 0} and {z, < 0} are nonempty.
Then there exist points in a bounded region of N (depending only on u) such that
z* < 0 and z. > 0. The local uniform bound then follows from (10.5) for all T < t*. If
> t*, then z*< 0 and therefore b-*-1 at any such point. ]

10.2. The (x, 0-dependent case. We now study (6.3) and (6.4) in the case where

f is given by (6.6)-(6.8). We only give the proof for (6.4) for f given by (6.6); the
other cases can be treated similarly. First, we recall that the traveling wave q associated
with (6.6) is still q= q=tanh. As before we perform the change b= q(z/e) and
find (10.7) takes the form

(10.7) z;-Az+2lz(x,t)+-q (IDz -1)=0 in (0, c)

with

z (x, 0) d (x, Fo) on .
The main difference between this case and the (x, t)-independent one is that (10.7) is
no longer translation invariant with respect to x. Instead of (10.5) here we have

(10.8) [Dzl <= e c’ in N x (0, ),

where C is the Lipschitz constant of 2/z with respect to x.
Next we intoduce the function _z defined by

_z(x, t)= inf (rl(z(y, t))+lx-yl)
yGN

where r/C2 is such that: rt(0) =0, r/’>l in (0, oo), r/’<l in (-c, 0) and/3> ">0
and r/_->-/3 -1 on for some /3 > 0. Since rt is bounded from below, it is clear that
the infimum in the definition of _z is achieved for some y(x); y also depends on
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but we suppress this here. We now perform the usual arguments for this type of
inf-convolution. If y(x) x, then

Dz (y (x), t)
x-(x)

n’(z(y(x), t)) Ix- y(x)l
hence

(10.9) q (IDzl2-1) q r/,(z)2 1) <_- 0 at (y (x), t).

On the other hand, if y(x)= x and _z(x, t)= z(x, t)> O, then [Dz(x, t)[ _<-1 and

(10.10) q( Z-f)(IDz12-1) <=0.

Combining the last two inequalities and (10.8) we obtain

(10.11) _z;-A_z +ezc’ +2r’(z(y(x), t))l(y(x), t)>=O in {_z > 0}.

As in the previous section we assume that the z’s (and therefore the _z’s are locally
uniformly bounded in Nr x (0, oo) and we consider

z,(x, t) lim inf z(x, s) and _z(x, t) lim inf_z(x, s).
e-0 e0
S--t S-->I

Letting e 0 in (10.7) we get

(10.12) sgn (z,)(IDz,l-1)>-O in NN x(0, oe).

We also must send e 0 in (10.11). To do so we assume that y(x)y(x) for some
y(x) as e-*0 (since the family (y(x)) is bounded, y.(x)y(x) for some y(x) at
least along some subsequence); hence

z_, Az_ q- e2ct + 2q’(z,(y(x), t))lx(y(x), t) >= 0 in {_z > 0}.

Now we remark that

z_(x, t)= rl(z,(y(x), t))+[x- y(x)l;

the definitions of z and _z together with (10.9), (10.10), and (10.12) and the properties
of r yield z,(y(x), t)=0 and, therefore, _z(x, t) d(x, {z, =0}) and r’(z,(y(x), t)) 1.
We conclude by combining the arguments of the previous section and the ones of the
proof of Theorem 5.1 and letting/3- 0.

10.3. The general case. Unfortunately, we cannot prove Theorems 9.1 and 9.2 in
the case of general f by a direct passage to the limit; one of the main difficulties
being the lack of an explicit formula for the traveling wave q and its speed e. Here
we will proceed by constructing sub- and supersolutions for (6.3) and (6.4) following
ideas introduced in Evans, Soner, and Souganidis [ESS]. As before, we will only
present the proof of Theorem 9.2; Theorem 9.1 is proved in a similar way with some
modifications noted below. We begin with some preliminary facts.

For fixed 6, a > 0, let u ’a be the solution of

’+ F(x, t, Du’, D2u’’) (a(x, t, a) a(x, t))JDu’
(10.13)

u’(x, O) d(x, Fo)+ 8 on NN
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where

F(x, t, p, X)= -tr(X)+
(xplp)

-(x,t)lpl.

if

d,a(x, t)= d(x, {y. u.a(y, t)=0}),

Theorem 3.1 yields that

(10.14) d’-Ad -a (x d’Dd’, t, a)>0= in {d’a > 0}.

Following the proof of Lemma 3.1 of [ESS], we define

(10.15) w’(x, t)= (d’(x, t)),

where, as in [ESS], ’[- is a smooth function satisfying

(z) =-8 if z=<-
4’

(10.16)

6
Ts(z) z-6 if z_->-

2’

6 6
s(z)_-<-- if z-<-

2 2’

0 < W < C and [<-_ C6 on

where C > 0 is independent of 6. A straightforward modification of Lemma 3.1 of
[ESS] together with (10.15) yields the following lemma.

LEMMA 10.1. There exists a constant C, independent of 6 and a, such that

C
(10.17i) wt -a(x, t, a)l ]>--_--- in [0, t*),

(10.17ii) w, -a(x- t, a)>--O on >

and

(10.18) IDw’[ l in {d’ >},
where t* is the extinction time of {u’a= 0}.

Finally, we define

(10.19) (x, t)= q x, t, a on N X [0, ),

where, for notational simplicity, we do not exhibit the dependence of on 6 and a.
PROPOSITION 10.2. Assume thatf satisfies the hypotheses of Theorem 9.2. Then,

for every a > O, is a supersolution of (6.4), if e Co(6, a) and 6 <-_ 6o(a).
The proof of the proposition is similar to the proof of Theorem 3.2 of [ESS]. The

form, however, of is different than the one used in [ESS]. As usual we will present
the proof as if w’ has actual derivatives, keeping in mind that everything actually
has to be checked in the viscosity sense; we will leave it to the reader to do so.
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Proof. We must show that

(10.20) 7-A

for e --< eo(6, a) and 6 _-< 60(a). Using the equation for q (, x, t, a), we calculate

(10.21)

J

_
Dw6,a2;-AcI) +-f (x, t, )= (I 1)

+--qr W,’ + +--

where q and q rr are evaluated at (w’a/e, x, t, a), with

(10.22) J(x, t) qT+-DqDw’ +Aq , x, t, a

In view of its definition, it is immediate that ]Dw’O]_-< C where C is as in (10.16).
Therefore, by (8.9) (ii),

o(1)
(10.23) J as e - 0 uniformly in (x, t, 6, a).

We proceed by examining three cases.
Case 1. 6/2 < d’ < 26.
Using (10.18), the Lipschitz continuity of a with respect to x, the fact that d’ < 26,

and the form of rt, we get

wt’"-Aw’ -ce(x, t, a)--> -C6 and IDw’"l 1.

Substituting in (10.22) and employing (10.23) we obtain

If 1[ ( c(x,t,a)
(10.24) ;-A +-- (x, t, )>=- q; -C6+ -a(x, t, a))+a+o(1)],
where again q is evaluated at (w’/e,x, t, a). Since e-lc(x, t, a)--a(x, t, a) as
e 0, uniformly in (x, t, a), we see that the right side of (10.24) is positive if e and 6
are sufficiently small.

Case 2. d’ <-_ 6/2.
In this case the choice of r/ yields

w.<=-6/2.

Consequently, (8.9) (iii) yields that

)q ,x,t,a
1 W’a )qr ,x, t, a

for some appropriate constant K. Using that IDw’Ol<= C as well as (10.17) in (10.21)
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we obtain

d Acb +-f(x, t, >- Ke --- c +o(1)+-e as e --> 0;

for e small enough the right hand side of the above inequality is again positive.
Case 3. d &a > 26.
In this case we have w’a> 6. Using (10.17) and (8.9) (iii) we conclude as in the

previous case.
We are now ready to give the proof of Theorem 9.2.

Proof of Theorem 9.2. Fix (Xo, to) N [0, t*) such that U(Xo, to) -/3 < 0. The
stability of solutions of the geometric pde’s yields that u’ -> u, as 6, a --> 0, uniformly
in (x, t). We choose, therefore, sufficiently small a and 6 so that

(10.25) u’(Xo, to) < -/3 < 0.
2

Let cP be given by (10.19). In addition to being a supersolution of (6.4) for sufficiently
small e > 0, satisfies

(x,O)>q(d(x’F) ),x, 0 on E,
where the last inequality follows from the fact that

w’a(x, O) n(d(x, to)+ )_>- d(x, to).

It follows by the standard comparison theorem for viscosity solutions and (8.10) that

<_-- in N [0, t*).

On the other hand, (10.25) yields d’(Xo, to) <0; hence

lim sup (Xo, to) <-- lim sup (P (Xo, to) h_(xo, to).
e0 e->0

To prove the reverse inequality, we consider CP(x, t) h_(x, t) y for some 3’ > 0. Since
h_ C2’,

1 1-AP+-f(x, t, P)<--K +-5[-yf(x, t, h_(x, t))+ o(y)].
E E

By (8.1), the right-hand side is negative for small e and 3’. Hence by the maximum
principle

lim inf (x, t) >- h_(x, t) y for all (x, t) and y > 0.
e-->0

We conclude by letting y--> 0. A simple modification of the above arguments yields
that -> h_ locally uniformly in {u < 0}.

The fact that b --> h+ in {u > 0} follows in a similar way, provided we construct
a subsolution of (6.4).

To prove Theorem 9.1 we must consider the traveling waves associated by f-a
and argue about a lower bound on -eAw’. The latter follows from the facts that
W

a,t t 0 if and only if d’ >= 6/4 and Ad a’6
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11. Possible applications. In this section we briefly discuss two applications where
(6.4) arises naturally, with f of the form

(11.1) f(x, t, q)= 2q(q2- 1)- eO(x, t),

which, in view of the discussion in 8, satisfies the desired properties, provided (0)
is bounded in C-’1. On the other hand, we do not know whether (0) satisfies this
necessary condition.

Example 1 (volume constraint). Let 12 be a bounded domain in En with an
outward normal vector n(x), x 012 and consider the reaction-diffusion equation

(11.2)
bT-Ab +-2-2qS((b)2- 1)= a(t) in 12,

-0 on 0f,
On

where

(11.3)
1

a(t) =A(gb( t))- | b)2
2 2ok (( -1) dx.

e meas (12)

If we set

(8.13) reduces to

O(x, t): eA(dp(., t)),

lim e 2 sup IoT(t)l =0.
e$0

We do not know whether this estimate holds. Formally the limiting equation is

(11.4) V mean curvature + c (t) in ,
with Neumann boundary condition on 0f (see Giga and Sato [GS]). If F, is a solution
of this equation, then

Volume enclosed by F dx li [ck(x,t)+l]dx.

Moreover,

dt
(gb + 1) dx= Aqb --fo(rk )+A dx=O,

i.e., the volume of the region enclosed by F is constant in time. For a detailed formal
analysis of this problem refer to Rubinstein and Sternberg [RS].

The pair (F,, a(t)) is called a volume preserving mean curvature flow. The
associated geometric pde in Nn is

u,--(Au (D2-uDu-[ Du)
iDul2 ] a(t)lDu[ 0 in n x (0, oo).
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When N 2, Lagrange multiplier a(t) is given by the explicit formula

ce( t) 27rN( t)/ L( t),

where N(t) is the number of disjoint of connected parts of F(t) and L(t) is the length
of F,. This formula indicates that the Lagrange multiplier may, in general, be discon-
tinuous in time. If, however, we do not insist that F is the boundary of a region and
replace a (t) by the above formula, then a complete theory is available. In this framework
the solution may develop self-intersections, which are not desirable in a physical
problem.

In 4 we presented an example of nonuniqueness for the volume preserving flow
by mean curvature.

Example 2 (supercooled Stefan problem). We consider the problem of a melting
or growing crystal in a melt. Let O(x, t) be the appropriately scaled temperature and
C(t) c EN be the region occupied by the crystal. Gurtin [Gu] derived the equation

0
(11.5) O--[O(x, t)+ lc(,)(x)] AO(x, t) in (0, ) N,

with the free boundary condition

(11.6) normal velocity of F, curvature -O(x, t) on Ft,

where the latent heat 1>0 is a given quantity and c(,) is the characteristic function
of the set C(t). In general, anisotropic versions of the above equation are more
appropriate and we refer to Gurtin and Soner [GuS] for a discussion of the generaliz-
ations of (11.5), (11.6), as well as appropriate notion of solution and the underlying
physics. Luckhaus [Lu] and Almgren and Wang [A1W] also studied a similar problem
in which (11.6) is replaced by the Gibbs-Thompson relation

0 curvature 0 on F,.

The system (11.5) and (11.6) can be approximated by the reaction diffusion
equations

(11.7) O

and

(11.8)

The above approximation was first proposed by Caginalp [Cal]-[Ca3]. The conver-
gence of this system was proved by Caginalp and Chen [CC] in the radial case by a
method based on knowing that the limiting motion is classical. Indeed, in the radial
case the interface F, is a sphere and (11.6) reduces to an ordinary differential equation.
In general, we do not expect F, to be a smooth, classical solution of (11.6). The
convergence of the system (11.7)-(11.8) is an open problem.
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