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1. INTRODUCTION 

This paper concerns the existence of classical solutions to the 

nonlinear partial differential equations. 

a a 
(1.1) max { p ( x , t )  - ~ u ( x , t )  - h(x,t), u(x,t) - f(t)} = 0, x d ' ,  t > 0, 

n 

with a forcing term h which is convex i n  the xn-variable. Under 

appropriate smoothness and growth conditions on the data, we prove the 

existence and the uniqueness of polynomially growing, positive, classical 

solutions to (1.1) for every initial condition 

which is also convex i n  the xn-variable. Moreover, we obtain the Lipschitz 
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SONER AND SHREVE 

continuity of the free boundary of the region in which the parabolic equation 

u - A U  - h = 0 holds. t 

The w ~ ' ~  regularity in the spatial variables and the boundedness of 
l o c  

the time derivative was proved by Chow, Menaldi, Robin [6], Menaldi, Robin 

[22] and Menaldi, Taksar [23]. They used control-theoretic techniques along 

with the convexity assumption. Also, the stationary version of (1.1) was 

recently studied by the authors [27], and part of the present analysis closely 

follows 1271. As in [27] our approach to (1.1) is to first solve the obstacle 

problem 

with initial condition 

The convexity assumption on the data enables us to show that 

and we construct u by integrating the above relation. Known regularity 

results for (1.3), ([3],[9],[11]), with several estimates of the free boundary, 

2 1  n yield u E C ' ([R x(0,rn)) (twice continuously differentiable in the spatial 

variables and once continuously differentiable in the time variable). In the 

context of one-dimensional stochastic control the connection (1.5) goes back 

to Bather and Chernoii [2] and has been given probabilistic explanations by 
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A FREE BOUNDARY PROBLEM 375  

Karatzas and Shreve [19], El-Karoui and Karatzas [7], and analytical 

derivations by Karatzas [16], Chow, Menaldi and Robin [6], Menaldi and 

Robin [22]. Without the convexity assumptions, (1.5) is no longer true, and 

in general (1.1) does not have classical solutions. 

The related elliptic problem 

(1.6) max {u(x) - AU(X) - h(x), I Vu(x) I - 1) = 0, 

was studied on a bounded domain by Evans [8] and then by Ishii and Koike 

[Is]. Evans obtained solutions in w21m via penalization and the maximum 
l o c  

principle. In fact this regularity result is sharp in the absence of convexity. 

However, for (1.6) in two dimensions with a convex forcing term h,  the 

authors recently obtained a classical solution [28]. Due to the nonlinearity 

of the constraint in (1.6), the obstacle problem related to it is more 

complicated than (1.3) and techniques in [28] are different from the ones 

employed here and in [27]. 

Equation (1.1) is the dynamic programming equation related to a 

singular stochastic control problem. Briefly, the problem is to optimally 

control an n-dimensional Brownian motion by pushing only along the 

(0,0,..,-1) direction. In this context, the solution to (1.1) and (1.2) is the 

value function for the finite horizon control problem in which h is the 

running cost, g is the terminal cost and, at time t ,  f(t) times the 

displacement caused by the push is equal to its cost. This problem is 

formulated and solved in Section 7. The reader may refer to Shreve [25] for 

an introduction to this kind of control problems. 

In singular stochastic control literature, the spatial c2 regularity of 

the value function has been called the "principle of smooth fit" by Benei, 
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3 76 SONER AND SHREVE 

Shepp and Witsenhausen [ I ] .  It has been instrumental in the analysis of 

several one-dimensional problems [ 7 ] ,  [12] ,  [13] ,  [14] ,  [17] ,  [18] ,  [19] ,  [26]. 

The paper is organized as follows: results related to (1 .3 )  are stated 

in the next section and the Lipschitz continuity and the boundedness of the 

free boundary are obtained in Sections 3 and 4. Section 5 is devoted to the 

constr,uction of a classical solution to (1.1) and its uniqueness is proved in 

Section 6. The related singular stochastic control problem is defined and 

solved in Section 7 .  Finally, we analyze a penalization of (1 .3 )  in the 

Appendix. 

2. AN OBSTACLE PROBLEM 

In this section we study the solutions to equation (1 .3 )  with initial 

data (1 .4) .  Subscripts i and t denote the differentiation with respect to xi 

and t ,  respectively. We assume 

(2 .1)  h,g, and f are three t imes differentiable, non-negative with 

f(t) 2 1 for all t 2 0. Moreover, these junctions, together with 

their derivatives up to  order three, grow at most  polynomially as 

I X I  and t tend to infinity; 

and 

there is  a n  a > 0 such that 
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SINGULAR STOCHASTIC CONTROL 

for every x€Rn, t > 0; and 

for every XER" 

Theorem 2.1 There is a zcnique solution v to (1.3) and (2.4) satisfying 

with suitable positive constants K,m. Henceforth we shall use v to denote 

the solution of (1.3) and (1.4) satisbing (2.4). 

The above regularity result of solutions to (1.3) and (1.4) is now 

standard in the nonlinear partial differential equations literature. A similar 

result for the one phase Stefan problem was obtained by Friedman and 

Kinderlehrer [ll], and a modification of their proof yields the above result. 

Also see [3], 141, [5], [lo], [29], [30]. For the sake of completeness, we give the 

proof in the appendix. To establish notation, we begin the proof here. 

Consider the following penalized version of (1.3) 

The penalization term PC is given by PC(,) = p(r/ t)  for some smooth 
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3 78 

function p satisfying 

SONER AND SHREVE 

Let v t  be the solution to (2.5)' with initial data (1.4). The following 

theorem is proved in the Appendix. 

Theorem 2.2. There are positive constants K,m, independent of c, such 

that vE satisfies (2.4) with these constants. Moreover v' converges to v 

uniformly on bounded sets. 

3. LIPSCHITZ CONTINUITY OF THE FREE BOUNDARY. 

In this section we study the spatial boundary of the region 

We discover, in Section 4, that for fixed (xl,.. , x ~ - ~ )  and t > 0, the region 

d is bounded above in the xn-coordinate. However, this upper bound may 

approach infinity as t tends to zero. We show here that the boundary of $ 

admits a lipschitz continuous parametrization. Our method is to obtain a 

uniform Lipschitz estimate for parametrizations of the boundaries of an 

approximating sequence of regions 
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A FREE BOUNDARY PROBLEM 379 

Lemma 3.1. For E > 0, fhere is a continuously dzffe~entiable jhction 

q' :In-' x (0,m) -, I such that 

Proof. Differentiate (2.5)' with respect to x n  to  obtain 

Since @; is bounded, @; and the initial condition V:(X,O) = gnn(x) are 

non-negative and hnn 2 a > 0 , the maximum principle yields that for each 

t > 0 , vi(x,t) is bounded below by a positive constant, uniformly in x. 

Thus qc(y,t) k inf {xnl ~ ' ( ~ , x ~ , t )  2 f(t)) is finite. Since the boundary of 

dc  in Px(0,m) is the zero level curve of the function v6(x,t) - f(t), the 

differentiability of q' is a direct consequence of the implicit function 

theorem and the strict positivity of v i .  o 

We proceed to obtain a uniform Lipschitz estimate of q'. We need 

several estimates of the derivatives of v'. 

Lemma 3.2. There is a posative constant K, independent of E, such that 

for every x€In,  t > 0, i= l ,  ..., n-1. 

Proof. Differentiate (2.5)' with respect to xi: 
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3 80 SONER AND SHREVE 

€ 
(3.6) ~:~(x,t)+Q(v"x,t) - f(t))v:(x,t) - dvi(x,t) = hni(x,t). 

1 1 Assumption (2.2) yields that I v;(x,0) I = I  gni(x) I < , gnn(x) = , vn(x,O) . 
1 Also, 1 hni(x,t) I < a hnn(x,t). Hence the maximum principle, together with 

(3.4) and (3.6), implies (3.5) with K = l / a  . 

Lanma 3.3. There are positive constants K,m, independent of c, such that 

t 
(3.7) Ivi(x,t) - f'(t)I 3 K ( l + l x ~ ~ ~ )  v:(x,t) 

for every x E [in, t > 0. 

Proof. Theorem 2.2 and assumption (2.1) yield the existence of a positive 

constant C and an integer m > 1 such that 

(3.8) ~v i (x , t )  - ~ ( t )  1 5 et(c+ f 1 x 1 ~ ~ ) .  

For xo E Rn we define an auxiliary function 4 by 

t #(x,t) = t (vf(x,t) -fl( t))  - e ~ x - x ~ l ~ ~ .  

It should be noted that 4 actually depends on xo but this dependence is 

suppressed in the notation. We calculate directly that 

I(x,t) Qt(x,t) + Pi(.  . .) 4(x,t) - ~ 4 ( x , t )  = 

= t [vit(x,t) - ~ v i ( x , t )  + 4 ( .  .)(v;(x,~) - ft( t))]  - t f 
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A FREE BOUNDARY PROBLEM 381 

t + e [-I x-xo 1 2m + 2m(2m+n-2) 1 x-xo I 2(m-1) - p f ( .  6 a )  1 x-xo 1 2 m ~  

where (. - .) denotes vC(x,t) - f(t). Use (3.8),  equation (2.5)' and the 

positivity of p;(- - a )  to obtain 

We estimate the above terms by using the assumption (2.2) and the 

! inequalities 
t 
i 
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382 SONER AND SHREVE 

The latter inequality is obtained by observing that its left-hand side is 
I -1 

maximized over x by x = (1 - 2- zm-1) xo. Hence, we have 

where Cm = C + 22m-1 (m-l)(m-l) ( ~ m + n - 2 ) ~  and 

1 A -(2m-1) Bm = $2 m- - 1) 

Since hnn(x,t) 2 a, the above inequality yields 

Recall that I(x,t) = qj(x,t) + @;( . . ) $(x,t) - ~ # ( x , t ) .  Hence (3.4) shows 
1 that fi(x,t) b $(x,t) - [T + (C,+Bm I x0 1 2m)eT]vi(xlt) satisfies 

The maximum principle now implies 
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A FREE BOUNDARY PROBLEM 

Therefore 

-T Set K = max {B,, max{Te + Cm : T > O}}/a.. Then the above 

inequality implies that 

To prove the reterse inequality we consider the auxiliary function 

and proceed exactly as before. o 

Lemma 3.4. There are positive constants K,m, independent of 6, such that 

i n f  q'(y,t) > - m  
€ > O  

for all y ~ ~ ~ n - l ,  t > 0. 

Proof. Use two characterizations, (3.2) and (3.3) of d E  to  obtain the two 
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384 SONER AND SHREVE 

different expressions for the unit normal vector z6(x,t) at a boundary point 

(x,t) E a a€, 

t z (x,t) = 
(vv' (x, t 1, vf(x,t)  - f ' ( t))  

where for any x = (xl, ... , x,), 

The above identity yields that for any (x,t) E 8 dt, 

and vf (x,t) - f '  ( t)  = - qt( i , t )  vA(x,t). Combine these identities with (3.5) t 
and (3.7) to arrive at (3.11) and (3.12). 

We continue by obtaining a lower bound for qE(y,t). First consider 

the equation 

(3.15) Vt(x,t) - ~ V ( x , t )  = hn(x,t) 
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A FREE BOUNDARY PROBLEM 385 

with i f i t i d  data V(x,O) = gn(x). Since vc(x,t) is a subsolution to the above 

equation, the maximum principle yields that 

Differentiate (3.15) with respect to xn to obtain Vnt(x,t) - AV,(X,~) = 

hnn(x,t) 2 a and Vn(x,O) = gnn(x) > 0. Hence, 

for all x a n ,  t 2 0, and consequently Q(y,t) inf {xn : V(y,xn,t) > f(t)) is 

finite for every ydRn-l, t > 0. However (3.16) yields qc(y,t) 2 Q ( Y , ~ ) .  o 

For a positive integer m, we define qc,m by qclm(y,t)  = 
c,m . min {qc(y,t), m}. The previous lemma shows that for each m, q IS 

locally Lipschitz continuous, uniformly in c. By using a diagonal argument 

we may choose a subsequence, denoted by c again, along which qc'm 

converges to a Lipschitz continuous function qm for each m. Finally let 

q(y,t) be the increasing limit of qm(y,t). This limit may take the value 

+m, but this possibility is ruled out in the next section. Indeed, the local 

boundedness of q proved in Theorem 4.2, together with the local Lipschitz 

continuity of qm, implies local Lipschitz continuity of q on mn-' x (0,m). 

The following "sharper" lower bound for q(y,t) shall be used in 

Section 5. 

Lemma 3.5. For each T > 0, there is a positive constant K ( T )  such that 
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386 SONER AND SHREVE 

where K 0 is as in (3.11). 

Proof. In view of (3.11) and (3.17), it suffices to show that 

inf Q(0,t) > a, 
O<t<T 

for every T > 0. Observe that Q(y,t) is the zero level curve of V - f and 

Vn > 0 on IRn x ( 0 , ~ ) .  Hence by the implicit function theorem, Q is 

continuous on IRnx(0,w). Moreover, due to the assumption (2.3) and the fact 

that V(x,O) = gn(x), 

Hence, lim inf Q(y,t) > -m. 
t +O 

Corollary 3.6. We have 

In particular, q is independent of the subsequence along which the limit is 

taken. 

Proof. It suffices to show that bm = d m, where 
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A FREE BOUNDARY PROBLEM 387 

for every m. Let ( j , i n , f )  E d be given. Since q'im converges to q m 

uniformly on bounded subsets, there are to > 0 and a neighborhood J' of 

(?,in,€) such that 

Therefore vC(x,t) < f(t) and v;(x,t) - nvf(x,t) = hn(x,t) for all (x,t) E X 

and 0 < E < rO. By letting 6 go to zero we obtain that v(x,t) < f(t) and 

vt(x,t) - ~ v ( x , t )  = hn(x,t) for all (x,t) E J'. Differentiating the last 

equation with respect to xn and then using the positivity of hnn and the 

non-negativity of vn , we obtain that vn > 0 on 1. Hence v < f on X 

and consequently ( j,Pn, t ) E dm.  

To prove the reverse inclusion, let (?,in,€) be an element of gm. 

Then v ( j , G , t )  < f(f) and the convergence of v' to v implies that 

fn  < q''m(f,t) for all sufficiently small 6. Letting E go to zero, we 

conclude that (F,i,,f) s closure (d m). Since im is an open set, 

dm C interior (closure ( d m)). But the right-hand side is equal to d m, 

due to the Lipschitz continuity of qm. o 

Remarks 

1. In one space dimension, Van Moerbeke obtained the smoothness of the 

free boundary under quite different structural assumptions 1291, [30]. Van 
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3 88 SONER A N D  SHREVE 

Moerbeke uses an integral equation satisfied by the parametrization of the 

free boundary to obtain local existence, and then he obtains the global result 

by deep stochastic analysis. In the multi-dimensional case it is also possible 

to obtain an integral equation for the parametrization. However it seems to 

be of little use because of its very complicated structure. 

2. In the stationary case [27], the authors proved the smoothness of the free 

boundary by applying theorems of Caffarrelli [5] and Kinderlehrer and 

Nirenberg [20], after its Lipschitz continuity was established. However, the 

results of Section 2 of [5] are not directly applicable to the problem under 

investigation. 

4. AN UPPER BOUND FOR q 

We start by analyzing the zero-level curve of v(x,t) + 1. Let 

(4.1) G(y,t) = inf {xn: v(y,xn,t) 2 -1) 

Because l im V(y,xn,t) = - m (see (3.17)), and 
X -t - m  n 

v(x,t) = l i m  vc(x,t) 5 V(x,t) 
€1 0 

(see (3.16)), we know that G(y,t) > - m. 

Lemma 4.1. For T > 0 there is a constant C(T)  such that 

(4.2) i ( ~ > t )  l C(T) ( l Y l + 1) 

for all y ~ ~ n - l  and t6 [0,  T j .  
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A FREE BOUNDARY PROBLEM 389 

Proof. Consider the linear equation with initial condition 

where -(a)- 4 min {a,O). Since f(t) 2 1 and Y(x,t) 5 0, Y is a 

subsolution to (2.5)' for each 6 > 0. Hence Lemma 8.1 of the appendix 

yields that Y(x,t) 5 vC(x,t) for every c > 0 and therefore 

Moreover, 

Also the assumption (2.2) yields that 

for every ydRn-l and t > 0. A simple application of the monotone 

convergence theorem yields that 1 i m  Y(y,x,,t) = 0 for every y dRn-' 
X + m  n 

and t 2 0. This together with (4.4) implies that q(y,t) < m. We claim that 

there is C(T), such that 
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390 SONER AND SHREVE 

Indeed, vn(y,h(y,t), t )  > 0 for ysRn-l and t > 0, becausein a 

neighborhood of (y,i(y,t),t) we have vnt - AV = h n nn > 0. By the 

implicit function theorem, ij is smooth, in particular continuous, on 

Rn-' x (0,m). We also have the inequality at the initial point 

lim sup ij(0,t) < sup {xndR: gn(O,xn) 5 -1) < m. 
t 10 

The above inequality together with the continuity of 6 on the open domain 
p-1 ~(0,m) is enough to arrive at (4.5). 

Proceeding exactly as in the proof of Lemma 3.4, we can show that 

Now let C(T) = max {c(T), C). 

Theorem 4.2. The function q(y,t) is locally bounded in (IJ,~) E Rn-I x (0,m). 

Proof. Fix T > 0 and then chose a positive constant C 2 1 satisfying 

Define 

A k(y,t) = inf {xn : hn(y,xn,t) - f'(t) 1 0) 
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A FREE BOUNDARY PROBLEM 

and note that because hnn > a > 0, k(0,t) is bou nded uniformly in 

t E [O,T] and k is differentiable. From (2.2) and the argument used to 

prove (3.11), we can show that for some constant C, which also satisfies 

(4.6), (4.7), we have 

k(y,t) < C(( y 1 + l )  V(y, t )~  [O,T]. 

It follows that 

(4.8) hn(y,xn,t) - f '(t) 2 ff [xn - C( l Y l +l)l + hn(y, C( l Y l +I ) ,  t )  - f ' ( t )  

> ff x - ( 1  y 1 v y d - ' ,  xn > C(l y 1 + l ) ,  t E [O,T]. - 

It is elementary to construct a smooth function r] satisfying 

We continue by constructing a subsolution to (1.3). First consider the 

following equation with arbitrary constants K > /I' 2 0, and C as in 

(4.6)-(4.10): 

y i th  boundary condition #(O) = 0. An explicit formula for the solution # 

is 
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392 SONER AND SHREVE 

where ro is the solution to the transcendental equation 

The following properties of 4 rather than the explicit formula for it 

will be used in the analysis: 

(4.13) (i) q5,q5/  are Lipschitz continuous, 

Set 

(4.14) (i) a * = A 1 - f(0) + max f(t), 
O <  t < T  

(4.14) (ii) K 4 2(f(0)+2)  e-T T-l, 

(4.14) (iii) P K/2, 

where jT = (xl,.. , x,..~) when x = (xl, ... , xn). Finally define 
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A FREE BOUNDARY PROBLEM 

n 4 {(x,t) : o < t s T , R(X) > o 

and define w on TI by 

where 4 is as in (4.12) with K and /3 given in (4.14). 

We claim that w is a subsolution of (1.3) on the region n .  Indeed, 

using (4.15) and (4.11), we calculate that 

Using (4.13) (ii) with (4.10), then (4.11) and (4.14), we arrive at, 

Also, for (x,t) E n ,  (4.8) and (4.9) imply that 

Substitute the above inequality into (4.16) to  obtain D
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394 SONER AND SHREVE 

This shows that w is a subsolution of (1.3) on n. 
We now show that w 5 v on the parabolic boundary of n. Due to 

(4.71, 

From the definition of R, we see that R(x) = R(f,O) + xn for all x@. In 

particular, (y,-R(y,O)) E Kl for each y ~ ~ n - l .  Now (4.1), (4.6), (4.9) and 

the negativity of vn imply that 

In the last inequality we have used the fact that 

Taken together, (4.19) and (4.20) imply that w < v on the parabolic 
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A FREE BOUNDARY PROBLEM 

boundary of fl. Hence the m 

w(x,t) < v(x,t), V(x,t) E R. 

Recall that q5(rO) = P. 

(y,r0 - R(Y,O),T) gives 

395 

mimum principle, Lemma 8.5, yields that 

Hence the above inequality used at the point 

Hence v(y,ro - R(y,O),T) = f(T), and consequently q(y,T) < ro - R(y ,O) 

Remark. A similar result was obtained by Karatzas [17], Section 7, in the 
2 

one-dimensional special case of h(x,t) = x . 

5. c2J REGULARITY OF n 

Let U(x,t), V(x,t) be the polynomially growing solutions of 

with initial conditions 

(5.3) U(x,O) = g(x), xmn. 

(5.4) V(X,O) = g,(x), x a n .  
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SONER AND SHREVE 

For x a n  and t 0, define u(x,t) by 

where as in the previous sections Z = ( x l ,  .., x ) and v is the solution of n-1 
(1.3) and (1.4). The integrability of v-V , required by (5.5), is a part of the 

following theorem. 

Theorem 5.1. The finction u(x,t) is welddefined, twice continuously 

differentiable in the spatial variables and once continuously differentiable in 

the t-variable. Moreover, it is a solution to (1.1) and (1.2). 

We need the following lemma in the proof of the above theorem. For 
* 

positive constants K ,T, set 

Lemma 5.2. Suppose that a continuous function cp, defined on all of 
* * 

[Rnx[O,~), satisfies the following with suitable positive constants K ,C , T 

and m _> 1: 
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A FREE BOUNDARY PROBLEM 

(5.6) (iii) p(x,0) = 0, VXELR", 

(5.6) (iv) I P ( X , ~ ) I  r C * ( I X I ~ ~  +I), v(x,t) E w*,T). 

Then, for every y ~ ~ n - l ,  te[O,T], the findion xn H p(y,xn,t) is absolutely 

integrable on any interval of the form (- m, a]. 

Proof. Set 

X [ e x ~ ( x ~ + ~ ~  E 
Jc{l,. . ,n-I} ~ E J  

We directly calculate that 
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3 98 SONER AND SHREVE 

* * 
where (...) = xn + K C yi - K 2: yi. Since both 1 y 1 2(m-1) and 

i€J  i t J  

I Y I 2m-1 are bounded from above by 1 y 1 2m + 1, the definition of A yields 

that the above expression is non-negative. Hence 

Moreover, using the definition of II, and (5.6) (iv) we obtain 

2 C* [ ( l + ( ~ * ) ~ ( n - l ) ) ~ ( l  y 1 2m + l ) ]  

for all y ~ ~ n - l ,  t E[O,T]. Also, +(x,O) ) 0 = ( dx,O) 1 .  Since $ is growing 
* 

at most polynomially on n(K ,T) and it dominates 191 on the parabolic 
* 

boundary of 62(K ,T), the maximum principle yields that 

Proof of Theorem 5.1. 

Fix T > 0 and let K(T) be the constant appearing in (3.18) 
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A FREE BOUNDARY PROBLEM 

Define 

dy ,xn , t )  = v(y,xn - WT),  t )  - V(y,xn-K(T), t). 

Due to the estimate (3.18), equations (1.3) and (5.2), boundary conditions 

(1.4) and (5.4), and the polynomial growth estimate (2.4), p satisfies the 

hypothesis of the previous lemma. Hence u(x,t) is well-defined. Similarly 

p , p, p . satisfy the hypothesis of Lemma 5.2 for each i , j  = 1, . , n. Hence t 1 1J 

In view of (5.1), (5.2), we have 

Now using (1.3) and the fact that un = v, we conclude that u is a solution 

of (1.1). Also u satisfies (1.2). 

To complete the proof of the theorem, it suffices to  show that the 

integral terms in (5.8) and (5.9) are continuous in (x,t). For b > 0, 

approximate the integral in (5.8) by 
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SONER AND SHREVE 

On xn > q(?,t] , vt = f ' ,  and hence the second integral is continuous. 

The continuity of the first integral follows from the parabolic regularity. 

6 Hence F is continuous for each positive 6 and 

6 Therefore, F + Ut converges to ut uniformly on bounded subsets, and ut 

is a continuous function. The continuity of u.. is proved similarly. o 
'J 

6.  UNIQUENESS 

We start with a comparison result. This proof is related to the 

uniqueness proof of Evans [B]. 

2,l  n Ikmma 6.1. Suppose that U, u E C ([A x(0,m)) fl c ([Anx[O,m)) are sub and 

supersolutions to ( 1 . 1 )  and (1.2). Further assume that for any T > 0 there 
* 

are positive constants C ,m such that for all t €[O,T], 
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A FREE BOUNDARY PROBLEM 

and 

- * 
(6.2) un(x,t) < f(t)  whenever xn < - C (1 + 1x1 ) 

Then 

(6.3) u(x,t) < K(x,t) . 

Proof. Fix T > 0. Consider the auxiliary function 

where 6 > 0 is a small parameter, 

1 2  <(I) A e l r /  - / r l  - T I  , Vr€(-m, a), 

and 7 is a smooth function satisfying 

with the constant C-' appearing in the hypothesis of the lemma. Since ( is 
6 exponentially growing, q5 achieves its maximum over R n x [ O , ~ ] ,  say at 

* * * 6 * *  
(x ,t ). If t = 0, then I$ (x ,t ) < 0. Otherwise, 
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402 SONER AND SHREVE 

* * * 
Since gn 5 f and ('(r) 2 0 for r 2 0, we have s ( x  ,t ) < f(t ) if 
* * * * * * 

x q * ) .  But if xn < -q(x ), Gn(x ,t ) < f(t ) due to (6.2) and 
* * 

(6.5)(i). Hence at (x ,t ), iin < f and 

Then using (6.6) and the fact that u is a subsolution we obtain that 

where 

6 A 
K (x) = 6 B (" ( h i )  + 6 (1+ 1 vq(2) / 2, 1'' (6 [xn+q(i)]) 

i = l  

Using the inequalities (6.5)(ii), [ (' I <_ 5c and (" <_ 5<, we estimate 

~ ~ ( 4  by 

for some suitable constant C > 0. Substitute the above estima,ts into (6.7) 
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A FREE BOUNDARY PROBLEM 

to obtain 

Send 6 to zero to  arrive at (6.3). o 

Corollary 6.2. The function u defined by (5.5) is non-negative and 

polynomially growing. 

Proof. The fact that u is polynomially growing follows from the 

polynomial growth of U,V and v. Let u : 0, and ii = u in the previous 

lemma. Since g,h 2 0, - u is a subsolution. Also, Lemma 3.5 implies that 
- - 
u = u satisfies (6.2). Hence, u = u 2 u = 0. o 

Theorem 6.3. There is a unique polynomiaUy growing, non-negative, 

(classical) solution of (1.1) and (1.2), and it is defined by (5.5). 

Proof. In view of the previous results it suffices t o  show that any 

polynomially growing, non-negative solution of (1.1) and (1.2) satisfies (6.2). 

Indeed let u(x,t) be such a solution and for ytP-l, t 0, define xn(y,t) 

and P ( Y , ~ )  by 

A where G(x,t) = ut(x,t) - bu(x,t) - h(x,t). We claim that xn(y,t) ? p(y,t) 

for all y ~ l ~ n - l  and t 2 0. Indeed, if this inequality does not hold for s.ome 
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4 04 SONER AND SHREVE 

* * * * *  * 
y ,t , then there is 6 > 0 such that G(y , p(y ,t ) - 6, t ) < 0. By the 

* * *  * 
continuity of G, there is a neighborhood of (y , p(y ,t ) - 6, t ) on which 

G is strictly negative. Hence on this neighborhood un = f, A U ~  = 0 and 

The above inequality and the argument leading to it imply that 
* * * * * * * 

G(y ,xn,t ) < 0 and un(y ,xn,t ) = f(t ) whenever xn 5 p(y ,t ) - 6. But 

this contradicts the positivity of u. Hence xn(y,t) 2 p(y,t). The 

assumption (2.2) yields that p(y,t) 2 --C(T)(l y 1 +I), vy€lRn-l, t€[O,T] for a 

suitable constant C(T). This shows the existence of a constant C(T) such 

that ut(x,t) - ~ u ( x , t )  - h(x,t) = 0 whenever xn 5 - C(T) (1+ 1x1). But on 

the set where this equality holds, unn > 0 and un f, so in fact un < f 

whenever xn < - C(T)(l+ 1x1). u 

7. THE SINGULAR STOCHASTIC CONTROL PROBLEM. 
1 Consider the stochastic process Xs = (X8, ..., x:) EP defined by 

Xs = x +p Ws - ((s) en, s 2 0, 

where x d  is the initial condition, Ws = (w:,. ..,w:) E lRn is an 

n-dimensional standard Brownian motion , en = (0,0, ..., l)€lRn, [(s) is the 

control process, which is non-decreasing, left-continuous, adapted to  the 

augmentation by null sets of the filtration generated by W, with ((0) = 0. 
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A FREE BOUNDARY PROBLEM 405 

For a given initial condition x a n  and horizon t > 0, the control 

problem is to select a control process so as to minimize the cost functional 

* 
Finally define the value function u by 

* 
u (x,t) i n f  J(x,t,t(.)). 

C(*) 

* 
THEOREM 7.1. The value finction u (x,t) is the unique, non-negative, 

polynomially growing solution of ( l . l ) ,  (1.2). Moreover, the infimum in (7.1) 
* 

is achieved by the left-continuous process 5 given by 

where q is as in Corollary 9.6. 

Proof. Let u be the solution to (1.1), (1.2), and let U be as defined in 

Section 5. We develop some preparatory results. Define F(x,t) 4 U(x,t) - 
* 

u (x,t), and note that for 6 2 0, D
ow
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SONER AND SHREVE 

> inf [(U(x,t) - J(x,t,((.))) - ( ~ ( x - k n , t )  - ~(x-kn,t,((.)))] 
- (( -1  

C 

= inf E{I [ h ( x + P  Ws,t-s) - h ( x + P  Ws - ((s) e"Pt-1 
( )  0 

- h ( x + P  W, - 6 en,t-s) + h(x+ p Ws - ((s) en - 6 en,t--s)]ds 

due to the convexity of h and g. Thus, F(x,t) is nondecreasing in the xn - 

variable. Note also, from It& lemma, that with ( an arbitrary control 

process and rm inf {a 2 0: I Xs I > m} we have 

+ E I: (u(X,,t-e)- u(xs+,t+)- un(xs,t-s)[t(s+)- ((~11) 
O<s<thrm 

+ E u(XtAT,, t - tArm). 

Using (1.1), (1.2) and the convexity of u in the xn- variable, we obtain 

from (7.3) 
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A FREE BOUNDARY PROBLEM 

tArm 
(7.4) u(x,t) 5 E{S [h(Xs,t+)ds + f(t-s)d((s)] + g(Xt)} 

0 

+ E {(u(Xr , t - ~ ~ )  - g (XtN xir < t}l> 
m m 

where xA denotes the indicator of the set A. If we take ( 2 0, then 

Xt = x + p Wt and (7.4) implies 

t Arm 
(7.5) u(x,t) 5 1 i m  ~ { j  h(x + CZ Ws, t s )ds  + g(x +P Wt)} 

mTm 0 

t 
= E {I h(x + p Ws,t-s)ds + g(x + p Wt)} = U(x,t). 

0 

Now let an arbitrary control process ( be given. We shall show that 

and so we assume without loss of generality that J(x,t,((.)) < m. This , 

implies that 

from which we have 
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t 
r 1 i m E l (h(Xs,t-s)ds + f(t-s)dt(s)) = 0. 

m-.m thrm 

From (7.4), (7.5) and the definition of J(x,t,((.)), we have 

and (7.6) will follow from (7.7) provided we show 

(7.10) lim SUP E [F(Xr ,t-rm) X i T  < tl] 5 0. 
m+m m m 

Recalling that F(x,t) is nondecreasing in the xn- variable, we may write 

lim sup EIF(X ,t-'m)x{rm< ql 
m-tn 'rn 

m* m 
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A FREE BOUNDARY PROBLEM 

< lim sup E[U(x + W ,t-rm) q, < tl] = 0 - 
m-m 'm m 

because U grows polynomially and 7, f t .  This completes the proof of 

(7.6) for arbitrary (, from which we immediately conclude that u(x,t) I 
* 

u (x,t). 
* 

To prove the reverse inequality, let ((.) be the control process 
* 

defined in the statement of the theorem and let X.  be the state process 
* 

corresponding to it. The following follows from the definition of E : 

* 
(7.11) (i) (Xs, t s )  E 9 for all s E (O,t], 

* * 
(7.11) (ii) X . ,  ( (.) are continuous on (O,t], 

* 
Using (7.11) in (7.2) we arrive at u(x,t) = J(x,t,( (.)). 0 

8. APPENDIX 

For c > 0, there is a smooth, polynomially growing, positive solution 

v' to (2.5)' and (1.4). Such a solution is constructed as the limit of 

solutions to a sequence of boundary-value problems. See Sections 5.6 and 

5.8 in Ladyzenskaya et al. [21], especially Remark 8.2 on page 496. Also, the 

details of such an approximation for an elliptic problem are given in the 

Appendix of [28]. 
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SONER AND SHREVE 

The results of this section are either known or are obtained by slight 

modification of the proofs of known results. The reader may refer to [3], [4], 

151, [6], [a], [9], [lo], [ l l ] ,  [22], [23]. However, none of these references 

provides the results we need under precisely the conditions of our model. 

Our analysis is closely related to the one in Evans [a], especially the proofs of 

Lemma 8.3 and 8.4 below. We start with a comparison result for equation 

(2.5)'. 

lemma 8.1 Suppose that 1, 7 c c2j1 (LRnx(O,m)) f l  c ( o I ~ ~ [ o , ~ ) )  are 

polynomially growing sub and supersolutions to (2.5)' ,  respectively. Then, for 

all (x,t) an x [Op), 

- 
(8.1) v(x,t) - v(x,t) j et sup (V(Z,O) - V(Z,O))+ 

ZER" 

Proof. Since 1 and ii are polynomially growing, for each 6 > 0 there is 

m 2 1 such that the function 

* * * 
achieves its maximum on IRnx[O,m) at some point (x ,t ). If t = 0, then 

* 
(8.1) holds, so we may assume that t > 0. Then 
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A FREE BOUNDARY PROBLEM 411 

* 2(m-l) - 1;12ml. + 6 [2m(2m+n-2) I x I 

Using the inequality (3.9) we obtain 

6 * *  where Km d 2(2m+n-2)m (2m-2)m-1. We claim that ) (x ,t ) 6 6Xm. 

6 * *  Indeed, if 4 (x ,t ) is negative this inequality follows trivially. If 
6 * *  * * * * 

) (x , t  ) is non-negative then 7(x ,t ) 6 ~ ( x  ,t ) and the claimed 

inequality follows from (8.2) and the monotonicity of BE.  Hence, for every 

( x , t ) ~ W ~ , m ) ,  

Let 6 go to zero to complete the proof. 

Lemma 8.2. There are positive constants K,m, independent of 6 ,  such that 

Proof. Let V be the polynomially growing solution of (5.2) and (5.4). 

Then, V is a supersolution to (2.5)' and Lemma 8.1 yields that 
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SONER AND SHREVE 

vc(x,t) V(x,t), vx€iRn, t ) 0, c > 0. For the lower bound, let - V(x,t) be the 

non-negative, polynomially growing solution to (4.3). Then, 1 is a 

subsolution t o  (2.5)' and v'(x,t) ) - V(x,t), vx€iRn, t ) 0, c 3 0. 

To obtain the spatial derivative estimate, fix a unit vector v E R ~ .  

Set w6(x,t) = vvc(x,t).v. Differentiate (2.5)' to obtain 

with initial condition wf(x,O) = Vgn(x).v. Consider the equation 

Wt(x,t) - nW(x,t) = (Vhn(x,t) I ,  with initial condition W(x,O) = I Vg,(x) 1 .  
Then W 2 0, and the nonnegativity of implies that W is a supersolution 

to the linear equation (8.4)'. Hence, the maximum principle yields 

w' (x,t) <_ W(x,t) for all unit vectors v and consequently I vvc(x,t) I <_ 

W(x,t), vx€xsln, t 2 0, r > 0. Finally, set zr(x,t) = v;(x,t) - f'(t). Then, 

(2.5)' implies that ' 

with initial condition zc(x,O) = ngn(x) + hn(x,O) - f'(0). This equality 

follows from (recall (2.3)) 

Let Z be the unique polynomially growing solution to Zt(x,t) - ~ Z ( x , t )  = 

I hnt(x,t) - f M  (t)  / with initial condition Z(x,O) = I ngn(x) + hn(x,O) - 

f'(0)I. Then, Z, -Z are super and subsolutions to (8.5)', respectively. 
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A FREE BOUNDARY PROBLEM 

Hence the maximum principle yields that 

Lemma 8.3. There are positive constants K,m, independent of c, such that 

for all xdRn, t 2 0 and unit vectors v an. 

Proof. Differentiate (2.5)' twice: 

The initial condition is 

Let W(x,t) be the unique polynomially growing solution to Wt(x,t) - 

aW(x,t) = I hnuV(x,t) / with initial conditon W(x,O) = I gnVv(x) 1 .  Then 

W is a supersolution to 

D
ow

nl
oa

de
d 

by
 [

E
T

H
 Z

ur
ic

h]
 a

t 0
2:

40
 1

1 
Ju

ne
 2

01
2 



414 SONER AND SHREVE 

Lemma 8.4 There are positive constants K,m, independent of c, such that 

Proof. Let q be a smooth cut-off function satisfying 

(8.10) (ii) )I E crn(fRn), 

(8.10) (iii) q(x) = 1, v l x (  < 1, 

(8.10) (iv) q(x) = 0, Vlxl 1 2 .  

For R > 0 set 

R * *  Since we are trying to establish an upper bound for q5 (x ,t ), we may 

R * *  assume that 4 (x ,t ) > 1, which implies that 

The construction of PC (see (2.6)) yields that 
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A FREE BOUNDARY PROBLEM 

(8.11) (i) PC(r E 1 = 7 r' -1, 

1 (8.11) (ii) p;(r') = 7' 8" (r') = 0, 
i 

r 

* * I 
€ 4  c * * where r - v (x ,t ) - f(t ). We have t > 0 because r' > 0, and 1 

equation (2.5)' and (8.11) yield 

* * 
Since I x I 5 2R and t < T,  assumption (2.2) and the estimate (8.3) imply 

i 
the existence of positive constants K, m such that 

Hence for any x€IRn, T > 0, 
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416 SONER AND SHREVE 

~ ~ ( v ' ( x , T )  -f(T)) = m l x l ( x , ~ )  5 $IXl(x*,t*) < K (1 + 1 x 1 ~ ~  + TZm). 

We obtain (8.9) after observing that AV' = vr  + hn + Pa(v'(x,t) - f(t)). 

We conclude by proving a comparison result for equation (1.3). A 

direct consequence of it, with fl = iRn, is the uniqueness of the polynomially 

growing solution to  (1.3) and (1.4). The following generality is needed in 

Section 4. 

Let n be a (possibly unbounded) nonempty domain in iRn. 

Lemma 8.5 Suppose that v, 7 satisfy the estimate (2.4) andare almost - 
evevwhere sub and supersolutions to (1.3) and (1.4) on fl x [O,m). Moreover 

cssume that 1 5  7 on Bnx[O,m). Then 1 < 7 on fl x [O,m). 

Proof. We regularize v and 7, f i s t .  Let t be a Cm, non-negative - 
function with the properties, 

For r > 0, set Xr  {(x,t) E x [ ~ p ) :  distance (x,BR) > a) ,  and for 

(x,t) E C E ,  define 
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A FREE BOUNDARY PROBLEM 41 7 

hi(x,t)  J hn(x-cy, t-6s) E(y,s) dy ds. 

I s l + l ~ l s l  

It is well known that - v' and V ' are infinitely differentiable, and converge 

to 1 and V, respectively, as c tends to zero. Moreover, is a 

subsolution to  

and 7 ' is a supersolution to a related equation (8.15), which we now 

derive. 

Let G be a compact subset of 0 such that G x 16 ,m) c C'. For 

T > 0, set 

Now suppose that 

for some (x0,t0) E G x [€,TI. Then the definitions of 7 ' and a (G,E,T) 

imply that V(x,t) c f(t) whenever I x-xol + I t-to 1 < 6 , and consequently 
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418 SONER AND SHREVE 

& v (x,t) - n ~ ( x , t )  1 hn(x,t) a.e. lx-x0l + 1 t-to[ 5 6 .  

Multiplying the above inequality by ( and integrating, we obtain 

(8.14) a a V 6  (x0,to) - A  7 '(xo,to) 1 h i  (xO,tO). 

Recall that we assumed (8.13) to  arrive at (8.14). Hence, 

a - €  (8.15) m a d a  v (x,t)- AV '(x,t)- h i  (x,t), 7 '(x,t) -(f(t)- E(~(G,E,T))}L 0 

V (x,t) E G x[c,T]. 

It is not difficult to construct a Cm function q satisfying 

(8.16) (i) 
4 x 1  

0 < d x )  5 e V x E R", 

(8.16) (ii) IVV(X)I + I A V ( X ) ~  5 3 V(X) V X  E [Rn. 

In fact, a mollification of $( 1 x 1 ) will work, where 

Consider the auxiliary function 
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A FREE BOUNDARY PROBLEM 

Since 1 and f are polynomially growing, cp achieves its maximum over 

a x  [Op) at some (x0,t0). If to = 0 or xo E %I, then 

from which follows 1 < f. We assume therefore that xo E fl and to > 0. 

For r > 0, 6 2 0, define the smooth function 

1 Set ro = minjdistance (xo, %I), to}. Then for fixed 6 > 0, there is an 
* * 

s E (O,ro) such that V r E (0,r ), there exist (x,,t ,), depending on 6, and 

satisfying Ix,-xol + I tr-to/ < to, 

* 
Note that (xr,t r) E E c BE for all r E ( 0 , ~ ~ ) .  Hence, for all r E (0,a ), 

€0 

where G = {x : Ix-xo/ < rO} and T = to + rO. 

Continuing to hold 6 fixed, we let E 1 0 along a subsequence so that 
* * * * 

(xr,t ,) converges to a limit (x ,t ) satisfying Ix -xO I + ( t -tO1 5 rO. But 
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420 SONER AND SHREVE 

* * * 2 * 2  
ID(x ,t )-6(1x -xOI t It -tOl ) = limp'16(xc,tE) 

€1 0 

* * 
SO x = xo, t = t 0' It follows that l i m  (xt,tc) = (x0,t0), where the limit 

* €1 0 
is taken over all 6 E ( 0 , ~  ). 

If Y ' ( X ~ , ~  €) 2 f(t t )  - ea(G,c,T), then (8.18) implies that 

vc16(x,,t,) ra(G,r,T)q(xE) + fC(tc) -f(tE). Letting first e 1 0 and then 

6 1 0, we obtain (8.17) and conclude as before that y 5 V. 

It remains to examine the case 

- 
(8.20) v '(xc,tf) < f ( t f )  - c a(G, c ,  T). 

Because has a local maximum at (xc,t,), we have 

€ Vrltx,) -2[V y (x,, t J  - v v ,(x,, tc)]. } + 26(n+to - t,) 
7 x c  
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A FREE BOUNDARY PROBLEM 

where we have used (8.18) - (8.20) to obtain the last inequality. Also, 

€ 6 (8.22) 0 = V cp ' (xc,tc) . V7(xc) 

-20t 
= e n(x6) { [V xyr(xE, t J  - v 7 '(xc, tJl V n(x,) 

Substitution of (8.22) into (8.21) allows us to eliminate the V - V 7 ' 
term in the latter equation. We may then invoke the bound (8.16)(ii) to 

obtain 

Letting first 6 1 0 and then 6 1 0 again yields (8.17). n 
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4 22 SONER AND SHREVE 

Proofs of Theorem 2.1 and 2.2. 

Estimates (8.6) and (8.9) imply the second-derivative estimate (2.4) 

for v', and this estimate is uniform in c .  This, together with (8.3), gives 

(2.4). Using this estimate we choose a subsequence, denoted by E again, 

such that v', VV' converge uniformly on bounded subsets. Let v be the 

limit; then v also satisfies (2.4). Moreover, using the weak formulation of 

(2.5)', we conclude that the limit v is a solution to (1.3), and trivially to 

(1.4). Suppose 7 is another point of the sequence vt  as E tends to zero. 

Then 7 satisfies (1.3), (1.4) and (2.4). Since there is only one function 

(recall Lemma 8.5 with n = IR") satisfying (1.3), (1.4) and (2.4), v = v. 

Hence v' converges to the unique solution v on the whole sequence. o 
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