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Abstract. This paper considers a deterministic flow in n-dimensional space, 
perturbed by a Markov jump process with small variance. Asymptotic 
expansions are obtained for certain functionals of Feynman-Kac type, in 
powers of a small parameter representing a noise intensity. The methods are 
analytical rather than probabilistic. 

1. Introduction 

In this paper we consider a deterministic flow on R" perturbed by a Markov 
jump process, with a small variance. Our purpose is to obtain asymptotic 
expansions for certain quantities, as the size of  the noise intensity tends to zero. 
We start with a description of  the random process. 

For a small constant e > 0, define an operator ~ by 

~ o ( x )  = b(x)" Vq~(x) 

+ -  [~(x+ey) -~o(x ) -ey .V~(x )]m(x ,  dy), (1.1) 
"\1o} 

where q~ is a smooth function on R',  b(x) ~ R' ,  and re(x, dy) is a positive Borel 
measure on R'\{O}. Further, we assume that there are c(x, z) c R", f (x ,  z) >- 0 
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satisfying 

m(x, A)= 3~ f f(x, z)izld~, (1.2) 
zeRn\{o}:c(x,z)~A} 

sup Ic(x ,z) r f (x ,z)~<~ (1.3) 
x f Z l  

for every Borel subset A of Rn\{0} (see the Appendix for a discussion of this 
condition). Using the substitution y = c(x, z) the integral (1.1) can be written as 
an integral in z. This form for Ze~ is used by some authors. We consider the 
Markov process y~(t) generated by ~ .  Such a process can be obtained as the 
solution of a stochastic integral equation driven by a Cauchy process (as in [14]), 
or by solving the associated martingale problem (as in [16]). The parameter e > 0 
measures the variance of  y ' ( . ) ,  and as e tends to zero y~(t) converges weakly 
to the solution of 

d o 
-£ty (t) = b(y°(t)). 

The quantity we are interested in is a Feynman-Kac-type functional of y~(.) .  
Namely, 

u~(x , t )=-e lnEx je  -O/~g(y~(T~), x ~ R  ~, to [0 ,  T], (1.4) 

where Ex., is the mathematical expectation conditioned on y~(t) = x, and g(x) c R. 
The convergence of u~(x, t) as e tends to zero, or equivalently the first term 

in the asymptotic expansion of u~(x, t), is a special case of the theory of large 
deviations. The reader may refer to Freidlin and Wentzel [7], Stroock [17], and 
Varadhan [18]. 

This problem arises in a number of applications, such as macroscopic 
chemical kinetics, queueing theory, production planning, and large traffic 
networks. We refer to Parekh and Walrand [13], Weiss [19], and Knessl et al. 
[8]-[12]. In [8]-[10] formal expansions for quantities like u~(x, t) and exit times 
were obtained. 

The function u'(x, t) satisfies the following nonlinear integrodifferential 
equation: 

0 - - - u ~ ( x , t ) + ~ ( x ,  Vu~(x,t),u~(.,t))=O, x c R  ~, t c [ 0 ,  T), (1.5)" 
Ot 

u~(x, T) = g(x),  x e R", (1.6) 

where, for x, p c R ~ and ~p e C2; the space to twice continuously differentiable 
functions on R ~, which are bounded along with their derivatives of order up to 
tWO,  

fR [e-(1/~)[~(x+~Y~-~(~l-l+y. Vq~(x)]m(x, dy). ~f~(x,p, ~o) =-b (x ) .p+  "\~o~ 
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In Section 3 we show that, under certain assumptions on the coefficients 
(Lemma 3.1), 

supll u ~ II w'.~(,~" ×(o, ~-)) -< K, (1.7) 

u~(x + y, t) + u~(x -y ,  t) -2u ' (x ,  t) .<- Klx - y l  2, (1.8) 

where W~'~(Rnx (0, T)) denotes the Sobolev space of Lipschitz continuous, 
bounded functions. The inequality (1.7) together with the theory of  viscosity 
solutions imply that u~(x, t) tends to a limit u°(x, t), uniformly on bounded 
subsets of R n x [0, T], as e approaches zero. Moreover, u°(x, t) is the unique 
solution of  the following equation: 

- O u ° ( x ,  t)+W(x, Vu°(x, t)) = 0, (x, t ) eR"  ×[0, T), (1.9) 
Ot 

with (1.6). Here, 

IR [e -YP- I+y 'p]m(x 'dy )"  (1.10) ~(x ,  p) = -b(x)  .p + °\c0} 

Under the assumptions of Section 2, ~ (x ,  p) is a C °~ function. Still, the limit 
u°(x, t), in general, is not of class C 1. HoweVer, there is an open, dense subset 
N of R" x[0,  T] on which u°(x, t) is C°°-smooth. And, due to (1.8) Vu'(x, t) 
tends to Vu°(x, t) on N. 

We can now state the main result of this paper: 

Theorem 5.1. Suppose (A1)-(A6) hold. Then, for any positive integer m, 

u'(x, t)=u°(x, t)+eul(x, t)+. . "+emu"(x, t)+o(e m) 

uniformly in any compact subset of N. 

(1.11) 

The coefficients u"(x)  are smooth functions, and each u m is given by a 
functional of u ° , . . . ,  u m-l. A more precise statement can be found in Section 5. 

The nonlinearity in equation (1.5)" for u" has the special form (1.7). This is 
because u ~ is obtained via a logarithmic transformation (1.4) from a solution I ~ 
to a linear evolution equation (see (2.2) below). We have results similar to 
Theorem 5.1 when the nonlinearity Yg" takes a more general form, of the kind 
appearing in the dynamic programming equation for controlled Markov processes 
with generators of the sort appearing in (1.1), For certain technical reasons we 
have considered only (1.5)e with the Cauchy data (1.6). It would be of interest 
to extend the results to consider (1.5) ~ in a cylinder D x [0, T), with u ~ given on 
(aD x [0, T)) w (D x { T}). This corresponds to stopping the process y~ at time 
min(~ -', T), where ~ is the exit time from D. It should be remarked that the 
asymptotic series expansion for solutions u ~ to this boundary problem are not 
well understood in the case of  nearly deterministic diffusions. For nearly deter- 
ministic diffusions, the operator in (1.1) takes the form 

£eqo(x) = b(x).  V~,(x) + e~(~, ) ,  
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where A/(q~) is a second-order elliptic partial differential operator. Recently 
Fleming and Souganidis [6] obtained an asymptotic expansion for solutions to 
some equations of  the form 

O= eAu~ + H(x, Vu~), 

arising in stochastic control. Our methods are in part adapted from [6]. 
The asymptotic series (1.11) is equivalent to a WKB-type expansion for the 

function I ~ -- e x p [ - e - l u ' ] :  

I ~ = exp[-e-lu°](Vo+ COl + "  " " + 8mYra  + o ( e m ) ) ,  

with leading term v o = e x p ( - u ~ ) # 0 .  For the case of nearly deterministic 
diffusions, Azencott [1] obtained asymptotic series expansions of WKB type by 
probabilistic methods. In these expansions, the leading term in general depends 
on e. 

The paper is organized as follows: assumptions are stated in the next section, 
in Section 3 estimates (1.7) and (1.8) are obtained, Section 4 is devoted to a 
sequence of "almost" linear equations related to the higher-order terms in the 
expansion; finally the main result is proved in Section 5. Also, a brief discussion 
of condition (1.2) is given in the Appendix. 

2. Assumptions 

In whatever follows, C~ denotes the space of infinitely differentiable func- 
tions, which are bounded along with their derivatives, 7r(dz)=dzlzl -("+1), 
for ~b ~ C~(R") and any multi-index a = ( a l , . . . ,  a , ) ,  D'~$(x) = 
(Ol'~l/Ox~ . . . .  ax~")~b(x), lal =•  ai. We assume: 

( n l )  b( - ), g( . ), c( . , z), f ( .  , z) c C~(R") ,  

xcR fg [O%(x,z)]f(x,z)rr(dz)<-g, vl l---x, (A2) sup "\rot 

fn sup ID'~f(x,z)lTr(dz)<-K, Vial>  1 , (A3) "\ml xcR° 

(A4) lim fo [e(x, z)12f(x, z)~(dz) = O, ~,1,o s ? p  <t~1~8 

(A5) sup [Io°f(x,z)l+lO"c(x,z)i]<-K, vl, l o. 
z,x ~ R n 

Lemma 2.1. Suppose (A1)-(A5) hold. Then there exists a unique solution u~(x, t) 
E ~  co n of (1.5)" and (1.6). Moreover, u Cb (R x (0, T)). 

Outline of the Proof Consider the function 

w(x, t) = e -~'/~)" (x, ,). (2.1) 
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Then, w(x, t) solves 

0 
- d t  w(x, t) - ~ w ( x ,  t) = 0, (x, t) ~ R" x [0, T),  (2.2) 

w(x, T) = e -(1/~)g(x), x c R". (2.3) 

Approximate equation (2.2) by 

- O w ( x , t ) - ~ w ( x , t ) = O ,  (x, t)~R"x[O,T),  (2.2) 8 
Ot 

where 6 > 0, and for a smooth function ~o 

LP~o(x) = b(x)" V~o(x) 

+ I zl>-8 l [~p(x 

=Vq~(x)'[b(x)- fzl>_ c(x,z)f(x,z)rr(dz)] 

1 I~l>_, s + -  [ ~ ( x +  ec(x, z)) - q~(x)]f(x, z)Tr(dz). (2.4) 
E 

Since (2.2) 8 is a linear equation and the last term in (2.4) is bounded, it is easy 
to show the existence of  a C°9-smooth solution w 8 of  (2.2) 8 and (2.3). 

We obtain next sup-norm estimates of  the derivatives of w 8. The maximum 
principle yields 

wS(x, t) >-exp(- l  l,g,,oo) (2.5) 

and 

wS(x, t)<-exp(l llgll~). 

Also, w,(x, t)= (o/ox,)wS(x, t) satisfies the following equation: 

0 -°wi(x, t)- y. t) bj(x, t) Ot j=~ 

I Cj(X, t)f(x, z)Tr(dz) - ~_ (wj(x+ ec(x, z), t ) -  wj(x, t)) iox--O 
j=l zl-->8 

(w(x +ec(x,z), t )-w(x,  t )-sVw(x,  t)c(x, t) ) 
--8 Jlzl ->~ 

0 x -~xif(x , z)cr(dz) = 0 

with terminal data 

1 O w,(x, T) . . . .  g(x) e -(I/~)g('°, x ~ R". 
e oxi 

(2.6) / 

(2.7)' 
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Suppose that there are (Xo, to) c R" x [0, T] and io~ {1 , . . . ,  n} satisfying 

eP'°w~(xo, to) = sup{ePtlwi(x, t)l: (x, t) ~ R" x [0, T], i = 1 , . . . ,  n}, (2.8) 

where p > 0 shall be chosen in the proof. We may assume that to < T. Then, by 
using (2.8) and equation (2.6) ¢ we obtain 

0 
PW/o(Xo, to) ----- - - ~  Wio(Xo, to) 

= ~W~(Xo, to)+~ Wj(Xo, to) ~ bj(xo, to) 
j oxio 

I eC(Xo, z), to) - [wj(xo+ wj(xo, to)] 

0 
X - -  cj(xo, t)f(Xo, z)~( dz) 

axg 

I o - 2j zL>-~ wj(xo, to)C/Xo, z) ~x f(Xo, z)~( d~) 

I ox~° + 1 [W(Xo+ eC(Xo, z), to) - W(Xo, to)] .----f(xo, z)'n'(dz). 
z[~s 8 

Since w~(xo, to) -]wj(x, to)] for all x, and j, 

pwg(xo, to)<- w~(xo, to)[nl[D2bl[+ 2 f ]Dc(xo, z)lf(xo, z)~r(dz) 

+ f lc(xo, z)llDf(xo, z)'Tr(dz)] 

2 +~-Ibwll~ f IDf(xo, t)l~r(dz). 
In view of (A2), (A3), and (A5), there is K > 0, independent of 6, such that 

K 
pw~(xo, to) <- Kw~(xo, to) +-- .  

E 

An appropriate choice of p yields that DwS(x, t) is bounded uniformly in 6, if 
such a point (Xo, to) exists. But we can always obtain such a point by using the 
difference quotients rather than wi, and then perturbing them around appropriate 
points. 

The higher-order derivative estimates can be proved similarly. Therefore, on 
a subsequence w~(x, t) converges to a C~-smooth function w(x, t), uniformly 
on bounded subsets of R" x [0, T]. Furthermore, w(x, t) solves (2.2) and (2.3). 
Finally, the function u~(x, t) = - e  In w(x, t) is a solution of (1.5) ~ and (1.6), and, 
due to the positivity of w(x, t), (2.5), u ~ c C~(R n x (0, T)). 

The uniqueness of u~(x, t) follows from the maximum principle. We refer 
to Lemma 3.1 in [15] for a similar result. [] 
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Our last assumption is a nondegeneracy condition. It is a direct analogue of 
the uniform ellipticity assumption, used in the diffusion case. 

'There are p e (0, 1) and 6 > 0 satisfying 

(A6) inf m(x, K(y ,  6, p)) = Co> 0, 
[ x , y E R  n 

where re(x, • ) is as in (1.2), and K(y ,  6, p) is given by 

K (y, 6, p ) = { z, e R" : [1,1->6 and ~, . y <- - p l y l  ]~]}. 

An immediate consequence of (A6) is the following. (Compare this result 
with (A3) in [6].) 

Lemma 2.2. Suppose (A6) holds. Then, for any ~, e R~, 

a 2 
inf Y~ u , ~ , j  ~ ( x , p ) > _ g l ~ , l  ~, 

x ~ R "  i , j= l  api apj 

where K > 0 is a suitable constant. 

3. Estimates 

In this section we prove that the family {u ~} is uniformly Lipschitz continuous, 
and satisfy a uniform one-sided second-order estimate. 

Lemma 3.1. Suppose that (A1)-(A6) hold. Then u~(x, t) satisfies (1.7) and (1.8) 
with a constant K > 0 independent of  e. 

Before we give the proof  of Lemma 3.1, we indicate some consequences of 
it. The estimate (1.7) implies the precompactness of the set {u ~} in the weak 

1.oo 
topology of W~oc. Moreover, the theory of viscosity solutions [3, Theorem 1.4] 
yields that any limit point u ° of {u~), as e tends to zero, is a viscosity solution 
to (1.9). Due to the uniqueness of solutions to (1.9) with terminal condition (1.6) 
(see [3] and [4]), we obtain that as e approaches to zero, u~(x, t) converges to 
u°(x, t) uniformly on compact subsets of  R n x [0, T]. 

Also, it is known that the estimate (1.8) yields information about the conver- 
gence of Vu~(x, t) to Vu°(x, t). More precisely, we have the following result. 

Theorem 3.2. Let u°( x, t) be the unique viscosity solution of  (1.9) and (1.6). Then 
u~ ( x, t) converges to u °( x, t) uniformly on compact subsets of  R n x [0, T]. Moreover, 
i f  u°(x, t) is differentiable at (x, t), then 

lim Vu~(y, s) =Vu°(x ,  t). (3.1) 
( y , s )~ (x , t )  

e$O 

Proof. On account of  (1.8), 

u~(y + 71, s ) -  u~(y, s ) -Vu~(y ,  s).  ~ <- Kiwi = 



210 W . H .  Fleming and H. M. Soner 

for any ~7 ~ R". We refer to Lemma 4.2 of [2] for an elementary proof of  this 
fact. Now pass to the limit in the above inequality as e$0 and (y, s) ~ (x, t). Then, 
any limit point/~ of Vu~(y, s) satisfies the following: 

u°(x  + 71, t)--U°(X, t ) - - f f"  T I <--K[7112. 

Since u°(x, t) is differentiable at (x, t), and it satisfies (1.8), /5=Vu°(x,  t) (see 
Corollary 4.12 in [2]). [] 

Proof of Lemma 3.1. Set w'(x, t) = (O/Ot)u~(x, t). Differentiating (1.5)" with 
respect to t, we obtain 

" 0 t ) + f  t ) -u~(x , t ) ] )  

( 3 . 2 )  ~ 

+ y" Vw~(x, t)}m(x, dy) =0,  

.w~(x, t) = ~t~ (x, Vg(x), g(" )). 

Since the constant functions ~b + --- sup ~ ( x ,  Vg(x), g) and (h- --- 
inf ~ ( x ,  Vg(x), g) are super and subsolutions of (3.2) ~, the comparison principle 
yields 

II w ~ II~--- sup ] ~ ( x ,  Vg(x), g)l -< K. (3.3) 
x 

Let 

c(1, e ) =  IlVu~llc~(R,×(o,~)~, (3.4) 

c(2, e) = sup  [D2u~(x, t)y" y]ly1-2. (3.5) 
x , y ,  t 

Using equation (1.5) ~, and the inequality 1 -  e r -  < - r ,  we obtain 

0 ---u~(x, t)+ ~(x, Vu~(x, t)) 
ot 

= )~(x, Vu~(x, t)) - ~ ( x ,  Vu~(x, t), u~( • , t)) 

= fR e-Y'vUe(X't) 
n\{o} 

x [ 1 - e x p ( - l  (u~(x + ey, t) - u~(x, t ) -  ey " Vu~(x, t))) ]m(x, dy) 

f e-y'Vu'(x.t)l[u~(x+ey, t )-u~(x,  t ) - e y .  Vu~(x, t)]m(x, dy). 
3R "\{o} e 

Also, the definition of c(2, e) yields 

u~(x + ey, t) - u~(x, t) - ey" Vu~(x, t) -< e2c(2, e)ly[ 2. 
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The above inequalities, (A.5), (1.3), and (3.3) yield 

0 
Yg(x, V u~(x, t) )<--~ u~(x, t) + eKc(2, e) e Kc(l"~) 

<- K + eKc(2, e) e ~¢c0"~). 

Due to Lemma 2.2, there is a strictly increasing function y ( r ) >  0 satisfying 

{p~Rn:supYg(x,p)<-r}c{p~Rn:[p[<- y(r)}, V r > 0 .  
x 

Hence 

c(1, e ) -  T(K + eKe(2, e) eKC(l'e)). (3.6) 

Next, we estimate c(2, e) in terms of c(1, e); see (3.9). Assume that there are 
if, y c  R n, Tc [0, T] satisfying 

eP~[u~(g, ?)+ u~(.9, t ) -  2u~(½(.2 +)7), ? ) ] -  colx-  yl = 

=max  {e'~[u~(x, t)+u~(y, t)-2u~(½(x + y), t)]-Co]X-y[~}, 
x,y,t 

where Co---eP'llDegllo~, and p > 0  shall be chosen in the proof. We can always 
obtain such points ~, )7, ?, by slightly perturbing u ~. We refer to the proof of  
Theorem 4.1 of [3] for details. The next step in the proof is to obtain the following 
estimate: 

p[u~(~, ? )+  u~ ()7, t)  - 2u'(½(g +)7), t)] -< eKC(l")[K + Co e-;~]]~ -)71: 

with a constant K > 0, independent of e. Once the technical and long proof  of 
the above inequality is completed, we establish (1.7) and (1.8) by using the 
standard arguments. 

Set ~ =½(~+)7). Since, D2g is bounded, we may assume that ?¢  T. Then 

p[u~(X, r) + u~()7, ~)-2u~(~, f)] 

< Ou~(X,?) o 
- - -0- t  - - ~  u~()7'~')+2~-0 u~(~'~')0t  

=-Y(~(~,  p~ + 2Co(ff-)7) e -'~, u~(.,  ?)) 

-Y~'()7, p~-2Co(X-)7) e -pr, u~( • , ~)) 

+2W~(~, p ~, u~( • , ?)), 

where p ~= ~Tu~(~, ?). Recalling the identity (1.2) and the definition of YC, we 
obtain 

p[u~(X, ?)+u~()7, ? ) -2u~(~ ,  ?)] 

f [--e'l(Z)f(.~, z ) -  et:¢z)f()7, z ) + 2  e'~¢~)f(fi, z)]rr(az) 
dR "\{o} 

IR [--(C(.g, Z)-p~ -- 1)f(.2, z) -- (C()7, z) 'p~ -- 1)fO 7, z) 
+ "\(o1 

• +2(c(~,  z ) . p " -  1)f(~, z)]rr(dz) 
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+ e-'r(b(X) - b(37)). 2Co(~ -37) + (b(X) + b(37) -2b (O) ) .  p~ 

+e-°%o f (2-37).(c(~,z)-c(37, z))Tr(dz), 
a n"\{o} 

I,(z) = __1 [u~(~+ ec(X, z), f) - u~(~, ~)], 
E 

I2(z) = - - 1  [u~(y + ~c(y. z), ~) - uS(y, ~)], 
8 

13(z) = - - 1  [u~(~ + ec(# ' z), ~ ) -  u~(#, ~)]. 
E 

Now, using (A1)-(A3), we obtain 

p[u'(X, T)+ u~(y, ? ) -2u~(~ ,  t)] 

.< ,,\{o}(--e'l(Z)f(x, 2 : ) -  e12(z)f(y, z ) +  e'~(~[f( & z)+f(37, z)  ])~r( dz) 

+ K e11'311~1~ _fi[2+ Klp~[[~ _3712 + Kcol x _~12 e-p~. 

Observe that 111311~<-Kc(1, e), and Ip~l<_ c(1, e). Hence, 

p[u*(X, ?)+ u*(37, r ) - 2 u ~ ( 0 ,  ?)] 

-< [K eKC("') + K e-P%o]l~-yl 2 

fR [ -  e"Cz)f(~, z) - e*2(z)f(~, z) + e'3(z~(f(~, z) +f(37, z))]'rr(dz). 
+ "\{o) 

(3.7) 

The choice of ~, 37, ? yields, for every Cl, c2, c3 ~ R", 

U e (~ .~_ EC1, "~) ..~ u e (37 -t- EC2, ?) -- 2 u ~ (f7 + EC3, ?) 

<-u~(~ +ec~, ?)+u~(37+ec2, T)-2u~(~-7+2 (q +c2), ? ) 

+ ~(1, ~)dc, + ~2-2~1 

--< u~(~, f ) +  u~(37, f)-2u~(r~,  r )+  c(1, e)elc,+c2-2c3l 

+ e-'~co[lx + ,c,-37 - ee2l 2 -  I,~ -37121. 

Letting c~ = c(& z), c2 = c(37, z), and c3 = c(g/, z) in the above inequality, we 
arrive at 

213 <- 1~ + 12+ Co e-"~[ elc( ~, z ) -  c(y, z)l~+ 2(2-37). (c(*, z ) -  c(y, z))] 

+2c(1,  e)]c(2, z )+  c(37, z ) -  2c(gl, z)[. 
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Since e I'(z)-< e Kc(l' ~) for  i = 1, 2, 3, the above  inequal i ty  implies that  

eI~(~) _ eO/2)(l,(z)+l;(z)) 

_< m a x [ e  ',¢z), e ¢1/2)(',(~)+1:¢z))] max[0,  13 -½(I,(z) + I2(z))] 

_ e"C(l'%o e-°q c(~, z ) -  c(y, z)l[EIc(~, z ) -  c(y, z)l +21~-Yl] 

+2c(1, e) e"C(l"~)lc(~, z) + c(y, z ) -2c (~ ,  z)l. 

N o w  substi tute the above  est imate into (3.7): 

pEu~(~, ~)+ u~(L f ) - 2 u ~ ( g  f)] 

<- [ K eK~("~) + Kco e-°f]lx-yl  = 

+ fR. \{o[-eq(~f (& z) - e~(~f(~, z) 

+ e°/2)(q(z>'~(~))(f(~, z )+f (y ,  z))]Ir(dz) 

IR e-'qc(x' z) - c(y, eKC(l,S)Co Z)I 
+ "\{o} 

× [elc(~, z ) -  c(y, z)l +21~- y[]Tr(az) 

f~ 2c(1, e) e"C("~)lc0z, z ) c ( y ,  z)-2c(~, z)l~(az) 
+ %{0} 

+ 

-< eK~(" ' ) [K + Co e-P~]l#-- yl ~ 

+ fR,.\{oi[-eq(Z)f(2, z) -- eZ2(~)f(.y, z) 

+ e"/~)(',(~)+'~(~))(f(2, z)+f(2, z))]~r(dz). (3.8) 

The last inequal i ty  follows f rom (A2), and a s t ra ightforward algebraic  manipu la -  
• tion. Since f (x ,  z) >- 0 and f ( . ,  z) ~ C~(R") ,  for every x, z e R"  

IVf(x, z)[ < ~ 1/2 - 2lID YlI~ [f(x, z)] '/2. 

Using the above  inequality,  we obtain 

If(2, z) -f07,  z)l--< Iv f (2  + r(y - ~Z), z)[ drl~ -y] 

I/ -< [Iv/0z, z)l + 11D~/11~1~-371] d~[~-97[ 

<_ 21102fll%2(f(& z))l/2l~ -Yl + ½11D2f ]1~] ~ -3712 

<- 2IID=TI[U(f(~, z) +f(y,  z))1/21~-371+½11D=fll~l ~-yl  =. 
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Hence 

fR [-eq(Z)f(& z) - e'2(z)f(2, z) J = "\{o} 

+ e(1/2)(q(z)+'2(z))(f(2, z )+f (y ,  z))]rr(dz) 

--< f [-½(f(X, z) +f(Y, z))(eO/2)''(~) - e(1/2)I2(z)) 2 
JR 0\{o} 

+ 1]f(2, z)--f(y,  Z)] ]e ''¢z~- e'~(z)l]rr(dz ) 

<- f [-½(f(2, z) +f (y ,  z))(e ('/2)q(=) - e(1/2)12(z)) 2 
JR "\{0} 

+ [[ D2f I[ ~2(f(  2, z) +f07, z))~/212 - Y[ 

x [e (1/2)'1(z) - e 0/2)I2(z)] [e(1/2)q(~) + e(l/2)I=(~)[ 

+ lllD2f II i2-yl sup(eI,(z)+ e'~(z))]rr(dz). 

Recall that e ~'(z) -< e K~°'*) for i = 1, 2. This observation, together with the integra- 
bility of HD2f[]oo, (A3), yields 

J-< f [-½(f(2, z)+f(. f ,  Z))le(l/2)ll (z) -- e(1/2)I2(z)[ 2 
JR "\{o} 

2 1/2 + I{ D f l l~  eK~("~)]X--YI(f(X, z)+f (y ,  Z)) '/2 

x l e ('/2)q(z)- e(l/2)'2(~)[Jrr(dz) 

+ K eK~O'~)]2-- yl 2. 

Finally, by using the inequality ab-<½(a2+ b2), we obtain 

J < ~ I R  1 2 5lID fll~o e2m(l'~)lx -3712 ~'(dz) + K e'~""~q~z -y l  ~ 
"\{o} 

_< K eK~(',')l~-fl2. 

Substitute this estimate back into (3.8): 

p[u~(~, ? )+  u'(~, ?) - 2 u ' ( ~ ,  t)] -< eK~°")[K + Co e-~][~ -yl 2. 

Also, for every x, y ~ R ' ,  and t c [0, T], 

e°'[u~(x, t)+ u~(y, t)-2u~(½(x + y), t ) ] -   olX-yl 

<_ eO~[u~(~, ?) + u'(37, ? ) - 2 u * ( # ,  ? ) ] -  Co[2-yl 2 

<-- [ ePr eK~(l'~)( K + e-°%o) l--co]] 2 -  

Hence for p = p(c(1, e)) and Co = Co(C(1, e)) sufficiently large, the last expression 
is negative and 

u*(x, t)+ u~(y, t)-2u~(½(x + y), t) < - Co(C(1, e)) e P(~(l"~))tlx-y[2. 
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Consequently, 

c2(2, e)---Co(C(1, e)). (3.9) 

Now, substitute (3.9) into (3.6): 

c(1, e) -< T(K + eKco(c(1, e)) e r~(l"~)) 

= T(K + eF(c(1, e))), (3.10) 

where F(x)=Kco(x)exp(Kx).  Since T(r) is continuous and increasing, for 
sufficiently small e > 0, there are 0 < A(e)< B(e)<-eo satisfying 

O<-x<-T(K+eF(x)) ~ xe[O,A(e)]w[B(e),oo),  (3.11a) 

sup A(e) <- K. (3.11b) 

Therefore, c(1, e) ~ [0, A(e)]  w [B(e) ,  oo). We claim that c(1, e), in fact, belongs 
to the first of these intervals. Indeed, for z ~ [0, 1] let u~"(x, t) denote the solution 
of (1.5) ~ with terminal data u~"(x, ~) = rg(x). Define c,(1, e) to be the wl"°°-norm 
of  u ~''. Then, for all z E [0, 1], 

c,(1, e) ~ [0, A(e)]  w [B(e) ,  oo). 

Moreover, the map z~-->c~(1, e) is continuous on [0,1] for each e > 0 .  Since 
co(l, e) = 0 and A(e) < B(e), we conclude that c~(1, e) e [0, A(e)]  for all z m [0, 1]. 
The proof  of the lemma is now complete, in view of (3.9) and (3.11b). [] 

4. An "Almost Linear" Equation 

In this section we obtain L°°-estimates for the solutions to a sequence of equations. 
These estimates are used in the proof of Theorem 5.1. 

We continue by deriving the first of this sequence of equations. Let u°(x, t) 
be the unique viscosity solution to (1.9) and (1.6). In Theorem 3.2 we have shown 
the convergence of u~(x, t) to u°(x, t), as e tends to zero. Hence, u°(x, t) is the 
leading term in the asymptotic expansion of u~(x, t). To derive an equation for 
the next term in the expansion, consider the function 

u~'l(x, t )=l[u~(x ,  t)-u°(x,,t)]. 
E 

Then u~'l(x, t) solves the following equation: 

_a_ u~,,(x ' t ) + l [ ~ ( x ,  Vu~(x, t), u~( • , t ) ) -W(x ,  Vu°(x, t))] = 0. (4.1) 
Ot e 

Introduce a function H e on R" x R" × C2(R"): 

H~(x,p, ~p) = -b(x)  . p 

+ fR°\~o~ [ e x p ( - l  [ q'(x +eY) -~ ' ( x ) - eY ' (V4 ' ( x ) -P ) ] )  - l + y" P] 

x re(x, dy). (4.2) 
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Observe that 

~=(x, vq,(x), q,) = W ( x ,  v~0(x), q,). 

Using H e , rearrange the terms in (4.1) as follows: 

-Ou="(x ,  t ) + l  [He(x, Vu=(x, t), u=( • , t l)-H=(x, Vu~(x, t), u°( • , t))] 
Ot e 

1 
+ - [ H e ( x ,  VU~(x, t), u°( . ,  t))-H=(x, Vu°(x, t), u°( • , t))] 

E 

1 e 0 + - [ H  (x, Vu (x, t), u°( -, t ) ) - ~ ( x ,  Vu°(x, t))] =0.  (4.3) 
E 

Let 

A~(x, t) = 1  [H=(x, VuO(x, t), u°( • , t)) - ~ (x ,  Vu°(x, t))]. (4.4) 
E 

If  u°(x, t) is smooth in a neighborhood of  a point,  then A~(x, t) converges to a 
limit as e tends to zero. Next, consider 

1 
- [ H e ( x ,  Vu~(x, t), u°(x, t ) ) - H e ( x ,  Vu°(x, t), u°(x, t))] 
E 

Io' = Hp(X, Vu°(x, t)+ "r(Vue(x, t ) -  Vu°(x, t)), u°(x, t)) d~" 

1 
× - ( V u = ( x ,  t ) - V u ° ( x ,  t)) 

E 

= b~(x, t). Vu~"(x, t), (4.5) 

where b~(x, t) is defined to be the integral term. Due to (3.1), b~(x, t) converges 
uniformly to Y(p(x, Vu°(x, t)) provided that  u°(x, t) is smooth in a neighborhood 
of  (x, t). In view of  (4.4) and (4.5), equation (4.3) can be rewritten as 

0 e l  e e - - - u  ' (x ,  t )+bl(x,  t)'Vu='l(x, t)+ Al(x, t) 
Ot 

1 +-[H~(x, Vu=(x, t), 0e'l( • , t)+eu='l( • , t)) 
E 

-H=(x, Vu=(x, t), 0='1( • , t))] =0 ,  (4.6) ='1 

where O~'l(x, t) = u°(x, t). 
Now, suppose that the expansion (1.11) holds up to m - 1. Then the function 

Ue'm(X, t)= e-m[U=(X, t)--U°(X, t) . . . . .  em-lUm(X, t)] satisfies an equation of 
the following form: 

0 
---u='m(x, t)+ b~(x, t).Vu='m(x, t)+ A~(x, t) 

Ot 
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1 + e e --~[H (x, Vu (x, t ) ,O~'m(' , t )+emu~'m(' , t ) )  
E 

-He(x ,  Vu~(x, t), 0~'m( • , t))] =0,  (4.6) ~'m 

where b~(x, t), A~(x,  t), and O~'m(x, t) are determined by u~(x, t) and the 
coefficients u°(x, t ) , . , . ,  um-l(x, t). The specific form of these functions is given 
in the proof  of  Theorem 5.1. In this section we only use the following property 
of b~,, A~,, and 0~: 

[ b~m, A~, O~ ~ C~( N) ,  
0 ~ 2 < K  (H1) {[l ,.lie- , 

{ f i~ b~(x, t) = ggp(X, Vu°(x, t)), 

[ uniformly on compact subsets of N, 

where N is the region on which u°(x, t) is C~-smooth. On account of (A1)-(A6), 
and Lemma 2.2, N is an open and dense subset of R" x [0, r] [5, Theorem 2]. 
Moreover, for every point (x, t) ~ N, there is a smooth curve y*(x, t)(.  ) satisfying 

(y*(x, t)(s), s) ~ N, Vs ~ [t, T], (4.7a) 

y*(x, t)( t) = x, (4.7b) 

d 
d--s y*(x, t)(s) = -Y(p(y*(x, t)(s), Vu°(y*(x, t)(s), s)), Vs c (t, T]. (4.7c) 

The curve y*(x, t) is, in fact, the unique minimizer of  the variational problem 
associated with the Hamilton-Jacobi equation (1.9), satisfying the initial data 
(4.7b). The reader may refer to [5] for the proofs of these classical results. 

Next we construct a subregion N(xo, to)c N for every (Xo, to)~ N. This 
construction is essentially the same as the one given in [6]. First, consider the 
following first-order linear evolution equation: 

0 
- -w(x , t ) -Y (p (X ,  VU°(X , t ) ) .Vw(x , t )= l ,  ( x , t ) ~ N ,  
Ot 

and 

w(x, T) = q~(x), x e R", 

where ~ is a smooth function. Since the characteristics of the above equation 
are y*(x, t)(. ), 

w(x, t) = q~(y*(X, t)( T) ) - ( T -  t). 

For y > 0, let Fv(x, t) be the solution of the above equation with terminal data 
~(x) = (1 - ( 1 / y ) l x -  y*(Xo, to)( T)I2)( T -  to)+ y. Then, 

/~,(x, t )=  ( 1 - 1  {y*(x, t ) (T ) ' y* (Xo ,  t o ) ( T ) 1 2 ) ( T - t o ) + y - ( T - t ) ,  

(x, t) e N. 
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Define a subregion N~ c N by 

N~ = {(x, t) a N; P'~(x, t) > 0}. 

Observe that (Xo, to) ~ Nv for every 3' > 0. Also, the closure ~ r  of N~ is a subset 
of N, provided that 7 is sufficiently small. Let N(xo, to) = N~ and F = fi~ for this 
choice of 3'. Then the following are satisfied by N(xo, to) and F: 

F(x,  t) > O, (x, t) ~ N(xo, to), (4.8a) 

F(x ,  t) <- 0, (x, t) ~ N(xo, to), (4.8b) 

O 
- -  F(x ,  t) - Ygp(x, Vu°(x, t)) = 1, (x, t) ~ N(xo ,  to), (4.8c) 
Ot 

7 * ( x , t ) ( s ) ~ N ( x o ,  to), ( x , t ) ~ N ( x o ,  to), s a [ t , T ] ,  (4.8d) 

F ~  C ~ ( N ' )  for a suitable neighborhood N'  of N(xo ,  to). (4.8e) 

We are now ready to prove the main result of this section. 

Proposition 4.1. Assume  that u~'m(x, t) is a solution to (4.6)~" on N satisfying 

u~' ' (x ,  T) = O, (x, T) c N, 

l] u ~'~ [I L~(N) ~- ke-m. 

Further, assume that (H1) hold. Then, for  every (Xo, to) e N, there is eo = eo(Xo, to) 
such that 

t)l-  -m exp -~ee F(x, t) + liAr, l ion( r -  t) (4.9) 

for  every e ~ eo, and (x, t) e N (xo ,  to). 

Proof. Set 

z ( x , t ) = k e  -m exp - ~ e F ( x , t )  + a ~ ( T - t ) ,  

where a ~= IIe;,l[~. We shall show that z(x,  t) and - z ( x ,  t) are super- and 
subsolutions of (4.6)~"~ in N(xo ,  to), respectively. Then (4.9) follows from the 
comparison result for equations of type (4.6) ~'m. We refer to Lemma 3.1 of [15] 
for a proof of the comparison principle. 

Consider 

L ~ ( x , t ) =  1--~[H~(x, V u ~ ( x , t ) , O ~ ' m ( . , t ) + e m z ( . , t ) )  
E 

--H~(X, Vu~(x, t), oe'm( " , t))]. 
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Using the definition of H ~, estimate L ~ as follows: 

IL~(x' t)l-< "\~o~ exp - -~-  [ o~'m(x + ey, t )--  O~"(x, t) 

- e y "  (V0~'m(x, t ) - V u ~ ( x ,  t))]) 
/ 

1 e m 

-- [ exp[e [[D20~"l]ooly[2+ IIw, ~ ][o~[yl] 
JR "\{0} 

X exp z ( x  + ey, t) - z(x,  t) - ey.  Vz (x ,  t) 

1 
x -  Iz(x + ey, t) - z(x,  t) - ey.  Vz (x ,  t)[m(x, dy). (4.10) 

The specific form of z(x,  t) yields, for all (x, t), ( x + e y ,  t ) e  N '  (here N '  is as in 
(4.8e)), 

1 [z(x + ey, t) - z(x,  t) - ey.  Vz(x, t)l 
E 

( 1 )  ) 
k -~eF(x , t )  exp-~e[F(x+ey,  t)-F(x,t)]  1 = E m + l  exp 

+vr~y • V F ( x ,  t) 

e~+lexp ~ e F ( x , t )  x/~ y V F ( x , t ) - y  V F ( x + r e y ,  t) 

k (1  ) 
-< e,.+ 1 exp -~ee F(x ,  t) 

[I fo 1 x ID2Ft[o~ea/ElYl2+x/-~ y ' V F ( x + r e y ,  t) 

(1 ) 
< exp - F(x ,  t) 
- -  Em+l  

× [llD2Fllooe3/2lyl2+ IIDFII~ exp(vGllDFlloolyl)ely]2]. 
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Substitute the above inequality into (4.10). Then, by using the boundedness and 
the integrability of c(x, z), we arrive at 

]L~(x, t)l<- fR,,\,ot kel-~m e x p ( - ~ e  F(X, t))lyl2m(x, dy) 

-<k~--~exp - -~eF(x , t )  , (x , t )~N(xo,  to), e small. (4.11) 

Also, for (x, t) ~ N(xo, to), 

0 
~ E Ot z(x, t)+bm(x, t) 'Vz(x, t)+ Am(x, t) 

K 1 
= ]' Aml'~ + ~ e x p ( -  ~e F( X, t ) ) 

x F(x, t ) -b~(x ,  t) .VF(x, t) +A~(x, t) 

[o ] 
x -~ f (x ,  t ) -~p(x ,  Vu°(x, t)) 'VF(x,  t)+llbT.-Z~pl[~llVfllo~ 

(1 ) 
---2era+l/2 exp - ~ e  F(x, t) 

for sufficiently small e. The final inequality is obtained by using (4.8c) and (HI).  
The above estimate, together with (4.11), yields that z(x, t) is a supersolution to 
(4.6) ~'m in N(xo, to). Then the comparison principle implies that 

u~''(x, t ) - z (x ,  t)<--sup[u~'m(y, s ) - z (y ,  s); (y, s)e N(xo, to)]. 

Due to (4.8b), and the boundary behavior of u~(x, t), u ~ <-z on ON(xo, to). 
Consequently, u ~ -< z on N(xo, to). 

A similar computation shows that -z(x ,  t) is a subsolution to (4.6) ~'m, and 
therefore u ~ " -  > - z  on N(xo, to). [] 

5. Asymptotic Expansion 

Theorem 5.1. Suppose that (A1)-(A6) hold. Then, for each m = 1, 2 , . . . ,  

u~(x, t ) =  u°(x, t)+eul(x, t)+. . "+emum(x, t)+o(e m) (1.11) 

uniformly on compact subsets of N. The coefficients u m ~ C~( N) and for each m > 1 
they satisfy 

0 
- - -um(x , t )+~p(x ,  Vu°(x, t)) 'Vum(x, t)+Am(x,t)=O, (x,t) cN,  

Ot 
(5.1) m 
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urn(x, T ) = 0 ,  (x, T )EN,  

where Am(x, t) is a function of u ° , . . . ,  u m-~ and their derivatives. 

(5.2) 

We obtain (5.1)" by formally differentiating (1.5) ~ m times with respect to 
e, and then setting e = 0. For example, 

Al(X , t) = -½ f e-y'V"°(x't)(D2u°(x, t)y. y)m(x, dy), 
dR "\(o} 

fR ~-y'VuO(x,t>[ 1 V ae 
A 2 ( x  , t) = "\{o} Ox~ Oxj OX k L-~ Z~ u°(x, t)yiyjYk - D2 ul(x, t)y" y 

(Vul(x, t) 'y+lD2u°(x,  t)y. y)2] m(x, dy). + 

Proof For m = 0, 1, 2 , . . .  define 

w~'m(x, t)= uO(x, t)+" " "+ e"um(x, t), (5.3) 

U~'m+I(X, t )=  I+------T[U~(X , t)--W~'m(X, t)], (5.4) 
E 

where u"(x, t) is the solution of (5.1) m with terminal data (5.2). Observe that 
for each m, characteristics of (5.1) m are equal to the curves y*(x, t) defined in 
Section 4. Since y*(x , t ) ( s )EN for all sE[t ,T] ,  we can solve (5.1) m on N. 
Moreover, u "  E C~(N).  

Using equations (1.5) ~, (1.9), and (5.1) m, we obtain the following equation 
for u~'"+~: 

1 _F ~ 
(x, v u  t)) at 

t )) .Vw""(x,  t ) -  ~ ekAk(X, t)] =0, ~ ~ p  ( X~ V u O ( x~ 
k = 0  .J 

where Ao(x, t)= ~E(x, Vu°(x, t) ) -  ~p(x, Vu°(x, t)). Vu°(x, t). Rearranging the 
terms, we can show that u ~'"+l solves (4.6) "'"+~ with the following choices for 
the coefficients: 

b~+l(x, t )=  Hp(X, Vw~'m+z(Vu~(x, t)-Vw~'"(x,  t)), we'"( • , t)) dr, 

and 

o~'~+'(x, t) = w~'~(x, t), 

1 I ~ w~'m( A~+I(X , t) =e---~- ~ H (x, Vw~'"(x, t), ., t)) 

- Y(p(X, VU°(X, t))'Vw~'m(x, t ) -  k=o ~ ekAk(X' t ) ] .  
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On account of Theorem 3.2, b~(x, t) converges to Ygp(x, Vu°(x, t)) as s tends to 
zero, uniformly on compact  subsets of  N. Since w e'" e C~ °, inductively we can 
show that A~,+I converges to A,,+I, as e tends to zero. Hence, condition (H1) of  
Section 4 holds, and Proposition 4.1 implies that for any (Xo, to) e N 

t)]<-Ke-(m+l)exp(-x--~eF(X , t ) )+K(T- t ) ,  (x, t)e N(xo, to), 

where N(xo, to) is as in Section 4. Since F >  0 on N(xo, to), (5.4) and the above 
estimate yields 

lim sup 4lug(x,  t)-w~"(x, t)[ = 0. [] 
e$O (x,t)cN(xo, to) E 
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Appendix 

Due to a theorem of Skorokhod [14, Lemma II,  p. 77], the existence of  c(x, z) 
and f(x, z) satisfying (1.2) and (1.3) is equivalent to 

f m(x, dz)<oo. (A.1) 
Izl 2 

supx 

Moreover, given a positive measure m(x, dz) there is more than one pair c(x, z) 
and f(x, z) satisfying (1.2). In fact, we can always take f(x, z)-= 1. The reason 
for allowing f(x, z) in our model is the smoothness assumptions (A1)-(A5) 
imposed on the coefficients. 

We give the following simple example to clarify this point. Let n = 1, and 

m(x, A) = A (X)XA(1) 

for x e ( - ~ ,  ~ )  and Borel set A. Then the following pairs, 

f,(x, z) = 1, Cl(X , Z) =X(I/(I+A(x)),I](Z), 

and 

fz(X, z) = )[(x),)((1/2,1](z), c2(x , z )  ~-- ) ( ( l / 2 ,1 ] ( z ) ,  

both satisfy (1.2). But c~(x, z) does not satisfy (A1)-(A5) even if A(x) is a smooth 
function. 
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