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A VISCOSITY SOLUTION APPROACH TO THE ASYMPTOTIC 
ANALYSIS OF QUEUEING SYSTEMS 

BY PAUL Dupuis,1 HITOSHI ISHII2 AND H. METt SONER3 

University of Massachusetts, Chuo University 
and Carnegie Mellon University 

We consider a system of several interconnected queues (with a single class 
of customers) and model the state (Xt) of the system as a jump Markov 
process. The problem of interest is to estimate the large deviations behavior 
of the rescaled system Xt = eXt/s, corresponding to large time and large 
excursions of the original (unscaled) system. The techniques employed are 
those of the theory of viscosity solutions to Hamilton-Jacobi equations. 
From the point of view of large deviation theory, the interesting new problem 
here is the treatment of the process when one or more of the queues are 
nearly empty, since an abrupt change in the jump measure occurs. From the 
point of view of viscosity solutions, the discontinuity of the jump measure 
leads to nonlinear boundary conditions on domains with corners for the 
associated partial differential equations. Much of the paper is devoted to 
proving uniqueness of viscosity solutions for these equations, and these 
sections are of independent interest. While our use of test functions in 
proving the uniqueness is an adaptation of the usual technique, the construc- 
tion of the test functions themselves via the Legendre transform is new. We 
obtain a representation for the solution of the equation in terms of a 
nonstandard optimal control problem, which suggests the correct integrand in 
the large deviation "rate" functional. Since it is the treatment of the effects 
due to the "boundaries" that is novel, we devote the majority of the paper to 
the detailed development of a simple two-dimensional system that exhibits 
all the essential new features. However, the arguments may be applied to 
nueueing systems that are considerably more general, and we attempt to 
indicate this generality as well. 

1. Introduction. In this paper we consider an asymptotic analysis of a 
queueing system. Suppose the "state" of the queueing system at time t is given 
by the n-dimensional vector Xt E (Z+)n, where Z+= {O, 1, 2, ... }. For small E, 
the scaling of interest here is given by Xt[ = eXtl/, corresponding to large time 
and large excursions. We shall assume that the original process X. is modelled as 
a jump Markov process. Hence the rescaled process Xf is also a jump Markov 
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process, with state space given by Se = {y E R': y/e E (Z+))}. 
The problem we are interested in concerns the estimation of probabilities of 

certain rare events involving the original (unscaled) system. For example, take 
n = 2 and consider the event 

(1.1) A- = {xt + yt ? M/E for some 0 < t < T/E, given x0 = x/E, Yo = y/E}, 

where M, T are positive real numbers and Xt = (xt, yt). In the rescaled system 
this event is given by 

(1.2) {Xt + yt[ 2 M for some 0 < t < T, given =x, yJ = y}. 

The results of this paper give asymptotic (e, I0) estimates of P(A6) of the form 
exp((-I(x, y) + O(1))/E), where the 0(1) term converges to zero uniformly for 
(x, y) in compact subsets of {(x, y): x ? 0, y ? 0, x + y < M} and where 
I(x, y) = u(x, y, 0), where u is the value function of a nonstandard deterministic 
optimal control problem. The formulation of this control problem can be found 
in Section 3. 

The problem we have described is one of estimating the probability of an 
event corresponding to a large deviation of the scaled queueing system. In the 
general theory of large deviations for stochastic dynamical systems, one is given 
a process X/, defined for 0 < t < T, with sample paths living in some space D 
and is asked to obtain a family of functionals S(x,* ): D [0, oo] such that (in 
addition to other properties) 

for any open set A c D, 
(1.3) lim inf E In Px(X-e A) 2- inf S(x, ), 

e0 IeA 

for any closed set G c D, 
(1.4) lim sup, In Px(X-e G) < - inf S(x,O), 

4 0 0DEG 

where Px denotes the probability given X0 = x. We refer to Varadhan [27] and 
Stroock [26] for the precise properties required of S. The problem we are trying 
to solve is a special case of the full large deviations problem as described above, 
since we are interested in obtaining "rough" asymptotics of Px(X! E A) [as 
given by (1.3) and (1.4)] only for a particular class of sets A. 

The techniques employed in this paper are those of the theory of viscosity 
solutions to Hamilton-Jacobi equations. The application of such methods to 
problems concerning large deviations originated with the work of Evans and 
Ishii [8]. Further work in this area may be found in [1], [2], [9], [11], [12], [13], 
[17] and [20]. For a general introduction to problems concerning large deviations 
of dynamical systems, the reader is referred to the book of Freidlin and Wentzell 
[14], where probabilistic (as opposed to analytical) techniques are employed. 
An example of how probabilistic methods may be used to estimate escape 
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FIG. 1. 

probabilities is in [7]. Also, in [18] and [19] some formal formulae were obtained 
for problems similar to the one described here and applications were discussed in 
[23] and [28]. 

The new features involved in developing a large deviations theory for pro- 
cesses of the type that arise from queueing systems result from the "boundaries" 
of the system. For simplicity consider a system of two queues (xt, yt) in which 
interarrival and service times are constants and for which the relationships 
between the queues are as depicted in Figure 1. Define the resealed system 
(xi, yt/) = e(xt/E, Yt/E). If both x and y are strictly positive, then the conditional 
statistics of ((xe+^, yte?) - (xe, yt[)) given (xt, yt[) = (x, y) are roughly indepen- 
dent of (x, y). However, as x A y -> 0 (one or both queues empty) there is an 
abrupt change in the statistics of the small time increment, since the associated 
jump measure suffers a discontinuity. As we will see, the nature of the stochastic 
process we deal with is such that this transition in the jump measure leads to a 
nonlinear boundary condition for the associated partial differential equation 
(PDE). 

Since it is the treatment of the effects due to the "boundaries" that is novel, 
we devote the majority of the paper to the detailed development of a simple 
two-dimensional system that exhibits the essential new features. However, the 
arguments may be applied to queueing systems whose structure (routing schemes, 
etc.) is quite general and we attempt to indicate this generality as well. 

The outline of the paper is as follows. In Section 2, we define the logarithmic 
transformation of the probability of interest and show that it converges to a 
viscosity solution of an associated Hamilton-Jacobi equation, as E tends to zero. 
In Section 3, we obtain a representation for the solution of this equation in terms 
of the value function of a certain nonstandard optimal control problem. This 
suggests the form of the functional that would be correct if (1.3) and (1.4) were to 
hold. Sections 4, 5 and 6 prove the uniqueness of viscosity solutions satisfying a 
nonlinear boundary condition, which ensures that our two representations are, in 
fact, the same. These sections are of independent interest. We conclude in 
Section 7 with a discussion of extensions. In particular, Section 7.1.2 contains a 
summary of the main results of the paper, written for a system of interconnected 
queues. The Appendix includes a brief discussion of a weaker formulation of the 
PDE. 
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2. An example. We return our attention to the queueing system depicted in 
Figure 1 and consider the problem of determining the limiting behavior of 

(2.1) ue(x, y, t) = -En P(xe + ye ? M for some s E [t, T]jxe = x, yt = y). 

For the sake of notational simplicity, we take M = 1. The process corresponding 
to the queueing system depicted in Figure 1 is a jump Markov process (xt, Yt) 
whose jump measure is concentrated on the points (1,0), (1, - 1), (0, - 1), 
(- 1,0) and (-1, 1) with intensities X, A, y, a and p,, respectively, unless a 
boundary is encountered. We assume that all the intensities are nonnegative. In 
order to obtain a nontrivial system we must also assume that X > 0, p > 0 and 
that either y > 0 or /3 A a > 0. When the process is on a boundary, only those 
jumps that do not lead to escape are allowed by the jump measure and they 
retain the intensities that are in effect on the interior. We then use the definition 
(xt, yt') = e(xt/E, Yt/E) to obtain the scaled system; see Figure 2. Define 

Se = {E(i, j): (i, j) E Z2 

D = {(x, y): x > 0, y > O, x + y < 1), 

j1= {(O,y):0<y<1}, 

F2 = {(xO): 0 < x < 1), 

F3= {(x, y): x ?0, y ? 0, x + y=1, 

De = D n se, 

17e = 1q n se, i = 1,2,3. 
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Then for u-(x, y, t) defined by (2.1) the Chapman-Kolmogorov equations imply 

-U (x Y, t) + H (x, y, u , t)) , 
(2.2a) at 

(x, y, t) e D6 x (0, T), 
a 

(2.2b) - -'(x Y t) + Ha8 i(xg y, ue(, *, t)) = 0, 

(x, y, t) e F[' x (0, T), i = 1,2, 
a 

- u (x, y, t) + Hc(x, y, Ue(., , t)) = 0, 
(2.2c) at 

(x, y, t) e {(O O)} x (0, T), 
(2.3) W(xq y, t) = 0, (x, y, t) e F3 x (0, T), 

(2.4) ue(x,y,T) = +x, ( (xyAe(D\ 3) nSe 

(here a, i denotes boundary number i and c denotes the corner). 
The Hamiltonians are given by 

HE(x, y,44., .)) A [exp(e [[(x + e, y) -(x, y)I) A j 

+ a[exp(- e[4(x - E, y) - (x, - i] 

(2.5a) + -y exp(--[<(x, - ye)-kx, y)I)A - 

+ a[exp- -[(x-E y) -9 x )I) - ij 

+ p expt- [,O(X - '9Y + E)-(X9 Y)])-1] 

HaI(x, y, (*)) = IHI(x, y,44., *)) 

(2.5b) - [exp(--[(x - e, yA - -4x, y)I) - ] 

- pexpt- [O(X -E '9Y + E)-(X9 Y)])-1] 

Ha',2(X9 y, 0(. 9,*) HE(x, y,,O(. *,*) 

(2.5c) - [exp(-e [4(x + e- e - - 1]kx A 

-y [exp(- [4O(x+, y - E (x, )])- ] 

(2.5d) HcE(xq y9,<O( )) = Aexp -[,O(x + ey-9 x y)] - 1q . 
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It follows that if ( e C1(D), then 

(2.6) lim He(x, y,4(, *)) = H(Vo(x, y)), 
e40 

(2.7a) lim Ha, i(x, y,cp(., )) = Ha i(Vp(x, y)), i = 1,2 
40 

(2.7b) lim HE(x, y, ((, *x)) = HC(vp(x, y)) 
4 ,0 

uniformly in (x, y), where 

H(p, q) = X[e-P - 1] + f[eq-P- 1] ? y[eP - 1] 
(2.8a) + aiep - 1] + p[eP-_ 1], 
(2.8b) Haj,(p, q) = H(p, q) - a[eP - ] - y[ep - 

(2.8c) Ha,2( P' q) = H( p, q) - P [eq-p -1 [eq _ ] 
(2.8d) H(p, q) = [e -1]. 

LEMMA 2.1. For each T' < T, there is a constant K(T') independent of E 
such that 

IUe(X, y, t)I < K(T') 
for all t < T'. 

The result is a simple consequence of the fact that X > 0 and the easy proof is 
omitted. 

Following [2], we next define i- and u as follows: 

(2.9a) iiu(x, y, t) = lim sup u 8(X, y, te), 
(x, yE, te) (X, y, t) 

(Xe, ye, te) EDnSe x [ 0, T) 
e-- 0 

(2.9b) u(x, y, t) = liminf ue(Xe, ye, te). 
(x, ye, te) (X, y, t) 

(xe, ye, te) E Dnse x [ 0, T) 
e- 0 

THEOREM 2.1. Suppose ( e C1(D x (0, T)) and that (xo, yo, to) (with 
to < T) satisfies 

(u- )(xo, yo, to) = max(u - () [(u - )(xo, yo, to) = min(u - 

If 

(i) (xo, yo) e D, then 
a 

(2.10a) - a-t4(xo yo, to) + H(Vo(xo, yo, to)) < 0 [21 0]; 

(ii) (x0, Yo) e Fj, i = 1, 2, then 

[max] { - O(xoS yo, to) + H(vo(xo, yo, to)); 
(2.10b) 

[mx 
atPxyt)+ ~~Vpxy, o) 1 ] 
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(iii) (xo, yo) = (0,0), then 

{ -( + H(vo);- - + Ha jv(p); 
(2.10c) 

[mx dtt 

a a 
- -j0 + Ha,2(VO); at PHJV0) <J O 0] 

PROOF. Without loss of generality, we may assume that any maximum or 
minimum holds in the strict sense [by simply replacing 4 by 48(x, y, t) = 

O(x, y, t) ? 31(x, y, t) - (x0, y0, to)12 and using that 4) = 4", 0Y = 48 and 4t = 448 
at (xo, y0, to)]. We prove (ii) for the case of a maximum and for i = 1. All other 
cases are proved in a similar way. 

From the definition of iu there exist (Xe, yE, tE) E (D U 11) n S8 x [0, T] such 
that 

(2.11a) (UE 
- 4)(X, yEX te) = max[(u -)], 

(2.11b) lim(x, yE, t) = (x0, y0, to). 

Owing to (2.11b), we may assume that either (X-, yE) E DE or (XC, yE) E I-. If 
(Xe, yE) E DE, then by (2.2a) and (2.11a), 

a 
0 _- _U(XC, yE, tE) + HII(XI, yE, UC(. * . , t)) 

(2.12) at 
a 

- -4(x-, yC, tE) + H'(X, yC 4(** t. , 

at 
which implies 

0 ? limsup - 0t4(XC, yC, tE) + H-(x-, y-, t(, E)) 

(2.13) CJ1O at 
a- e(x ?' yo, to) + H(V(P(x0, y0, to)) 

If (x, y') E If, then 

0 = lim[ aU(X yE tE) + HJi 1(X-, y-, uC(*, . )) 

(2.14) 2 limsup - d O(xE, yC tE) + H, (xC C x ( . tCVW 

at 
Thn 3 an (X yo( to) + HEl 

Then (2.13) and (2.14) give (2.10b). [1 
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2.1. The limiting equation. We have shown that in a certain sense (which we 
now make precise) that iu and u satisfy the equation 

a 
(2.15) - -u + H(Vu) = O in D X (O,T) 

with appropriate boundary conditions. First we give a definition. This is a 
straightforward generalization of the definitions given in [3] and [4]. See also 
[15] and [21]. 

DEFINITION 2.1. We say that the upper (lower) semicontinuous function u is 
a viscosity subsolution (supersolution) to the equation 

a 
(2.16) - -u + H(Vu) = 0 on D X (0,T) 

together with the boundary conditions 
a a 

(2.17a) - -ju + H(vu) = 0 or - -u + Ha,i(Vu) = 0 

on FP x (0 T), i = 1,2, 
a a 

- atu + H(vu) = 0 or - -u + Ha,9(Vu) = 0 or 

(2.17b) a a 
- -u + Ha,2(VU) = 0 or - -u + HC(Vu) = 0 

on {(0,0)} x (0T), 
(2.17c) u = 0 on I3 x (0, T) 
and with infinite terminal data at time T if for any ) E C1(D x (0, T)) and 
point (x, y, t) E D X (0, T) such that (u - 0)(x, y, t) = max(min)[u - p], we 
have [at the point (x, y, t)], 

(2.18) - -t + H(v:) < 0 (? 0) whenever (x, y) ED, 

(2.19a) (max) [- Wk + H(v4)); - -t + Hai(VP)]0 ) < (2 ) 

whenever (x, y) E Fj, i = 1, 2, 

(max) [-- + H(vo); - dj + Ha jvo); 
(2.19b) amx 

- dt + Ha,2(VP); - dtP + HAVO) < O (2 O) 

whenever (x, y) = (0, ), 
(2.19c) u < 0 (u ? 0) whenever (x, y) E F3 
and if u(x, y, t) + oo as t T T, for all (x, y) E D \ r3. 

REMARK. There is an obvious analog for the equation with finite terminal 
data. 
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LEMMA 2.2. u and u, defined by (2.9), are, respectively, sub- and supersolu- 
tions of (2.16) and (2.17) with infinite tenninal data. 

DEFINITION 2.2. We say a function u is a viscosity solution of (2.16) and 
(2.17) if its u.s.c. and l.s.c. envelopes 

u*(x, y, t) = lim sup u(x, y, t), 
(2 .20) (XI Y. t) - (x, y, t) 

u*(XI y, t) = lim inf u(x, y, i) 

are sub- and supersolutions, respectively. 

It will follow from the results of Sections 2 and 3, together with the unique- 
ness results of Section 5, that u and u are both equal to the unique continuous 
viscosity solution. In the next section we give an alternative representation of 
this solution. 

3. A second representation. Let L(w, v), La i(w, v) and L,(w, v) be the 
Legendre transforms of H(p, q), Ha (p, q) and H,(p, q), 
(3.1a) L(w, v) = sup [-wp-vq-H(p, q)], 

p, q 

(3.1b) La, i(w, v) = sup[-wp -vq -Ha, ifp, q)], 
p, q 

(3.1c) L,(w, v) = sup [wp -vq - H,(p, q)] - 
p, q 

As is well known, the Legendre transform defines a function that is convex 
and lower semicontinuous in the dual variables (w, v). Moreover, the above 
functions can be expressed almost explicitly by using the Legendre transform 
h(t) of e-s - 1, which is given by 

(3.2) h(t) =(t ln t- t + 1, t > 0, 

Then, we have the following alternative expressions for L, La, 1 La, 2 and L,: 
L(w, v) = inf{Xh(tl) + /h(t2) + yh(t3) + ah(t4) + /Lh(t5): 

(3.3a) Xt(lO) ?+ t2(1, - 1) + yt3(0, - 1) + att4(-1,0) 
+?/t5(-ii) = (w,v)}, 

La, (w, v) = inf{Xh(tj) + P3h(t2) + yh(t3); 
(3.3b) Xt1(IO) + /t2(1, - 1) + yt3(0, - 1) = (w, v)}, 

La,2(W, v) = inf{Xh(tl) + ah(t4) + 1ih(t5): 
(3.3c) Xtj(1,O) + at4(-1,0) + At(-i,1) = (w, v)j} 

(3.3d) L(WV) Xh(w/X), v= 0 
? 00, v*O. 
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REMARKS. These expressions may be interpreted as a manifestation of the 
"contraction principle" [27] and the fact that our process may be thought of as 
being the sum of several independent Poisson processes. Owing to our assump- 
tions on the jump rates, L(w, v) is finite for all values of (w, v). However La,, 
and La, 2 are finite only on certain convex cones and the cones themselves depend 
on which of the jump rates are positive. For example, if y = 0 and if X and 13 are 
positive, then La i is finite only on the (closed) cone generated by (1,0) and 
(1, - 1). 

We continue by defining a "cost" that is appropriate for each of the bound- 
aries 11, F2, 

(inf{pL(-w, v) + (1 - p)La J(iv, vb): p E [0,1], 

(3.4a) lai(w, v) = ) p(w, Iv) + (1 - p)(uiv) = (0, v)}, w = C 

L(w, v), W >C 
+ 00, w<C 

(inf{pL(-w, v) + (1 - p)La 2(l, v): p E [0,1], 

(3.4b) la,2 (W v) ) p(w) v) + (1 - p)(iv) =(w,0)}, v =0 
L(w, v), V> 0 
+00, v<0 

REMARK. The parameter p appearing in (3.4) has an interesting and natural 
large deviations interpretation. In the probabilistic approach to proving lower 
large deviation bounds, one typically considers a change of measure such that 
under the new measure (which we denote by PE) the process x! "centers" on a 
given deterministic path 4 (in the sense that x' 4) under Pe). One then obtains 
a lower bound from the formula (PE is the original measure) 

dP8 
PE(A) = J edPe 

where the set A contains a neighborhood of 4. Under the "optimal" change of 
measure that centers on 4 [largest asymptotic lower bound for - E log PE(A)] the 
dominant term in dPe/dPe is of the form exp - S(x, 0)/e, where S is the 
functional appearing in (1.3) and (1.4). Now consider our process xe and a path 4 
that lies on P1. For simplicity take +(t) = t(0, v). For our process we may 
consider a change of measure as being equivalent to changing the jump rates. 
Suppose we consider p e [0, 1], (nw, v) and (iv, iv) such that p(ii, v) + 
(1 - p)(&, v) = (0, v). Consider a change of measure (change of jump rate) that 
centers the process on (iw, v-) while in De and on (ib, vb) while in F'. It is easy to 
prove in this case that under PE (and as ? 0) the relative proportion of time 
the process x6 spends in De to the time spent in lE is p/(l - p). If we separately 
choose the jump rates to correspond to L(-w, v) in De and La (v, iv) inF", then 
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the dominant term under this change of measure 

exp[-T(pL(iw, v) + (1 - p)La, iv, !&Wel. 

It follows that the " tightest" lower bound (which should also give the form of 
the upper bound) is 

(3.5) exp[- Tinf{pL(iw, v-) + (1- p)La 1(iv): p(w, v) + (1-p)(wX v) 

( (O. V), pE [OI1]})/E]. 

This suggests the form of 1a, 1 given by (3.4a). 
Finally we must define a cost for the corner point (0,0 ). We set 

inf( pjL(wl, vj) + p2La,( w2, v2) 

+P3La,2(W3, V3) + p4L(w4, V4): 

4 4 1 
E pi (Wi, vi) = (O. ?), Pi > ?, E Pi =1 >, w = =O 

(3.6) lj(w, v) = i=1 i= f 
L(w, v), w > O. v > O. 

1,9 1( W. V), W = O. V > O. 

la,2(WIv), w > O. v = O, 

+00, w < Oor v < O. 

Then our candidate for a continuous viscosity solution is 

u(Ex, y, t) = in + 

(3.7) 2 

+ E la, i(((s))1{t(S) er}I ds, 
i=l 

where 1A is the indicator of the Borel set A and 

Ax, {t: [t,0] > D: (t) = (x, y), {(O) e F3, 0 < T 
(3.8) and t is absolutely continuous}. 

THEOREM 3.1. The value function defined by (3.7) and (3.8) is a continuous 
viscosity solution to (2.16) and (2.17). 

PROOF. The continuity of u follows from the boundedness of L on compact 
sets. Suppose that 4 e C'(D X [0, T]) and that 

(3.9) (u - p)(xo, yo, to) = max[u - p]. 
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We may assume without loss that the maximum is zero. If (xo, y0, to) E D x 
(0, T), then the standard proof [21] works. (Alternatively the reader can glean 
the proof from the development below.) Next assume that (xo, y0, to) E F1 x 
(0, T). Then dynamic programming [10] yields that for any (w, v) E R x R and 
A >0, 

u(0, yo, to) = 0(0, yO, to) 

(3.10) < fto+ [ L (w, V) (W >o} + la,1(0, V)l {W=o} ] ds 

+ ?(xO + WA, yO + VA, to + A). 

It follows that [see (3.4a)] 

a 
(3.11) - -4k(0, Y0, to) - lai(w, v) - ((w, v),V4P(O, y0, to)) ? 0 at 
for (w, v) E R+x R and hence 

a 
(3.12) - - 0 (0 Y? to) + sup [-la, ( w, v) - ((w, v), V(0, y, to))] < 0. a t w>0O v 

Using the definition of 1, , we rewrite (3.12) as 

max{-+- + sup [-L (w, v) - ((w, v), v)]; 
A t w>O, v 

(3.13) sup[( - - L( V) - ((W. V), V+) 

+ (1 '0 - )-0 t- Laji(WX vb) - ((&jvV>) 

p E [0,1], p-w + (1- p)iv = o} < 0 at (0, y, to). 

Now assume that 

(3.14) - jk+ Ha(Vk) > 0 at (O, yo, to). 

The fact that Ha, 1 is the Legendre transform of La 1 and continuity properties of 
La, imply there is (w*, v*) with w* > 0 such that 

a 
(3.15) - + [L, 1( w*, v*) - ((w*, v*), v)I > 0 at (0, yo, to). 

Also, (3.13) gives 

a 
(3.16) - 

-0- + sup [ -L(w, v)- ((w, v),vq))] ? 0 at (0, y0, to) 
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and by taking (&, vD) = (w*, v*) in (3.13) we obtain that at (0, yO, to), 

- d- + sup[L(w, v) - ((w, v),vc): (w, v) 

(3.17) _(- )(w v 1)-(Ov),e(O,11,vER?O. 

Combining yields 

a 
- d ++ sup-L (w, v) -((Wv) V)) >] 

(3.18) - 

t W, 

a 
=- + H(V4) < 0 at (0, yo to). at 

Recall that we have assumed (3.14) in proving (3.18). We have thus proved 

(3.19) min - -1 + H(vo), - -t + Ha,(V) < j at (O. yo) to). 

Now suppose that for (xo, yo) E rF we have 

(3.20) (u - k)(xo, yo, to) = min[u -] = 0. 

Using dynamic programming arguments (as in the proof of Theorem 2.1 of [25]) 
and the form of 1. 1 we can show that there exist w ? 0, v such that 

a 
(3.21) - di(40 yo0 to) + [lai(w, v) - ((w, v),v p(0, yO, to))] ? 0. 

If w > 0, 18 1(w, v) = L(w, v) and obviously -(a/at)k + H(V4) 2 0 at 
(0, yo, to). Now suppose that w = 0. Then the definition of 18 1 yields 

sup [P (-dt k-L(w) -. K)-(i 33), vk)) 

(3.22) ?+(1 - P)( - - La,i(i w, v3) - K( wv),Vk)): 

p C [0,1], pv + (1 - p)v = V, pW + (1 - p)w= 0] ?0 

at (0, yO, to) 

Clearly in either case, we obtain 

(3.23) max - d-4 + H(VO), -d + Ha, jvo) 2 0 at (0 yo, to) at d 
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Exactly the same arguments work if (xo, yo) e '2. Finally we consider the 
point (xo, yo) = (0,0). Assume that the maximum of (u - p) is achieved at 
( 0,0 to). Dynamic programming arguments give 

a 
(3.24) - - + sup [-l(w, v) - ((w, v),V)] < 0 at (0,0, to), 

d t w>O2 v2O 

which we rewrite as 

max{ - + sup [-L(w, v) - ((w, v), vc)], 
dt w>o, v>O 

-at + sup [-18,1(w, V) - ((wV), VP)I 
dt W=o, v>o 

--+ + sup [-1a 2(w, v) - , V)], dt w>o, v=O 

sup p, -0 dtf- L(w1, vj) - K(w1, vjvo) 
(3.25) 

d 

+P2 [-d y - La,1( AW2, V2) W- K V2, VO 

+P3[- dt0 - La, 2(w3, V3) -(W33 V3) Vk)j 

+ P4 -d - LJ(w4 v4) -(W4, 4), V : 

4 4 

E Pi(wi, VJ) = (0,0), pi ?2 0, Pi = i)} < 0 at (0,0, to). 

We assume at (0, 0, to), 

a 
- -0 + H(vp) > 0, 

(3.26) - -j0 + Ha, i (v) > 0, i = 1,2, 

- d + Hc(v) > 0. 

Then there exist (w, vr), (w2*, v*), (w3*, v*) and (w4*, v4*) such that w2* > 0, 
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V3 > 0, w4* > 0 and v4 = 0 and further satisfying 

- a0 + [-L(w ,v*) - K(w ,0v), VO)] > 0, 

- -j + [La, 1(w2*, vi) - K(w2*, vt),vk)] > 0, 

(3.27) dL at (0,0, to). 
- a + [-La,2(W3*) V3 *)- <( V3w ),V)] > 0, 

dt 

- ,) + [Lc(w4*) V4*) - <(W4*, v4*), V?O] > ?, 

Arguing as before the third term in (3.25) gives 
a 

(3.28) - - - + [-L(w,v) - K(w,v),vo)I < 0 at(0,0,to) 

for (w, v) of the form 

(W3*V3 ) + -(W. 0) 
P P 

for p E (0, 1] and w > 0, while the second term in (3.25) gives (3.28) for all (w, v) 
of the form 

(w2*, V2 ) + -(OV) 
P P 

for p e (0, 1], v- > 0. Combined with the first term in (3.25), this gives (3.28) for 
the shaded portion in Figure 3. Region I is the open convex cone generated by 

V 

f4XF 

FIG. 3. 
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(0, 1) and (1, 0), region II is the half-open convex cone generated by (0,1) and 
-(w2*, vt*), while region III is generated by (1,0) and - (w3*, v *). From the 
fourth term in (3.25) we obtain (3.28) for the closed cone generated by - (w2*, v*), 
-(w3*, v*) and -(w4*, v4), which contradicts (3.26). Hence, at (0,0, to), 

(3.29) min - -cp + H(v), --+ H(v), .min - -cp? + Ha,i(vp)Y < 0. at at C =1 2 d 

The case where a minimum is achieved at (0,0 ) is handled in a similar fashion. 
We have thus proved: u defined by (3.7) and (3.8) is a viscosity solution of (2.16) 
and (2.17). LI 

4. The uniqueness theorem. In this section and in the two that follow we 
prove uniqueness for the viscosity solutions to the equations (2.16) and (2.17). 
Recall that we have proved that ui and u [cf. (2.9)] are viscosity sub- and super- 
solutions to (2.16) and (2.17). Hence, an immediate consequence of the compari- 
son result (Theorem 4.2) is the uniform convergence of the sequence ue to the 
unique solution of (2.16) and (2.17), which is equal to both ui and u. 

To simplify the exposition, the problem and notations of the preceding 
sections are retained. However, the methods used are applicable to more general 
problems, some of which we describe in Section 7. To simplify, we switch from 
(x, y), (p, q), etc. notation to (x1, x2), (P1, P2). etc. notation. 

In order to compare viscosity solutions we require suitable test functions k 
which will force the interior equations (and not the boundary equations) to hold 
at maximizing points of ii(x1, x2, t) - u(y1, Y2, t) - 0(X1 - Y1, x2 - y2), for any 
two viscosity solutions ii and u. Naturally, the form of the test functions k 
depends on the boundary conditions. Although the use of such functions k in 
this fashion is now standard ([2], [22] and [25]), our construction of the test 
functions is quite different from constructions that exist in the literature. 

In this section we assume the existence of such a sequence of test functions 
and relegate the construction to the two following sections. 

ASSUMPTION 4.1. For each 8 > 0, there exist test functions {ke a} C C1(R2)2 
o < E < 1, satisfying 

Ha, i(V4te,a(X, x2)) ? H(V40,,(x12 x2)) -8, for xi < 0, 

(4.1) Ha, i(Vke,(x1, x2)) < H(Vke,a(xj, x2)) + 8, for xi > 0, 

i = 1,2, and 

Be, 8(?X ?)= 0, 

(4.2) 1e g(XIX X2) 2- for ? < (X2 + X ?2 / < diam D. loeJX1 X2 > 1 ) 
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THEOREM 4.1. Let i (resp. a) be an u.s.c. viscosity subsolution (resp. I.s.c. 
viscosity supersolution) of (2.16) and (2.17) but with finite terminal data 
at t = T. Assume Assumption 4.1 and that i(X1, X2, T) < u(x1, x2, T) for 
(X1 X2) E D. Then s < u on D x [O, T]. 

PROOF. Fix 0 < T < T and set Q = D x (T, T], x = (x1, x2) and y= 
(yl, y2). For 8 > 0, define U, U by 

U(x, t) = i(x, t) - 28 (t- )2 

U(x, t) = u(x, t) +2S (2t-) 

Observe that to prove the conclusion of the theorem, it suffices to show that 

(4.4) U<U onQ 

for all 8, XT> 0. Let us assume that 

(4.5) sup(U-U)>0. 
Q 

Finally, for 0 < E < 1 and 0 < p < supQ(U - U) consider the auxiliary function 
1 2 

(4.6) ?D(x, y, t, s) = U(x, t) - U(y, s) - d,(X - y) - -(t -)2 - 
p 

where (x, t),(y, s) E Q and 4ye is as in Assumption 4.1. Note that 4D(x, y, t, s) 
tends to - xo uniformly when either t or s approaches T. Therefore, using the 
semicontinuity of 4J we conclude that 4J attains its maximum on Q. say at 
(x, 2, t, s ) E Q. Moreover, 
(4.7) ?(D( 2 sup(U- U) - p> 0. 

Q 
Also, we claim that neither (x-, t) nor (y, s) belongs to I = 1I3 X [TX T] U D X 
{T}, the part of the boundary on which the Dirichlet condition is imposed. 
Indeed 

16 (4.8) 1t(x, y, t, s) ? iu(x, t) - u(y, s) - k6,az(x - y) - -(- s) - p 

Recall that ii < u on 2, that i and -u are upper semicontinuous and 
0)&(x - y) ? 1/E if jx - yj ? E. Using the fact that (1/E)(t - S)2 and 4)e ;(X--) 
must be bounded independently of E, together with (4.2), we conclude that 
Ix- -5 and j1 - s-j tend to zero as E approaches zero. Thus, if (x, t) E 2, then 
(y, s) is near 2 (for small E) and conversely. Hence, for small enough E, 
O(x, y, t,s) < 0 whenever (x, t) E 2 or (y, s) E- E. This together with (4.7) gives 

(4.9) (-tX 02(Yxs-) (4 
We continue by using the equations (2.16) and (2.17). First, observe that the 

map 
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t- 

2 

-)2] (4.10) (X, t) U4 ixX t) - 0,8(X -_) + e -F +1 

attains its maximum at (x, t). Since u is a viscosity subsolution of (2.16), (2.17) 
and (x, t) 4 2, this observation yields that either 

(4.11) 28 ( ) -2 + H(vcp,8(i- )) ? 0 
(I )2 1 1188Y Y) 

or one of the other inequalities appearing in (2.19) holds. But we claim that in 
each case the following inequality holds: 

(4.12) 8- 2 + H(Vcea8( iX - y5)) < 0. 

Clearly (4.11) implies (4.12). To handle the other cases, we use the assumed 
properties of ke , [cf. (4.1)], which imply, for i = 1, 2, 

(4.13) Xi = 0 X - Y< ? 0 Hai(Ve ( -53)) > H(V a ((x - y5)) - 8 

(4.14) 5ii = 0 - Yi > 0 Ha, i(V7e,(Y - y)) < H(V6,,,(X- y)) + 8. 
It is now straightforward to obtain (4.12) from (4.13) and (2.19). Indeed, suppose 
that instead of (4.11) we have 

(4.15) 28( )2 2 2- + Ha, i(Vke,a(X - )) < 0 

for i = 1 or 2. This may happen only if x = 0. Consequently (4.13) holds and 
(4.13) together with (4.15) gives (4.12). In the case xi = (0,0 ) we use the identity 
HC = Ha, 1 + Ha,2 - H together with (4.13). 

Similarly, since u is a viscosity supersolution to (2.16) and (2.17), we obtain 

(4.16) - - 2 + H(ve,( (x - )) ? 0. 

In this argument, we use (4.14) instead of (4.13). 
Now, subtract (4.16) from (4.12) to obtain that 28 < 0. By contradiction, (4.4) 

is true. 0 

To extend this uniqueness result to the case of infinite terminal data we adapt 
the ideas of [12] (see also [6]) and make use of two facts which hold in our 
problem: 

C2 -inf{H(p): p ER2}> -; 

there exists a viscosity solution u of (2.16) and (2.17) which 
(4.17) belongs to C(D X (0, T)) and which tends to + oo as t T T. 

uniformly on compact subsets of D \ 1I3 (cf. Theorem 3.1). 

We start with a lemma. For the remainder of this section u denotes the 
continuous function described in (4.17). 
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LEMMA 4.1. For x = (x1, X2) E D, u(x, t) - C2t is a nondecreasing function 
of t. 

PROOF. Fix (x0, to) E D X (O. T) and O < T < to. Choose - > O and A < so 
so that 

B(xo, e) = {x: Ix - xo1 < e} c D 
and 

(4.18) u(x, t) < u(xo, to) + E + Aix -X02, 

whenever (x, t) E dB(xo, e) X [a, to] U B(xo, e) x fto}. Define i by 

ii(x, t) = u(xo, to) + + Aix - x012 - C2(t - to) 

Then 

(4.19) - ?ii + H(vii) ? 0 in B(xo, e) X [T, to] 

and by the comparison principle [3] and (4.18), u < ii on B(xo, e) X [T, to]. In 
particular, u(xo, t) < u(xo, to) + E + C2(t - to), which implies the conclusion of 
the lemma. E 

THEOREM 4.2. Let ii (resp. u) be an u. s. c. viscosity subsolution (resp. l. s.c. 
viscosity supersolution) of (2.16) and (2.17). Assume Assumption 4.1. Then 
ii < u on D x (0, T). 

PROOF. We prove that ii < u and u < u on D X (0 T), where u is a 
continuous viscosity solution to (2.16) and (2.17). First note that by the defini- 
tion of a viscosity solution with infinite terminal data and by Lemma 4.1, u(x, t) 
tends to + x as t T T, uniformly on compact subsets of D \ F3. Hence, for each 
e > 0, there is 0< 6S < e such that for any x ED andO < 8 < 60, 
(4.20) q(x, T -e)- < u(x, T -8). 

By Theorem 4.1, for any x E D, E < t < T and 0 < 8 < 6O, 

(4.21) q(xq t - e) - - < U(Xq t - 8 ). 

Letting 8 go to zero and replacing t - e by t we obtain 

(4.22) u(x, t) < u(x, t + 8) + - 

for any x E D and 0 < t < T - e. Letting - go to zero, 

(4.23) u(x, t) < u(x, t) 

for (x, t) E D X (0, T). A very similar argument (again exploiting the continuity 
of u) gives u < u on D x (0, T). w 

5. Construction of the test functions. In this section we show how to 
construct {4f ,} satisfying Assumption 4.1 for the case where all of X, /P, -y, a and 
It are strictly positive. Cases where one (or more) of these is zero are considered 
in the next section. 
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Hc <0(C ) HC P HC >0(Ct) 

HC >0 (C+) 
a,2 2 

HC 0 a,'2 

pa 

/ / Ha 2 ? ( C 
a2 

2 ) 

FIG. 4. 

The basis of the construction is an interesting use of the Legendre transform. 
Define 

Ho i = H - Hai 

for i = 1, 2. For now we look for a function J(4) which satisfies only (4.1) with 
8 = 0. Define, for i = 1,2, 

(5 1) ~~~C+= {( P1, P2) * Ha, i( P1, P2) 2 01} 

Ci= {(P1, P2): Hai(P1, P2) < 0) 
(Refer to Figure 4.) Then to satisfy (4.1) with 8 = 0, we require 

(5.2) V7(x1, x2) E C+ (resp. Ci-) wheneverxi.> 0 (resp. xi < 0), i = 1,2. 

Assume that it is possible to find a strictly convex, finite valued function 
R(pl, P2) such that R(O, 0) = 0, (0,0 ) E dR(O, 0) (where a denotes the set of 
subdifferentials of a convex function [24]) and 

a 
(5.3) <) R(pl, P2) ? 0 (resp. < 0) if (p1, p2) E C+(resp. Ci), i = 1,2 

[i.e., vR partitions the (P1, p2)-plane in the same way as (Ho 1, Hag2)] Define 

(5.4) 0(x1, x2) = sup [x1p1 + x2p2 - R(pl, P2)] 
P1, P2 

(this differs slightly from our previous definition of the Legendre transform). By 
conjugate duality [24], 

(5.5) 0(XP1, X2 ) 
E 
<(lx2 (xl, x2) E- dR( pl, P2) 

Let (P1, P2) E d8(x1, x2). By (5.3) and (5.5), xl 2 0 (resp. xl < 0) if and only if 
(P1, P2) E C1+ (resp. C1). A similar result holds regarding x2. Since R(O, 0) = 0 
we obtain 4 2 0 and (0,0 ) E dR(O, 0) implies 0(0,0) = R(O, 0) = 0. In particular, 
if 0 is differentiable it satisfies (4.1) with 8 = 0. Moreover, the differentiability of 
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,O follows from the uniform convexity of R. More precisely, suppose that R 
satisfies 

(5.6) liminf {R(p): IpI = s}/s = +co; 
S --+ 00 

for every L > 0 there is E = e(L) > 0 such that R(p) - qIpI2 

(5.7) is a convex function of p on IpI < L. In other words, R is 
uniformly convex on bounded subsets of R2. 

Then O E C1(R2) [24]. 
We continue by constructing R having the properties (5.3), (5.6) and (5.7). To 

obtain (5.3), we look for r1(p), r2(p) > 0 such that 

a2 
(5.8) d R(p) = rj(p)Ha i(p), i = 1,2, p E R2. 

A necessary and sufficient condition that (5.8) holds for some R E C2(R2) is 

(5.9) d8(r2Hg,2) = 8pj(rlHai) 

In the present case it is relatively simple to guess a form for r1 and r2 so that 
(5.9) holds. By taking 

rl(P1, P2) = A exp(ap1 + bP2) 
and 

r2(P1, P2) = B exp(cpl + dP2), 

we obtain as sufficient conditions for (5.9), 

A/B = f/, 

c= /a/q, b = Iy/q, 

(5.10) a = c - 1 = -(ya + ?uy)/q, 

d = b - 1 = -(ya? + a)/q, 

q = ya + LyY + Pa. 

Integrating and choosing the constants of integration in such a way that 
R(O, 0) = 0, (0, 0) = vR(0, 0), we obtain 

R(pl, P2) = q[(I/a) [exp(a1pp - a(/3 + -Y)p2)/q - 1] 

(5.11) + [exp(a1pp1 + iYP22)/q - 1] 

+ (1/y) [exp(- (It + a) yp1 ? jYP2)/q - 1Y]] 

This function, in addition to (5.3), satisfies (5.6) and (5.7). Hence, its Legendre 
transform 4 satisfies (4.1) with 8 = 0. Finally, we obtain the sequence {4)e 0} by 
appropriately rescaling 0. 
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LEMMA 5.1. Let 4 be the Legendre transform of the function R given by 
(5.11). Assume X, a, 3, ,4, y > 0. Then there is a function p(e) > 0 such that the 
sequence 

'(X) = p(e)0(X/p(E)) 

satisfies (4.1) with 6 = 0 and (4.2). 

PROOF. Since v4,(x) = v4(x/p(,)), clearly 4, satisfies (4.1) with 8 = 0, for 
any choice of p(C) > 0. The finiteness of R implies the existence of @(L) such 
that 

R(p) < '0(L)lpl2 whenever IpI < L, 
which in turn gives 

lx12 
(5.12) 4x) ? 

X 
whenever lxi < LO(L). 20(L) v 

Set 

2 diam D 3 

(5.13) Le = ? P( 20(LE) 

We now calculate directly that 

lxl2 lxl2 

( ? 2p(?)0(Le ) - 

whenever lxi < L80(L,)p(E) = diam D. Hence, 4e satisfies (4.2). 0 

6. Construction of the test functions (continued). In this section we 
remove the restriction that all X, /3, y, a and [t must be strictly positive. It turns 
out it is not interesting to consider , = 0 or X = 0, since for these cases the 
problem becomes trivial. In order to fix the ideas and exhibit the method in a 
simple way, we consider only the case , = 0. The other cases may be handled in 
a similar fashion. 

The results of Sections 2-4 remain valid in this case, except that we can not 
construct test functions satisfying (4.1) with 8 = 0, as we did in Section 5. 
Indeed, if we consider R defined by (5.11) and take /3 = 0, we obtain 

(6.1) R(p1, P2) = q [(pt/a) [exp(- ayp2/q) - 1] + exp(- ,YP2/q) -1], 

where q = ya + Ivy and this function is not uniformly convex and does not 
satisfy (5.7). Hence we take a different tack, which requires an approximation 
argument. 

Let R(/3, p1, P2) be given by (5.11), where we make the dependence on / > 0 
explicit. Define 

(6.2) R(/3, L1, L2; P1, P2) = R(/3, P1, P2) + I(L1, L2; P1 P2), 
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where 

(6.3) I(L1, L2; P1i P2) = 0 if IPjj < LI and IP21 < L2, 
+ 0o, otherwise. 

Then R(/3, L1, L2;*, ) is uniformly convex and finite in a neighborhood of the 
origin, if /P, L1, L2> 0. We then define j(Bfi, L1, L2; xl, x2) to be the Legendre 
transform of R(/3, L1, L2; *, * ) [cf. (5.4)]. 

LEMMA 6.1. Assume that X, y, a, p, > 0 and /P = 0. Then, there exist func- 
tions L1(e), L2(e), p(E) and J3(e, 8) such that the family of functions 

(6.4) J0,(x) = p(c?)( f(,-, 6), L1(,-), L2(i); P )) 

satisfies (4.1) and (4.2). 

PROOF. Pick L1, L2 > 2 diam D, so that the following are satisfied for every 
,E E= (0, 1]: 

(6.5a) (L E ? C X for IP21 ?- 

(6Z~~~b) ( ?~3 X P2 ) C B oI2-?3 X 

(6.5b) ~ j~2 E=C1 
_ for jP21? < 

(6.5c) (L2l, 3 for P1 < 3 X 

(6.5d) P i, E C2, for p1 1 < ?3- 

Here C+? are as in (5.1), where we make the dependence on 3 > 0 explicit. The 
existence of such L1 and L2 follows from elementary geometric considerations 
(refer to Figure 4). 

Set 

L 
(6.6) L 3 i = 1,2, 

(6.7) L, = (L1 A L2 )/3, f3( 8,) =6 exp(-Lj). 
As in Lemma 5.1, there is 9(LE) such that 

(6.8) R(/3(c, 8), P) < 26(Lj)p12, [iI < L 

for all e, 8 E (0, 1]. Finally, set 

(6.9) = 20(Lj4 
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By using (6.8), we directly calculate that 

(6.10) ?(/B(e, 8), L1(,), L2(e); x) ? jxj lxi ? L2(Lx). 
20(L 

Hence 

(6.11) (x) ? 2 X(2 IX12 

whenever 

(6.12) lxi < LO(L,)p(,?) = 2 

Since L1 A L2> diam D, (4.2) is satisfied by 4 
We continue by verifying (4.1). By conjugate duality [24], a version of (5.5) 

still holds even if R is not finite valued. In our particular example, we have 

(6.13) p = vp?,a(x) x = vR(13(e, 8), p) if pil < Li(-). 

Hence, whenever 

a 
(6.14) ax +?,(x) < Lj(), for j = 1,2, 

the construction of R(13,*) yields that (making the dependence of Ho i on: 
explicit) 

(6.15) Ho, i ,,(v4 a(x)) ? 0 (resp. < 0), if xi > 0 (resp. < 0). 

Then, in the case when (6.14) holds, one proves (4.1) after observing that 

(6.16) Ha 1l0(p) = Ho l (p) 

and 

H,2, 0(P) = Ha,2,(p) - f[eP2P1 - 1] 

We therefore obtain (4.1) by using (6.7). Since by construction l( d/dxj)0p (x)l < 
Lj(,-), to complete the proof we have to consider the boundary cases. 

First, suppose that (d/dx1)0, ,(x) = L1(,). Then (6.5a) implies xl 2 0, which 
together with (6.16) yields the desired result. Next, suppose that (d/dx0), 3(x) = 
L2(e) and (d/dxa1)0, (x) < L1(4). In this case, definition of 0? 6 implies that 

X1 = p() R(( 8 ),+ a(x)) 

Hence, the construction of R(13, * ) together with (6.16) yields the result. 
All the other cases can be proved similarly. El 
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7. Extensions and comments. 

7.1. Extensions. The techniques and ideas used in the analysis of our partic- 
ular queueing model are, in fact, applicable to analogous problems for a broad 
class of queue models, some of which will appear elsewhere. We will content 
ourselves in this section with describing only those extensions of the model and 
problem considered so far for which the proofs involved are very close to those of 
Sections 2-6. 

7.1.1. Different escape sets. Let G be any bounded open set in R2 whose 
boundary is smooth. Then in place of D we can use G n {(x1, x2): x1 ? 0, x2 > 
0}. We can consider unbounded G as well if Lemma 2.1 continues to hold. Thus 
we can take D = {(x1, X2): x1 ? 0,0 < x2 < M}, which allows one to estimate 
the probability that queue 2 exceeds M/e by time Tle. 

7.1.2. Higher dimensions. We can consider a system of n interconnected 
queues. Label the queues 1 through n and let S = {0,..., n}. Let Xt' denote the 
number of customers in the ith queue and Xt = (Xtl,..., Xt). Define 

xi j = jump intensity from queue i to queue j, 

xi O = jump intensity from queue i to outside the system, 
X O j = intensity of arrivals at j from outside the system, 

ei, j= 0)s 0).. -1,0,,.. 1) 0).. 
ith ]th 

ei,O = (0) 0).' 1' 0'). 
ith 

eO, j = (?,?,---, 1,0,..). 

fth 

For every point x e {(xl,..., xE) e RI: xi 2 0 ii e S} D define I(x)= 
{i E S: xi = 0}. For a subset s of S, we define the Hamiltonian H(s, p) by 
(7.1) H(s, p) = E E Xi, j[exp<p, ei,) -1] 

iES\s jeS 

and its dual 
(7.2) L(s, v) = sup [<v, p) - H(s, p)]. 

p 

Finally, we define a "cost" for each x E D. Let J(x, v) = {i E I(x): vi = 0} and 
let 1(x) and J(x, v) be the set of subsets of I(x) and J(x, v), respectively. Then 

l(x, v) = inf{ E p.L(s, vs): 

(7.3) S EJ(x, v) 

E p.v.=v, A p.., E 8 P.=1} 
sEJ(x, v) sEJ(x, v) sEJ(x, v) 



VISCOSITY SOLUTION ANALYSIS OF QUEUES 251 

Let G be an open set in (R+)n with smooth boundary and define dG' to be 
the closure of {x E dG: I(x) = 0 } (here 0 denotes the empty set). We assume 
that the origin is interior to the convex hull spanned by {Xi je3, j(i, j) E 
{O, 1,..., n)2). This implies L(0, v) is finite for all values of v and that the 
function defined by (7.4) below is continuous. 

Under these assumptions we have the following theorem, where x- = eXtx? 
gives the scaled queue system. 

THEOREM 7.1. Consider the following equation, interpreted in the viscosity 
sense: 

- --u + H(0,vu) = 0, (x, t) E G x (0, T), 

a 
(7.4) -t-u + H(sVu) =0, for somes E I(x), 
(7.4) ~ at (x, t) E dG \ dG' x (0OT), 

u=0, (X)t)EdG'x(0,T), 
u +ooast-T, xcG\dG'. 

Then the following results are true: 

(i) The equation (7.4) has a unique solution u in C(G X [0, T)). 
(ii) We have 

(7.5) lim ?log Pt XT 1 G for sonW T E [ to T ]X1-=X} = u (x, t), 

with the convergence uniform in compact subsets of G \ dG' x [0, T). 
(iii) We have 

(7.6) u(X, t) = inf f1((, () ds, 

where Ax, t = {a: [t, 0] -* Rn: ((t) = x, ~(0) E dG', 0 < T and ( is absolutely 
continuous). 

REMARK. The inf used to define l(x, v) through (7.3) may be simplified. In 
fact, it is sufficient to sum over only those subsets of J(x, v) having only zero or 
one element. 

7.1.3. Containment probabilities. Another class of probabilities that may be 
estimated via viscosity solution techniques are containment probabilities. Let G 
be open [in (DR +)n] with a nice boundary. In this case we are interested in the 
asymptotics of 

(7.7) u-(x, t)= E log P, { XT E G for all t < T < T}. 

The associated PDE (to be interpreted in the viscosity sense) for this case is 
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(using the system and notation of the previous section) 
au 
-at + H(0,Vu) = O (x, t) e G x (0 T), 
at 
du - + H(s,Vu) = 0, for some s e I(x), (x, t) e aG\ dG' x (O T), 

u = O, (x, t) e G X {T). 
The PDE approach for calculating asymptotics for these types of probabilities 

was first considered in [8]. The form of the associated variational representation 
for the limiting value of ue(x, t) in this case is given by (7.6), except we now 
replace Ax, t by Ax t = {a: [t, T] -, Rn: {(t) = x, {(T) E G for X E [t, T] and t 
is absolutely continuous). A theorem analogous to Theorem 7.1 holds. The proof 
uses the same test functions as those used in the case of escape probabilities. We 
omit the proof and instead refer the reader to [25]. This work treats the 
comparison result for the same type of problem, but with an equation that does 
not require such complicated test functions. The proofs that iu and u [defined by 
(2.9)] are, respectively, sub- and supersolutions and that (7.6) (with Ax t replaced 
by Ax, ) defines a solution, are essentially the same as those for escape probabili- 
ties. 

7.2. On the relationship of the results to a large deviation principle. As 
mentioned in the Introduction, the results presented in this paper concerning the 
limiting behavior of certain classes of probabilities are all special cases of the 
results that would be available if the process x? satisfied a large deviation 
principle. It is an interesting fact that in a certain sense the converse is also true. 
To be more specific, it is possible to prove that if for a given process it can be 
shown that the normalized logs of the escape and containment probabilities 
[given by (7.5) and (7.7), respectively] have the representation (7.6) (with the inf 
over Ax t and Ax, t respectively), then under some regularity conditions on the 
form of the function 1 appearing in (7.6), the measures induced by the process x! 
satisfy a large deviation principle in the sense of [14], Section 3.3. The rate 
function is given by 

S(x, = j|1(, ) ds, ( is absolutely continuous, (0) = x, 

+ ?x, otherwise. 

Actually a slightly more general form of the results with regard to escape and 
containment probabilities is needed, in which we replace xe by x f = xe + f, 
where f is a Cx deterministic function. However, the same techniques that 
apply for the case f 0 easily adapt to this case as well. 

We do not give a detailed proof of this assertion, since such a proof in a 
general setting will appear elsewhere. Nonetheless it is worth mentioning the 
basic steps involved. We first note that under compactness of the "level sets" 

?(x, r) = {p: S(x, p) < r), 
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the estimates (1.3) and (1.4) follow if we can prove ([14], Section 3.3): 

1. Given 4 e C([0, T]; R') such that ((0) = x and 8 > 0, 

(7.8) liminf logPx{ sup ?xE(t)- (t)l < } 2-S(x,4) 
E Ost<T 

2. Given s < oc and 8 > 0, 

(7.9) limsupelogPjX inf sup IxE(t) - 0(t)l ? 3} <-r. 
E 4,d(x, r) o t<T 

Obtaining (7.9) is easily accomplished by using the "escape" estimates. To 
obtain (7.8), it must first be shown that it is sufficient to consider only 4 that are 
piecewise Cm. This requires regularity conditions on 1(., * ), which turn out to be 
trivially satisfied for the functionals considered in this paper. We then can 
obtain (7.8) by using the "containment" estimates and the Markov property. 

APPENDIX 

A weaker formulation. In this section we present a weaker formulation of 
the PDE given in Definition 2.1, in order to relate our definition to more 
standard ways of describing boundary conditions. 

First note that (2.19) implies 

(A.1) (max) - 4p + H(v4)); -H(v4)) + H? i(Vp) < 0 (resp? 0) 
if (x, y) e Ji, i = 1,2, 

and 

(max) - ?tp + H(v4); - H(v4p) + Ha, 1(v); 

(A.2) 
-H(v4) + Ha,2(v); -H(v4)) + Hc(v)) < 0 (resp. 2 0) 

if (x, y) = (0,0). 

Dropping the fourth term in (A.2) (the Hc term) leads to a statement that is 
equivalent to letting that term remain. This follows from the equality 

(A.3) -H+Hc= (-H?+ Ha) + (-H+Ha,2). 
Thus (A.2) holds if and only if (A.4) holds: 

(A.4) mm)in __f + H(vo); -H(vH) + HHi(V4)) 1 

< 0(resp., ? 0) if (x, y) = (0,0). 

Note that (A.1) and (A.4) do not imply (2.19a) and (2.19b). In this weaker form 
the PDE has nonlinear boundary conditions (interpreted in the viscosity sense). 
Although this formulation is familiar, it is inferior to that given by (2.18) and 
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(2.19). This latter definition is more useful in many ways, such as in proving 
uniqueness of the solution and in proving that the value function of the 
associated control problem is a viscosity solution (see Sections 3 and 4). 

The correct interpretation of our original formulation [(2.18) and (2.19)] 
requires that we view (2.19a) and (2.19b) not as boundary conditions, but rather 
as the correct equations that would be associated to this part of the domain if we 
interpret the problem as one involving a discontinuous Hamiltonian, i.e., 
the correct Hamiltonians for the regions {(x, y): x > 0, y > 0), {(x, y): x < 0, 
y > 0), {(x, y): x > 0, y < 0) and {(x, y): x < 0, y < 0) are H(.), Ha(.), 
Ha, 2(g) and Hj(.), respectively. Taking the upper semicontinuous and lower 
semicontinuous envelopes of this discontinuous Hamiltonian yields the system 
(2.18) and (2.19). Obviously the techniques we have developed are equally well 
suited to the treatment of analogous problems where the discontinuities of the 
Hamiltonian appear in the interior of the domain of interest G. 

Now consider the special case /P = 0. In this case, we have 

(A.5) - H(Vc) + Ha 2(V4y) - [eF@Y)O- 1] = o 
or 

d 
dy 

as the boundary condition on '2. Moreover, it is easy to show that 'a 2(W,0) 
defined by (3.4b) has the form 

(A.6) la,2(W,0) = inf[L(w, v): v < 0]. 
This expression agrees with the form of the integrand obtained in previous 

work of Lions [22], where the Hamilton-Jacobi equations with Neumann type 
boundary conditions were studied. 
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