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SINGULAR PERTURBATIONS IN MANUFACTURING*

H. METE SONER"

Abstract. An asymptotic analysis for a large class of stochastic optimization problems arising in
manufacturing is presented. A typical example of the problems considered in this paper is a production
planning problem with random capacity and demand. In this example, it is assumed that the capacity of
the system fluctuates faster than the other quantities. The general model considered here also has a fast
controlled Markov process in its state description. By using the difference in the time scales of different
quantities, the problem is simplified by "averaging" out the fast process. Then asymptotically optimal
strategies are constructed from the optimal solutions of the limiting problems. The proofs of these results
use the theory of viscosity solutions to dynamic programming equations. However, the formal construction
of the asymptotically optimal strategies does not require knowledge of this theory.
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perturbations
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1. Introduction. Most modern manufacturing systems are complex and large in
scale, including several subsystems, a wide variety of equipment, and a number of
different products. Moreover, operating policies of these systems must respond to
discrete events that are quite different from one another, for example, machine setups,
failure and repairs, demand changes, purchasing and building new facilities, etc.
Because of the size of the systems, it is impossible to achieve optimal operating policies.
The only practical strategies are the suboptimal ones, derived using the structure of a
given system. Generally, these techniques amount to reduction of the complexity by
decomposing the original system into simpler subsystems. We limit ourselves to systems
that have hierarchical decomposition. Based on this structure we "average out" certain
parameters, thus simplifying the optimization problems. Then suboptimal policies are
obtained as solutions to these simplified problems. For further information on control
of manufacturing systems, we refer the reader to Gershwin et al. [9]; on hierarchical
production planning, see Gershwin [8] and Bitran and Tirupati [3].

Recently Lehoczky et al. [11] carried out the above procedure for a specific
stochastic production planning problem. However, the scope of the mathematical tools
used in [11] is not limited to the production planning problem. In this paper, we
demonstrate the versatility of these techniques by introducing a general framework for
asymptotic analysis of optimal stochastic control problems. This framework, in par-
ticular, includes the problem studied in [11] and its generalizations.

Typical of the problems we consider is a production planning problem subject to
random changes in capacity and demand. We consider the case in which the capacity
fluctuates faster than the other quantities, when the system is working. In other words,
when there is production, the rate at which the capacity changes occur is much larger
than the rate of fluctuation in demand, the rate of discounting, and other time scales.
In this model the capacity process depends on the production rate. The model without
this dependency is analyzed in [11] and a limiting problem is obtained by simply
replacing the random capacity by its average value. However, for the general model,
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a straightforward averaging, as it was done in [11], is no longer valid. In fact, the
"average" capacity is a function of the production rate and its computation is quite
complicated. This dependency also implies that in general the diffusion approximation
is not possible. Therefore, we are not able to use the elegant analysis of Kushner [10].

The mathematical analysis of this paper uses the dynamic programming principle
and the viscosity solutions of the differential equations. Although our proofs are
complicated at times, on the formal level the methodology is straightforward and we
wish to emphasize this. An outline of the formal method is as follows" First derive the
dynamic programming (Bellman) equation for the full problem. Then let the fluctuation
rate of the faster process go to infinity in the equation. Obtain the formal limiting
equation by assuming the regularity of the value function. Compute the optimal control
problem related to the limiting equation and its optimal solution. This solution in turn
generates an asymptotically optimal control for the original model. The asymptotic
optimality of this control was recently proved by Zhang and Sethi [15] for the model
considered in [11]. Finally, we note that our techniques are related to those in
Bensoussan [2] and Saksena, O’Reilly, and Kokotovic [13].

The paper is organized as follows. The stochastic production planning problem
is described in 2. Using this problem as a model, we introduce the general framework
in 3. Section 4 is devoted to the proof of the convergence result. A suboptimal but
asymptotically optimal control is constructed in 5. Finally, a discussion of the
convergence rate is given.

2. Production planning. Consider a manufacturing facility in which there are rn
identical machines that are equally capable of producing n distinct part types. The
production must be scheduled to meet a demand that fluctuates randomly. However,
we assume that the machines are subject to a Markovian breakdown and repair process.
Thus the demand may not be met every time, and the production strategies should
take this into account.

Akella and Kumar [1] studied the one-dimensional model (n rn 1) with a
constant demand rate. They explicitly computed the optimal production rate, which
is a bang-bang control. They showed that there is a threshold level a*_-> 0 such that,
when the only available machine is in working condition, the production rate is either
zero or equal to the full capacity if the inventory is strictly greater than a* or less than
a*. Of course, when the machine is down, the only possible production rate is zero.

The general model we are considering also admits an optimal control, which is
bang-bang. However, for large n and rn the computation of the threshold levels is
complicated. Also the description of the production rate includes not only the threshold
levels but the fractions of the capacity devoted to each part. We simplify this model
by using its hierarchical structure. As discussed in the Introduction, we assume that
the occurrence of machine breakdown and repair process is faster than the other time
scales that are relevant to this problem.

We continue with the description of the model. Let an n-vector x(t) denote the
inventory at time _>-0. For a given production rate (control) u(t), the inventory (state)
satisfies the ordinary differential equation

d
(2.1) d-- x(t) u(t) d (t), > 0,

where d (t) =(dl (t), , d, (t)) is the demand vector. The demand process is assumed
to be Markov, taking values in a discrete set D c (0, )". The components of the
production rate are nonnegative and they are bounded from above by a constant related
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to a(t), the number of available machines at time t. We assume that a(t)
{0, 1,. ., m} is a Markov chain with infinitesimal generator

(2.2)
1 QU(,) (l qij(u(t))
E \E ] i,j =O,1,--.,m

Note that the generator of a depends on the production rate u(t). Since the machine
failures are more likely when the production rate is high, this dependence is a natural
one. However, in certain situations one may argue that it is negligible as it was assumed
in [11].

The parameter e > 0 appearing in the machine availability process is related to
the hierarchy in the time scales. Indeed, the mean rate of change of a( is of order
1/e, while the rate of change of demand is bounded in e. Hence, for small e > 0, these
two time scales are of different order.

The optimization problem is to minimize

(2.3) J(x, d, i; u)= Ex.d,, e -t G(x(t), u(t)) dt

over all nonanticipative production processes, u(t), satisfying the machine availability
constraint

(2.4) u(t)K(a(t)) /t>--O,

where E,,d,i denotes the mathematical expectation with initial conditions x(0)-x,
d(0) d, and a(0)= i. The constraint set is given by

K(i)={u[O, oo)"" g=l. UkYk<=i}
with nonnegative constants Yk.

Let v(x, d, i) be the value function

v(x, d, i) inf J(x, d, i; u), x R", d D,
u(.)

Then v is a (viscosity) solution of

0=v(x,d,i)+ sup {-(u d) Dxv(x, d, i)- G(x, u)
uK(i)

(2.5) E qij(u)[v(x, d,j)-v(x, d, i)]
e j=0

d’DE glad’IVY(x, d’, i)-v(x, d, i)]}
for all x R’, d D, i {0, 1,..., m}, where Q= (ldd’)d,d’D is the infinitesimal gen-
erator of d(. ), and Dx denotes the gradient in the x-variable.

We close this section by rewriting (2.5) in a manner which is compatible with the
notation of the next section. For (x, d, i) R x D x {0, 1, , m}, and p R n, L RIDI,
K R m+l, define H(x, d, i-, p, L, K) by

(2.6)
H(x, d, i; p, L, )= sup -(u-d).p-G(x, u)-

vK(i) j=0

Y’. qdd’[La’-- Ld ].
d’D
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Then (2.5) can be rewritten as

v(x, d, i)+ H(x, d, i; Dxv(x, d, i), v(x, ., i),
1
v(x, d, "--0o

/

Finally, we note that the sum of the entries of each row of any infinitesimal
generator is zero, i.e.,

%(u)= glaa,=O, Vi{0,...,m}, dD.
j=0 d’D

This implies that

(2.7) H(x, d, i; p, L+ Cl, + c2) H(x, d, i; p, L, )

for any constants c, ce (-oe, oo), and L+ c denotes the vector obtained by adding
the constant c to each component of L; + c is defined similarly.

3. General model. We consider a family of discounted, infinite horizon stochastic
optimal control problems indexed by a parameter e>0, with a state space
Rx D x Z. We take both D and Z to be finite sets. For (x, d, i)e E, let v(x, d, i) be
the value function satisfying the dynamic programming equation

(3.1) v -v(x,d, .) =0 V(x,d,i)eE,
\ /

where H is a real valued function of E x R"x RIDI R Ill. We will not describe the
underlying stochastic model. But the function H is given in terms of the running cost
and the dynamics of the state process. In particular H is jointly convex in the last three
variables and has the invariance property (2.7). We now make a structural assumption.
Fix (x, d) R x D, p R", L RIDI, and ce e RIll. Consider the nonlinear equation

(3.2) oint-n(x, d, i; p,L,)=0 Vi6Z,

where RIll is the unknown. Due to the translation invariance (2.7), if is a solution
of (3.2) then + c is a solution for any constant c. So we should search for a unique
solution in the quotient space which we call

(3.3) ’zl--{ K Rlzl: ieZ Ki=0}"
The translation invariance also yields that the range of the map
,--{H(x, d, i; p, L, }iz is not equal to RIll. Hence we may only expect (3.2) to have
a unique solution e Pill provided that the components of a satisfy a (possibly
nonlinear) scalar equation. More precisely we assume that there are functions

(3.4i) Hav: R" x D x R" x RIDI RIzI R,

and

(3.4ii) A :E x R x RIDI RIzI R
such that for all (x, d, i),,pR", LRIDI, and aRIll, we have A(x, d, .;p,L; o)
lzl, and

(3.5) o,+n(x,d,i; p,L,A(x,d,.; p,L; c)) =0,

provided that a {ai}iz satisfies

(3.6) Hav(X, d; p, L; c) 0.
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Clearly, the function Hav is not uniquely determined. However, under mild assumptions
on the coefficients of the optimization problem, we can show that it is continuous and
monotone in a. Then by multiplying it by (-1) if necessary, we may take it to be
nondecreasing in a. So the following assumption is not restrictive:

(3.7) A, Hav are continuous and Hav is nondecreasing in a.

Note that (3.1) is similar to (3.2). However, in (3.2) variables p and L are assumed
to be independent of i, and in (3.1) p Dxv(x, d, i) and Ld v(x, d’, i). However,
we expect the dependence of v on to be averaged out in the limit e 0. So suppose
that v(x, d, i) converges to v(x, d), and

K(x’ d’J) 1[ v(x,d,j)- v(x,d,k)
E kZ

converges to K(x, d, j). Due to the invariance (2.7), we may rewrite (3.1) as

v(x, d, i)+ H(x, d, i; Dxv(x, d, i), v(x, ., i), (x, d," ))=0.

Now let e go to zero. Formally, we obtain

v(x, d) + H(x, d, i; Dxv(x, d), v(x," ), (x, d," )) 0 /i Z.

Note that the above equation is a special case of (3.2) with p D,v(x, d) and Ld,
v(x, d’). Hence (3.6) yields.

Hav(X d; D,v(x, d), v(x, ); v(x, d))=0,

where for x R", d D, p R n, L R IDI, and a scalar v,

Hav(X, d; p, L; v)= Hav(xd’, p, L; )

with (v, , v) RIzl.
In the next section, we will show that v converges to a solution of the above

equation. Since Hav is convex in the last three variables, Hav=0 is the dynamic
programming equation of an optimal control problem with state space R x D. There-
fore v is the value function of this problem. The connection between the equation
Hav=0 and the optimal control problem will be clarified in Examples 3.1-3.3, below.

Our final assumption is a strong monotonicity condition on Hav. For each e Z,
R set

a -H(x, d, i; p, L, K), Z.

Since K may depend on i, we can not conclude that (3.6) holds. However, we assume
that

(3.8i) Hav(X, d, i; p, L; a)=< 0 (or ->0, respectively)

whenever there is R Izl such that for all i, j Z,

(3.8ii) -< j+[i-Kj] (or =>, respectively).

We now give two examples to clarify the above hypothesis.
Example 3.1. Consider (2.5) with n m 1, D= {do}, and qol(u)=-qoo h >0,

qlo(U) -qll(U) =/(u) => 0. Then K(0)= {0}, K(1) [0, 1/71] and the Hamiltonian H
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in (2.6) has the form

H(x, 0; p, ) dop- G(x, 0)- [,- o],

H(x, 1; p,)= sup {-up-G(x,u)+tz(u)[l-O]}+dop.

Equation (3.2) is equivalent to

(3.9i) ao+ dop- G(x, 0)- A[,- o] 0,

(3.9ii) a+ sup {-(u-do)p-G(x, u)+(u)[a-o]}=0.
O<=u<--_l/ /

Suppose that for a given (ao, a) we have a solution (o, a) 2 solves (3.9). Then
(3.9i) yields

(3.10) :,- :o= [ao+ dop G(x, 0)].

Since (Ko, K1)E 2, 0 "t- K1 =0. Therefore,

1
l=A(x, 1; p, a)=--7. [ao+dop-G(x 0)],

ZA

no A(x, O; p, a) --K

Observe that we used only (3.9i) to obtain the above formula. The other equation,
(3.9ii), will be used to compute Hay. Indeed, using (3.10) in (3.9ii), we arrive at

Hav(X; p; c) O,

where

Hav(X p; O0, Ol)=ffl’J- sup
f"l,_(u_do)p_G(x,u)+...tz(u)[ao+dop_G(x,O)]}.

0---U<:I/T1 ( J2h
To verify (3.8), suppose that (3.9i) holds with o=(, 1o) and (3.9ii) holds with

0__=(K, hi). Then (3.10) holds with nl n on the left-hand side. Also suppose that
(3.8ii) holds. Then

0__

Using the above inequality and (3.10) in (3.9ii), we obtain Hay(X, p; ao, 1) -<- 0. Hence
(3.8i) holds.

In this example, the optimal control problem related to the limiting equation
Hav- 0 is to minimize

exp
tz( u s as (x(t),u(t))+

Ix(u( t))
G(x(t) 0)| dt

2A

subject to

-d-d x(t)=
dt u(t)-(l+tX(u(t)--)) d’2A

t>0

and u(t)E[0, 1/yl], t_0.

Example 3.2. Again consider (2.5) with n 1, m 2, D= {do}, and

--/1 /1 0

Q(U)-- d,l(I,/) --[]’/I(U) - 2] /’2
0 2(u) -(u)
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Then K(0)= {0}, K(1)= [0, 1/yl], K(2)=[O, 2/yl]. Suppose that for a given x,p,
R3, K E 3 solves (8.2). Then a computation similar to the previous case yields

1,- Ko=-7 [ao+ dop G(x, 0)],
al

i[/2-- /1 "-- O + sup
t2

(-(Ul-do)p-G(x, Ul) ""/2,1 (Ul)[ K --/(0]} ]
sup {-(u)_-do)p-G(x, U2)--[A,2(U2)[K’2--/(1]}=0.

O<u2<=2/Yl

Hence

Hav(X; p; a)= sup

0 2/3q

u2)p--g(x, Ul,
/X2(

/ 01 "- O0L hi

where

]d,2(,Ul)f( Ul, //2) (//2 do) -- / Ul do)
A2 L

g(x, Ul, /’/2)- G(x, u2)+
[L2(U2) [G(x, Ul)’}-]LI(ul) G(x, 0)].

The corresponding control problem is similar to that described in the Example 3.1.
Example 3.3. Again consider (2.5) with n 1, D {do} and Q(u) Q is an irreduc-

ible (m + 1) x (m + 1) stochastic matrix. Then, (3.2) has the form

(3.11) (Xi--’-- sup {-(u-do)’p-G(x,u)}+(Qx,)i, i{0,1,...,m}.
O<=ui/Ti

Since Q is irreducible, there is a positive vector p R m+l such that Pi > 0, Yi Pi- 1, and
(pQ)i 0 for all i. Multiply the above equation by pi and sum over to obtain

E a,p,+ sup {-pi(ui-do)P-piG(x, u,) =0.
i=0 O’- ui i/’Yl

A straightforward algebraic manipulation gives

Hav(X, p; a) Y OliP -- sup {-(u do)p G(x, u)},
i=0 O--<ut7

where

iPi/
i=O

G(x, u) =inf _, piG(x, Ui)" Uj K(j) and Y’. viui u
=0 =0

To verify (3.8), suppose that (3.11) holds with KiE Rm+l, and /(i’s satisfy (3.8ii).
Multiply (3.11) by vi, sum over i, and then use the formula for Hav to obtain

nav(X,p; tX)-- Z PiqijKj.
i,j =0
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Now use (3.8ii) and the nonnegativity of qo for j, to obtain

’<
d=o d=o

+
=0 i=0 =0 j=0

---0.

The corresponding optimal control problem is simple, and it is described in Example
5.1.

These examples can easily be generalized to obtain the following lemma.
LEMMA 3.1. Suppose that H is as in (2.4) and G(x, u) is convex in the u-variable,

and either a( t) is a birth-death process, i.e.,

/, (u), j-i-l, i=l,...,m,

(3.12) qj(u)=,
h,, i=j-1, j= l, m,
-[h+/x(u)], /fi=j=0,...,m,
O, otherwise,

with tz(u)>-0, h > 0, or Q(u)-- Q for all u and Q is irreducible. Then the assumptions
(3.5), (3.6), and (3.8) are satisfied.

The convergence results under the second hypothesis is first obtained in [11].
These results are then improved in [15]. The asymptotic analysis of v under the first
set of assumptions, however, is not covered in the previous studies. In this case, the
parameter h is the machine repair rate when i- 1 machine are operating. It is natural
to assume that h is independent of the production rate. The quantity /x(u) is the
machine failure rate when machines are operating with a production rate of u, and,
in general,/z is a function of the production rate.

4. Convergence. In this section we study the limiting behavior of v as e tends to
zero. In whatever follows we always assume the structural assumptions (3.5)-(3.8).
However, to obtain convergence results we need to impose some uniform estimates
on v. In this section we assume that there are K, v _-> 0, independent of e, such that
for all e (0, 1], (x, d, i) E,

(4.1i) [v
1

(4.1ii)
ix y[ Iv (x, at, i) v (y, d, i)[ _-< K(1 + [x[), 0 < ]y x[ _-< 1,

(4.1iii) [v (x, d, i) v (x, d, j)[ <= eK (1 + Ix[), j Z.

The inequality (4.1ii) is a uniform Lipschitz estimate. If the function v is continuously
differentiable in the x-variable, then (4.1ii) is equivalent to the uniform boundedness
of the gradient, i.e.,

(4.2) sup
e(0,1]

The estimate (4.1iii) is related to the scaling used in the equation (3.1). Notice that in
(3.1) the vector (1/e)v(x, d,.) appears. So intuitively we expect the differences
IvY(x, d, i)- v(x, d, j)[/e to be locally bounded as assumed in (4.1iii). Note that the
translation invariance (2.7) is the reason why we do not expect vE/e to be bounded.
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In the production planning examples, these estimates are always satisfied. Indeed
consider the cases discussed in Lemma 3.1 and assume that

1 IG(x, u)-G(y, u)l_<- K(1 +]xl)(4.3) [G(x, u)[+ Ix-Y[
for all x, y, u e R", 0 < Ix y[-<_ 1. Then for the second case of Lemma 3.1, the estimates
(4.1) are proved in [11]; see Lemma 2.1 in [11]. A very similar proof yields these
estimates also in the first case of Lemma 3.1.

Using (4.1) and the Ascoli-Arzela theorem we construct a sequence, denoted by
e again, and locally Lipschitz continuous function v(x, d) such that v (x, d, i) converges
to v(x, d) uniformly on compact subsets on 51. As we discussed in 3, formally v solves
the limiting equation

(4.4) Hav(x,d;D,v(x,d),v(x,’); v(x,d))=O, (x,d)eR"xV.

Recall that for (x, d; p, L) e R x D x R x RIDI and a scalar v,

Hav(X, d; p, L; v):= Hav(X, d; p, L; f),

with (v, v,..’, v) RIzl, We will show below that v indeed is a solution of (4.4).
In general, v is not ditterentiable and the equation (4.4) must be interpreted in

the viscosity sense. We refer the reader to Crandall and Lions [5]; Crandall, Evans,
and Lions [4]; Lions [12]; Soner [14]; Fleming, Sethi, and Soner [6]; and [11] for the
definition and the properties of the viscosity solutions of (3.1) or (4.4).

THEOREM 4.1 (Stability). Assume (4.1), and that v is a viscosity solution of (3.1).
Suppose that (4.4) has a unique viscosity solution v satisfying (4.1). Then v converges
to v uniformly on compact subsets of Rn D, as e tends to zero.

Proof Let iS(x, d) be the limit of v(x, d, i) for some sequence e,, - 0. Let q(x, d)
be a continuously differentiable function and for d D, let Xo R be the strict maximum
of 3(., d)- q(., d) on R ". To show that 5 is a viscosity subsolution of (4.4), we must
verify the inequality

(4.5) Hav(Xo, d; Dxd/(Xo, d), (Xo, "); 7(Xo, d)_-<0.

Co .sider the map x-+v(x, d, i)-4,(x, d). Since Xo is a strict maximizer, there are
Xm[i R converging to Xo and maximizing the above map locally in the x variable.
Then the viscosity property of v := v yields

Vm(Xm(i), d, i)+ H(xm(i), d, i; Dx(Xm(i), d), V’(xm(i), ", i), 1.__ Vm(X,,(i), d, ) <--_0.
\ Em /

Since v converges to fi and x,,(i) converges to Xo, there is a sequence K,0 such that

(4.6) (Xo, d) + H(xo, d, i; Po, e(Xo, ), to"") <= Kin,

where po DxO(Xo, d) and

,,i
1

=v"(x,(i),d,j), xR, i,jZ.
Em

Since Xm(i) is a local maximizer of v"( d, i)-,(., d), we have

v(x,(j), d, j)- d/(Xm(j), d) v(x,(i), d, j)- d/(Xm(i), d)

for all i, j Z. Set (Xm(j), d). Then
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for every i, j 6 Z. Hence, (3.8) implies that

Hav(Xo, d; Po, ff(Xo, ");/3)-<-0,

where

fl(i) -H(xo, d, i; Po, 5(Xo," ), Kin’i), Z

Also (4.6) yields that/3(i) _-> (Xo, d)-Km for every i Z. Hence, the monotonicity of
Hav yields that

Hav(Xo, d; Po, (Xo, ");/5(Xo, d)-g,,)<=Hav(Xo, d; Po, O(Xo, "); fi)<-0 Vm.

Now let m go to infinity and use the fact that Km--> 0 to obtain (4.5). Hence 5 is a
viscosity subsolution. Similarly we can show that it is also a viscosity supersolution,
and therefore a solution. Since (4.4) has a unique viscosity solution v satisfying (4.1),
=v.

COROLLARY 4.1. Assume the hypothesis ofLemma 3.1, and (4.3). Then v converges
uniformly on compact subsets of Z, as e tends to zero.

Proof We have argued that (4.3) implies the estimates (4.1). Also the uniqueness
of viscosity solutions of (4.4) satisfying (4.1) follows from the classical techniques of
Crandall, Evans, Lions [4].

5. Asymptotically optimal controls. In this section we outline a procedure of
constructing suboptimal controls by using the limiting equation (4.4). We will show
that under certain assumptions, the difference between the value function and the
performance of the controls that we construct converges to zero in the limit e-> 0.
Before we describe the procedure for the general case, we discuss two examples.

Example 5.1. Consider the case described in Example 3.3. Let v(x) be the unique
viscosity solution of the limit equation,

0 gav(X D,v(x), v(x))

v(x)+ sup {-(u-do)D,v(x)-G(x, u)}.

Then v(x) is the value function of a deterministic optimal control problem. Indeed,

v(x) inf e -t J(x( t), u( t)) dt,

subject to constraints x(0) x, (2.1) with d(t) -= do, and 0 <- u(t)-< for all t_>- 0.
Suppose that v is differentiable. For each x, pick

u*(x) e argmax {-(u- do)Dxv(X)- d(x, u)" 0 <- u < }.

If

d
(5.1) d--x(t)=u*(x(t))-do, t>0,

has a solution, then it is elementary to show that a(t) u*(x(t)) is optimal. So suppose
that this is the case. Then we construct a feedback control for the e > 0 problem by
setting

u*’(x, i)-- iu*(x), x (-oo, oo), i= O, 1,..., m.
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Then we expect u*’ to perform close to the optimal control. Indeed, Zhang and Sethi
[15] have shown that

lim IJ(x, i; u*’)-v(x, i)l- O,
e-->O

provided that (5.1) has a unique solution.
Example 5.2. Now we return to Example 3.2. As in the previous example suppose

that the solution v of the limit equation is differentiable, i.e.,

sup {l(ul, u2)l)(x)-f(ul, u2)Oxt)(x)-g(x, Ul, U2)}-- 0

where f, g are as in Example 3.2, and

Let u*(x), u*2(x) be a maximizer in (5.2). Clearly, the sequence u*(x, O) O, u*(x, 1)
u*(x), and u*(x, 2)=u*2(x) satisfies the machine availability constraint and is a
candidate for an asymptotically optimal control. We will show in Theorem 5.1 below
that this is indeed the case, provided that u* has certain properties.

To motivate the construction in the general framework, we will derive a property
of u* next. Set

and

p(x)=D,,v(x),

A(x, i)= A(x, i; p(x), f(x)), i=0, 1, 2;

recall that 5(x)= (v(x), v(x), v(x)). Then by (3.5), we have

0 v(x)+ H(x, i; p(x), A(x," ))

=v(x)+ sup {-(u-do)p(x)-G(x,u)-(Q(u)a(x,’))(i)}, i=0,1,2.
Oui/ 3’

Then it is straightforward to show that u*(x, i) maximizes the expression in the above
equation. We will use this description of u* in the discussion of the general problem.

In general, the Hamiltonian H has the form

(5.3) H(sC; p, L, K)= sup {-"’(p, L, K)-G(sc, u)}
ueK()

for , p R", L RI1, RIzl, a set K (:) c U, a function G of : U, and a family
of linear operators "’(p, L, ), which are invariant under scalar translations of L, .
In the notation of 2, for example, U [0, oo)", K(sC)= K(i),

(5.4) ,,e(p, L, u d) p + (O.L)(d) + O(u)K )(i)

for sc --(x, d, i)e . Assume that v is ditterentiable and set

p(x, d)= Dxv(X, d), a(x, d, i)= a(x, d, i; p(x, d), v(x, ); 5(x, d)).

Then choose u*(sc) K(sc) such that

-u*(e)’e(p(x, d), v(x, ), A(x, d, ))-G(, u*(sc))
(5.5)

H(sC; p(x, d), v(x,. ), A(x, d,. )).
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It is known that not every feedback control yields a well-defined state process. However,
we assume that u* is indeed related to a well-defined state process. Let J’*() be the
value of the pay-off functional. Then J’* formally solves

(5"6) J’*()-u*("(DxJ’*()’J’*(x’ "’ i)’lJ’*(x’e d, .)) -G(, u*(sc)) =0.

The definition of u* implies that the formal limit of (5.6) is (4.4). So we expect
J’* to converge to v; the unique (viscosity) solution of (4.4). However the coefficients
of (5.6) are not necessarily smooth, and the procedure of 4 may not apply to this
case. Still a convergence theorem holds if (5.6) has a comparison principle, which
we define next.

DEFINITION 5.1. We say that (5.6) has a comparison principle if any viscosity
subsolution w of (5.6) satisfying (4.1i) is less than or equal to any viscosity supersol-
ution ff of (5.6) satisfying (4.1i).

If, for example, u’ is as in (5.4), then (5.6) has a comparison principle for a
large class of u*(. ). This class, in particular, includes the Lipschitz continuous func-
tions.

We start our convergence proof with a lemma, which is due to Souganidis.
LEMMA 5.1. Suppose that the unique viscosity solutions v of (4.4) and v of (3.1)

are convex, continuously differentiable in the x-variable, and satisfy (4.1). Then
Dxv(x, d, i) converges to Dxv(x, d) uniformly on compact subsets of E, as e -->0.

Proof. Pick en - 0, xn - x such that p Dv,,(x, d, i) converges to p. First, the
convexity of v-( d, i) yields

v"(x, + y, d, i)- v"(x,, d, i) >- p,. y, Vy.

Let n go to infinity to obtain

v(x+ y, d)-v(x, d)>=p, y Vy.

Then the differentiability of v implies that p Dv(x, d). [3

For : (x, d, i) E, set

A() A(; Dv(), v(x, ., i); v(x, d, )).

Equation (3.1) and the translation invariance (2.7) yield that

a(,)=l[v(sc) v(x,d,j)]E jZ

Using the definition of A, we rewrite (3.1) as

(5.7) v(sc)+ H(; V,v(), v(x, ., i), A(x, d, ))=0.

Set

K() v()-"*(’e(Dxv(), v(x,., i), A(x, d,. ))- a(, u*()).

In view of (5.3) and (5.7), K()=<0.
LZMMA 5.2. Suppose that (5.6) has a comparison principle. Let J be the viscosity

solution of (5.6) satisfying (4.1). Then

(.8) v <-_j.
Proof Since K-<0, v is a subsolution of (5.6) . Therefore, the comparison

principle yields v _<- J. [3
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LEMMA 5.3. Assume the hypothesis of Theorem 4.1 and Lemma 5.1. Then K
converges to zero, as e- O.

Proof. This follows from the continuity of A, (3.7), the convergence of v and
Dxv, and the definition of *.

The above result indicates that the difference J-v should converge to zero. To
prove this convergence, we assume that there are K, K, u,

(5.9) [a(sc; p,L; )l_-<g(l/lxl ) VlPl/[tl/ll<=K(l/lxl),
and

(5.10) sup I’a(p,L,)l<-_g(l+lp[+lLl+[[)
ueK()

LEMMA 5.4. Assume (5.9), (5.10). Then for every , >-0 there is a continuously
differentiable function rl (x) >= 1, such that

(5.11) 1/2n(x)-u’e(D,n(x),O,O)>=O VgY-,, uK(),
and

(5.12) r/(x)-->/(1 + Ix[ ).
Proof Let r/(x)= C +/lx[ for some C _->/ and a-max {2, 7}. We will show

that, for an appropriate choice of C, r/ satisfies (5.11) and (5.12). Indeed,

D,(x) aIxlxl a-2,
and (5.10) yields

I’(Dn(x), o, 0)l =< g(1 + [a/]lxl--1).
Therefore,

1/2q(x)-Su’t(Dxq(x), O, O)-> (1/2C-/)+/[xla-l(1/2lX[ a/).
It is now elementary to show that the right-hand side of the above inequality is positive
for every x if C is sufficiently large.

THEOREM 5.1. Assume the hypothesis ofTheorem 4.1, Lemma 5.1, and (5.9), (5.10).
Then J-v converges to zero. In particular, u* is asymptotically optimal.

Proof Since v satisfies (4.1), (5.9) implies that

Ia()l-< g(a+lx]).
In view of (5.10), the above estimate together with (4.1) yields

Ig()l_-< (1 /]xl-1)
for some K, 5__> I. Let r/ be as in Lemma 5.4. Then (5.12) implies that
converges to zero uniformly on E, as e- O. Set

k=inf{IK()/q(x) I"
and

w(()=v()+2krl(x), (=(x,d,i)E.

Then, the linearity of "’, the definition of K , and (5.11) yield

w() u*()’(Dxw(), w(x, i),
1 )-w(x,d, .) -G(,u*())
E

K()+2k[rl(x)-"*()’(D,’q(x), O, 0)1

>-K()+kn(x)>=O.
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Hence w is a supersolution of (5.6). Consequently, the comparison principle implies
that J-<_ w e. Now let e go to zero and use the convergence of K to zero together
with (5.8) to obtain the convergence of J to v.

Remark. If the operator "*(’(p, L, k) is continuous in :, then K(:) converges
to zero uniformly on compact subsets of E. Therefore w e, defined as in the above
proof, converges to v uniformly on compact sets. Consequently, the conclusion of
Theorem 5.1 holds uniformly on compact subsets of E.

Example 5.3. Consider the problem described in 2 with n 2, rn 1, D {(6, 1)},
yl=[3/K, y2 1/K, tx(u)=tx[VUl+U2] Ao 1, and G(x,y, u)- lxl/lyl, where all
the parameters are positive. Set

E K/z+ 1,

A Klxv+.
Case 1. A <-_ Ea. In this case, the optimal feedback control is

u*(x,y, 1)=

(0, 0) if x>0, y>0,
(0, 1) if x>0, y=0,
(0, K) if x> 0, y<0,
(E6, K-A6)/[I+lz6(-u)] if x=0, y<0,
(K/[3,0) if x<0,
(6, 0) if x=0, y>0,

(6, 1) if x=0, y=0.

Case 2. A >-- Ea. Then

u*(x,y, 1)=

(0, 0) if x>0, y>0,
(0, 1) if x>0, y=0,
(0, K) if y<0,
(K-E,h)/[lzv+(1-tx)B] if x<0, y=0,

(K/fl, 0) if x <0, y>0,
(6, 0) if x=0, y>0,
(6, 1) if x=0, y=0.

The value function is continuously differentiable in either case, and a comparison
principle for (5.6) holds.

The above strategies differ only on the fourth quadrant. This is expected because
in the other quadrants at most one of the products is in shortage, and then the optimal
policy is to produce the product in shortage, if there is one, in full capacity. However,
in the fourth quadrant of each of the products is in shortage, and therefore a priority
rule is needed. The above calculations provide just this. In the first case, the optimal
strategy is to produce x in full capacity. Hence in this case, the first product has priority
over the second one. In the second case, this priority changes. So we may sum the
above findings into the following rule"

If A <--_ Ea, produce the first product in full capacity if there is any shortage of it
regardless the inventory level of the second product. If A >-_ Ea, reverse this rule.

6. Convergence rate. The exact rate at which Iv-vl converges to zero is an
interesting question. Recently Zhang and Sethi 15] obtained the rate e 1/2 or e 1/4 under
different assumptions for the case described in Example 3.3. Also, they show, with an
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explicit example, that in general e 1/2 is the best rate. However, when the limit function
is continuously differentiable we expect that the function (v(x, d, i)-v(x, d))/e is
uniformly bounded in e on every compact subset of . A similar result was proved in
[7].
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