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Abstract 

We study the limiting behavior of solutions to appropriately rescaled versions of the Allen- 
Cahn equation, a simplified model for dynamic phase transitions. We rigorously establish the 
existence in the limit of a phase-antiphase interface evolving according to mean curvature mo- 
tion. This assertion is valid for all positive time, the motion interpreted in the generalized sense 
of Evans-Spruck and Chen-Giga-Goto after the onset of geometric singularities. 

1. Introduction 

Allen and Cahn proposed in [ 1 1  the following semilinear parabolic partial 
differential equation to describe the time evolution of an “order parameter” 
21 determining the phase of a polycrystalline material: 

(1.1) vl - 2 a ~ A v  + a f ( v )  = 0 in R3 x ( 0 , ~ )  . 

Here a is a positive kinetic constant and K a gradient energy coefficient. The 
nonlinearity is 

( 1-21 f = F ‘ ,  

F denoting the free energy per unit volume. We take F to be a W-shaped 
potential, whose two wells, of equal depth, correspond to different stable 
material phases. The mean field Ginzburg-Landau excess free energy is then 

the term K(DV l2 corresponding to interfaces between stable regions. See Allen 
and Cahn 111, Cahn and Hilliard [ 1 11, and Caginalp [9], [lo], for more expla- 
nation. (The partial differential equation (1.1) is related also to the stochas- 
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tic Ginzburg-Landau model, an equation for first-order phase transitions; see 
Gunton, San Miguel, and Sahni [29], p. 290.) 

We are concerned with asymptotics of the Allen-Cahn equation in the 
limit E + O+ for 

This represents a rapid rescaling in time and a simultaneous diminution of 
the gradient energy term. We consequently expect the solution to converge 
at each point of R3 x (0,m) to one of the two stable minima of F ,  creat- 
ing thereby a sharp interface, the “antiphase boundary”, between regions of 
different phases. 

An interesting physical and mathematical problem is determining the mo- 
tion of this antiphase boundary. In [ 11 Allen and Cahn propose for the general 
problem ( 1 . 1 )  the motion by mean curvature rule 

v = 2aK(K1 + K*) , 
V denoting the velocity of the interface and K I  , ~2 its principal curvatures. In 
his study of two phase continua, Gurtin (see [30], [31]) has also derived this 
mean curvature type flow as a model for the motion of the interface, and later 
Angenent and Gurtin further developed this theory for perfect conductors; 
see [3]. The asymptotic limit ( 1.4) is also consistent with the stationary results 
of Modica in [37], Fonseca and Tartar in [26], Sternberg in [46], [47], etc.: 
these authors have shown that the I‘-limit of the problem of minimizing the 
excess free energy is a surface area minimization problem. 

Our goal in this paper is a mathematically rigorous verification of the 
law of motion (1.4) in the asymptotic limit (1.3), for all times t 2 0. This 
undertaking turns out to be rather subtle mathematically. The big problem 
is that a surface evolving according to the mean curvature evolution (1.4) 
can start out smooth and yet later develop singularities. For instance, the 
boundary of a dumbbell shaped region will after a time “pinch off’; see, for 
instance, Grayson [28], Sethian [43], etc. From the viewpoint of classical 
differential geometry it is not so clear if, and how, it may be possible even to 
define the subsequent evolution of the surface after the onset of singularities. 

There have been, to our knowledge, at least three general proposals for 
interpreting the mean curvature evolution of surfaces past singularities. In 
[7] Brakke has exploited techniques of geometric measure theory to construct 
a (generally nonunique) varifold solution. A second proposal for building a 
generalized mean curvature flow has been suggested by Bronsard and Kohn 
in [8], DeGiorgi in [17], and others. This is what may be called a “phase 
field” approach: namely, simply to define a generalized geometric motion in 
terms of asymptotics of the scaled Allen-Cahn equation. To our knowledge 
this possibility has not heretofore been systematically developed. A third 



PHASE TRANSITIONS 1099 

approach, initially suggested in the physics literature by Ohta, Jasnaw, and 
Kawasaki (see [38]), for numerical calculations by Sethian (see [42]), Osher 
and Sethian (see [39]), and, for a first-order model of flame propagation, by 
Barles (see [4]), represents the evolving surface as the level set of an auxiliary 
function solving an appropriate nonlinear partial differential equation. This 
latter suggestion has been extensively developed by Evans and Spruck in [21], 
[22], [23], and, independently, Chen, Giga, and Goto in [12]. (Chen, Giga, 
and Goto in [ 121 consider as well more general geometric motions.) Their 
analysis makes use of the theory of so-called “viscosity” solutions to fully 
nonlinear second-order parabolic equations, as developed by Crandall and 
Lions (see [16]) and Jensen (see [33]). (See also Crandall, Evans, and Lions 
[14], Lions [35], [36], Ishii [32], Jensen, Lions, and Souganidis [34], etc., 
etc.; for a detailed overview of the theory of viscosity solutions as well as 
a complete list of references, see the User’s Guide, [15]). In [44] Soner has 
recently recast the definitions, constructions, and uniqueness criterion of [2 11, 
[ 121 into a different and more intrinsic form using the distance function to 
the surface; this reformulation is an important tool in our analysis below. A 
general theory for moving fronts using the distance function to the surface 
is developed in Barles, Soner, and Souganidis; see [6]. 

The level set approach uniquely defines a generalized mean curvature evo- 
lution {Tr}t>o, - starting with a given compact surface ro c R”. This flow exists 
for all time and agrees with the classical smooth differential geometric flow, 
so long as the latter exists. The geometric motion may, on the other hand, 
develop singularities, changing topological type, and exhibit various other 
geometric pathologies. 

In spite of these peculiarities the generalized motion {Tt} t>o - seems in 
many ways a strong candidate for being the “right” way to extend the classi- 
cal motion past singularities. We and others have consequently been led to 
conjecture that this generalized mean curvature motion governs asymptotic 
behavior for solutions of the Alien-Cahn equation ( 1.1) in the limit ( 1.3) and 
thus the phase-field and level-set methods agree. Formal asymptotic expan- 
sions suggesting this have been carried out by Caginalp in [9], Fife in [24], 
Rubinstein, Sternberg, and Keller in [41], Peg0 in [40], and others. The radial 
case has been studied by Bronsard and Kohn in [ 81, and in [ 181 de Mottoni 
and Schatzman have given a complete proof for the case of a classical geo- 
metric motion. Chen (see [13]) has very recently generalized much of this 
work and given simpler proofs, as has Korevaar in unpublished work. 

All these papers require knowledge that the mean curvature flow be 
smooth, and consequently fail once geometric irregularities appear. The main 
accomplishment of this work is consequently our verification that the gen- 
eralized motion {rr}t>O - does indeed determine the antiphase boundary for 
all positive time, with the one proviso (discussed in Section 5 )  that the sets 
{Tt}r>o - do not develop interiors. 

- 

- 

- 

- 
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This assertion, by the way, provides an independent check on the reason- 
ableness of the level set model of Evans and Spruck and Chen, Giga, and 
Goto. The generalized motion {rt}r>O - can behave in all sorts of odd ways 
(cf. Evans and Spruck [21], Section 8)and so it is reassuring to learn { r t } t 2 0  - 

nevertheless controls asymptotics for the scaled Allen-Cahn equation. 
We have organized this paper by first providing in Section 2 a quick review 

of the level set approach to mean curvature flow, followed by a detailed 
analysis of the distance function d to the motion. The key assertion is that 
d is a supersolution of the heat equation in the region {d > 0}, in the weak, 
that is, viscosity sense. This observation is at the heart of Soner's work; see 
[44]. In Section 3 we build supersolutions of the scaled Allen-Cahn equations 
out of d and the standing wave solution q of the one-dimensional Allen-Cahn 
equation. Such a change of variable has already been employed by Gartner in 
[27], de Mottoni and Schatzman in [ 181, [ 191, [20], Fife and McLeod in [25], 
Barles, Bronsard, and Souganidis in [ 51, Rubinstein, Sternberg, and Keller in 
[41], etc. Our construction is thus deeply motivated by previous work, the 
new contribution being various adjustments such as cutting off d near Tr and 
adding a small positive term. Finally in Section 4 we extend the maximum 
principle to our general setting and prove solutions of the scaled Allen-Cahn 
equation lie everywhere beneath our supersolutions. An analogous assertion 
for subsolutions completes the proof. 

In Section 5 we discuss the possibility the sets {rt}t>o - may develop an 
interior. We do not know whether our assumptions in fact exclude this pos- 
sibility. Recently, however, Altschuler, Angenent, and Giga in [2] and Soner 
and Souganidis in [45] have studied the evolution of surfaces of rotation. In 
particular they proved that for a large class of rotationally symmetric prob- 
lems there is no interior. In [2] a complete theory is given for surfaces which 
are like the dumbbell but with several pinching points. The evolution of the 
"torus-like" surfaces is carried out in [45]. We are grateful to the referee 
for so thoroughly reading this paper and providing us with many additional 
references. 

- 

2. The Distance Function to a Generalized Motion 
by Mean Curvature 

In this section we recall the level set construction in Evans and Spruck (see 
[21], [22]) and Chen, Giga, and Goto (see [12]) of a generalized evolution 
by mean curvature, and then study properties of the distance function to the 
motion. 

Given a compact subset To c R", n 2 2, choose a continuous function 
g: R" -, R satisfying 
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and 

(2.2) g is constant outside some ball. 

We consider then the mean curvature evolution partial diflerential equation 

{ ur = ( s i j  - 3) u.x,x, in R" x (0,m) , 
(2.3) 

u = g  on R " x { t = O ) .  

As explained in [21], this partial differential equation asserts that each level 
set of u evolves according to mean curvature flow, at least in regions where 
u is smooth and Du # 0. In addition, there exists a unique, continuous weak 
solution of (2.3). See [21], [12] for the relevant definitions, proofs, etc. We 
accordingly define the compact sets 

(2.4) rt = { x  E R" I u ( x ,  t )  = 01 , t 2 o 
and call {Tt}t>O - the (level set) generalized motion by mean curvature starting 
from r,. Consult [21], Section 5, and [ 121, Theorem 7.1, for a proof that the 
definition (2.4) does not depend on the choice of the particular function g 
verifying (2. I ) ,  (2.2). 

Let t* = inf{t > 0 I Tt = 0) denote the extinction time. For each finite 
time 0 5 t 5 t*, let us set 

- 

(2.5) 

the distance of x to Tt in W". (Warning: W e  later modifv this definition, in 
(2.30).) Notice that the continuity of u implies TI. is nonempty, and con- 
sequently the distance function is defined at t*. The function d is Lipschitz 
continuous in the spatial variable x ,  but may well be discontinuous in the 
time t. The latter possibility can occur if, say, Tr splits into two pieces, one 
of which evolves into the empty set before the other. 

First we verify d is lower semicontinuous and continuous from below 
(cf. Lemma 7.3 in Soner, [44]). 

d ( x ,  t )  = dist(x, r,) , x E R" , 

PROPOSITION 2.1. 

(i) For each x E R" and 0 5 t 5 t*, 

d ( x ,  t )  liFninf d ( y ,  s) . 
s-r 

(ii) For each x E R" and 0 < t 5 t*, 

d ( x ,  t )  = p i  d ( y ,  S )  . 
S T [  
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As r,, is compact and nonempty, there exists a point z k  E r,, for which 

d(yk , sk )  = dist(yk,r,,) = lyk - zkl , k = 1,2,. . . . 

We extract a subsequence {zk,}Fl c {zk}FI and a point z E R" so that 
z k ,  -, z. As zk E T,,, we have u ( z k , s k )  = 0 ( k  = 1,.  . . ); and consequently 
u(z ,  t) = 0. Thus z E T r .  Hence 

= lim inf d ( y ,  s) . 
Y - x  
I-I 

This proves assertion (i). 

2. To verify property (ii) suppose instead d(x,  t) < lim SUPY;;: d ( y ,  s) and 
choose {yk}EI c R", {sk}El c [0, t] satisfyingyk -, x, sk 7 t and d ( y k , s k )  -, 
lim SUPY;;: d ( y ,  s). There exists a number r E R satisfying 

(2-7) d ( x ,  4 < r < d ( Y k , S k )  

for all sufficiently large k, say k 2 l ~ .  In particular 

Now set B ( y k , r )  = At, and let {At},?,, denote the subsequent evolution of 
the ball AS", by the mean curvature flow. According to Evans and Spruck (see 
[21]) (2.8) implies A t  nr, = 0 for all times s 2 sk. But a direct computation 
(see [21], Section 7.1) reveals A$ = B ( y k , r k ( s ) )  (sk 2 s 2 t )  for rk ( s )  = 
( r 2  - 2(n - l)(s - ~k))'/~. As A! n Tt  = 0, we deduced d(yk,t) 2 r k ( t )  
(k 2 ko). Now send k to infinity to discover d(x,t) 2 r ,  a contradiction to 
(2.7). 

Next we verify that d is a supersolution of the heat equation off the set 
r = { d  = 0). In what follows, the sub- and supersolutions are interpreted in 
the "viscosity" sense of Crandall and Lions [16], Lions [35], and Jensen [33]. 
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THEOREM 2.2. Let d be the distance function, as above. Then 

(2.9) dt - Ad 2 0 in { d  > 0) c R" x (0, t * )  . 

If r is a smooth evolution via mean curvature, a direct calculation (cf. 
[22]) verifies df  - A d  2 0 off r, at least in the region near r where d is 
smooth. The point now is that d is in fact globally supersolution of the 
heat equation, although we must interpret this statement in the weak, i.e., 
viscosity solution, sense, since d need not be smooth, or even continuous. 

Proof: 

1 .  Fix a test function 4 E C"(R" x ( 0 , ~ ) )  and suppose 

(2.10) d - 4 has a minimum at a point (xo, t o )  E R" x (0, t* )  , 

where 

(2.1 1 )  d(xo,to) > 0 

We must demonstrate 

(2.12) 4f - A 4  2 0 at ( X O , ~ )  . 

2. Adding if necessary a constant to 4 we may assume 

(2.13) ~ ( x o ,  t o )  = d(x0, to )  G 6 > 0 . 
Owing to (2.10) and (2.12) we have 

(2.14) d ( x , t )  2 +(x, t )  , x E R" , 0 < t < t* 

Choose zo E Tfo so that 

(2.15) d(x0, to) = 1x0 - ZO( = 6 . 

Upon rotating coordinates we may assume 

(2.16) x o = z o + d e , ,  

where en = (0,. . . ,0,  1 ) .  Set 

(2.17) y ( x , t )  = $(x +xo - z 0 , t )  - 6 , x E R" , t > 0 .  
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V/(zo,to) = 0 * 

3. We now claim 

To verify this inclusion select any point (x, t )  E R" x (0, t * )  where ~ ( x ,  t )  > 0. 
Then (2.14), (2.17) force d(x +XO - zo, t )  2 4 ( x  +XO - zo, t )  > 6. Now if 
d(x,t) = 0, then6 < d ( x + x o - z 0 , t ) - d ( x , t )  1x0-ZO) = 6, acontradiction. 
Assertion (2.19) is proved. 

4. For use later, let us pause to verify 

and 

Consequently ID+(xo,to)l 5 1. On the other hand, let us consider next the 
scalar function @(s) = +(ZO + sen, t o )  (s > 0). By (2.14) we have 

@ ( s )  5 ~ ( Z O  +sen, t o )  5 6 , 

since zo E Tto. In addition @(6) = $(zo + 6 en, to) = d(xo, to )  = 6. Thus 

@'(6) = 1 , @"(6) 5 0 ; 

that is, # , , ( x ~ , t ~ )  = 1, + X , X n ( x 0 7  to )  2 0. 

5 .  We return now to the main task at hand, verifying the inequality (2.12). 
Replacing u by IuI if necessary, we may assume 

u 2 0 in R" x [O,m). 

(Recall from Evans and Spruck [21], Section 2.4, that IuI is also a solution of 
the mean curvature evolution partial differential equation.) Thus { d  > 0) = 
{ u > 0); whence (2.19) implies 

(2.22) { w  > 0) E { u  > 0) * 
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We next build a continuous function Y [0, m) -, [0, m) such that 

(2.23) "(0) = 0 ,  Y ( z )  > 0 if z > 0 

and 

To carry out this construction, define the compact sets 

1 { k 

for k = 1, .  . . . Write P k  = infE, u. Owing to (2.22) 2 .. . 2 P k  2 
Pk+l .. . > 0. Furthermore limkhm P k  = 0, since u(z0,to) = ~/ ( zo , to )  = 0. 
Pass to a subsequence {Pk,}?, c {&}El satisfying Pk,  > PkJ+l ( j  = 1, ...) 
and define Y [ O , c o )  + R by 

Ek G x E R", 0 < t < t* I Y(X, t )  2 - , I X  - X O ~  5 1 , It - to1 5 1 

Thus (2.24) is valid on the set 

Since (2.24) is trivial on { y  5 0}, we deduce (2.24) is valid for all points 
near ( ZO, to) .  

6. Now Y ( u )  is a solution of the mean curvature partial differential equa- 
tion according to Evans and Spruck (see [21], Section 2.4). As (2.18) and 
(2.24) imply 

Y ( u )  - y has a local minimum at (ZO, t o )  , 
we have 
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Now 

according to (2.17). Thus (2.20), (2.21) force 

This is inequality (2.12). 

Our proof has a geometric interpretation. In view of (2.17), (2.20) the 
set { w = 0) is a smooth hypersurface S near ( Z O ,  t o ) ,  and owing to (2.18), 
(2.19) this (smooth) surface is tangent to the (possibly nonsmooth) set r 
at ( Z O ,  to). It then follows from the definition of a solution for the mean 
curvature evolution partial differential equation that 

This means that the velocity of S at ( ZO,  to) is greater than or equal to ((n - 1 )  
times) the mean curvature of S at (z0,to). This interpretation is related to 
observations in Soner; see [44], Section 14A. 

Remark. In fact d is a supersolution of the heat equation all the way up 
to time t*. In other words, 

(2.25) dt - A d  2 0 in { d  > 0 )  c R" x (0, t*] . 

To verify this, we assume that for a 4 as above 

d - 4 has a minimum at a point (XO, to) 

with to  = t* and d(x0,to) > 0. 

minimum at (x0,to). Finally, given E > 0 we write 
Upon modifying 4 if necessary, we may assume that d - 4 has a strict 

& 
V"X, t )  = 4(X, t )  + - X E R " ,  O < t < t * .  t - t '  ' 

Since d is lower semicontinuous and 4, = -cc on { t  = t*} ,  d - @ has a 
minimum at a point (x , ,  t,) E R" x (0, t*)  with 

(2.26) x,  -'XO and t ,  + t o  = t* as E + 0 .  
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Since d(x0, to)  > 0 and d is lower semicontinuous, we have d(xe,  t e )  > 0 for 
sufficiently small E .  Consquently Theorem 2.2 implies 

4; - A @  2 0 at (xe, t c )  . 

E 
Now 

& ( x , t )  = +t (x , t )  - * 2 < = M x ,  t )  . 
( t - t )  

Thus 

Now let E -+ 0. 
We conclude this section by modifying our notation, as follows. We hence- 

forth assume To is the boundary of a bounded, open set U c R, and choose 
a continuous function g so that 

4t - A 4  2 0 at (xe,te) . 

> O  if X E U  
= O  if x € T o  
c 0  if X E R " - ~  

(2.27) 

We solve the mean curvature partial differential equation (2.3), and then 
define 

(2.28) It  = {x E R" 1 u(x ,  t )  > 0) 

and t 2 o  

(2.29) 0, {X E R" I U ( X ,  t )  < 0) 

In view of (2.4) and (2.27) we may informally regard Z, as the "inside" and 
0, as the "outside" of the evolution at time t. We also write 

(2.30) 

and 

I = { ( x , t )  E R" x ( 0 , ~ )  I u ( x , t )  > 0 )  

(2.31) 0 = { ( x , t )  E R" x ( 0 , ~ )  I u(x,t) < 0) . 

Let us now change notation, hereafter writing 

dist(x, T,) if x E I t  

- dist(x,r,) if x E 0, 
if x E Tr . (2.30') 

for x E Rn, 0 5 t 2 t*. We henceforth call d the signed distancefunction. 
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We recast Theorem 2.2 into the new notation: 

THEOREM 2.3. Let d be the signed distance function, as above. Then 

(2.31') dr -Ad 2 0 in I n  (R" x (0 ,  t * ] )  

and 

(2.32) dl -Ad 5 0 in 0 n (R" x (0, t * ] )  

Remark. Thus, formally at least, 

d , - A d = O  on r .  
This is consistent with the classical observation that the signed distance func- 
tion solves the heat equation on a smooth surface evolving by mean curvature 
motion. 

Remark. In Soner (see [44]) a set-valued map {C,},,, - is called a viscosity 
solution of the mean curvature flow problem if both (2.31) and (2.32) hold. 
Hence the above theorem establishes a connection between the level set of so- 
lutions of Evans and Spruck and Chen, Giga, and Goto, and that constructed 
in [44]. In particular, these two definitions coincide if aZ, = BO, for all t # t*. 
A more detailed discussion of this point is given in [44], Section 11. 

3. Supersolutions 

We intend next to utilize the signed distance function d to build sub- and 

For definiteness let us take the free energy per unit volume F to be the 
supersolutions of the Allen-Cahn partial differential equation. 

quartic 

so that 

1 
2 

F ( z )  = - (z' - 1 Z E R ,  

f ( z )  = F ' ( z )  = 2 (z' - 2 ) .  Z E R  

(Our arguments, however, are still valid without significant change if F is 
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any W-shaped potential, whose two wells are of equal depth.) For this free 
energy the ordinary differential equation 

has an explicit standing wave solution 

e2s - 1 
q ( s )  = tanh(s) = ~ e2s + 1 ’ S E R .  

We record for later use the equalities 

(3.4) 

4 
(eS + e-s ) 2 

q’(s) = sech2(s) = 
S E R .  

[ q ” ( s )  = -2 sech2(s) tanh(s) 

Next fix 0 < 6 << 1 and consider a smooth auxiliary function q: R -+ R 
satisfying 

(3.5) 

where C is a constant, independent of 6. 

Remark. Since we intend to construct a super solution of the scaled Allen- 
Cahn equation, we need to redefine d on the set { d  < 0}, when according to 
Theorem 2.3 d is a subsolution of the heat equation. This is the reason for 
introducing the auxiliary function q. 

corresponding signed distance function. 
Suppose {Tt}t>o - - is a generalized motion 

LEMMA 3.1. There exists a constant C, 
fl  

by mean curvature, and d is the 

independent of 6 ,  such that 

L 
(3.6) q(d) [  - Aq(d) 2 -s in R“ x ( O , t * ]  

and 

(3.7) q ( d ) [  - Aq(d) 2 0 in 
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Proof: 

1 .  Take 4 E Cm(Rn x ( 0 , ~ ) )  and assume q(d )  - 4 has a strict minimum 

2. Assume first d(x0,to) > 0. Fix E > 0, write 

at point (x0,to) E Rn x (O , t * ) .  

qe(z)  = ~ ( z )  + E Z  9 z E R 

and set 

Then qe(d) is lower semicontinuous near (XO, t o )  and thus qe(d)  - 4 has a 
minimum at a point (xe, t e )  E R" x (0, t ' ) ,  with 

(3.8) x,-+xo, t ,+to as E + O .  

Pe ( q e ) - '  . 

Adding a constant to 4 if necessary we may assume qE(d)  - 4 = 0 at (xe, t e ) .  
Thus qe(d) 2 4 and so 

for all ( x , t )  near (xe , te ) ,  with equality at (xe,te). Since d(x0,to) > 0 and d 
is lower semicontinuous near (XO, t o )  

d(xe,te) > 0 

for all small E > 0. According to (3.9) and Theorem 2.2 

Now 

and so (3.10) yields 

by (3.5) at (xe, te) .  We employed in this calculation the bound IDwel 5 1 ,  
which follows from (3.9). Sending E ---$ 0 we deduce 

(3.12) 
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3. Assume next d(x0, t o )  5 0. Since d is continuous from below, we have 
q ( d )  = -6 on the set {Ix - xol 2 0 ,  to - 0 <= t 5 to} for some 0 > 0. Thus 

and so 

4. If q ( d )  - 4 has a minimum at a point (xg, t*) ,  we argue using the 
Remark after Theorem 2.2. Assertion (3.6) is proved. 

5. To prove (3.7), suppose d(x0,to) > 6 / 2 .  Then for small E > 0, 
d(xe , t e )  > 6/2. By (3.5) we conclude that q"(ye) = 0 at (x , , t , ) .  Using 
this in (3.11), we arive at (3.7). 

Our intention next is to build using q and d a supersolution of the scaled 
Allen-Cahn equation. For this let us take constants a,p > 0 (to be selected 
later) and write 

(3.14) we(x, t )  q ) + @ ,  X E R " ,  O s t d t *  

Since the cut-off function q depends on the parameter 6, so does the above 
function we. For notational simplicity, however, we suppress this dependence 
in the notation. 

THEOREM 3.2. There exist constants a = a(6)  > 0, p = p(6) > 0, and 
EO = ~ ( 6 )  > 0 such that 

(3.15) 
1 

E2 
W; - Awe + - f(we) 2 0 in R" x (0, t * ]  

for all 0 < E 5 EO. In addition a,  p = O(6) as 6 -+ 0. 

Proof: 

1. As usual choose 4 E C" (R" x ( 0 , ~ ) )  and suppose 

(3.16) w e  - # has a minimum at (xo, to) E R" x (0, t*] 

with 

(3.17) we - 4 = 0 at (XO, to) . 
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We must demonstrate 

provided E is sufficiently small, depending only on 6 but not on 4. 

and set $(x, t )  = Eq-’(+(x, t )  - EP). This function is defined near (XO, t o ) ,  
since - 1  < 4(xg,t0) - EP = q(w) < 1 .  Owing to (3.4), (3.14), (3.16), 
(3.17) 

(3.19) q ( d )  - ( w  - at )  has a minimum at (xo? to) , 

with q(d)  - ( v /  - a t )  = 0 at (XO, to ) .  
According to Lemma 3.1 we have 

(3.20) 

and 

6 
2 vf - A y  2 a at (xo,~o)  , if d(x0,to) > - . (3.2 1 )  

3. Since 
4 4 (f) + E D ,  

we can compute 

(3.22) 
1 1 1 

= -4’ E E  (“) (Wf - A w )  + 7 4 ’ ’  (f) ( 1  - IDw?) + -$ [ f  (4  (f) 

at the point (xo, to). We utilized the ordinary differential equation (3.3) to 
derive the last equality. 

We now must estimate the various terms in (3.22). 
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Case 1: d(x0,to) > i. 

Then (3.19) implies 

as in (2.20). Thus (3.21) and (3.22) yield 

In this situation d > 6/2 near (xo, to )  and so q(d) = d - 6 near (XO, to) .  

l ~ t y ( x o ? t o ) l  = 1 7 

Fix 0 < Y < 1 so that 
inf f’(z) = a1 > 0 . 

Y S I Z I S ’  

inf q’(s) = a2 > 0 , 
I d s )  I5 Y 

Then set 

and define 

6 
(3.24) ff=- 4t* ’ P = ~ 2 f 2 [ 2 / l f ’ l l L ~ ( ( - 1 , i ~ ) ] - i  * 

(We shall need these explicit choices to handle Case 2, below.) There are 
now two possibilities: 

Subcase 1: \q(:)\  2 y. 

Then (3.23) implies 

1 a1 P 4 - 4 + &(+) 2 E + O( 1) 2 0 at GO, t o )  

if E is small enough, depending on 6. 

Subcase 2: 1q($)1 5 y .  

Then (3.23) implies 

for small E ,  depending on 6. 
Both subcases therefore yield (3.18). 
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Case 2: d(x0,to) 5 4. 

situation q ( d )  5 -6/2 and so 
We use the same choices of a and p as in the previous case. In this 

6 6 
2 4 q ( d )  + at0 5 -- + at* 5 -- , 

according to (3.24). Hence (3.19) yields the inequality 

(3.25) 

Statement (3.19) and the definition (3.5) of q imply also IDyl 2 C at (XO, to). 

6 
4 y 5 -- at ( x o , ~ o )  . 

We then compute utilizing (3.20), (3.22) 

1 1 4t - AdJ + $4) L ; [d (:) Q + f’ (4  ( f ) ) 81 
(3.26) 

4” (f>i * 
+O(l)--q’(-)--I  c y / c  

Ed & E 2  

But since q” 2 0 on ( -oo,O],  (3.25) and (3.4) force 

Similarly 

We analyze the remaining terms on the right-hand side of (3.26) as in the 
two subcases of Case 1. 

The conclusion is 
1 

4t - A 4  + 2 f ( 4 )  2 0 at (xo, t o )  

for all 0 < E 2 &0(6), ~ ( 6 )  sufficiently small. As the constant appearing in 
the above argument is independent of 4, the choice of ~ ( 8 )  does not depend 
on 4. 

4. Asymptotics for the Allen-Cahn Equation 

We at last turn to the scaled Allen-Cahn equation 

1 vf“ - Ave + -f(ve) = 0 
&2 

ve = h e  on R“ x { t = O } ,  

in R” x ( 0 , ~ )  
(4.1e) 

the cubic f given by (3.2) and the initial function he described below. 
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We intend to prove w e  + 1 in a region I E R” x [0, oo), w e  -, - 1 in another 
region 0 c Rn x [0, m), the “interface” r between Z (the “inside”) and 0 (the 
“outside”) being a generalized motion governed by mean curvature. 

To induce this behavior, however, we must choose special initial func- 
tions. More specifically, let ro henceforth denote the smooth boundary of a 
bounded, connected open set U c R“. Let do be the signed distance function 
to ro, and set 

Thus he is approximately equal to 1 within U, is approximately equal to - 1 
within R” \ u, and has a transition layer of width O(E)  across the surface 
To. Moreover, by the maximum principle, - 1 < We < 1 in R“ x [0, 00). The 
analysis of more general initial functions is given in [ 51. 

We shall show that w e  roughly maintains this form at later times, the 
transition layer forming across the generalized motion by mean curvature 
starting with ro. To this end, we choose a continuous function T t ,  Z,, 01, Z, 
0 by (2.4), (2.28)-(2.31). 

THEOREM 4.1. We have 

(4.3) we -+ 1 uniformly on compact subsets of I 

and 

(4.4) we  + -1 uniformly on compact subsets of 0 

Remark. Assertions (4.3), (4.4) provide a great deal, but by no means 
all, of the desired information about the limiting behavior of the { W e } e > O .  
We note in particular it is not known whether the “interjace”r can develop an 
interior: see the discussion following in Section 5 .  It would also be interesting 
to see to what extent other initial data (not having the form (4.2)) could be 
handled. 

Proof: 

1. As To is smooth, we may choose g to be smooth, with lDgl = 1 near 
ro. Thus if 6 > 0 is small enough the set 

(4.5) { X  E R” I g ( X )  = do(x) = -26) 

is smooth. We let 

(4.6) C = { x ~ R ” I u ( x , t ) = - 2 6 } ,  t 2 0  
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be the generalized evolution starting with rt, and take ds to denote the signed 
distance function to rf', d: being the signed distance function to c. Let t; 
be the extinction time for { r f ) r 2 0 .  

Choose q(. ) as in Section 3 and set 

(4-7) 

a and p are given by (3.24), with t; replacing t*. Then for 0 < E < ~ ( 6 )  we 
have 

2. We first claim 

(4.9) weB(x,O) 2 he(x) , x E R" . 

To verify this inequality it suffices in view of (4.2) to prove 

q (d:(x)) 2 do(x) 7 x E R" 

Now owing to (4.5) d,6(x) 2 do(x) + 26; and so q(d:(x)) 2 q(do(x) + 26) 
(x E R"). It is therefore enough to show 

(4.10) do(x) 5 ~(do(x) + 26) , x E R" . 

But if do(x) 2 -36/2, then do(x) + 26 2 6/2; whence 

q(do(x) + 26) = do(x) + 6 2 do(x) . 

On the other hand, if do(x) -(3/2)6, (4.10) is obvious as q 2 -6. 

3. Now write 

= e-At w &,S , (4.11) - 

We next claim 

(4.12) 

A > O .  

e-At 
wf - AW + ~w + F f  (e*tw) 2 o in R" x (0, t;] . 

To check this, select as always q5 E Cm(Rn x (0, m)) and assume 

w - q5 has a minimum at a point (XO, t o )  E R" x (0, t:] 
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with w - 4 = 0 at (XO, to) .  Then 

e-.lt = w 2 (p in R" x ( O , t i ] ,  

with equality at (XO, to). Hence 

we,* 2 w in Rn x (O,t i ]  , 

with equality at (xo, to) ,  for v/ = eLt4. Assertion (4.8) then implies 

1 
wt - Aw + F f ( Y )  2 0 at (xo, to )  * 

We rewrite the last inequality to read 

-It 
4f - A 4  + A4 + F f ( e " 4 )  2 0 at (XO, t o )  . 

This establishes (4.12). 

4. We hereafter set 

Then for each t the mapping 

(4.13) 
e-It 

E 2  
z H A Z  + ---f(eAtz) is strictly increasing. 

5. We now assert 

(4.14) we,' L - we in R" x [o,t ; ]  . 

Indeed if not, then 

w"' < v e  somewhere in R" x [0, t i ]  

and consequently 

w < v somewhere in R" x [0, t i]  , 

1117 

for w = e-Ir we,', v = e-lfve. The function w is lower semicontinuous. In 
addition 

w l v  on R n x [ t = O ] .  
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Hence, by perturbing w if necessary, we may assume that there exists a point 
(xo, to) E R" x (0, t i ]  such that 

(4.15) (w - v)(xo, to) = min (w - v) = b < 0 . 
Rn x [O,t;] 

Indeed such a point always exists because 

But we do not need this exact characterization of 2) later. 
Now (4.1,) yields 

e-AI 
(4.16) v1 - ~ v  + ~ v  + ,,f (e'lv) = o in R" x ( o , ~ O )  . 

If 

(4.17) 4 = ? J + b ,  

then 4 E Cm(R" x [0, 00))  and (4.15) says 

w - 4 has a minimum at (xo, to )  

with w - 4 = 0 at (xo, t o ) .  According to Step 3 above, we conclude 

(4.18) 

at (xo,tO). However since b < 0, 4 < v. Consequently (4.13), (4.17), (4.18) 
imply 

at (xo, to). This contradicts (4.16) and thereby proves (4.14). 

we discover 
6. Utilizing (4.14) and the definition (4.7) of the auxiliary function w & ' ~ ,  

(4.19) 

f o r x  E R", 0s t 5 t i .  Now if 

q ( d y x ,  t ) )  + at 5 -6 + at; 

3 
4 5 -4 by (3.24) (with t i  replacing t ' )  . 
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Thus 

lim q + & P  = - 1  * 
& - r O  & 

In view of (4.19) we have 

lim ve(x, t) = - 1 , 
e - r O  

uniformly on 06 = {(x, t )  E R" x [0, t ; ]  1 u(x, t) < -26}, for sufficiently small 
6. In particular, 

(4.20) limve(x,t) = - 1  
e-0 

uniformly on compact subsets of 06 for sufficiently small 6. Since 

the proof of (4.4) is now complete. A similar argument proves (4.3). 

5. Uniqueness? 

In this concluding section we elaborate upon the remark following Theo- 
rem 4.1. Let us return to the scaled Allen-Cahn partial differential equation 
and calculate the time derivative of the scaled excess free energy: 

= -& in (w;)' dx 5 0 . 

Thus 
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in view of the special form (4.2) for the initial function h'. Since this in- 
equality implies iTln F (v') d x  dt 5 O(E)  

as E --+ 0 for each T > 0, we deduce 

(5.2) --+ 1 a.e. in R" x [0,0o) . 

In addition, if we set G(z)  E ( z 3 / 3 )  - z and write 

we have (cf. Bronsard and Kohn, [S]) 

and 

Thus { . i E } c , ~  is bounded in BV(R" x ( 0 , T ) )  for each T > 0, and so is 
precompact in L:,,(R" x (0, T)). It follows that {ve},,O is precompact in 
Lk(R" x (0, T)). Consequently, passing if necessary to a subsequence, we 
have 

(5.3) V'J --+ f l  in R" x [O,m) . 

Our Theorem 4.1 augments this simple fact with the assertion 

However we do not know 

has (n + 1)-dimensional Lebesgue measure zero, and consequently (5.4) does 
not imply (5.2), (5.3). The problem is that the sets {T}t>o - could conceivably 
develop an interior for times t* 2 t 2 t , ,  t, denoting the first time the 

- 



PHASE TRANSITIONS 1121 

classical evolution by mean curvature has a singularity. See [21], Section 8, 
for an example of a nonsmooth 1-dimensional compact set To c R2 for which 
Tt has an interior for times t > 0. 

On the other hand, Evans and Spruck (see [23]) have recently proved for 
smooth l-0 that 

w-*(r;) < co, t 2 0 ,  

where H“-’ is (n - 1)-dimensional Hausdorff measure and r; = art. Thus 
rt has positive n-dimensional Lebesgue measure if and only if Tt has an 
interior. Finally, Barles, Soner, and Souganidis (see [6] ) give a general, but 
by no means sharp, geometric condition which guarantees no interior. 

Now if in fact int(r,) # 0 in R“ for some time t ,  5 t 5 t*, then int(r)  # 0 
in R” x [0, co). In this case assertion (5.3) tells us that for some subsequence 
we) -, f 1 a.e. within r, whereas (5.4) provides no information at all regarding 
w e  inside r. 

Should this be possible, it seems most likely that the regions when V & J  4 1 
and V & J  + - 1 would be separated by an “interface” evolving by mean curva- 
ture in the sense of Soner; see [44]. Such a motion is generally nonunique. 
And perhaps different subsequences correspond to different interfaces, or the 
initial profile picks the particular interface to which the solutions converge. 
At present it is unclear whether these circumstances can arise and, if so, how 
the solutions w e  of the scaled Allen-Cahn equation would behave within the 
interior of r. 
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