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1. INTRODUCTION 

IN THIS paper we continue the analysis, started in [I], of the local properties of solutions of the 
Hamilton-Jacobi equation 

-U, + H(t,x, VU) = 0 (1.1) 

and, more generally, of the equation 

ZI, + H(t, X, U, VU) = 0, (1.2) 

where t E [0, T] and x E s2 C R”. Here and in the following we set 

au 
u*=,,, vu= (g ,...) g), Du=(u,,Vu). 

Moreover, the Hamiltonian H is assumed to be strictly convex in the set of variables corre- 
sponding to VU and Lipschitz continuous in the remaining variables. 

For various reasons, we consider solutions to equations (1.1) and (1.2) in the class of locally 
Lipschitz functions satisfying the equation in the viscosity sense, introduced by Crandall and 
Lions in [2]. Indeed, quite general existence and uniqueness theorems are now available for 
viscosity solutions, as the result of the work of several authors such as Lions [3], Crandall, Evans 
and Lions [4], Ishii [5], Souganidis [6] and Jensen (71. Furthermore, solutions of this class can be 
interpreted as the value functions of certain variational problems, see e.g. [3, 81. 

This paper is mainly concerned with the behaviour of a Lipschitz continuous viscosity solution, 
U, about a singular point, i.e. a point at which u is not differentiable. This problem was studied in 
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[l], assuming the following one-sided bound on u: for some cy E (0, l] 

u(t + h, x + y) + u(t - h, x - y) - 2u(t, x) 5 C(jhi + /yj)‘+a. (1.3) 

Estimate (1.3) holds for viscosity solutions of (1.1) if H is sufficiently smooth in t, x (see 
[I, 3, 51). 

One of the purposes of this paper is to extend the analysis of [l] to a more general class of 
solutions, including the solutions of (1.2). For this reason, in Section 3, we prove a generalized 
version of (1.3) which holds without extra assumptions on H. 

In Section 4 we apply this generalized one-sided estimate to show that 

DCu(t, x) = au@, x), (1.4) 

where D+u and au denote, respectively, the superdifferential and the generalized gradient of u 
in the sense of Clarke [9] (see Section 2 for definitions). The equality in (1.4) represents a con- 
nection between the theory of viscosity solutions and the approach to optimization problems 
described in 191. As a consequence of this connection, we derive the existence of the (one-sided) 
directional derivatives of u at any point (f, x), a result known for the value function of some 
optimal control problems see [8]. Furthermore, we obtain that these derivatives can be 
expressed in terms of the support function of the set D+u(f, x). 

Then, using the ideas of [I], we deduce analytical properties of U, in a neighbourhood of 
(f, x), by using geometric properties of D’u(f, x). For example we show that, at any singular 
point (f, x) of U, the superdifferential D+u(f, x) possesses “exposed faces” (theorem 5.7). Ex- 
posed faces of D+u(f, x) play a central role in our analysis. In fact, one can always find singular 
points of U, approaching (f, x) along any “interior normal direction” to such a face (theorem 
4.9). In particular, in Section 5 we conclude that any singularity of a Lipschitz continuous 
viscosity solution of (1.1) (resp. (1.2) ) has to propagate backward (resp. forward) in time. 

Conversely, u is regular along all directions associated to an “exposed point” of D’u(f, x). 

These points can be also viewed as the limit points of Du, or even as the points of D’u(f, x) at 
which the equation is satisfied, see theorem 5.3. In Section 6 of this paper we apply these ideas 
to a variational context. Extending classical results [lo], we establish a one-to-one correspon- 
dence between the minimizers of a problem in calculus of variations and the exposed points of 
the superdifferential of the corresponding value function. 

2. NOTATION AND PRELIMINARIES 

Let N be a positive integer. We denote by ]P] the norm of P E RN and by P * Q the scalar 
product of P and Q. We set 

sN- 1 
= (0 E RN: 16’1 = 1). 

For any X E RN, r > 0 and 8 E SN-r we define 

B,(X)=~YER~:IY-X~<~), 8 = MO) 

Kr(X,8)=[X+IIY~RN: YEB,(@,Y.~= l,O<I<r). 

The sets K,(X, 0) are open cones with vertex at X and 0 as symmetry axis. 
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Let Q be an open domain in RV and n > 0 an integer. We denote by Ur’*m(Q, R”) the space 
of the bounded functions u : Q -+ R” that are Lipschitr continuous in Q, i.e. 

I4 1,p.Q = sup 
* X,YcQ.X#l 

We say that u E W’*“(Q, R”)ioc if u is locally Lipschitz continuous in Q, i.e. u E W’*“(B, R”) 

for every ball B C CQ. We set 

W’*“(Q, R”) = {u E W19”(Q, R”): Du E W+(Q, R”lv)J 

and we define W2*m(Q, R”& in a similar way. Also, we abbreviate for k = 1,2 

?@“(Q, R) = F@“(Q) 

@“(Q, W,,, = Wks”(Qh,, . 

For any function u : Q + R and X E Q the sets 

D+u(X) = 
I 
P E RN: lim sup ww4J3-P~(Y-m~o 

Y-X lx- YI 1 
(2.1) 

D-u(x) = P E RN: lim inf 4Y)-uo-P~(Y-m>o 

Y-X Ix - YI - 

are known, respectively, as the superdifferential and the subdifferential of u at X. In general, 
D’u(X) are closed convex sets. They extend the usual notion of gradient in the sense that, if 
both D+u(X) and D-u(X) are nonempty, then u is differentiable at X and D*u(X) = (Du(X)J. 

The generalized gradients above are used to define viscosity solutions of a first-order PDE 

f(X, u(X), MX)) = 0 in Q, (2.2) 

where f is a continuous function on Q x R x RN (2, 41. A viscosity solution u of (2.2) is a 
continuous function on Q satisfying 

J-(X, u(X), P) 5 0 VXE Q, v PED%(X) 
(2.3) 

f(X, u(X), P) 2 0 v X E Q, v P E D-u(X). 

Another extension of the notion of the gradient is the following, see Clarke [9]. Let 

u E W’*“(Qh,c. For any 0 E RN we define 

a+u(X; 0) = lim sup 
u(Y + 10) - u(Y) 

Y-X. A10 A 

(2.4) 

ll-u(x; 0) = lim inf 
u(Y + #IO) - u(Y) 

Y-X, x10 A 

Remark 2.1. It is easy to show (see proposition 2.1.1 in [9]) that the function 0 --t 6”u(Z a) 
(resp. 8 + a-u(x; 0)) is Lipschitz continuous and subadditive (resp. superadditive) on RN, 
while the function X --t a’u(x t9) (resp. X -+ Ku(x; e)) is upper (resp. lower) semicontinuous 
on Q. 
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Since a+u(X; 0) = - a-u(X, - @, we have that 

]P E R? a+u(x; e) 2 P - 8, v 8 E R~) = (P E R~: a-~(*, e) I P . 8, v e E R”j. (2.5) 

So, we define the generalized gradient Clu(X) to be any of the sets in (2.5). From (2.1) and (2.5) 
it follows that 

D+u(X) c au(X). 

Moreover, au(X) is nonempty, convex, compact and 

a-u(X; e) = min[P - 8: P E am), VBE RN. 

Also, au is closed on Q as a set-valued function (see proposition 2.1.5 in [9]), i.e. 

X, -+ X, Pk E du(X,), pk -+ P = P E au(x). 

(2.6) 

(2.7) 

Q-8) 

We say that P E R’v is achievablefor u at Xif there exists a sequence of points X, E Q, at which 
u is differentiable, such that 

X = limX,, P = lip Du(Xk). (2.9) 
k 

We denote by Au(X) the set of all the achievable points P for u at X. Clearly, Au(X) is closed 
and 

X, + X, Pk E A@,), Pk + P * P E Au(X). (2.10) 

A useful characterization of au(X) is the following, 

au(X) = conv Au(X) (2.11) 

where “conv” denotes the convex hull (see theorem 2.5.1 in [9]). 
When studying the differentiability of a function u E: W1*“(Q),Oc at a point X E Q, it is useful 

to blow up the space at that point. This is done as follows. For 0 < 6 < d = dist(X, aQ), we 
define 

~%,x(Y) = 
u(X + 6Y) - u(X) 

6 ’ 
IYI _= 1. (2.12) 

Then, the generalized gradients of u and u~,~ are related as follows: 

Dfu,,,(Y) = DCu(X + 6Y), &J(Y) = au(x + 6Y). (2.13) 

Moreover, the functions ug,* are Lipschitz continuous and bounded in 8, uniformly with 
respect to 6. 

Definition 2.2. We denote by U, the set of all the limit points of u*,~ as 6 10, in the topology 
of the uniform convergence in B, . 

The following lemma provides an upper and a lower bound for the elements of U,. 

LEMMA 2.3. For each v E U, and 0 E B, 

min(P - 8: P E &4(X)) 5 v(e) s inf[P . 8: P E D+u(X)). 

Obviously, we assume the infimum in (2.14) to be + co if D+u(X) = 0. 

(2.14) 
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Proof Since by the definition (2.4) we have 

Fu(x; 0) d v(0), ve+ 

the first inequality in (2.14) follows from (2.7). To prove the remaining estimate, notice that 

v(e) 5 lim yap us,x(e) I P. e 

for ail B E 8, and P E D+u(X). n 

We now recall some properties of the classical Legendre tranformation. Let H = H(X, p) be 
a real-valued function defined on Q x RR and assume that 

H(X, Ap’ + (1 - A)p2) < AH(X, p’) + (1 - A)H(X, p2) 

vXEQ, v p’,p2 E R", p’ # p2, 
(2.15) 

VA E (0, 1) 

lim inf 55.B = +a 
IPI 

for all r > 0; (2.16) 
lpl--X~QnBr 

IWX, P) - H(K P)I < ClX - Yl for 1x1, lyl, IPI 5 r. (2.17) 

Then, the Legendre transform of H, defined as 

L(X,p)= sup [-p.q-H(X,p)l,XEQ,q~R’ 
PER” 

(2.18) 

is convex in q and satisfies 

lim inf L(x, = +a 
141 

for all r > 0; (2.19) 
tql--X~QnBr 

lux 4) - UK 4)ls c,lx - YI for 1x1, IV, Id 5 r. (2.20) 

Moreover, from (2.15) it follows that the supremum in (2.18) is attained at a unique point 
p*(X, q). Consequently, L is continuously differentiable with respect to q and 

p*w, 4) = -D&(X, 4). (2.21) 

In particular, there exists a function o(r, s) L 0, with w(r, s) 4 0 as s + 0, such that v r > 0 

lp*(X, 4) - P*(X, @)I 5 dr,lq - 4’1) (2.22) 

for all X, q, q’ satisfying 1x1, lql, lq’l _( r. We may assume that o is nondecreasing in both r 
and s. 

LEMMA 2.4. Assume (2.13, (2.16) and (2.17). Then, for any o E [0, l] and r > 0 

oL(X, q + (1 - o)q’) + (1 - a)L(X, q - oq’) - L(X, 4) 5 ~(1 - aWl~(2~,ldl) (2.23) 

for all X, q, q’ satisfying 1x1, 141, 14’1 S r. 

Proof. Set 

P1 = P*(x, q + (1 - a)q’), p2 = p*(x, q - aq’). 
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Then 

aL(X, q + (1 -a)q’) + (1 -a)L(X, q - oq’) - L(X, 4) 

5 c7( -PI * [q + (1 - a)q’] - H(X, p’)) + (1 - a)] -p2 * (q - as’> - H(X, p’)l 

-o( -pl * q - H(X,pl)) - (1 - a){-p’ * q - H(X,p2)I 

5 f_r(l - a)lq’l Ip’ - p21. 

So, the conclusion follows by (2.22). m 

3. A GENERALIZED ONE-SIDED ESTIMATE 

Consider a locally Lipschitz viscosity solution u of the equation 

-u, + H(t, x, Vu) = 0 (f, x) E (0, n x 0, (3.1) 

where Q is an open domain in R" and T > 0. The Hamiltonian H(t, x, p) is a real-valued func- 
tion defined on (0, T) x Sz x R”. We assume that Hsatisfks (2.15) and (2.17) with X = (t, x), 
Y = (s,y), Q = (0, T) x C2. 

Fix (to, x,,) E (0, T) x C.2 and define ug according to (2.12), that is 

u,(t, x) = P(u(te + &, x, + 6x) - tc(t,, x(J)], XEB~,~E[-1,111 

where 

(3.2) 

0 < 6 < d,, = 2-l min (to, T - to, dist.(x,, &.2)]. 

Recalling (2.13), it is easy to see that the functions ug satisfy, in the viscosity sense, 

- (%), + H6(r, x, Vu,) = 0, (3.3) 

where 

H*(t, x, p) = H(S, + dt, x, + 6x, p). 

Clearly, ug E W’*“([ - 1, l] x B,), uniformly for 6 E (0, do). Therefore, we may assume, 
without loss of generality, that Hs satisfies (2.16) uniformly for 6 E (0, de). In fact, equation 
(3.3) is not affected by modifying H outside a large ball. Consequently, by dynamic program- 
ming (see e.g. [3, 8]), 

u,(t, x) = inf r e -I 

L s 
J%(s, V(S)* $(s)) ds + u&J, V(Q) : II E f+-xt, 4, w, m = x /’ (3.4) 

where L, is the Legendre transform of HA defined according to (2.18), and 

0 = inf (T E [t, l] : (T, q(r)) E ((1) x B,)U([t, l] x I~B,)]. 

Remark 3.1. Using standard control arguments it follows that ?,$s) in (3.4) may be assumed to 
satisfy 

Iti 5 CIJ for a.e. s E [t. e], (3.5) 

where C, is a constant independent of x, t and 6. In fact, since L8 satisfies (2.19) uniformly for 
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6 E (0, d,), for each r > 0 there exists C(r) > 0 such that 

IPl 5 r * W, x, P) = sup 1 -P * 4 - M, x, 4)l 
Id 5 C(r) 

for all x E B, , t E [ - 1, l] and 6 E (0, de). Then, since u is locally Lipschitz, there exists r,, > 0 
such that, for each x E B,, t E [- 1, l] and @,,p,) E DCu,(t, x), 

l&l + IPXI 5 ro 

for all 6 E (0, do). Therefore, 

- (n&f, x) + ,,,s”c4 o) I- Vdf, xl * 9 -M, x, dl = cl in [-1, l] x B, 
5 r 

in the viscosity sense and (3.4), (3.5) hold with Co = C(r,). 

Now, let T, be such that 0 < T, < 1/2Co and (t, x) E [ - &, 7J x B,. Then (s, q(s)) E 
L-T,, r,l x&. So, 

ii 

7-l 
u,(t, x) = inf L,(s, fl(s), ti(s)W + %(T 7 rlvd: v(t) = x, Iml 5 co 

1 
(3.6) 

Jf 

for all (t,x) E [-Tr, TJ x B,. 
Using the representation formula (3.6), we now prove a one-sided estimate on u6 which 

generalizes the one obtained in [l]. Let To = T,/2. 

THEOREM 3.2. Assume that H(t, x, p) satisfies (2.15) and (2.17) with X = (t, x), Y = (s, y), 
Q = (0, T) x 62. Let u E W’*“(Q)t,, be a viscosity solution of (3.1) and define ub as in (3.2) on 
[ - T,, T,] x B, . Then, there exist a constant K > 0 and a function o(s) L 0, with o(s) --) 0 as 
s * 0, so that 

13u,(t + (1 - I)k,x + (1 -1)~) + (1 - ,I)u,(t - Ah,x - Ay) - u&,x) 

5 W1 - 4dhi + IubIJ + dhl + bbl (3.7) 

for all L E [0, 11, 0 < 6 < do, (t, x) E [- To/2, T,,/2] x B, and (h,y) satisfying (t, x) f 
(ky) E Bt . 

Proof. First, we prove (3.7) in the case of y = 0. Fix (t, x) E [ - To/2, T,/2] x B, and let I]~ 
be a minimizer for the expression in (3.6). Define 

ViCs) = VO(fi(s))9 i = 1,2, 

where 

T (s) = U’, - 0s - TO - A)h 
-1 Tl - t -- (1 - A)h ’ 

t + (1 - A)h s s s q 

72w = 
(T, - ?)s + AhT, 

T,-t+Ah ’ 
t-Ahlss T,. 
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Since 

‘IlO + (1 - A)h) = x = qz(t - /VI), rlI(T,) = %(T,) = rlz(T,), 

we can plug qI, q2 and 11~ into (3.6) to obtain 

iu,(t + (1 - /I)h, x) + (1 - A)u,(t - Mz, x) - u,(t, x) 
^- 

=I =I 
+ (1 - A) 

s 
‘W, v2(.5), ri2(.9)) d.v - u% tlo(49 tie(s)) d.s 

t-Xh t 

=I 

= /I 

s 

b&6, rll@), til@N -~,(7,(~)~ rll(G, 41(4)) d.T 
t+(-X)h 

s 

=I 

+A M7,(4, rlo(7A.m 30(7lW~,(~)) d.s 
t+(l-X)h 

=I 

+ (1 -/I) 
s 

ki(Q(G, rl0(72(s)), ti0(72(s))f2(G) d.s 
t-Ah 

=A+B+C+D+E. (3.8) 

Now, from (2.20) and the definition of I& we have that 

Tl 
=’ A + B s K&t s Is - rl(s)l d.s + K&l - A) 1s - 72(.$j h 

t+(l-X)h s t-Ah 

I KdA(l - A)(hjT,. 

Also, by changing variables in the integrals C and D, 

(3.9) 

C+D+E= 
T1 1 

s I 

1 -I 
- &(7, tlo, tiof2) - b(7, rlo, tie) dr. 

t 
< b(7, 90 ? 30 ill + 

f2 1 

Since 

and q. satisfies (3.5), from (2.23) with u = L/f,, q = rjo and 

q’ = x-‘&(1 - Qjo(s) = tj,(.s)(T, - t)h[T, - t +M$-‘[T, - t - (1 - A)h]--’ 
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we conclude that 

A 1 -A OrI 
C+D+EsK<- 

1 72 I 
K’G(1 - ~,MO(44~-‘7,(1 - f2z)iO(.s)I) ds 

I KA(1 - A)fhl42C,, 2C,lhl/T,j. (3.10) 

From (3.8), (3.9) and (3.10) we obtain (3.7) 
Next, to prove (3.7) for general y, define 

rlf(sj = %(S - (1 - 44 + PI(S), 

for t + (1 - A)h I s I G + (1 - A)h and 

in the case of y = 0. 

PI(S) = 
T, + (b--_:‘” - S(l _ njy 

0 

rlft.9 = rlob + Ah) + P&), P2W = - 
&-Ah-s 

To - t 
JY 

for t - Ah I s I To - Ah, where To = T,/2. Since 

q:(t + (1 - I)h) = x + (1 - I)y, qf(t - Ah) = x - Ay, 

rl:(T, + (1 - Ijhj = rlo(T,) = r7t(T, - Ah), 

again from (3.6) we obtain 

&(t + (1 - A)h, x + (1 - 1)~) + (1 - A)u,(t - Ah, x - Ay) - u,(t, x) 

5 IhG’i + (1 - W, rloG% + (1 - WsVo - Ah, rloK,N - dT0, tloK,))l 

TO+(l-x)h To-Ah 

+A 

s 
I&, tlW), cad) ds + (1 - 1) u.5 tlz*(@, Md) h t+(I-X)/l s t-Ah 

1 

To - L&, qo(.s), ho) ds = A’ + B’ + C’ + D’. (3.11) 
t 

By changing variables in the integrals B’, C’ and D’, we have 

B’ -I- C’ -I- D’ 

To 
= #I 

s 
bw + (1 - A)h, rloO-j + A@ + (1 - l)h), tie + A) - M-, rlok), rio + A)1 dr 

t 

+ (1 -A) 
s 

To 
Ws(r - Ah, tlo(rj + ~z(r - Ah), rio + A) - &(r, aok), 40 + ~92)) dr 

t 

5 

To 

+ W&? ‘lo 9 lie + 01) + (1 - W,(~, ‘to 9 rio + 62) - u% rlo I tio)l d&v. 
t 

Therefore, recalling (2.20) and (2.23) 

B’ + C’ + D’ I K&(1 - A)(lhl + lyl) + A(1 - A)lylo(2/T,,21yl/T,). (3.12) 

Finally, using the first part of the proof to bound A’, we derive (3.7) from (3.11) and (3.12). n 



314 P. CANNARSA and H. M. SONER 

4. ANALYSIS OF THE GENERALIZED GRADIENTS 

Let Q be an open domain in Rv, u E W’9”(Q),,, and X” E Q. We define ug = ug, X0 on B, 
as in (2.12) and we assume the existence of w(s) > 0, with w(s) --) 0 as s -+ 0, and of a constant 
C > 0 so that the generalized one-sided estimate at X0 

AU&(X + (1 - A) Y) + (1 - A&(X - I Y) - u*(X) 5 CA(l - /I)/ YI(B + w(l Yj)) (4.1) 

holds for all 1 E [0, 11, 0 < S < do = dist(X’, aQ), X E B, and Y satisfying X f Y E B, . 
First, we give an equivalent form of (4.1) expressed in terms of generalized gradients. 

LEMMA 4.1. Let u E w”“(Q),,, and assume (4.1). Then 

u~(Y)-u,(x)-P*(Y-x)~c]Y-x](6+w(]Y-x~)) 

forallX,YEB,,PEau,(X)andO<6<d,. 

(4.2) 

Proof. Let ug be differentiable at X. Then, by (4.1), 

U&(Y) - U&(X) - D&(X) * ( Y - X) 

= lim 
L 

u&(X + (1 - A)(Y -X)) - u&(X - I(Y - X)) + 
u,(X - A( Y -X)) - U&(X) 

Xl0 A 

5 cl Y - X](S + w(] Y - Xl)). 

The general case follows from the previous one in view of (2.11). q 

A major step in our analysis is the following. 

THEOREM 4.2. Let u E W’,“(Q),,, and assume the generalized estimate (4.1) at X0. Then 

D+u(xO) = au(xO). (4.3) 

Proof. Jn view of (2.69, we only need to prove that 

D+u(x~) I au(xO). (4.4) 

So, assume the contrary and let P be an element of au(X’) which is not in Dfu(Xo). Then, there 
exists a sequence X, + 0 such that 

limU(Xo+xk)-u(Xo)-P~x~~~>O 
k Ix,/ 

Fix E > 0 and set 

Xk,, = eXk/]Xk], &,, = IX&e. 

The above limit reads as follows 

li? i (u&,(Xk,E) - P - xk,,) = a > 0. (4.5) 

On the other hand, recalling (2.13), by the generalized one-sided estimate (4.2) we conclude 
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that, for k 2 k,, 

Thus, by (4.9, 0 < cz I CO(E), which is false for E sufficiently small. R 

We state below an immediate consequence of theorem 4.2 and of lemma 2.3, namely the fact 
that u possesses (one-sided) directional derivatives at X0 in all directions 0 E RN, denoted by 

au 
ae (X0) = lim u 6(. a.,@(@. 

COROLLARY 4.3. Let u E W’*“(Q),,, and assume the generalized estimate (4.1) at X0. Then 

$ (X0) = min(P . 0 : P E D+u(X”)] = Ku(XO, 13) (4.6) 

for all 6 E RN. Furthermore, the convergence of u&,x0 to a-u(X”, s), as S 10, is uniform in B, . 

COROLLARY 4.4. Let u E IV’*m(Q)loc and assume the generalized estimate (4.1) at X0. Then 

P * (X - Y) I a-u(XO, X) - KU(XO, Y) + C6 (4.7) 

forallX,YEB,,PED+U(X”+~X),O<~<do. 

Proof. From lemma 4.1 we derive 

P * (Y - X) 5 ClS + w(A)) + A-‘lu*(AX) - u&Y)) = C(6 + o(A)) + u*x(X) - U,,(Y) 

for all A E (0, l), X, Y E B, , P E D+u(X’ + 6X), 0 < 6 c do. Then the conclusion follows as 
A -+ 0, in view of corollary 4.3. E 

Motivated by corollary 4.3, we now focus our attention on the exposed faces (in the sense of 
convex analysis, see Rockafellar [I 11) of Diu. We recall that, given any convex set D c RN, a 
point of D is exposed if there exists a supporting hyperplane II to D, which contains no other 
point of D. To any exposed point P E D one can associate at least a vector 8 E RN\(O] (normal 
to II) such that 

We call such a 

e .P’ c 8-p for all P’ E D, P’ # P. 

vector 0 an exposed vector for D. 

Definition 4.5. Let X E Q. We denote by Eu(X) the set of all the exposed points of D’u(X). 
For 0 E RN\(OJ we set 

D+u(X, 0) = {P E RN: Pa d = min[P’ - 0: P’ E D+u(X)]]. 

Clearly, 0 is an exposed vector for D+u(X) if and only if D+u(X, 8) is a singleton. 

Remark 4.6. By Straszewicz’s theorem (see e.g. 111, theorem 18.6]), Eu(X) is a (dense) subset 
of the set of the extreme points of D’u(X). Now, by (2.11) and (4.3), D’u(X’) = conv Au(X’). 
So, every extreme point of D’u(X’) is a point of _4u(X”) (see [ll, corollary 18.3.11). In 
particular, &(X0) C Au(XO). 
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The following proposition is a refinement of (2.8). 

PROPOSITION 4.7. Let u E W’Y”(Q),,, and assume the generalized estimate (4.1) at X0. If 

X, -+ X0, Pk E D+u(X,), Pk + P 

(X, - XO)/JX, - x01 --) e 

then P E D+u(X’, 0). 

Proof. Let 6Jk = (X, - X0)/1X, - X01. Applying corollary 4.4, we obtain 

Pk * L9k 5 a-u(XO, e,) + clx, - xy 

By remark 2.1, (2.8) and (4.3), in the limit we have that P E D’u(X’) and P * 0 5 a-u(X”; 0), 
which is equivalent to our conclusion. 

Definition 4.8. We say that u is regular at X0 along 8 E R”\(O), if 0 is an exposed vector for 
D+u(X’). 

The meaning of the above notion is explained by the following result, which generalizes 
theorem 4.14 of [l]. Let K,(X’, 0) denote the open cone defined at the beginning of Section 2. 

THEOREM 4.9. Let u E W’*“(Q),,, and assume the generalized estimate (4.1) at X0. Suppose also 
that Au(X’) contains no line segments. If u is continuously differentiable on X,(X’, 8)) for 
some r > 0, then u is regular at X0 along 8. 

Proof. Since the proof has much in common with the one given in [l], we only sketch it 
below, focussing on the main differences. 

We argue by contradiction. Suppose 0 is not exposed and let d be the dimension of the convex 
set Dcu(Xo, 0). Then, 1 5 d s N. We write vectors P E RN in the form 

Similarly, 
P = (p’, p”, pN), p’ E Rd, p” E RN-‘-d, pN E R. 

DU = (D’u,D”u, DNu). 

Arguing as in the proof of theorem 4.14 of [l] we may assume that X0 = 0, 0 = (0, 0, - 1) and 

(i) D’u(0) C (P E RN:pN I 0); 

(ii) D+(O,(O, 0, -1))c(P~R~:p~(O,p”=0); 

(iii) D+u(O,(O, 0, - 1)) > ((p’, 0,O) : jp’l spf for some p > 0. 

Since u is continuously differentiable on J&(X’, t9)), the mappings 

a*:& c Rd --* Rd, Q*(Y) = D’u(Gx’, 0, -s) 

are well defined and continuous for 0 < 6 < r. Also, by corollary 4.4 

Q”(Y) ‘X’ 5 Ku(O,(Y, 0, - 1)) - a-u(O,(O, 0, - 1)) + C6. 

(4.8) 
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Now, by (4.4) and (4.8)(iii)(i), 

XU(O,(X’, 0, - 1)) I -rp, Xu(O,(O, 0, - 1)) 2 0. 

So, if 0 < 6 < rp/2C, then 

Q&(x’) * x’ I -/-p/2, VX’ E aB,. (4.9) 

Therefore, by an easy corollary of Brouwer’s fixed point theorem, (4.9) implies that for each 
.0’ E B,,, C Rd there exists x1(6> = x’(6,~‘) such that @‘(x’(s)) = p’. Next set 

P(d) = D@x’(6), 0, -s) = (p’, D’z@x’(6), 0, -4, Q&Ix’@)), 0, -6)). (4.10) 

There exists a sequence 6, + 0 with P&J -+ PO as m + 00. Also, recalling (4.10), 

PO = (P’, P;l,PoN) E MO, (0, 0, - 1)) 

by construction. Then, by (4.7), 

pt .xy6,) - f(s,) I a-h(o,(~ys,),o, - 1)) + ~6, I p'xy6,) + cd, 

since (j’, 0,O) E D+u(O). So, recalling (4.8)(i), we have in the limit 

pr=o. 

Thus, PO * (0, 0, - 1) = 0 and PO E D+u(O, (0, 0, - 1)). In particular, pg = 0 by (4.8)(ii) and we 
have obtained that any point @‘, 0, 0), with p’ E Bp,2, is achievable. But this fact contradicts 
with our assumption on A@‘). W 

5. APPLICATION TO HAMILTON-JACOBI EQUATIONS 

The results of Sections 3 and 4 will now be combined to study the first order singularities of 
the locally Lipschitz viscosity solutions of the equation 

-U, + H(t, x, VU) = 0, (t, x) E (0, T) x n. (5.1) 

Here Q is an open domain in R” and H = H(t, x,p) is a real-valued function with the properties 
below: 

H is strictly convex in p, i.e. 

H(t, x, Ap’ + (1 - A)p2) < /lH(t, x, p’) + (1 - n)R?(t, x, p2) (5.2) 

for all (x, t) E (0, 7) x R, 1 E (0, l), p’,p2 E R”, p’ # p2; for each r > 0 there exists C, > 0 
such that 

lfm,x,P) - f&,Y,P)l 5 c,dt -4 + lx -A) (5.3) 

for all s, t E [0, t] and x, y, p satisfying 1x1, Iy I, IpI I r. 
From theorem 3.2 it follows that the generalized one-sided estimate (3.7) holds at every point 

(to, x0) E (0, 7) x S2. Therefore, recalling theorem 4.2, we have the following. 

COROLLARY 5.1. Assume (5.2) and (5.3) and let u E W’*“((O, 7) x SQ,, be a viscosity solution 
of (5.1). Then 

au(t, x) = D+u(t, x) 

for any (t, x) E (0, 7J x Cl 
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Remark 5.2. An interesting by-product of corollary 5.1 is that viscosity solutions of (5.1) satisfy 
the equation in the sense of Clarke [9]. A related result is proved in [12]. 

New connections among the geometric objects defined in Sections 2 and 4 may be established 
for solutions of (5.1). We give the proposition below as an example. In the following, we 
decompose any vector P E D’u(t, x) as P = (p,, p,) where pr E R (resp. px E R”) corresponds to 
the time (resp. space) derivative. 

THEOREM 5.3. Assume (5.2) and (5.3) and let u E W’*“((O, 7) x Qloc be a viscosity solution of 
(5.1). Then, for any (t, X) E (0, r) x i2 and P = (pt,PX) E D+u( t, x) the following statements 
are equivalent: 

(a) P E Eu( t, x); 
(b) P E Au(t, x); 
(c) I’, = H(t, &PX). 

Proof. From remark 4.6 it follows that (a) = (b). Also, from definition (2.9) and the fact that 
(5.1) holds at each point at which u is differentiable, we conclude that (b) * (c). So, we now 
proceed to show that (c)*(a). Let h E a#(f, x, p,)*. By (5.2) 

H(t, X, P,) + h * (P, - A) 5 W, x, PA v pX E R” (5.4) 

the strict inequality being true whenever px # p,. Also, since u is a viscosity solution of (5.1) 

PI 2 H(t, X, PA v P = (p,,pJ E D’u(t,x). (5.5) 

Now, from (5.4), (5.5) and (c) we conclude that 

Pt - h*P, IpI - h-p,, v P E D+u(t, x) 

the strict inequality being true whenever px # p,. But then 

Pt - h-p, <pt - h-p,, v P E D+u(t,x), P f P 

and P is exposed with respect to (1, -h). n 

Remark 5.4. An immediate consequence of the strict convexity of H with respect to p is that 
Au(t, x) contains no line segments. Indeed, if P, Q and P(A) are points of Au(t, x) and 

P,(A) = API + (1 - A)qx, A E (0, l), then by (c) above 

P,(A) < AP, + (1 - A)qt. 

We now turn to the analysis of singularities of a viscosity solution u E W’~“((O, T) x a)lOc 
of (5.1). Let (t,x) E (0, T) x Sk 

Definition 5.5. We say that (t, x) is a regular point of u if D+u(t, x) is a singleton. We say that 
(t, x) is a singular point of u otherwise, i.e. if D’u(t, x) has strictly positive dimension. 

l Here $,H denotes the subgradient of H in the p variables. a# coincides with the generalized gradient in the sense 
of Section 2, see [9. proposition 2.2.71. 
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Remark 5.6. Notice that (t, X) is a regular point of u if and only if u is (strictly) differentiable 
at (t, x) (see 19, proposition 2.24). 

Obviously, if (toI x0) is a regular point of u, then u is regular at (I,, , x0) along any 8 E R”+t 
(in the sense of definition 4.8). The result below states that, in some sense, the converse is true 
for the viscosity solutions of (5.1). 

THEOREM 5.3. Assume (5.2) and (5.3). Let u 6 W’*“((O, T) x Q,, be a viscosity solution of 
(5.1) and (to, x0) E (0, T) x Q. If u is regular at (to, x,-J along any B = (f?,, 6,) E Rncl with 
Bt < 0, then (to, x,,) is a regular point of U. 

In particular, in view of theorem 4.9 and remark 5.4, theorem 5.7 yields the followings 

COROLLARY 5.8. Assume (5.2) and (5.3). Let u E FV’~“((O, T) x !&,c be a viscosity solution of 
(5.1) and (to, x0) E (0, T) x R. If u is continuously differentiable on (to - e, to) x B,(x,) for 
some E > 0, then (to, x0) is a regular point of u. 

We note that corohary 5.8 was proved in [1] in a more restrictive form. Actually, the method 
of [l] contains all the ideas needed for the proof of theorem 5.7, that we give below for com- 
pleteness. Besides, in doing so, we want to distinguish between the use of equation (5.1) and the 
contribution of convex analysis, represented by the following lemma. 

LEMMA 5.9. Let D be a compact convex set in R”“‘, with dim D = d + I, 0 I d _( n. For any 
P= (s,p)~D,~~R,p~R”,defineP= (S,p)EDby 

P =PI s = max[s E R: (s, p) E D]. (5.6) 

Suppose that all the vectors B E R”+’ with 0, < 0 are exposed vectors for 11 and Iet PO be a point 
in the reIative interior of D. Then P, is an exposed point of D. 

Proof. First, we prove the conclusion in the case of d = n. Then, PO E D” by hypothesis, 
where 13” denotes the interior of D. Also, P, E XI by construction. Therefore, as D is convex, 
there is a vector fs E Rd+’ such that 

(P - P,, * 82 0, vPED. (5.7) 

Taking P = PO in (5.7), we have (so - s,)& 1 0. But se - S, < 0 as PO E Do, so 8, 5 0. Now, 
suppose that 8, = 0. Then, from (5.6) and (5.7) we obtain (P - PO> * 8 2 0, v P E D, which 
contradicts with PO E D”. Thus, 8, < 0 and the conclusion follows. 

Next, we prove our lemma for 0 I d < n. We claim that, after possibly changing coordinates 
in R”, 

D C [(s, p’,p’y E R x Rd x Rn-d: p” = O]. (5.8) 

Indeed, since dim L> = d + 1, there are n - d vectors 8’ E S, i = d + 2, . . . . n + 1, such that 

L9’Q.J - q) = 0 for all p, q E D (5.9) 

for i = d + 2, . . . . n + 1. Since all the vectors 8 E R”’ 1 with 8, < 0 are exposed vectors for f), 
(5.9) yields that 0f = 0, i = d + 2, . . . , n + 1. This implies our ciaim (5.5). Now, applying the 
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first part of the reasoning to the projection of D onto R’+‘, one can easily complete the 
proof. n 

Proof of theorem 5.7. If we show that 

dim D+u(t,, x,-J = 0, (5.10) 

the conclusion will follow from remark 5.6. Thus, suppose that 

dimD+u(t,,x,) = d + 1, OIdsn. 

Then, there is a segment P(A) = AP + (1 - A)Q, J. E [0, 11, P # Q, contained in the relative 
interior of D+u(t,, x0). So, by lemma 5.9, P(A) E Eu(t,, x0) for all A E [0, 11. Consequently, 
recalling remark 5.4, 

P,(l) < AP* + (1 - J*)q, 

(5.11) 

for all 1 E [0, I]. On the other hand, from the definition (5.6) it follows that 

a,(n) 2 APO + (1 - J-)qr. 

Since the above inequality contradicts with (5.1 l), we obtain (5.10). n 

Let now (to, x0) be a singular point of U. Then, from theorem 5.7 it follows that there is at 
least one direction B E S”, with 8, < 0, such that 

dim D+u((t,, x0), 0) B 1. 

So, applying theorem 4.9, we obtain that the singularity at (to, x0) has to propagate along 8 in 
the following sense: there exists a sequence of singular points (tk, xJ, with tk < t, , such that 

(tk , xd + (to, x0) and 

tfk - tO a xk - xO) 

[ttk - to)’ + (xk - x,)2]1’2 
-_* e (5.12) 

ask+ 03. 

Remark 5.10. We note that all the results of this section have been obtained under the assump- 
tion that H be locally Lipschitz in (t, x) (condition (5.3)). Therefore, they can be easily extended 
to solutions of (l-2), assuming a Lipschitz continuous dependence of H on U. Obviously, due 
to the change of sign in front of u,, singularities will now propagate forward in time. 

6. APPLICATION TO A VARIATIONAL PROBLEM 

Consider a variational integrand L(x, q) defined on R” x R” = Rtn, having the following 
properties: 

L E W2*=‘(R2”)rK (6.1) 

for all (x, q) E R2” 

Ux, 4) 2 NM) (6.2) 
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where A(r) is some real function, bounded below and such that A(r)/r + + 00 as r + + a~; 
there is a nonincreasing function A(r) > 0, r E [0, + a~) such that 

L,,(x9 q)t * r 2 GM2~ v x, q, t E R” (6.3) 

where L,, denotes the matrix (i3’L/aqiaqj). 
Also, let ~1 be such that 

v E W1.=‘(R2”),oc, V(X) 2 C, VXER” (6.4) 

for some real constant C. 
Then, from standard results in calculus of variations it follows that for every (I,x) E 

[0, T] x R” the functional 

under the condition x(t) = 
s E [t, 7-j (see e.g. [13, 141). 
Lipschitz continuous [ 151. 

I 
T 

d-1 * L(xo, -w) ds + v(xG?), (6.5) 
I 

x, attains a minimum at an absolutely continuous curve x(s), 
Moreover, condition (6.2) implies that any minimizer of (6.5) is 

Now, the value function u defined as 

IS 

T 

u(t, x) = inf L(x(s),%(s)) ds + (o(x(T)):x(-) E W”“([t T], R”),x(t) = x 
1 

(6.6) 

is also locally Lipschitz ofn [0, 7-j x R” (see e.g. [lo, 141). Furthermore, u is the unique viscosity 
solution of the Hamilton-Jacobi equation* 

-u, + H(x, Vu) = 0 in [0, r] x R” (6.7) 

with initial condition ~(0, x) = v(x), x E R”, where H(x, p) is the Legendre transform of L, that 
is 

Wx, P) = SUP [-P * 4 - ux, @I. 
q E R” 

In particular, from (6.1), (6.2) and (6.3) it follows that H(x,p) is strictly convex in p and 
H E W2*m(R2n)l,,c. 

Next, we summarize some known properties of minimizers (see [lo]). 

PROPOSITION 6.1. Assume (6.1), . . . , (6.4) and let (t, x) E (0, T) x R”. Let x(s), s E [t, ZJ, mini- 
mize the functional in (6.5) under the condition x(t) = x. Then, for all s E (t, T) the value func- 
tion u is differentiable at (s, x(s)) and 

(6.8) 

where p(s) = Vu(s, x(s)). Moreover, u is differentiable at (t, x) if and only if there is a unique 
minimizer x(s) of (6.5) with initial point x(t) = x. 

Now, we give a criterion to select, among all the solutions (x( *), p( a)) of the Hamiltonian 
system (6.8), those which correspond to minimizers. Let x(e) be a minimizer of (6.5) at (t, x) 

*This property of the value function is well known, see e.g. (81 and Chapter 1 in 131; see also [I ] for the case at hand. 
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and let p(s) = Vu@, x(s)). Since H E W2*ED(R2R)10C by (6.8) we have that (x(-),p(-)) E 
W”~~([t, fl, R2”). In particular, p(s) converges to a limit p(t) as s It and, recalling equation 
(6.7), 

W@, p(t))* p(t)) E Autt, x). (6.9) 

Notice that, in view of theorem 5.3, condition (6.9) is equivalent to p(t) E n,Au(t, x), where R, 
denotes the projection 71,: R x R” --t R”. Furthermore, the above conditions characterize the 
minimizers of (6.5), as we show below. 

THEOREM 6.2. Assume (6.1), . . . . (6.4) and let (x(w), p(w)) E W’.“([t, 7’l, R2’) be a solution of 
system (6.8) with initial conditions x(t) = x, p(t) = P.~. Then 
problem in (6.6) if and only if 

P, E n,wt, xl. 

x(a) minimizes the variational 

(6. IO) 

Proof. Assume (6.10). By the definition of Au(t,x) there is a sequence (tk, xk) 4 (t, x)? as 
k -+ 00, such that u is differentiable at (tk, xk) and Vu(t,, xk) -+ px. Now, Iet (x”( -), pk( a)) be 
the solution of (6.8) with initial conditions xk(tk) = xk, pk(tk) = VU&, xk). Then, xk(*) 
converges* to x(s) in W’*” and consequently 

s 

T 

5 

T 

L(xk(s), P(s)) &ii + fp(Xk(7-)) --+ mw* q-9) d.s + fPM0). (6.11) 
tk t 

Also, from proposition 6.1 and the successive remarks we conclude that 

1 

r 
Mk, Xk) = L(xk(s), ik(s)) d.s + p(xk(7-)). 

tk 

Thus, the above equality, (6.11) and the continuity of u yield that x(a) is a minimizer at (t, x). 
Conversely, assume that x(a) minimizes the expression in (6.6). The conclusion will follow 

from (6.9), provided we show that 

P(S) = Vu@, x(s)), (6.12) 

for all s E (t, T). Now, since (x(*),p(*)) and (x(s), Vu(*, x(s))) are both solutions of (6.8), we 
obtain 

0 = QJM-W, P(S)) - L),mw, VW, x(.9)) * fP(4 - ve, x(.9>> 

for all $ E (f, T). But H is strictly convex in p and so the above equality implies (6.12). H 
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