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OPTIMAL CONTROL WITH STATE-SPACE CONSTRAINT I*

HALiL METE SONER"

Abstract. We investigate the optimal value of a deterministic control problem with state space constraint.
We show that the optimal value function is the only viscosity subsolution, on the open domain, and the
viscosity supersolution, on the closed domain, of the corresponding Bellman equation. Finally, the uniform
continuity of the optimal value function is obtained under an assumption on the vector field.
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Introduction. This paper is concerned with the optimal control of deterministic
trajectories given a state-space constraint. The dynamics of the controlled process are
(0.1) below. More precisely, let the control u be a Borel measurable map from [0,
into a compact, separable, metric space U and y(x,., u) be the controlled process.
The trajectories y(x, t, u) are the solutions of

d
(0.1) d--’tY(X, t, u)= b(y(x, t, u), u( t))

with initial data y(x, 0, u)= x. Let 0 be an open subset of R" and Mx be the set of
strategies under which y(x, t, u) lies in 0 (bar denotes the closure). In this paper we
refer to Mx as the set of admissible controls. The structure of M,, constitutes a state-space
constraint. We now associate a discounted cost to every admissible control u and x
in 0. Given these the optimal value function is

(0.2) v(x) inf e-’f(y(x, t, u), u( t)) dt.
s

Note that v is not necessarily continuous. This is caused by the complicated
structure of the set valued function x x. However, as will be shown in 3 the
optimal value function is uniformly continuous on 0 given that at every point x on 00
(boundary of 0) there is an a(x) in U such that b(x, a(x)), v(x)_-<-/3 < 0. Here v(x)
is the exterior normal vector.

If v is uniformly continuous one can make use of the notion of weak (or so-called
viscosity) solution of Hamilton-Jacobi equations introduced by M. G. Crandall and
P.-L. Lions [2]. In [2] they proved the uniqueness of the viscosity solutions of
Hamilton-Jacobi equations in a wide-class of cases. In [1], M. G. Crandall, L. C.
Evans, P.-L. Lions provide a simpler introduction to the subject. The book by P.-L.
Lions [5] and the review paper by M. G. Crandall and P. E. Souganidis [3] provide
a view of the scope of the theory and the references to much of the recent literature.
Finally, P.-L. Lions ira [6] states results related to constrained problems and viscosity
solutions. He proves that under an assumption, stronger than the one above, the optimal
value function is locally Lipschitz. Then by using the "everywhere characterization"
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of Lipschitz viscosity solutions [7], he obtains an existence and uniqueness result for
the Bellman equation v + H(x, Dv) O.

Let H C(0 x R"; R) be given by

(o.3) H(x, p)= sup {-b(x, a) p-f(x, a)}.
U

In 2, the optimal value function is characterized as the only viscosity solution
of v(x)+ H(x, Dr(x))= 0 on 0 given the appropriate boundary conditions. Note that
v is not a priori defined on 00. The only information at the boundary is given by the
state-space constraint. To motivate the boundary condition assume that there is a
continuous optimal feedback strategy a*(x) and v is continuously differentiable on
0. The constraint imposes the inequality b(x, a*(x)), v(x)<=O at the boundary of 0.
Also, the optimality of a* yields H(x, Vv(x))=-b(x, a*(x)). Vv(x)-f(x, a*(x)).
Given these, one can show

(0.4) H(x, Vv(x))<=H(x, Vv(x)+v(x)) forall>=OandxO0.

Moreover if q, is ditterentiable and v-O has a minimum on 0 at x 00, then Vq,(x)=
V v(x)+ fly(x) for some positive/3. In view of (0.4),

(0.5) v(x) + H(x, V v(x)) <- v(x) + H(x, V(x)).

Since v is smooth, it is easy to show that v(x)+ H(x, Vv(x))=O on 0. Hence v(x)+
H(x, V$(x))=>0 whenever is smooth and v- has a minimum, relative to 0, at
x e 00. In fact, it is proved that v is the only solution of the Bellman equation with
this property (Theorem 2.2).

One can view the inequality (0.4) as a constraint on the normal derivative of v at
the boundary. Suppose the Hamiltonian H(x,p) is ditterentiable with respect to p.
Then (0.4) reads as Hp(x, V v(x)). ,(x)->_0. This implicitly imposes a constraint on
V v(x) at the boundary. We give the following simple example to clarify this point..

Example. Let 0=(0,1), U=[-1,1], b(x,u)=u, f(x,u)=-u if u[0,1] and
f(x, u)= 0 otherwise. The corresponding Hamiltonian H(x, p) is given by

H(x, p) { pl -p ifp-<_1/21/2,.ifp>
At x 1 the condition (0.4) implies that vx(1)>= 1/2 and at x 0 we have vx(0)=< 1/2. For
this example v(x) =1/2 e-1-1 is the only solution of v(x)+ H(x, v(x)) =0 on x (0, 1)
satisfying the inequalities v(0) =< 1/2 and v(1) ->_ 1/2.

1. Statement of the prolflem. Let 0 be an open subset of " with a connected
boundary satisfying:

(A1) There are positive constants h, r and an R"-value bounded, uniformly
continuous map r/of 0 satisfying

B(x + tI(x), rt) 0 for all x 0 and (0, h].

Here B(x, r) denotes the ball with center x and radius r.
Remark. If 0 is bounded and 00 is C, then it satisfies (A1). Also boundaries

with isolated corners may satisfy (A1), for example, 0 {(x, y) e RE: X > 0, y > 0}.
We assume the following throughout the paper:

(1.0) The controls take values in a compact metric space U.
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For all x, y R", u U the functions

b" R" x U- R",

f’R"x U- R
satisfy

(1.1)

(1.2)

(1.3)

(1.4)

sup Ib(x, a)- b(v, a)] <- L(b)lx- y for all x, y,

sup [b(x, a)l <- K(b) for all x,
aU

sup If(x, ) -f(y, a)[-<_ wy(lx y]) for all x, y,
aU

sup If(x, a)l--< K (f) for all x

where os is a nondecreasing continuous function with o&(0)= 0.
Consider s, the set of all measurable maps of [0, oo) into U. For any u e s and

x e 0 let y(x,., u) be the solution of (0.1) with initial data y(x, O, u) x. The associated
discounted cost J(x, u) is

(1.5) J(x, u)= e-f(y(x, t, u), u( t)) dr.

We allow only the controls which leave y(x,., u) in 0. To have a feasible problem, we
assume that the set of admissible controls is nonempty, i.e.

(A2) Sx={Ues:y(x,t,u)e0forallt_->0} forallxe0.

Under these assumptions the optimal value function

(1.6) v(x) inf J(x, u), x 0
Mx

is boune.

2. Hamilton-4acoli-Bellman eaation. We begin by recalling the notion of vis-
cosity solutions [1], [2]. Let K be a subset of R. We will use the notations Cl(K)
and BUC(O) to mean the set of continuously differentiable functions in a neighborhood
of K and the set of bounded uniformly continuous functions on 0, respectively.

DEFINITIONS 1.1. Let K be a subset of R" and v e BUC(K).
(i) We say v is a viscosity subsolution of v(x)+ H(x, Dr(x))= 0 on K if

V(Xo)+ H(xo, V(Xo)) -<o

whenever q e C(/) and v-q has a maximum, relative to K, at Xo e K.
(ii) We say v is a viscosity supersolution of v(x)+ H(x, Dv(x))=O on K if

V(Xo)+ H(xo, V@(xo)) => 0
whenever @ C(/) and v @ has a minimum, relative to K, at Xo K.

If v is both subsolution and supersolution, then v is called a viscosity solution.
Remark. A viscosity solution v satisfies the equation at every point where v is

ditterentiable.
In order to consider the state space constraint problem, we extend the definition

as follows.
DEFINITION 2.1. vBUC(O) is said to be a constrained viscosity solution of

v(x)+ H(x, Dv(x))=0 on 0 if it is a subsolution on 0 and a supersolution on 0.
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Remark. The fact that v is a supersolution on the closed domain imposes a
boundary condition. To demonstrate this, suppose v C1(t7) is a constrained viscosity
solution; then v(x)+ H(x, Vv(x)) =0 for all x s 0. But also v(x)+
H(x, V v(x) + av(x)) >= O, for all x 00 and a positive, because if v qs has a minimum
at Xo 00, then Vqs(Xo)= Vv(xo)+ aV(Xo) for some a =>0. Hence v satisfies (0.5).

THEOREM 2.1. Suppose that (A1), (A2), (1.0)-(1.4) hold and that the optimal value
function v is in BUC(). Then v is the only constrained viscosity solution of v(x)+
H(x, V(x)) =0 on O.

Proof. First recall that the optimal value satisfies the dynamic programming
principle, i.e." for any positive T

v(x) inf e-f(y(x, t, u), u(t)) dt+ e-Tv(y(x, T, u))
u

Let qs Cl(), Xol t9 and (v-qs)(Xo)=max[(v-qs)(x)" x ff]=0. Then, for any
u o and positive, the dynamic programming relation yields"

qS(Xo) <= e-Sf(y(xo, s, u), u(s)) ds+ e-tqs(y(xo, t, u))

which implies

(2.2)
[IP(y(xo, s, u))-b(y(xo, s, u), u(s))

V(y(xo, s, u))-f(y(xo, s, u), u(s))] e ds<=O.

Use (1.1), (1.3) and the fact ly(xo, s, u)-xol<=K(b)s to obtain:

llot lfo(2.3) q(Xo)-’; b(xo, u(s)) ds. Vq(Xo)-- f(xo, u(s)) ds<= h(t).

Here h(t) denotes a continuous function of [0, 0o) into R with value zero at the origin.
Put to= dist (Xo, O0)/K(b) and for any a U define u as follows:

(2.4) u(t) aXto,)(t) + l(t- to)Xr,oo)(t)
where i is any control in sCyo,,,). Then u is in o. Use u in (2.3) to get"

(2.5) qS(Xo)-b(xo, a).Vdi(Xo)-f(xo, a)<=h(t) foralla Uandt<-to.

Send to zero to prove v is a subsolution on 19. Now let C(I7) and (v- qs)(Xo)
minxo [(v- q)(x)] 0 for some Xo 0. Then we have

(2.6) qS(Xo)= inf [ff(y(xo, t,u),u(t))e-’dt+e-rv(y(xo, T,u))] forT=>0..
x0

Thus there is a sequence {u"}__l c xo such that

(2.7) qS(Xo)+-5= e-’f(y(xo, t, u’), u"(t)) dt + e-I/m y XO,--m
Use (1.1) and (1.3) and proceed as in (2.3) and (2.4) to obtain

fl/m fllm(2.8) d/(Xo)-m b(xo, u"(t)) dt. V(xo)- m f(xo, u’(t)) dt>--K(m)
#o do

where K(m) denotes a sequence of numbers which converges to zero as m tends to
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l/minfinity. Observe that (b ,fm)-(m Jl0/m b(xo, u (t)) dr, m o f(xo, Urn(t)) dt) lies in
the closed convex hull of BF(xo) {(b(xo, a),f(xo, a)), a U} which is compact. Thus
there is a subsequence denoted by rn again and (b,f)TdBF(xo) such that (bm,fm)
converges to (b, f). Send m to infinity in (2.8) to get

(2.9) q(Xo) b. V q(Xo) -f-> 0:

hence

(2.10) O(Xo) +sup {-b. VO(Xo)-f: (b,f)T6BF(xo)}>-O.

But H(xo, VO(xo))=sup{-b" VO(Xo)-f: (b,f)T6 BF(xo)}. This proves that the
optimal value v is a constrained viscosity solution. The uniqueness is an immediate
consequence of the following theorem.

Consider two running costs {f; i- 1, 2} and the corresponding Hamiltonians
defined as in (0.3).

THEOREM 2.2. Suppose vl is a viscosity subsolution of v(x)+ Hi(x, Dr(x))=0 on
0 and v2 is a viscosity supersolution of v(x)+HE(X, Dr(x))=0 on O. Let (A1), (1.1),
(1.2) hold andf satisfy (1.3) and (1.4) for i= 1,2. Then

(2.11) sup [Vl(X)-V2(x)] <- sup [fl(x, a)-fE(x, a)].
U

Before we give the proof, we briefly sketch the technique introduced by Crandall,
Evans and Lions 1] and point out the modification we need. Let be a smooth bump
function , for example, (r)= 1-r2. Let m =max llv, ll, IIo=ll} and define

(2.12) dp(x, y) vl(x) v2(y)+ 3m,(X"e’Y).
Suppose attains its maximum at (Xo, Yo) i x 0- It follows that IXo- Yol --< e. Now

consider the map x Vl(X)-v2(Yo)+3m(x-yo/e). It has a maximum at Xo. If Xo 0,
the viscosity property yields

(2.13)

(2.14)

Vl(Xo) d- Hl(Xo, pe) 0,

P
3m

V’(x Y)e

Similarly, consider the map yvl(xo)-v2(y)+3m(xo-y/e). At yo 0 it has a
maximum. The viscosity property implies

(2.15) vE(Yo) + H2(yo, p) >- O.

Subtract (2.15) from (2.13) and use the fact Ixo-yol <- e to obtain

Vl (Xo) v2(Yo) <-- HE(Yo, p Hi(Xo, p
(2.16)

_-<0(e)+ sup [fl(x, a)-f2(x, a)].
xOa U

This will give (2.11) since one can estimate supxo [vl(x)-vE(x)] by vl(xo)-v2(Yo).
In general, however, Xo may lie on 0f. To complete the proof of the theorem, we have
to modify q so that Xo lies in 0.

Proof of Theorem 2.1. Let r/, r be as in (A1), pick z 0 and p positive such that

/"
(2.17) Irl(x) rt(y)l <=- for all x, y e O and lx- yl < p,
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(2.18) v,(z) Vz(Z) _-> sup Vl(X) v2(x)] -.xe

Define " 0 x 0 + R as follows:

(2.19) (x,y)=vi(x)-vz(y)-
x-y 2 2 ly_zP

Note that z + (e2/r)rl(z) is in 0 for small e. Use these to obtain

(2.20)
z+--n(z),z >-v,(z)-v(z)-,o,(ce)

sup [Vl(X)- v2(x)]--
where tol(r) is the modulus of continuity and c is a positive constant. We also have

(2.21) (x, y) <= v,(x) v2(x) + to,(Ix Yi)
x-y 2

Suppose d(x, y)>-(z +(2e/r)rt(z), z). Use (2.20) and (2.21) to obtain

(2.22)
2 x-y 2

< to,(ce)++ to, (Ix y[).

Since to is bounded it follows that d(x,y)<=(z+(2e/r)rt(z),zn) for x,y
B(z, K) for sufficiently large K. Hence achieves its maximum, say at Xo, Yo. Also
(2.22) yields that there is m positive such that Ixo-yol-<-me. We use this in (2.22) to
obtain

(2.23)
2

Xo- Yo 2
< t01(E) "4" -’1- t01(me).

Pick e and 6 so that the right-hand side of (2.23) is less than one. Hence ]Yo-zl =< p,
(2.17) implies there in e is the unit ball such that r/(yo) rl(z)+(r/2)e. Also, there
is e’ again in the unit ball such that Xo yo+(e2/r)rt(z)+ ee’. Combining these yields

(2.24) xo=Yo+ r/(yo)+ r --+ B(yo+ trl(yo), tr)

with t= 2e/r. Thus, (A1) implies XoS 0 if e is small. Now consider the maps

(2.25) ,(x) v2(Yo) + x-yo 2

xo-y 2
(2.26) ,(y) Vl(Xo)-

2

2

2
Yo- z
P

2y- z
P

Then v-q, has a maximum at Xo 0 and /)2--/has a minimum at Yo 0. The viscosity
property yields

(2.27) v,(xo) + H,(xo, p) <= O,

(2.28) v2(Yo) + H2(Yo, p + q)=>0
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where

2(x Yo 2
P

\

Subtract (2.28) from (2.27),

(2.29)
/)l(xO) vE(Yo) ----< [HE(Yo, p + q) HE(Xo, p,)]

+[HE(xo, p)- H,(xo, p)] I(e)+ J(e),

(2.30) J(e) <-sup [fl(xo, a)-fE(xo, a)].
otU

Using (1.2) and (1.3) yields

(2.31) I(e) <_- toA(Ixo yol) + p L(b)lxo Yol + K (b)lq I.
(2.23) yields Iql<=h(e)+6/2, elPl<-h(e)+6/2, and Ixo-yole-<=C for some C
independent of e. Here h(e) denotes a continuous function of e which has value zero
at the origin. Thus, we have

(2.32) I(e) <- wf(Ce)+ L(b)h(e)C + K(b)h(e) <- h(e)+ C8.

Substitute (2.30), (2.32) into (2.29) to get

(2.33) v(xo)-v2(Yo) <- h(e)+ sup [fl(xo, a)-f2(xo, a)]+ C8.
aU

Also we have,

max {DI(X -/)2(x)} /)1 z8 31--- n(z) D2(ZS) -" 8 "4- O),(CE)
xei r

_<-max {b(x, y)" x, ye 0}+ "i- OI(CE ).

Using (2.23) and (2.33), one can show that

(2.34) max{4)(x,y)" x, yeO}<-h(e)+ci+ sup {f(x,a)-f2(y,a)}.

Now send first e then 8 to zero.
In fact, using the fact that Xo is close to z in (2.33), one can improve the result

as follows:
COROLLARY 2.3. Let z 0 be as in (2.18); then under the hypothesis of Theorem

2 we have

’/)I(Z)- /)2(Z)<-- sup [f(z, a)-fz(z, a)]+ C6 + ooA(C6)+ wA(C6)

where C is a positive constant depending on K b), L(b).

3. Uniform continuity of the value function. In this section we prove the continuity
of the value function under the following assumptions.

(A3) There is a positive constant /3 such that for any x00 there is a(x) U
satisfying b(x, a(x)) ,(x)-<-/3 < 0, where u is the exterior normal vector.

(A4) The boundary 00 is of class C2.
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(A5) If 00 is not compact there are positive constants t9 and such that, for any
x 00 there is a T C2(B(x, p) with inverse T- C(B(x, p)) satisfying

(i) T(B(x,p)fqO)c(yR",y,,>O},

(3.1) (ii) T(B(x,p)fqOO)c{yR",y,=O},

The subscript n denotes the nth component.
Remark. The condition (3.1) is satisfied locally if (A4) holds. By using a technique

similar to the one indicated below, one can prove the continuity of the optimal value
function under (A3) and (A4). Instead of this we use (A5) together with (A3) and
(A4) to obtain a uniform modulus of continuity for the optimal value function.

LEMMA 3.1. Suppose (A3)-(A5) hold. Then, for all x 00, b(x, a(x)), >- lfl where

(3.2) /(y, a) V T(T-l(y)) b(T-(y), a), y B(x, p) and a U.

Proof. Given XoO0 pick T as in (A5). Observe OOf’lB(xo, p)(x: T,(x)=0}.
Hence ,(Xo) -V T,(xo)/iV T,(xo)l.

(3.3)
b( T(xo), a(Xo)), V T,(xo) b(xo, a(Xo))

-IV T,(xo)l’(Xo)" b(xo, a(Xo)) >- lfl.
Remark. The vector field b is the image of b under the transformation T.
Let u be an admissible control for Xo 0. Then u is not necessarily admissible at

any point x, regardless how close that point is to Xo. The following lemma provides a
way to project it into Mx by changing the cost proportionally to Ix- Xol.

LEMMA 3.2. Assume that (A3)-(AS), (1.1)-(1.4) hold. Then there exist t*>0 and
L> 0 such that for any x 0 and u M there is ft in satisfying

(3.4)

where

IJt*(x, a)-Jt.(x, u) I-<_ L sup [dist (y(x, t, u), 0)]
t[0,t*]

(3.5) Jt.(x, u)= e-tf(y(x, t, u), u( t)) dt.

Proof. In the proof we shall determine t*, sufficiently small. Let to be the first
entrance to 00, i.e.,

to= inf{0< t<= t*, y(x, t, u)O0}
(3.6)

or t* if y(x, t, u) 0 for all -<_ t*.

Let e sup {dist. (y(x, t, u), 0); t [0, t*]}. Define t as follows

(3.7) a( t) u(t)Xto.,o)U(to+k,oo)(t) + a(y(x, to, u))Xtto,,o+k]( t)

where k is to be chosen and a(x) is as in (A3). We claim that y(x, t, ) for t-< t*.
At y(x, to, u) O0 there is a map T satisfying (3.1). Set z(x, t, u)= T(y(x, t, u)) for any
u in M, then z obeys the differential equation

d
z(x, t, u)= (z(x, t, u), u(t))(3.8) d-

where b is as in (3.2). The vector field b is Lipschitz continuous on N=
T(B(y(x, to, u), p)). Moreover, on N it is bounded by K(b) lK(b) and its Lipschitz
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constant L(/7) is no more than 12K(b)+ 12L(b). (Here is as in (A5).) If we choose
t* less than p(K(b))-, then y(x, t, ) lies in B(y(x, to, u),p) for all -< t*. Hence,
z(x, t, if) N for all t-< t* and without loss of generality we assume /7 is Lipschitz
continuous with Lipschitz constant 12K(b)+ 12L(b). To prove the claim, it suffices to
show (z(x, t, t)),->0 on [0, t*]. Consider

(3.9) d/(t) (z(x, + ke, a) z(x, t, u)), for _>- to.
Then

@(t) @(to)+ [b(z(x,s+ke,),u(t)-b(z(x,s,u),u(t))],,ds
tO

(3.10) >- d/(to) L(6)lz(x to+ ke, fi) z(x, to, u)l eL()(s-’o) ds

>= @(to)- K()ke(eL(s)(’-‘)- 1)

>- d/(to)- K()ke(eL(a)(’*-’o)- l) for [to, t*].

Now choose t* less than (L(/7))- In (1 + fll/4K()), where/3 is as in (A3). We have

(3.11) q(t) >= q(to) kefll] for to, t*].

We need an estimate for @(to). To simplify the notation, let bo=
b(z(x, to, u)), a(y(x, to, u)) and to(t)= z(x, to, u)+(t-to)bo. Then, Lemma 3.1 yields
that (bo), >=/31 and hence,

< ill(t- to) for > to.(3.12) to(t),

Using standard O.D.E. estimates, one can obtain

(3.13) Iz(x,t,)-to(t)l<-1/2L()K()(t-to)2 for t->_ to.
Thus

(3.14) z(x, to+ ke, ), >- lke -1/2L()K()(ke)2.

Since y(x, to, u)O0, we have (to) z(x, to+ ke, ),. Substitute (3.14) into (3.11) to get

(3.15) d/( t) >- ke(fll-1/2L()K )ke).

Choose k to be the minimum of fll/2eL()K() and 2 Then for =< t*

(3.16) b(t) >- el sup {[-z(x, t, u),], [0, t*]}.

Hence, z(x, + ke, ), dp( t) + z(x, t, u), >-_ 0 for all to, t*]. One can prove (3.4) by
using the standard estimates.

THEOREM 3.3. Suppose (A3)-(A5), (1.1), (1.2) and (1.4) hold. Then the value
function v is in BUC(O).

Proof. Without loss of generality one can assume f is Lipschitz in x uniformly
with respect to a. If not, we take a sequence f" of Lipschitz continuous functions
converging to f uniformly. Let x, y 0 and Ix-yl < r. For any positive 3, pick a
&optimal control u in , i.e.

(3.17) Jt.(y,u)+e v(y(y,t*,u))<-v(y)+t

where t* is as in Lemma 3.2. Construct tex as in Lemma 3.2, and set e=

sup [dist (y(x, t, u), 0), [0, t*]]. Using standard estimates, one can get e-< Cr for
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some C positive. Thus, we have

(3.18) IJ.(x, u) Jt.(x, )1 <= LCr.
Also the construction of t yields

(3.19)

Also

(3.20)

And

[y(x, t*, u)- y(x, t*, )l <- _.r for some t > 0.

]y(x, t*, fi)-y(y, t*, u)l r+ly(x, t*,u)-y(y, t*, u)l_-< r for some t> 1.

(3.21) ]Jr.(x, a)-Jt.(y, u)lLfr+lJ,.(x, u)-J,.(y, u)l Cr forsome C>0.

Let a,(r)=sup{lv(x)-v(y)l,x, ys#,lx-yl<r} for r>0. At the origin to(0)=
limroto(r). Combine (3.17), (3.20) and (3.21) and use the dynamic programming
principle to obtain

t*v(x) v(y) <= Jr.(x, a) + e- v(y(x, t*,

(3.22) J.(y, u) e v(y(y, t*, u)) +
<=Cr+e-’*to(r)+ forall 3>0.

Hence we have

(3.23) to(r)<=Cr+e-’*to(r) and t> 1.
t*Assume t e- 1 and iterate (3.23) to obtain

to(O) lim to(C-") -< lim Cd -’ e-’*] + e-"’*to(1)
/=0
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